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Abstract: By quantifying the distance between two collider events, one can triangulate a
metric space and reframe collider data analysis as computational geometry. One popular
geometric approach is to first represent events as an energy flow on an idealized celestial
sphere and then define the metric in terms of optimal transport in two dimensions. In this
paper, we advocate for representing events in terms of a spectral function that encodes
pairwise particle angles and products of particle energies, which enables a metric distance
defined in terms of one-dimensional optimal transport. This approach has the advantage
of automatically incorporating obvious isometries of the data, like rotations about the
colliding beam axis. It also facilitates first-principles calculations, since there are simple
closed-form expressions for optimal transport in one dimension. Up to isometries and event
sets of measure zero, the spectral representation is unique, so the metric on the space
of spectral functions is a metric on the space of events. At lowest order in perturbation
theory in electron-positron collisions, our metric is simply the summed squared invariant
masses of the two event hemispheres. Going to higher orders, we present predictions for
the distribution of metric distances between jets in fixed-order and resummed perturbation
theory as well as in parton-shower generators. Finally, we speculate on whether the spectral
approach could furnish a useful metric on the space of quantum field theories.
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1 Introduction

Events recorded in high-energy collider experiments populate an intricate and fascinat-
ing data manifold. Naïvely, this manifold has dimension 3N − 4, corresponding to the
dimensionality of relativistic phase space for N observed on-shell final-state particles. For
proton-proton collisions at the Large Hadron Collider (LHC), phase space can occupy
hundreds of dimensions; for collisions of heavy ions, the phase space dimensionality can
easily be in the thousands or even tens of thousands. Such a large space is much too large
to be interpreted and visualized directly, so most collider physics analyses involve some
kind of data reduction. Machine learning techniques have become increasingly popular in
this context, since they can efficiently identify event structures according to the particular
problem one wishes to solve; see e.g. refs. [1–9] for recent reviews.

At the same time, there has been a growing interest in studying the manifold of collider
data as a geometric object in its own right. Considering the space of collider events as
an abstract manifold means that one can evaluate quantities that encode properties of
that manifold, such as its topology or local geometry. One approach to rigorously define a
metric on the space of collider events is based on the energy mover’s distance (EMD) [10],
which quantifies the cost of rearranging the set of particles in one event to match the set of
particles in another. Computing the EMD involves solving an optimal transport problem
for moving energy, analogous to the historical earth mover’s distance that quantifies the
minimal cost for rearranging piles of dirt [11] through the Wasserstein metric [12–14]. The
EMD has been used to define new collider observables [15–17] and study the dimensionality
of jets in CMS Open Data [18, 19]. Variations on the EMD have been proposed for collider
physics that simplify computations [20, 21], enable new physics searches [22–24], mitigate
jet contamination [25], improve computational efficiency [26, 27], and directly establish the
Riemannian metric on phase space [28].

In this paper, we propose an alternative metric for the space of collider events based
on spectral functions. With the original EMD, events are treated as distributions of energy
on the celestial sphere where experimental calorimeters are located. Because the celestial
sphere is two dimensional, one has to solve a two-dimensional optimal transport problem,
for which there are efficient algorithms [29–31] but no closed-form expressions. Here, we
introduce the spectral EMD, where events are treated as one-dimensional spectral functions
that encode the distribution of pairwise particle angles. One-dimensional optimal transport
has a simple expression in terms of quantile matching, and therefore our spectral EMD is
more easily amenable to certain first-principles calculations. Both the original EMD and
the spectral EMD are infrared-and-collinear (IRC) safe, enabling studies of their properties
in perturbative quantum chromodynamics (QCD).

As with many geometry problems, the choice of metric is a choice, which depends
on the features one wants to expose about the data. For example, the original EMD has
the advantage of connecting to many well-known observables in collider physics, such as
events shapes and jet substructure observables [15]. It is, however, cumbersome to evaluate
analytically in all but the most symmetric situations. The spectral EMD has the advantage
of automatically incorporating basic isometries of collider data, such as azimuthal rotations
around the beam line. Not every spectral function corresponds to physical collider event,
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though, so geodesics in spectral EMD space are more difficult to interpret. We perform a few
side-by-side comparisons of the original EMD and spectral EMD to emphasize these kinds
of differences, using as our testbed the space of collimated sprays of particles called jets.

We emphasize that the spectral EMD is not just a one-dimensional projection of the
original EMD. Each one-dimensional projection of two-dimensional data involves some kind
of information loss, whereas the spectral function preserves the complete event information,
up to isometries and sets of measure zero. By taking multiple one-dimensional projections,
one can compute the sliced Wasserstein distance [32, 33], but this quantity behaves more
like the original EMD than the spectral version. In some ways, the spectral EMD behaves
like the tangent earth mover’s distance [34] in that both respect isometries. Still, the
original EMD and its variants have units of energy, whereas the spectral EMD has units of
energy squared.

The rest of this paper is organized as follows. In section 2, we review the spectral
function and use it to define a metric distance between two events, up to isometries. In
section 3, we evaluate the spectral metric in closed form between two jets with up to four
particles in total, corresponding to a perturbative calculation through order α2

s. Using
these results, we present the simplest, double-logarithmically accurate calculation of the
distribution of metric distances in section 4. We find that the distance between quark/gluon
jets is controlled by the sum of the corresponding quadratic color Casimirs, which was
also observed in ref. [19] for the original EMD. In section 5, we numerically evaluate the
distribution of the spectral EMD between jets at next-to-leading order in electron-positron
collisions using the program EVENT2 [35] and note similarities of the results with non-global
logarithms in the calculation of the light hemisphere mass [36]. We generate quark and gluon
jets using a parton shower in section 6, and find that the size of non-perturbative effects are
smaller than what one might have expected from the analogy to angularities. In section 7,
we present an analytical comparison between the spectral EMD and the original EMD for
jets with low multiplicity, and present the first (to our knowledge) closed-form expressions
for the EMD between two jets with up to two particles in them. The spectral function
philosophy enables the construction of metrics for more general spaces, and in section 8 we
construct a metric on the space of quantum field theories that shares some features with
the Zamolodchikov metric [37, 38]. We conclude in section 9, and look forward to numerous
ways that further investigations into the spectral EMD could illuminate collider physics.

2 The spectral metric

In this section, we introduce and define the spectral EMD on the space of jets. This requires
defining the spectral function, which has long been studied in the collider literature [39–
43]. While we focus our discussion on applications to jets and their substructure, these
definitions easily extend to complete sets of particles in an event and to weighted point
clouds more generally.

2.1 Review of the original EMD

To put the spectral EMD in context, it is useful to review the formulation of the original
EMD [10]. Consider a jet consisting of N particles labeled by i, with energies Ei and
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directions n̂i. The energy flow of the jet is given by:

E(n̂) =
N∑
i=1

Ei δ(n̂− n̂i), (2.1)

which can be interpreted as the density of energy over an idealized detector at infinity
with geometric coordinates n̂. Because of the inclusive sum over particles, the energy
flow exhibits manifest invariance under the permutation group SN . The energy flow is
normalized as: ∫

d2n̂ E(n̂) = Etot, (2.2)

where Etot is the total energy of the jet. For hadron collider applications, one would
typically replace energy with transverse momentum (pT ), but we stick with energy for our
discussion for notational simplicity.

Given two energy flows EA and EB, one can compute the optimal transportation cost
between them [10]:

EMDβ,R(EA, EB) = min
{fab}

∑
a∈JA

∑
b∈JB

fab
Ω(n̂a, n̂b)β

Rβ
+
∣∣∣∣ ∑
a∈JA

Ea −
∑
b∈JB

Eb

∣∣∣∣. (2.3)

The subscripts a and b denote particles in jets A and B, respectively, Ω(n̂a, n̂b) is a pairwise
angular distance between particles, β ≥ 1 is an angular exponent, and R is a fixed angular
scale. The energy transportation plan fab satisfies the following inequalities:

fab≥ 0 ,
∑
b∈JB

fab≤Ea ,
∑
a∈JA

fab≤Eb ,
∑
a∈JA

∑
b∈JB

fab = min
( ∑
a∈JA

Ea,
∑
b∈JB

Eb

)
.

(2.4)

As long as R is larger than half the maximum distance between particles, this is a (modified)
metric that satisfies the (modified) triangle inequality:

0 ≤ EMDβ,R(EA, EB)1/β ≤ EMDβ,R(EA, EC)1/β + EMDβ,R(EB, EC)1/β . (2.5)

If EA and EB have the same total energy, then EMDβ,R(EA, EB)1/β is equivalent to the
p-Wasserstein metric with p = β. For N particles per jet, a generic EMD solver requires
O(N3 logN) runtime.

The angular distance Ω(n̂a, n̂b) is also known as the ground metric, which has to satisfy
its own triangle inequality:

0 ≤ Ω(n̂a, n̂b) ≤ Ω(n̂a, n̂c) + Ω(n̂b, n̂c). (2.6)

For our calculations in e+e− collisions, we focus on β = 2, R = 1, and

Ω(n̂a, n̂b) ≡ Ωab = 2 sin θab2 , (2.7)

where θab is the opening angle between particles a and b. Note that with this normalization,
Ω ∈ [0, 2]. As discussed in ref. [17], the EMD “faithfully” lifts the ground metric, meaning
that if EA and EB are related by a translation of size Ω0, then the EMD is equal to Ωβ

0/R
β .
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2.2 The spectral function and its properties

In this paper, we focus on an alternative way to represent a jet of N particles via its
spectral function:

s(ω) =
N∑
i=1

N∑
j=1

EiEj δ
(
ω − ω(n̂i, n̂j)

)
(2.8)

=
∑
i∈J

E2
i δ(z) + 2

∑
i<j∈J

EiEj δ
(
ω − ω(n̂i, n̂j)

)
.

Here, ω(n̂i, n̂j) is a pairwise angular distance between particles, which may or may not be
related to Ω(n̂a, n̂b) above. Because of the inclusive double sum over particles, the spectral
function exhibits manifest invariance under the permutation group SN . Because the spectral
function depends on pairwise distances, it is invariant to all isometries respected by ω. The
spectral function is normalized as ∫

dω s(ω) = E2
tot . (2.9)

Like the energy flow in eq. (2.1), the spectral function in eq. (2.8) is IRC safe since it
exhibits (multi-)linear energy weighting, an inclusive sum over all particles, and only angular
dependence inside the δ-function.

The spectral function has a long history in collider and jet physics, starting with the
energy-energy correlator [39]. It has been used to represent the elements of a complete
basis of IRC-safe observables [40], to define observables for jet classification [41], to form
the foundation of higher-point energy correlators [42], and to encode a jet’s information for
machine learning applications [43]. To the best of our knowledge, the spectral function has
not yet been used to define a metric distance between two jets.

It is worth clarifying the difference between the angular distance ω in the spectral
function and the angular distance Ω in the original EMD. In both cases, we would like
the pairwise distance to respect the isometries of the detector, which is O(3) for the case
of e+e− colliders with spherical geometry. The function ω in the spectral function is the
pairwise distance between particles in the same event. With an appropriate choice of ω,
the spectral function of an individual jet is automatically invariant to isometries, as is any
quantity defined in terms of spectral functions, including the spectral EMD defined below.
In particular, the spectral EMD between two jets that differ only by isometries is zero,
which is often a desirable feature. By contrast, the function Ω in the original EMD is the
pairwise distance between particles in different events. The energy flow of an individual jet
is not invariant to isometries, but with appropriate choice of Ω, the original EMD between
pairs of jets will respect isometries. Crucially, the original EMD between two jets that differ
only by isometries is not zero.

For our studies, we use the angular measure:

ω(n̂i, n̂j) ≡ ωij = Ω(n̂i, n̂j)β
2 . (2.10)

This normalization has been chosen such that ωij = 1− cos θij for β = 2, which is commonly
used in the spectral function literature. Note, though, that the meaning of β is different
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between the original EMD and the spectral function. For the original EMD, β changes
the optimal transport problem between two jets. For the spectral function, β changes the
representation of an individual jet, independent of optimal transport. In general, ω need
not be a ground metric satisfying a triangle inequality, though it typically will be, since
isometries are defined as distance preserving maps between metric spaces. Despite the
potential for confusion, we will use the same symbol β since this ensures that the original
EMD and the spectral EMD will behave similarly in simple limits, as discussed further
in section 7.

Because the spectral function is invariant to isometries, one cannot reconstruct an
event uniquely from its spectral representation. As shown in appendix A, though, the
spectral function does determine an event uniquely up to isometries and pathological cases
of measure zero. Theorem 2.6 of ref. [44] proves that two point clouds in Rk are equal, up
to the action of an arbitrary isometry group, if their distributions of pairwise distances are
identical. This proof can be lifted to weighted point clouds apart from special configurations
with degenerate distances, which occupy a space of measure zero in phase space. While
the uniqueness of the spectral representation will not be needed for our analysis, we find it
satisfying that the metric on the space of spectral functions furnishes a metric on the space
of events, modulo isometries and measure zero regions of phase space.

2.3 Introducing the spectral EMD

Following the same logic as in section 2.1, we can define the distance between two spectral
functions sA(ω) and sB(ω) as the minimal cost to rearrange the spectral functions to be
identical. Like with the original EMD, we have to choose a ground metric for ω, which we
always take to be the Euclidean distance |ω−ω′|. Assuming a Euclidean ground metric, we
can leverage the closed form expression for the 1-Wasserstein distance in one dimension.

The spectral EMD is defined as:

SEMDβ(sA, sB) ≡
∫ ωmax

0
dω
∣∣SA(ω)− SB(ω)

∣∣. (2.11)

The subscript β refers to the angular measure in eq. (2.10), which implies the maximum
angular value ωmax = 2β−1. The spectral EMD depends on the cumulative spectral function
S(ωupper):

S(ωupper) ≡
∫ ωupper

0
dω s(ω) =

N∑
i=1

N∑
j=1

EiEj Θ
(
ωupper − ω(n̂i, n̂j)

)
, (2.12)

where Θ is the Heaviside function. For N particles per jet, computing the spectral EMD is
dominated by computing the spectral function and sorting its entries to find the cumulative
distribution, which takes O(N2 logN) runtime (cf. O(N3 logN) for the original EMD).

Because SA(ωmax) = E2
A and SB(ωmax) = E2

B could be different, this is an example of
an unbalanced transport problem. It is straightforward to map this to a balanced transport
problem. Letting E2

A > E2
B without loss of generality, we introduce a modified spectral

function with a “reservoir” at ωmax:

smod
B (ω) = sB(ω) +

(
E2
A − E2

B

)
δ(ω − ωmax), (2.13)
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such that sA and smod
B have the same total weight. This modification leaves eq. (2.11)

unchanged:
SEMDβ(sA, sB) = SEMDβ(sA, smod

B ), (2.14)

which is identical to the 1-Wasserstein metric, up to an overall normalization factor of E2
tot,A.

In the body of this paper, we restrict our attention to the 1-Wasserstein metric. More
generally, after using eq. (2.13) to make this a balanced transport problem with total weight
E2

tot, one could consider the (p-th power of the) p-Wasserstein metric:

SEMDβ,p(sA, sB) ≡
∫ E2

tot

0
dE2 ∣∣S−1

A (E2)− S−1
B (E2)

∣∣p. (2.15)

This expression depends on the inverse of the cumulative spectral function S−1(E2
upper),

which yields the value of ωupper that encloses E2
upper of spectral weight. For the special

case of p = 1, eq. (2.15) is equivalent to eq. (2.11), since both are expressions for the area
between the two cumulative spectral functions. In appendix B, we present some results
for p = 2.

On normalized probability distributions, the Wasserstein distance satisfies the properties
of a metric: identity of indiscernibles, symmetry, and the triangle inequality. Thus, after
doing the weight balancing trick, our spectral EMD is indeed a metric on the space of
spectral functions, {s(ω)}. As argued in appendix A, the spectral function uniquely defines
a jet up to isometries and sets of measure zero. Therefore, the spectral EMD is also a
metric distance on the space of jets, {J}. That is, if the Wasserstein distance between two
spectral functions sA(ω) and sB(ω) is 0, then the two jets A and B are identical, up to
isometries and pathological configurations.

2.4 Example optimal transport plan

To gain some intuition for the spectral EMD, it is useful to consider a low multiplicity
example. We will do a more systematic study in section 3, but here we identify some
features of the optimal transport plan for spectral functions.

The optimal transport plan can be viewed as a “geodesic” between two spectral functions
sA(ω) and sB(ω). Introducing a “time” parameter t ∈ [0, 1], we can envision continuously
transforming one spectral function into another with a minimal cost at each time step. In
general, this transportation plan is not unique, but there is a convenient constant speed
geodesic for one-dimensional distributions:

SOTP(ω; t) =
[
(1− t)S−1

A + t S−1
B

]−1
(ω) , (2.16)

where S−1 is the functional inverse of the cumulative spectral function. By construction,
SOTP(ω; 0) = SA(ω) and SOTP(ω; 1) = SB(ω). To determine the optimal transport plan
spectral function, we simply differentiate eq. (2.16) with respect to ω:

sOTP(ω; t) = d

dω
SOTP(ω; t). (2.17)

As an example, consider the optimal transport plan between two jets that each contain
two particles and have the same total energy E, as shown in figure 1:
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<latexit sha1_base64="y+WDoqttszdexELZg6EJPDYoWM8=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp6rHoxWMF+wFtKJvtpF272YTdjVBCf4EXD4pXf5M3/43bNgdtfTDweG+GmXlhKrg2nvftlDY2t7Z3yrvu3v7B4VHFPW7rJFMMWywRieqGVKPgEluGG4HdVCGNQ4GdcHI39zvPqDRP5KOZphjEdCR5xBk1VnqoDypVr+YtQNaJX5AqFGgOKl/9YcKyGKVhgmrd873UBDlVhjOBM7efaUwpm9AR9iyVNEYd5ItDZ+TcKkMSJcqWNGSh/p7Iaaz1NA5tZ0zNWK96c/E/r5eZ6CbIuUwzg5ItF0WZICYh86/JkCtkRkwtoUxxeythY6ooMzYb14bgr768TtqXNf+qVq82boswynAKZ3ABPlxDA+6hCS1ggPACb/DuPDmvzseyseQUEyfwB87nDxedi5c=</latexit>

4

Figure 1. Labeling convention for particles in this paper. Jet A consists of odd-numbered particles
and jet B consists of even-numbered particles.

• Jet A consists of odd-numbered particles {1, 3}; and

• Jet B consists of even-numbered particles {2, 4}.

Their cumulative spectral functions are:

SA(ω) =
(
E2

1 + E2
3
)
Θ(ω) + 2E1E3 Θ

(
ω − ω13

)
, (2.18)

SB(ω) =
(
E2

2 + E2
4
)
Θ(ω) + 2E2E4 Θ

(
ω − ω24

)
. (2.19)

The inverse cumulative spectral functions are then:

S−1
A (x) = Θ

(
x− (E2

1 + E2
3)
)
ω13 + Θ(x− E2) (1− ω13), (2.20)

S−1
B (x) = Θ

(
x− (E2

2 + E2
4)
)
ω24 + Θ(x− E2) (1− ω24). (2.21)

The optimal transportation plan is simple enough that the inverses in eq. (2.16) can be
taken analytically, as can the derivative in eq. (2.17). The final result for the optimal
transport plan spectral function is:

sOTP(ω; t) = Θ(E2E4 − E1E3)
[
δ(ω)(E2

2 + E2
4) + δ(ω − t ω24)(2E2E4 − 2E1E3) (2.22)

+ δ(ω − (1− t)ω13 − t ω24) 2E1E3
]

+ Θ(E1E3 − E2E4)
[
δ(ω)(E2

1 + E2
3) + δ(ω − (1− t)ω13)(2E1E3 − 2E2E4)

+ δ(ω − (1− t)ω13 − t ω24) 2E2E4
]
.

As required, this spectral function reduces to sA(ω) and sB(ω) at t = 0 and t = 1,
respectively.

An example of this optimal transport plan is illustrated in figure 2, for the case of

E1E3 = E2

6 , E2E4 = E2

4 , ω13 = 2
3 , ω24 = 1

3 . (2.23)

Note that the intermediate spectral functions at times t ∈ (0, 1) have two peaks away from
z = 0. A collection of n particles on the plane has

(n
2
)
pairwise angles and of course there

is no integer n for which
(n

2
)

= 2. Thus, these intermediate spectral functions cannot be
mapped to a generic collection of particles on the plane. In this way, the optimal transport
plan between spectral functions does not generically correspond to a rearrangement of
the particles.
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<latexit sha1_base64="DG2xzlKYBSGANlkCmHyaiLAx90s=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI9BLx4jmAckS5id9CZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNoUkVV7oTEQOcSWhaZjl0Eg1ERBza0fh25refQBum5IOdJBAKMpQsZpRYJ7V6SsCQ9MsVv+rPgVdJkJMKytHol796A0VTAdJSTozpBn5iw4xoyyiHaamXGkgIHZMhdB2VRIAJs/m1U3zmlAGOlXYlLZ6rvycyIoyZiMh1CmJHZtmbif953dTG12HGZJJakHSxKE45tgrPXscDpoFaPnGEUM3crZiOiCbUuoBKLoRg+eVV0rqoBpfV2n2tUr/J4yiiE3SKzlGArlAd3aEGaiKKHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPkx+PJA==</latexit>!

<latexit sha1_base64="nPnpmxENyuuNurHMaKiIE+/9tEM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqt564NiJWjzhOuB/RgRKhYBSt9IDXbq9ccavuDGSZeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5S6qeEJZSM64B1LFY248bPZqRNyYpU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0SjYEb/HlZdI8q3oX1fP780rtJo+jCEdwDKfgwSXU4A7q0AAGA3iGV3hzpPPivDsf89aCk88cwh84nz/TSY2C</latexit>

t = 0

<latexit sha1_base64="rCGAFbRLgyyBRQH4hElR2LXdKPc=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEYwTwkWcLsZDYZMo9lZlYIIV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXm5tfWNzK79d2Nnd2z8oHh41jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9Hodua3nqg2TMkHO05oKPBAspgRbJ30aMpdJegAn/eKJb/iz4FWSZCREmSo94pf3b4iqaDSEo6N6QR+YsMJ1pYRTqeFbmpogskID2jHUYkFNeFkfvAUnTmlj2KlXUmL5urviQkWxoxF5DoFtkOz7M3E/7xOauPrcMJkkloqyWJRnHJkFZp9j/pMU2L52BFMNHO3IjLEGhPrMiq4EILll1dJ86ISXFaq99VS7SaLIw8ncAplCOAKanAHdWgAAQHP8ApvnvZevHfvY9Ga87KZY/gD7/MHMjKQBg==</latexit>

s(!)

<latexit sha1_base64="BD7iEZVNqU4R4fXx9ewOevnXBZ4=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKexqUI9BLx4jmAdsljA7mSRD5rHM9AphyWd48aCIV7/Gm3/jJNmDJhY0FFXddHfFieAWfP/bK6ytb2xuFbdLO7t7+wflw6OW1amhrEm10KYTE8sEV6wJHATrJIYRGQvWjsd3M7/9xIzlWj3CJGGRJEPFB5wScFLY1ZINSS8LLqe9csWv+nPgVRLkpIJyNHrlr25f01QyBVQQa8PATyDKiAFOBZuWuqllCaFjMmSho4pIZqNsfvIUnzmljwfauFKA5+rviYxIaycydp2SwMguezPxPy9MYXATZVwlKTBFF4sGqcCg8ex/3OeGURATRwg13N2K6YgYQsGlVHIhBMsvr5LWRTW4qtYeapX6bR5HEZ2gU3SOAnSN6ugeNVATUaTRM3pFbx54L96797FoLXj5zDH6A+/zB/rtkRE=</latexit>!13
<latexit sha1_base64="B3LChceDHjHt6vKxZ+yu5OlpyR8=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyGoB6DXjxGMA9IljA76U2GzGOZmRXCks/w4kERr36NN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWaQosqrnQ3IgY4k9CyzHLoJhqIiDh0osnd3O88gTZMyUc7TSAUZCRZzCixTur1lYARGWS1+mxQrvhVfwG8ToKcVFCO5qD81R8qmgqQlnJiTC/wExtmRFtGOcxK/dRAQuiEjKDnqCQCTJgtTp7hC6cMcay0K2nxQv09kRFhzFRErlMQOzar3lz8z+ulNr4JMyaT1IKky0VxyrFVeP4/HjIN1PKpI4Rq5m7FdEw0odalVHIhBKsvr5N2rRpcVesP9UrjNo+jiM7QObpEAbpGDXSPmqiFKFLoGb2iN896L96797FsLXj5zCn6A+/zB/34kRM=</latexit>!24

<latexit sha1_base64="SvEw9j+G6/nNSZebhlvQwRvlSiI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfAeMvQ==</latexit>

0

<latexit sha1_base64="DG2xzlKYBSGANlkCmHyaiLAx90s=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI9BLx4jmAckS5id9CZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNoUkVV7oTEQOcSWhaZjl0Eg1ERBza0fh25refQBum5IOdJBAKMpQsZpRYJ7V6SsCQ9MsVv+rPgVdJkJMKytHol796A0VTAdJSTozpBn5iw4xoyyiHaamXGkgIHZMhdB2VRIAJs/m1U3zmlAGOlXYlLZ6rvycyIoyZiMh1CmJHZtmbif953dTG12HGZJJakHSxKE45tgrPXscDpoFaPnGEUM3crZiOiCbUuoBKLoRg+eVV0rqoBpfV2n2tUr/J4yiiE3SKzlGArlAd3aEGaiKKHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPkx+PJA==</latexit>!

<latexit sha1_base64="rCGAFbRLgyyBRQH4hElR2LXdKPc=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEYwTwkWcLsZDYZMo9lZlYIIV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXm5tfWNzK79d2Nnd2z8oHh41jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9Hodua3nqg2TMkHO05oKPBAspgRbJ30aMpdJegAn/eKJb/iz4FWSZCREmSo94pf3b4iqaDSEo6N6QR+YsMJ1pYRTqeFbmpogskID2jHUYkFNeFkfvAUnTmlj2KlXUmL5urviQkWxoxF5DoFtkOz7M3E/7xOauPrcMJkkloqyWJRnHJkFZp9j/pMU2L52BFMNHO3IjLEGhPrMiq4EILll1dJ86ISXFaq99VS7SaLIw8ncAplCOAKanAHdWgAAQHP8ApvnvZevHfvY9Ga87KZY/gD7/MHMjKQBg==</latexit>

s(!)
<latexit sha1_base64="kTl5w6fdiQNfZsFJkyaK/P9BOhY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSZa1ItQ9OKxgmkLbSib7aZdutmE3YlQQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFySCa3Scb6uwsrq2vlHcLG1t7+zulfcPmjpOFWUejUWs2gHRTHDJPOQoWDtRjESBYK1gdDf1W09MaR7LRxwnzI/IQPKQU4JG8vDGPbvolStO1ZnBXiZuTiqQo9Erf3X7MU0jJpEKonXHdRL0M6KQU8EmpW6qWULoiAxYx1BJIqb9bHbsxD4xSt8OY2VKoj1Tf09kJNJ6HAWmMyI41IveVPzP66QYXvsZl0mKTNL5ojAVNsb29HO7zxWjKMaGEKq4udWmQ6IIRZNPyYTgLr68TJrnVfeyWnuoVeq3eRxFOIJjOAUXrqAO99AADyhweIZXeLOk9WK9Wx/z1oKVzxzCH1ifP7Upjfk=</latexit>

t = 1/3

<latexit sha1_base64="BD7iEZVNqU4R4fXx9ewOevnXBZ4=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKexqUI9BLx4jmAdsljA7mSRD5rHM9AphyWd48aCIV7/Gm3/jJNmDJhY0FFXddHfFieAWfP/bK6ytb2xuFbdLO7t7+wflw6OW1amhrEm10KYTE8sEV6wJHATrJIYRGQvWjsd3M7/9xIzlWj3CJGGRJEPFB5wScFLY1ZINSS8LLqe9csWv+nPgVRLkpIJyNHrlr25f01QyBVQQa8PATyDKiAFOBZuWuqllCaFjMmSho4pIZqNsfvIUnzmljwfauFKA5+rviYxIaycydp2SwMguezPxPy9MYXATZVwlKTBFF4sGqcCg8ex/3OeGURATRwg13N2K6YgYQsGlVHIhBMsvr5LWRTW4qtYeapX6bR5HEZ2gU3SOAnSN6ugeNVATUaTRM3pFbx54L96797FoLXj5zDH6A+/zB/rtkRE=</latexit>!13
<latexit sha1_base64="B3LChceDHjHt6vKxZ+yu5OlpyR8=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyGoB6DXjxGMA9IljA76U2GzGOZmRXCks/w4kERr36NN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWaQosqrnQ3IgY4k9CyzHLoJhqIiDh0osnd3O88gTZMyUc7TSAUZCRZzCixTur1lYARGWS1+mxQrvhVfwG8ToKcVFCO5qD81R8qmgqQlnJiTC/wExtmRFtGOcxK/dRAQuiEjKDnqCQCTJgtTp7hC6cMcay0K2nxQv09kRFhzFRErlMQOzar3lz8z+ulNr4JMyaT1IKky0VxyrFVeP4/HjIN1PKpI4Rq5m7FdEw0odalVHIhBKsvr5N2rRpcVesP9UrjNo+jiM7QObpEAbpGDXSPmqiFKFLoGb2iN896L96797FsLXj5zCn6A+/zB/34kRM=</latexit>!24

<latexit sha1_base64="SvEw9j+G6/nNSZebhlvQwRvlSiI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfAeMvQ==</latexit>

0

<latexit sha1_base64="DG2xzlKYBSGANlkCmHyaiLAx90s=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI9BLx4jmAckS5id9CZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNoUkVV7oTEQOcSWhaZjl0Eg1ERBza0fh25refQBum5IOdJBAKMpQsZpRYJ7V6SsCQ9MsVv+rPgVdJkJMKytHol796A0VTAdJSTozpBn5iw4xoyyiHaamXGkgIHZMhdB2VRIAJs/m1U3zmlAGOlXYlLZ6rvycyIoyZiMh1CmJHZtmbif953dTG12HGZJJakHSxKE45tgrPXscDpoFaPnGEUM3crZiOiCbUuoBKLoRg+eVV0rqoBpfV2n2tUr/J4yiiE3SKzlGArlAd3aEGaiKKHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPkx+PJA==</latexit>!

<latexit sha1_base64="rCGAFbRLgyyBRQH4hElR2LXdKPc=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEYwTwkWcLsZDYZMo9lZlYIIV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXm5tfWNzK79d2Nnd2z8oHh41jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9Hodua3nqg2TMkHO05oKPBAspgRbJ30aMpdJegAn/eKJb/iz4FWSZCREmSo94pf3b4iqaDSEo6N6QR+YsMJ1pYRTqeFbmpogskID2jHUYkFNeFkfvAUnTmlj2KlXUmL5urviQkWxoxF5DoFtkOz7M3E/7xOauPrcMJkkloqyWJRnHJkFZp9j/pMU2L52BFMNHO3IjLEGhPrMiq4EILll1dJ86ISXFaq99VS7SaLIw8ncAplCOAKanAHdWgAAQHP8ApvnvZevHfvY9Ga87KZY/gD7/MHMjKQBg==</latexit>

s(!)
<latexit sha1_base64="RWoOWc7FhdTk/iqjENKB7UjRRNs=">AAAB7HicbVBNS8NAEJ34WetX1aOXYBE81aQW9SIUvXisYNpCG8pmu2mXbjZhdyKU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmBYngGh3n21pZXVvf2CxsFbd3dvf2SweHTR2nijKPxiJW7YBoJrhkHnIUrJ0oRqJAsFYwupv6rSemNI/lI44T5kdkIHnIKUEjeXhTPb/olcpOxZnBXiZuTsqQo9ErfXX7MU0jJpEKonXHdRL0M6KQU8EmxW6qWULoiAxYx1BJIqb9bHbsxD41St8OY2VKoj1Tf09kJNJ6HAWmMyI41IveVPzP66QYXvsZl0mKTNL5ojAVNsb29HO7zxWjKMaGEKq4udWmQ6IIRZNP0YTgLr68TJrVintZqT3UyvXbPI4CHMMJnIELV1CHe2iABxQ4PMMrvFnSerHerY9564qVzxzBH1ifP7avjfo=</latexit>

t = 2/3

<latexit sha1_base64="BD7iEZVNqU4R4fXx9ewOevnXBZ4=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKexqUI9BLx4jmAdsljA7mSRD5rHM9AphyWd48aCIV7/Gm3/jJNmDJhY0FFXddHfFieAWfP/bK6ytb2xuFbdLO7t7+wflw6OW1amhrEm10KYTE8sEV6wJHATrJIYRGQvWjsd3M7/9xIzlWj3CJGGRJEPFB5wScFLY1ZINSS8LLqe9csWv+nPgVRLkpIJyNHrlr25f01QyBVQQa8PATyDKiAFOBZuWuqllCaFjMmSho4pIZqNsfvIUnzmljwfauFKA5+rviYxIaycydp2SwMguezPxPy9MYXATZVwlKTBFF4sGqcCg8ex/3OeGURATRwg13N2K6YgYQsGlVHIhBMsvr5LWRTW4qtYeapX6bR5HEZ2gU3SOAnSN6ugeNVATUaTRM3pFbx54L96797FoLXj5zDH6A+/zB/rtkRE=</latexit>!13
<latexit sha1_base64="B3LChceDHjHt6vKxZ+yu5OlpyR8=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyGoB6DXjxGMA9IljA76U2GzGOZmRXCks/w4kERr36NN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWaQosqrnQ3IgY4k9CyzHLoJhqIiDh0osnd3O88gTZMyUc7TSAUZCRZzCixTur1lYARGWS1+mxQrvhVfwG8ToKcVFCO5qD81R8qmgqQlnJiTC/wExtmRFtGOcxK/dRAQuiEjKDnqCQCTJgtTp7hC6cMcay0K2nxQv09kRFhzFRErlMQOzar3lz8z+ulNr4JMyaT1IKky0VxyrFVeP4/HjIN1PKpI4Rq5m7FdEw0odalVHIhBKsvr5N2rRpcVesP9UrjNo+jiM7QObpEAbpGDXSPmqiFKFLoGb2iN896L96797FsLXj5zCn6A+/zB/34kRM=</latexit>!24

<latexit sha1_base64="SvEw9j+G6/nNSZebhlvQwRvlSiI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfAeMvQ==</latexit>

0

<latexit sha1_base64="DG2xzlKYBSGANlkCmHyaiLAx90s=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI9BLx4jmAckS5id9CZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNoUkVV7oTEQOcSWhaZjl0Eg1ERBza0fh25refQBum5IOdJBAKMpQsZpRYJ7V6SsCQ9MsVv+rPgVdJkJMKytHol796A0VTAdJSTozpBn5iw4xoyyiHaamXGkgIHZMhdB2VRIAJs/m1U3zmlAGOlXYlLZ6rvycyIoyZiMh1CmJHZtmbif953dTG12HGZJJakHSxKE45tgrPXscDpoFaPnGEUM3crZiOiCbUuoBKLoRg+eVV0rqoBpfV2n2tUr/J4yiiE3SKzlGArlAd3aEGaiKKHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPkx+PJA==</latexit>!
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Figure 2. Snapshots of the optimal transport plan between two spectral functions.

This behavior is distinct from original EMD behavior in ref. [10], where the optimal
transportation plan directly measures the cost of rearranging particles on the plane. Since
the spectral function is blind to isometries, it is not surprising that the spectral optimal
transportation plan does not have a particle interpretation. In our view, this is not a
problem but simply a choice. What it does imply, though, is that the space of jets as defined
by their spectral functions will have a different structure than the space of jets defined by
particles. We start to compare these two spaces on low-multiplicity jets in section 7, but
leave a detailed study to future work.

3 Spectral metric between low-multiplicity jets

In this section, we explicitly calculate the spectral metric between two jets with low
constituent multiplicities. This will concretely illustrate what information is encoded in the
metric and explicitly demonstrate its IRC safety. We arrange our analysis perturbatively in
the strong coupling αs, and consider jets with up through three particles, corresponding to
a relative O(α2

s) compared to leading order. The following expressions will be used compute
analytic distributions of the spectral metric in sections 4 and 5.

3.1 O(α0
s): jets with one particle

At lowest order in an αs expansion, the two jets being compared each consist of a single
particle. Hence, their spectral functions are:

s
(0)
A (ω) = E2

A δ(ω), s
(0)
B (ω) = E2

B δ(ω), (3.1)

where EA are EB are the respective energies of the two jets, and the superscript denotes
the order in αs. Using eq. (2.11), their spectral metric distance is

SEMD(0,0)
β (sA, sB) =

∫ ωmax

0
dω |E2

A − E2
B| = |E2

A − E2
B|ωmax, (3.2)

where the (k, `) superscript means that we are working to order αks for jet A and order
α`s for jet B. Framed as an optimal transport problem, this distance corresponds to the
minimal energy-squared that must be eliminated to render the spectral functions identical.
Eliminating energy corresponds to transporting it “out” of the jet, from ω = 0 to immediately
beyond ω = ωmax, where the extra energy-squared can be dumped. The distance that this
extra energy must be carried is ωmax in units of ω in this framework, and so the total cost
of removing this energy is the distance carried times the amount of excess energy.
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As long as ωmax is larger than the maximum ω in either spectral functions, eq. (2.11)
defines a metric distance. For two jets with radius R, it is natural, though not necessary, to
set ωmax ' Rβ/2, such that the excess energy would be proportional to |E2

A − E2
B|Rβ . We

prefer to leave ωmax as a free parameter, since it enables a meaningful comparison of jets
that differ both in total energy and in jet radius used to define them.

3.2 O(α1
s): jets with up to two particles

The contribution to the spectral metric at O(α1
s) comes from two sources:

• Jet A consists of two particles and jet B consists of only one; or

• Vice versa.

For simplicity, we assume that all final state particles are massless. For jet A consisting of
two particles {1, 3}, its spectral function is:

s
(1)
A (ω) = (E2

1 + E2
3) δ(ω) + 2E1E3 δ (ω − ω13) , (3.3)

where E1 + E3 = EA, the total energy of jet A. This yields a contribution to the spectral
metric between jets A and B of:

SEMD(1,0)
β (sA, sB) =

∫ ωmax

0
dω

∣∣∣E2
1 + E2

3 + 2E1E3 Θ (ω − ω13)− E2
B

∣∣∣ (3.4)

= |E2
1 + E2

3 − E2
B|ω13 + |E2

A − E2
B| (ωmax − ω13),

where ω13 is the angular distance between particles 1 and 3. The complete metric distance
at this order in perturbation theory is the sum of this result with the corresponding
configuration when jet B consists of two particles and jet A only has a single particle, i.e.
SEMD(0,1)

β .
To interpret this result a bit more clearly, let us assume that the jet energies are

identical, EA = EB ≡ E, and use the canonical choice of β = 2. Then, eq. (3.4) simplifies to

SEMD(1,0)
β=2 (sA, sB) = |E2

1 + E2
3 − E2|ω13 = 2E1E3 (1− cos θ13) (3.5)

= m2
A ,

which is just the squared mass of jet A. The metric distance through this order is therefore:1

SEMD(1,0)
β=2 + SEMD(0,1)

β=2 = m2
A +m2

B . (3.6)

Because the jet mass is itself an IRC-safe observable, the metric distance is too, at least
through O(α1

s).
1Strictly speaking, one cannot simply add the contributions, since different orders appear in different

parts of the calculation. In this case, though, the mass is zero at lowest order, we can use the same observable
for SEMD(1,0) and SEMD(0,1).
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Figure 3. Illustration of the optimal transportation plan between two jets at O(α2
s). The heights

of the peaks in the spectral functions are representative and sum to the same total value, and the
locations of the peaks satisfy the Pythagorean theorem. (a) Transport of three δ-functions of the jet
A spectral function (solid) to render it identical to the jet B spectral function (dashed), isolated
to the origin. (b) Transport between the spectral functions of two jets (solid and dashed), each
with two constituent particles. Part of the rightmost peak is transported to the origin and part is
transported to the location of the peak in the other spectral function.

3.3 O(α2
s): jets with up to three particles

To simplify the analysis and illustrate the unique features of the spectral metric at O(α2
s),

we assume that jets A and B have the same energy EA = EB ≡ E. Now, there are three
possible configurations that must be considered:

• Jet A consists of three particles (O(α2
s)) and jet B has a single particle (O(α0

s));

• Vice versa; or

• Jets A and B both consist of two particles (two factors of O(α1
s)).

We continue to use the convention that jet A (B) consists of odd-numbered (even-numbered)
particles.

We start with the first two configurations. Considering jet A with particles {1, 3, 5},
its spectral function is:

s
(2)
A (ω) = (E2

1 + E2
3 + E2

5)δ(ω) + 2E1E3 δ(ω − ω13) (3.7)
+ 2E1E5 δ(ω − ω15) + 2E3E5 δ(ω − ω35),

with E1 + E3 + E5 = E. At this order, the spectral function of jet B is

s
(0)
B (ω) = E2 δ(ω) . (3.8)

While it is straightforward to calculate the spectral distance from its integral representation,
it is convenient to think in terms of the optimal transportation plan shown in figure 3a. To
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make s(2)
A identical to s(0)

B , we must transport each of the δ-functions at ω > 0 to ω = 0.
The cost of making these moves is the distance times the squared energy weight for each
δ-function, yielding a distance between spectral functions of:

SEMD(2,0)
β (sA, sB) = 2E1E3 ω13 + 2E1E5 ω15 + 2E3E5 ω35. (3.9)

For the special case of β = 2, this is just the total squared mass of jet A. Symmetrizing
over the two jets, the β = 2 spectral distance to this order at least consists of

SEMD(2,0)
β=2 (sA, sB) + SEMD(0,2)

β=2 (sA, sB) = m2
A +m2

B. (3.10)

Next, consider the configuration for which both jets have two constituent particles.
This is the same configuration as in section 2.4, where jet A has particles {1, 3} and jet
B has particles {2, 4}. The cumulative spectral functions were given already in eqs. (2.18)
and (2.19). Using the integral representation in eq. (2.11), the spectral metric contains:

SEMD(1,1)
β =

∫ ωmax

0
dω

∣∣∣E2
1 + E2

3 + 2E1E3 Θ (ω − ω13)− (E2
2 + E2

4)− 2E2E4 Θ (ω − ω24)
∣∣∣

= |2E1E3 − 2E2E4|min [ω13, ω24] + Θ (ω13 − ω24) 2E1E3 (ω13 − ω24)
+ Θ (ω24 − ω13) 2E2E4 (ω24 − ω13) . (3.11)

Even with β = 2, this expression cannot be reduced to the jet mass. Instead, it contains
a detailed comparison between the angular separation and the product of energies of the
particles in the jets, in a way that cannot be captured by mass alone.

An alternative way to derive eq. (3.11) is using the optimal transportation plan in
figure 3b. The less energetic δ-function is moved to the location of the more energetic
δ-function, and then the extra energy of the more energetic δ-function is moved to the
origin. The cost of these moves is:

SEMD(1,1)
β (sA, sB) = min[2E1E3, 2E2E4] |ω13 − ω24| (3.12)

+ Θ(E1E3 − E2E4) (2E1E3 − 2E2E4)ω13

+ Θ(E2E4 − E1E3) (2E2E4 − 2E1E3)ω24 .

By enumerating all cases, it is straightforward to verify that eqs. (3.11) and (3.12) are indeed
identical. These two methods of performing calculation illustrate distinct ways of thinking
about the problem: either ordering in the product of energies or in the pairwise angles.2

Combining the results of eqs. (3.10) and (3.11), the spectral metric between two jets at
O(α2

s) takes the compact expression:

SEMD(2)
β (sA, sB) =

∑
a,a′∈JA

EaEa′ωaa′ +
∑

b,b′∈JB

EbEb′ωbb′ (3.13)

−
∑

a,a′∈JA
b,b′∈JB

min[EaEa′ , EbEb′ ] min[ωaa′ , ωbb′ ] ,

2This equivalence only holds for p = 1. The method of constructing the optimal transport from energy
ordering is more general, yielding the p-Wasserstein metric from eq. (2.15). Part of the reason why we prefer
p = 1 is that energy and angular ordering are related by inverting the cumulative spectral function.
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where the sums run over all possible pairs of particles a, a′ in jet A and b, b′ in jet B. If any
of the energies vanish or the particles in a jet become collinear, the distance reduces to an
energy-energy correlation function of the more massive jet, making IRC safety manifest.
These calculations can be continued to higher orders, and one can observe how IRC safety
manifests itself at every perturbative order, as it must, due to the IRC safety of the spectral
functions themselves.

4 Double-logarithmic distance distributions between jets

We now move to calculating the distribution of distances between jets initiated by different
partons. The distribution of distances depends on the squared-amplitudes for two processes:

d%

d`β
≡ 1
Z

∫
d~xA d~xB |MA|2 |MB|2 δ

(
`β − SEMDβ(sA, sB)

)
. (4.1)

Here, ~xA is the vector of phase space coordinates for jet A andMB is the corresponding
matrix element, and similarly for jet B. This quantity is not a cross section, since the
integration is over two phase spaces for distinct jets. With the normalization factor Z,
eq. (4.1) is nevertheless a probability density for `β , which justifies the notation %.

For the analyses in this paper, we focus on jets initiated by quarks or gluons, so the
matrix elements can be calculated in perturbative QCD. Then, we can expand eq. (4.1) in
powers of αs:

d%

d`β
= d%(0)

d`β
+ αs

2π
d%(1)

d`β
+
(
αs
2π

)2 d%(2)

d`β
+ · · · . (4.2)

We established in section 3 that it is sufficient at O(α0
s) and O(α1

s) to let at least one of the
jets be massless, such that the corresponding spectral function is simply a delta function at
the origin. Therefore, through O(α1

s), this distribution is equivalent to the distribution of
an energy correlation function-like observable [45, 46] measured on a single jet. Starting at
O(α2

s), though, the distance `β describes honest correlations between jets that both have
non-zero mass, as discussed further in section 5.

It is straightforward to compute the distribution of distances at double-logarithmic
accuracy, where jet emissions are strongly-ordered in both energy and angle. At this accuracy,
we can immediately write down resummed results for the distribution of distances between
two jets, since the spectral EMD is dominated by a single emission. Using eq. (3.4) and
taking the two jets to have equal energy E, the dimensionless distance at double-logarithmic
accuracy is

˜̀
β ≡

`β
E2 ' zA(1− zA)Ωβ

A + zB(1− zB)Ωβ
B. (4.3)

Here, the energy fractions and angles are:

zA = min[E1,E3]
E

, ΩA = 2sin θ13
2 , zB = min[E2,E4]

E
, ΩB = 2sin θ24

2 . (4.4)
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For strongly-ordered emissions, only one term in eq. (4.3) will dominate for a given
phase space configuration. Thus, to double-logarithmic accuracy, ˜̀

β is simply the sum of
two dimensionless energy-energy correlation functions with angular exponent β, and the
distribution of this observable can therefore be copied from standard results.

The resummed cumulative distribution for the metric distances exponentiates into a
familiar Sudakov form, but because of the two terms in eq. (4.3), the probability of no
emissions is controlled by the sum of the color Casimirs of the two jets, CA + CB. Said
another way, we must forbid emissions in both jets to be larger than the observed value of
˜̀
β . To double-logarithmic accuracy, we have

d%(DL)

d˜̀
β

= −2αs
βπ

(CA + CB) log ˜̀
β

˜̀
β

e
−αs
βπ

(CA+CB) log2 ˜̀
β . (4.5)

The QCD color factors are Cq = 4/3 for quark-initiated jets and Cg = 3 for gluon-initiated
jets. This distribution between QCD jets of different origins was also calculated in ref. [19]
for the original EMD, where it was interpreted as the dimension of the space of jets as a
function of resolution or distance. As shown in section 7.1, the original EMD and spectral
EMD have the same behavior at double-logarithmic accuracy, so eq. (4.5) holds in both cases.

This calculation illustrates the expected behavior of a metric distance. In general, gluon
jets are more massive than quark jets because Cg > Cq, and as such the difference between
the masses of gluon jets from one another is expected to be larger than for quark jets. Thus,
the spectral EMD between two gluon jets is expected to be larger than the spectral EMD
between two quark jets, as born out by this calculation. We will see in section 6 that this
same behavior is exhibited by parton shower simulations of quark- and gluon-initiated jets.

5 Fixed-order correlations between jets at e+e− colliders

We now explore the structure of the spectral EMD through O(α2
s). Our analysis will

be based on hemisphere jets produced in e+e− collisions, calculated at fixed order. The
leading non-trivial correlations between the two hemispheres are referred to as non-global
logarithms [36], and we will be able to directly probe them through the spectral EMD
distribution. As a baseline, we compute the spectral EMD distribution between jets from
distinct events, where such non-global effects are absent at this order.

5.1 Isolating the non-trivial correlations

Up through O(α1
s), the spectral EMD between two jets is determined by their individual

properties, with no non-trivial correlations. Only at O(α2
s) do we see such correlations, so

we would like to define an observable that isolates those effects.
We define the reduced spectral EMD as

∆β(sA, sB) ≡ SEMDβ(ŝA, sB) + SEMDβ(sA, ŝB)− SEMDβ(ŝA, ŝB)− SEMDβ(sA, sB),
(5.1)

where the reduced spectral functions are:

ŝA(ω) = E2
A δ(ω), ŝB(ω) = E2

B δ(ω). (5.2)

Because of the signs in eq. (5.1), larger values of ∆β correspond to stronger correlations
(i.e. smaller distances) between jets.
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Furthermore, ∆β ≥ 0 which we argue as follows. Without loss of generality, we assume
that EA ≥ EB and can then immediately write closed form expressions for much of ∆β.
First, the distance between reduced spectral functions is

SEMDβ(ŝA, ŝB) = (E2
A − E2

B)ωmax, (5.3)

which is the cost of removing the excess squared energy from the origin to outside the jet.
Next, the distance between the reduced spectral function of jet A and the full spectral
function of jet B is

SEMDβ(ŝA, sB) =
∑
b,b′∈B

EbEb′ ωbb′ + (E2
A − E2

B)ωmax, (5.4)

because we must move all peaks in sB to the origin and remove the excess squared energy
from the origin to outside the jet. With these results so far, note that

SEMDβ(ŝA, sB)− SEMDβ(ŝA, ŝB) =
∑
b,b′∈B

EbEb′ωbb′ = SEMDβ(sB, ŝB), (5.5)

which is the distance between the reduced and full spectral functions of jet B itself. Then,
∆β can be equivalently expressed as

∆β(sA, sB) = SEMDβ(sB, ŝB) + SEMDβ(sA, ŝB)− SEMDβ(sA, sB). (5.6)

Because the spectral EMD is a metric, the triangle inequality holds, with

SEMDβ(sB, ŝB) + SEMDβ(sA, ŝB) ≥ SEMDβ(sA, sB) ≥ 0, (5.7)

and therefore ∆β ≥ 0 as promised.
At O(α0

s), ∆β is manifestly zero because ŝ(0)
A = s

(0)
A and ŝ(0)

B = s
(0)
B . Similarly, at O(α1

s),
where one of the jets must be massless, ∆β is also zero. Only at O(α2

s) do we get a non-zero
reduced spectral EMD. Following the same logic as in section 3.3, we find:

∆(2)
β (sA,sB) = 1

2
∑

a,a′∈JA
b,b′∈JB

min
[
2EaEa′ ,2EbEb′ , |E2

B−E2
a−E2

a′ |, |E2
A−E2

b−E2
b′ |
]

min[ωaa′ ,ωbb′ ],

(5.8)
which holds even if EA 6= EB. Note that this formula also works at lower orders, since
∆(2)
β → 0 in the soft and/or collinear limits.

This expression for ∆β has a similar structure to the minimum of the two jets’ hemisphere
energy correlation functions, with the key difference that the minimum is taken independently
over the energy and angular factors. In general, the minimal energy and minimal angle
of emission do not have to occur within the same jet. This has the interesting feature of
significantly suppressing the contribution from one jet that has a soft, wide angle emission
and the other jet with a hard, collinear emission. Effectively, to the observable ∆β , such a
configuration would involve both a soft and a collinear emission.

For the subsequent calculations, we assume that the hemisphere jets come from events
with a common center-of-mass energy 2E, such that the Born-order hemisphere jet energy
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is E. Because of energy-momentum conservation, the jet energies will in general differ from
E at higher orders. We define a dimensionless reduced spectral EMD as

∆̃β ≡
∆β

E2 . (5.9)

In section 5.2, jets A and B correspond to hemisphere jets from different events, and
we randomly choose one jet per event. In section 5.3, jets A and B come from different
hemispheres of the same event. By comparing these two distributions, we can isolate the
effects of non-trivial correlations starting at O(α2

s).

5.2 Distance between jets in distinct events to O(α2
s)

Consider the reduced spectral EMD between hemisphere jets A andB in distinct uncorrelated
events. We randomly choose one hemisphere jet from each event, which ensures that A
and B are identically distributed. The distribution of the dimensionless reduced spectral
EMD ∆̃β is:

d%(uncorr)

d∆̃β

= 1
Z

∫
d~xA

∫
d~xB |M(~xA)|2 |M(~xB)|2 δ

(
∆̃β −

∆β(sA, sB)
E2

)
, (5.10)

where Z is a normalization factor, ~xA is the phase space coordinate for event A, |M(~xA)|2
is the corresponding squared matrix element, and similarly for event B. Crucially, the
spectral functions sA and sB are associated with the hemisphere jets (and not with the
event as a whole).

By construction, this expression is only non-trivial starting at O(α2
s). Expanding the

squared matrix elements order by order, we obtain:

d%(uncorr)

d∆̃β

= δ(∆̃β)+ 1
σ2

0

∫
d~xA

∫
d~xB |M(1)(~xA)|2 |M(1)(~xB)|2 δ

∆̃β−
∆(2)
β (sA,sB)
E2

+· · · ,

(5.11)
where σ0 is the Born-order cross section, and ∆(2)

β is defined in eq. (5.8). Terms proportional
to |M(0)(~xA)|2 |M(2)(~xB)|2 do not appear in this expression, since each jet requires at least
two particles for ∆̃β to be non-zero. This distribution can be calculated numerically from
the well-known matrix element for e+e− → qq̄g scattering, as shown in section 5.4 below.

5.3 Distance between jets in a single event to O(α2
s)

Now consider the reduced spectral EMD between hemisphere jets A and B within the
same event:

d%(corr)

d∆̃β

= 1
Z

∫
d~x |M(~x)|2 δ

(
∆̃β −

∆β(sA, sB)
E2

)
. (5.12)

Though this expression is a proper cross section, and thus deserving of the symbol σ, we
continue to use % for ease of comparison.

As with the uncorrelated case, this expression is only non-trivial starting at O(α2
s):

d%(corr)

d∆̃β

= δ(∆̃β) + 1
σ0

∫
d~x |M(2)(~x)|2 δ

∆̃β −
∆(2)
β (sA, sB)
E2

+ · · · . (5.13)

– 15 –



J
H
E
P
0
8
(
2
0
2
3
)
1
0
7

-�� -�� -�� -� -� -� -� �
�

����

����

����

����

��� Δ

β=�

�
ϱ(
�
)

�
��
�
Δ~

β=
�

Reduced Spectral EMD

CF Color Channel
����������
������������/�

(a)

-�� -�� -�� -� -� -� -� �
�

��

��

��

��

��� Δ

β=�

�
ϱ(
�
)

�
��
�
Δ~

β=
�

Reduced Spectral EMD

CA Channel, Correlated Only
������
���

(b)

-�� -�� -�� -� -� -� -� �
�

�

�

�

�

��� Δ

β=�

�
ϱ(
�
)

�
��
�
Δ~

β=
�

Reduced Spectral EMD

nf Channel, Correlated Only
������

(c)

Figure 4. Distributions of the reduced spectral EMD distance ∆̃β=2 calculated on jets production
in e+e− events at O(α2

s), separated by color channel. For the CF channel in (a), the correlated
distribution is a factor of 2 smaller than the uncorrelated one due to a Bose factor. For the CA
channel in (b), we compare the output of EVENT2 to a fit accounting for leading non-global
logarithms. For the nfTR channel in (c), we simply show the output from EVENT2.

Here, we see the appearance of |M(2)(~x)|2, since this is the first squared amplitude that
allows each jet to have at least two particles each. This distribution involves the matrix
elements for e+e− → qq̄gg and e+e− → qq̄q′q̄′, which we compute numerically using
EVENT2 [35].

5.4 Numerical results

We now show numerical results for the distributions of ∆̃β=2 in the uncorrelated and
correlated cases. We restrict to β = 2 for simplicity and familiarity with hemisphere
jet masses.

In figure 4, we show the distributions of log ∆̃β=2, where we remove overall factors of
the coupling and color factors. That is, we plot d%(2)/d log ∆̃β=2, defined implicitly through

1
σ0

d%

d log ∆̃β=2
= 1
σ0

(
αs
2π

)2
CF C

(2) d%(2)

d log ∆̃β=2
+ · · · , (5.14)
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where σ0 is the Born-order cross section for e+e− → qq̄ scattering and C(2) is the appropriate
color factor for the secondary emission. We study the three possible color structures:

C(2) = {CF , CA, nfTR}, (5.15)

where nf is the number of active quarks, and TR is the normalization of the fundamental
representation of color SU(3).

The C(2) = CF channel appears for both the uncorrelated and correlated cases in
figure 4a. Soft gluon emissions proportional to CF are emitted incoherently from one
another, just like photons from charged particles. Such emissions are described by the
product of uncorrelated matrix elements |M(1)|2|M(1)|2. Two Abelian gluons produced
in the same event are identical bosons, though, so there is a Bose factor of 1/2 in the
matrix element |M(2)|2. Thus, in the deep infrared, where ∆̃β � 1, we expect that
correlated contribution from CF gluon emission in |M(2)|2 is a factor of 2 smaller than the
uncorrelated contribution in |M(1)|2|M(1)|2. Indeed, the general trends of the distributions
agree well, with differences arising at subleading order where specific angular or energy
ordering becomes important.

The results for the C(2) = CA channel are plotted in figure 4b, where only the correlated
case contributes. The linear behavior in the deep infrared is expected from the form of
leading non-global logarithms (NGLs). To obtain a non-zero value of ∆̃β , the two correlated
gluons must be in different hemispheres, and therefore exhibit no collinear singularities, but
can have hierarchical low energies. On this plot, we also include a linear fit and find that
the leading logarithms (the slope on this plot) is well described by

1
σ0

d%(corr)

d log ∆̃β=2
⊃ −π

2

3

(
αs
2π

)2
CF CA log ∆̃β=2 , (5.16)

as expected from the value of leading NGLs for hemisphere mass [36]. Because there is
no collinear singularity that contributes to the leading NGLs, the fact that the angular
dependence of the hemisphere mass and ∆β=2 are different has no effect.

Finally, we plot the C(2) = nf TR channel in figure 4c, where again only the correlated
case contributes. There is no divergence associated with hierarchical energies from a gluon
splitting into two quarks, so this distribution is only single logarithmic (flat on this plot)
in the deep infrared. Along with the subleading logarithms in the CA channel, the fit we
establish in these plots is

1
σ0

d%(corr)

d log ∆̃β=2
⊃ −7

(
αs
2π

)2
CF CA + 5.5

(
αs
2π

)2
CF nfTR . (5.17)

By contrast, the values of the subleading hemisphere mass NGLs are [47, 48]:

1
σ0

d%(sub-NGLs)

d log ∆̃β=2
= 3 + 18ζ3 − 11π2

9

(
αs
2π

)2
CF CA + 4π2 − 6

9

(
αs
2π

)2
CF nfTR (5.18)

≈ −9.3
(
αs
2π

)2
CF CA + 3.7

(
αs
2π

)2
CF nfTR .

While close, we do not expect perfect agreement between subleading hemisphere mass NGLs
and ∆̃β because of the distinct energy and angular ordering in the definition of ∆̃β .
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Figure 5. Parton-level distributions of the dimensionless spectral EMD ˜̀
β for 2TeV collisions. (a)

Comparison between two quark jets (solid, red), a quark and a gluon jet (dashed, yellow), and two
gluon jets (dashed, green), for β = 2. (b) Comparison between β = 1

2 (dotted), β = 1 (dashed), and
β = 2 (solid), for the quark-quark sample.

6 Results from a parton shower

Having established some resummed and fixed-order results, we now investigate spectral
EMD distributions obtained from a parton shower. We generate events in MadGraph
3.4.0 [49] at a center-of-mass collision energy of 2TeV, and use the following `+`− → jj

processes to produce samples of quark and gluon jets:

• Quark jets: e+e− → uū;

• Gluon jets: τ+τ− → gg.3

These hard scattering events are showered using Pythia 8.306 [50] with its default settings,
except when we turn off hadronization. Two exclusive kT jets [51] are found in each event
with FastJet 3.4.0 [52], and one jet per event is chosen randomly for analysis.

6.1 Distance between jets at parton level

Following eq. (4.3), we compute the normalized spectral EMD ˜̀
β. In this subsection, jets

are simulated at parton level with no hadronization effects.
In figure 5a, we plot the spectral EMD distribution between two quark jets, a quark

and a gluon jet, and two gluon jets, focusing on β = 2. There is a clear ordering to the
distances between jets: 〈

log ˜̀
β=2

〉
qq
<
〈

log ˜̀
β=2

〉
qg
<
〈

log ˜̀
β=2

〉
gg
, (6.1)

where the subscripts denote the two jet categories being compared. From the double
logarithmic analysis in eq. (4.5), the average log distance between jets is related to the sum

3Collisions of tau leptons may seem unorthodox, but it is for simplicity within MadGraph so that the
Higgs can mediate the production of gluon jets.
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of the color Casimirs: 〈
log ˜̀

β

〉
AB

= − π

2√αs

√
β√

CA + CB
. (6.2)

Taking ratios, this relation is well-reproduced by the Pythia parton-level samples:〈
log ˜̀

β=2
〉
qq〈

log ˜̀
β=2

〉
qg

≈ 1.33 ,
√
CF + CA√

2CF
≈ 1.27 , (6.3)

〈
log ˜̀

β=2
〉
qg〈

log ˜̀
β=2

〉
gg

≈ 1.16 ,
√

2CA√
CF + CA

≈ 1.18 , (6.4)

〈
log ˜̀

β=2
〉
qq〈

log ˜̀
β=2

〉
gg

≈ 1.55 ,
√
CA√
CF

= 1.5 . (6.5)

In figure 5b, we compare the spectral EMD for angular weighting parameters β = 1
2 ,

β = 1, and β = 2, focusing on the quark-quark sample. Here, we find:〈
log ˜̀

β=1/2
〉
qq
≈
〈

log ˜̀
β=1

〉
qq

.
〈

log ˜̀
β=2

〉
qq
. (6.6)

These mean ratios differ rather substantially from the leading logarithmic predictions (note
the minus sign in eq. (6.2)):〈

log ˜̀
β=2

〉
qq〈

log ˜̀
β=1

〉
qq

≈ 0.88 ,
√

2√
1
≈ 1.41 , (6.7)

〈
log ˜̀

β=1
〉
qq〈

log ˜̀
β= 1

2

〉
qq

≈ 1.02 ,
√

1√
0.5
≈ 1.41 , (6.8)

〈
log ˜̀

β=2
〉
qq〈

log ˜̀
β= 1

2

〉
qq

≈ 0.90 ,
√

2√
0.5

= 2 . (6.9)

This difference seems to be due to physics at log ˜̀
β ≈ 0, where the double-logarithmic

approximation is no longer accurate. Importantly, at double-logarithmic accuracy, the
maximal value of ˜̀

β is 1, but the true upper bound depends on β through the maximum
angular value ωmax = 2β−1.

We can reduce sensitivity to this upper bound effect by considering the variance of the
spectral EMD. Using eq. (4.5), the variance predicted from a double-logarithmic analysis is
again related to the sum of the color Casimirs:

σ2
β,AB ≡

〈
log2 ˜̀

β

〉
AB
−
〈

log ˜̀
β

〉2
AB

= π(4− π)
4αs

β

CA + CB
. (6.10)

The ratios of the variances in the Pythia quark-quark sample are much better described
than the means:

σ2
β=2,qq
σ2
β=1,qq

≈ 1.71,
σ2
β=1,qq

σ2
β= 1

2 ,qq

≈ 1.83,
σ2
β=2,qq

σ2
β= 1

2 ,qq

≈ 3.13. (6.11)

Computing these ratios at higher orders would be an interesting avenue for future studies.
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Figure 6. Comparison at parton-level (solid) versus hadron-level (dashed) for the dimensionless
spectral EMD between two quark jets with β = 2. Shown are three different center-of-mass collision
energies: (a) 500GeV, (b) 1TeV, and (c) 2TeV.

6.2 Impact of hadronization

As a first study of the effect of non-perturbative physics on the spectral EMD, we compare
the distributions of ˜̀

β=2 between jets at parton-level versus hadron-level. This is shown
for quark jets (e+e− → uū) in figure 5 for three different collision energies. The difference
between parton level and hadron level is relatively modest, with no discernible scaling with
center-of-mass collision energy.

To try to understand if this non-perturbative insensitivity is expected, we can try to
draw an analogy with jet mass. As shown in section 3.2, the β = 2 spectral EMD at O(α1

s)
is closely related to the sum of jet masses. Perturbatively, the mass (or two-point energy
correlation function) of a jet is well-understood [45, 53, 54], which is closely related to
the observable jet thrust and angularities [55–57]. Because of its simplicity, the leading
non-perturbative corrections to mass can be estimated by considering a jet with a single
emission sensitive to the non-perturbative scale ΛQCD ' 1GeV, which is of comparable
order to the Landau pole or hadron masses [58]. This non-perturbative emission has relative
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transverse momentum

ΛQCD ' ENP θNP, (6.12)

which depends on its energy ENP and angle θNP from hard jet core. The non-perturbative
contribution to jet mass is dominated by wide-angle emissions with θNP ' 1, yielding

δNPm
2 ' E ENP, (6.13)

where E is the jet energy.
Consider E = 250GeV, which is the approximate jet energy in figure 5a. If the analogy

with jet mass held, then we would expect

δNP ˜̀
β=2 '

ΛQCD
E

' 0.004. (6.14)

Note that log 0.004 ≈ −5.5, which is a region on this plot where the distribution has nearly
vanished, so it is difficult to draw robust conclusions about what is happening given the
small statistics. Nevertheless, at log ˜̀

β=2 ∼ −4, the expected non-perturbative shift would
push the distribution up to log ˜̀

β=2 ∼ −3.8. If anything, the non-perturbative shift appears
to go down by roughly this amount, in the opposite direction from the jet mass expectation.

One reason that the analogy with jet mass might be misleading is that the spectral
EMD is not an additive observable. An IRC-safe observable is additive if its value never
decreases when a new emission is added to the jet [45], with jet mass being the canonical
example. For a large classes of additive observables, one can prove that non-perturbative
physics affects the perturbative region via a simple positive shift of the distribution [59].
While the spectral EMD has an additive structure at O(αs), this no longer holds at higher
orders. Specifically, the value of the spectral EMD can decrease due to additional emissions
at O(α2

s), because of the negative contribution appearing in eq. (3.13).
Without an all-orders understanding of how the spectral EMD is modified by non-

perturbative emissions, we cannot make more concrete statements at this point. Ref. [10]
showed how the EMD between parton- and hadron-level jets can be used to bound the
non-perturbative shift on certain IRC-safe observables. It is not clear, though, how to
translate this into a bound on the shift of the spectral EMD distribution. We leave a further
analysis of non-perturbative effects to future work.

7 Comparison with the original EMD

To gain more intuition for the spectral EMD, it is worth comparing its properties to
the original EMD from eq. (2.3). Already at O(α0

s), the distances have quite different
expressions due to the differing treatment of isometries. For two jets A and B consisting of
a single particle, the EMDs are:

SEMD(0,0)
β (sA, sB) = |E2

A − E2
B|ωmax, (7.1)

EMD(0,0)
β (EA, EB) = max

[
EA, EB

]Ωβ
AB

Rβ
+
∣∣EA − EB∣∣, (7.2)
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where EA and EB are the two jet energies and ΩAB is their relative angle. In addition to
having different units, we see that the original EMD is sensitive to ΩAB while the spectral
EMD is not.

To do a meaningful comparison between the original EMD and spectral EMD, we
assume that the two jets are aligned and have equal energies such that:

ΩAB = 0, EA = EB = E. (7.3)

With this assumption, both EMDs have values of 0 at O(α0
s). For the remainder of our

analysis, we set R = 1 for simplicity.
For jets with more than one particle, we need to specify what we mean by ΩAB = 0.

We define the jet axis through a β-dependent weighted average of the jet constituents:

n̂A,β = arg min
n̂

∑
a∈JA

Ea
EA

∣∣n̂− n̂a∣∣β , (7.4)

and similarly for n̂B.4 For β = 2 and massless jet constituents, this corresponds to the
usual jet axis aligned with the jet momentum:

n̂A,β=2 =
∑
a∈JA

Ea
EA

n̂a. (7.5)

Regardless of the value of β, we let

ΩAB = Ω(n̂A,β , n̂B,β)⇒ 0, (7.6)

which is implicitly β dependent via the jet axes.

7.1 O(α1
s): jets with up to two particles

Like in section 3.2 at O(α1
s), one jet can have at most two particles, while the other jet

must have one. For the following analysis, let jet A consist of particles {1, 3} and jet B
consist of particle 2, with E1 + E3 = E2 = E.

From eqs. (3.4) and (2.10), we see that the spectral EMD is

SEMD(1,0)
β (sA, sB) = E1E3 Ωβ

13. (7.7)

For the original EMD, all of the radiation from particles 1 and 3 has to be transported to
particle 2, yielding:

EMD(1,0)
β (EA, EB) = E1 Ωβ

12 + E3 Ωβ
23. (7.8)

While the spectral EMD depends on the angle between particles in the same jet, the original
EMD depends on the angle between particles in different jets.

4This is an example of a recoil-free axis choice. It would be interesting to study different axis choices
here. For example, some of the calculations below are much simpler using the winner-take-all axis [60–62].
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For the special case of β = 2, we know from eq. (3.5) that the spectral EMD equals the
squared jet mass at this order. Taking the collinear limit Ω12 + Ω23 ≈ Ω13 � 1, the original
EMD reduces the squared jet mass divided by the jet energy:

EMD(1,0)
β=2 (EA, EB) ≈

SEMD(1,0)
β (sA, sB)
E

= m2
A

E
. (7.9)

Note that thrust and β = 2 angularities [55–57] are also proportional to the squared jet mass
in the collinear limit. For generic values of β, we can solve eq. (7.4) in the collinear limit:

Ω12 ≈ Ω13 ×


0 0 < β ≤ 1,
min[E1,E3]

1
β−1

E
1

β−1
1 +E

1
β−1
3

β > 1, (7.10)

Taking also the soft limit of E3 → 0, we find:

EMD(1,0)
β (EA, EB) ≈

SEMD(1,0)
β (sA, sB)
E

. (7.11)

Thus, up to normalization, the original and spectral EMDs agree at O(α1
s) in the simultane-

ous soft and collinear limits. This means that the double-logarithmic analysis of section 4
holds for both cases, with differences appearing at higher orders.

Since jet B consists of a single particle at this order, one way to interpret these EMDs
is as the distance of closest approach between jet A and the manifold of one-particle
configurations. For the original EMD, this interpretation was identified in ref. [15], where it
was shown more generally that the N -(sub)jettiness observables [63–67] corresponding to
the distance of closest approach to N -particle manifolds. This interpretation crucially relies
on setting the jet axis via eq. (7.4). For the spectral EMD which is automatically invariant
to isometries, the manifold of one-particle configurations consists of a single configuration
with s(ω) = E2δ(ω).

7.2 O(α2
s): jets with up to three particles

To the best of our knowledge, the expression for the original EMD at O(α2
s) has not been

presented in the literature. Just as in section 3.3, there are two phase space configurations
to consider. One contribution arises when jet A has three particles {1, 3, 5} and jet B
consists of a single particle {2}. From eq. (3.9), the spectral EMD is:

SEMD(2,0)
β (sA, sB) = E1E3 Ωβ

13 + E1E5 Ωβ
15 + E3E5 Ωβ

35. (7.12)

For the original EMD, we have:

EMD(2,0)
β (EA, EB) = E1 Ωβ

12 + E3 Ωβ
23 + E5 Ωβ

25. (7.13)

Up to an overall energy scaling, these expressions agree in the strongly ordered limit with
E1 � E3 � E5 and Ω12 � Ω23 � Ω25 � 1.
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Figure 7. Illustration of the azimuthal angle φ that quantifies the relative orientation of the two
jets about their common axis in the collinear limit for calculating EMD(1,1)

β=2 (EA, EB).

The second contribution arises when jet A has two particles {1, 3} and jet B also has
two particles {2, 4}. From eq. (3.13), the spectral EMD is:

SEMD(1,1)
β (sA,sB) =E1E3Ωβ

13+E2E4Ωβ
24−2min[E1E3,E2E4]min[Ωβ

13,Ω
β
24]. (7.14)

The original EMD requires solving a genuine optimal transport problem in two dimensions.
Let f ≡ f12 be the amount of energy transported from particle 1 to particle 2. Because of
the constraints in eq. (2.4), the other elements of the transportation plan are fixed by f :

EMD(1,1)
β (EA,EB) = min

f

[
f Ωβ12+(E1−f)Ωβ14+(E2−f)Ωβ23+(f−E1−E2+E)Ωβ34

]
, (7.15)

where the energy coefficients must all be positive.
Solving the minimization in eq. (7.15), we find

f = Θ
(
Ωβ

12 − Ωβ
14 − Ωβ

23 + Ωβ
34

)
max[0, E1 + E2 − E] (7.16)

+ Θ
(
−Ωβ

12 + Ωβ
14 + Ωβ

23 − Ωβ
34

)
min[E1, E2] .

The value of the original EMD depends on the hierarchy of the energies and angles. We
can express this as a minimization over the four possible hierarchies as:

EMD(1,1)
β (EA, EB) = min

a 6=a′∈JA
b 6=b′∈JB
Ea+Eb≤E

[
Ea Ωβ

ab′ + Eb Ωβ
a′b + (E − Ea − Eb) Ωβ

a′b′

]
. (7.17)

Once again, the spectral EMD depends on the angle between particles in the same jet, while
the original EMD depends on the angle between particles in different jets.

In the collinear limit for β = 2, we can express this EMD in a nice form that can we will
further simplify in section 7.3 by incorporating rotations about the jet axis. As discussed
above, to make a meaningful comparison between jets with the EMD, we align their axes,
which for β = 2 means that we align their net momenta. Then, we consider the particles in
the two jets as illustrated in figure 7, where the relative azimuthal angle φ of the particles
in the two jets is measured between the common jet axis and particles a and b.
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Using the law of cosines in the collinear limit, the pairwise angles that appear in
eq. (7.17) can be expressed as:

Ω2
ab′ ≈

E2
a′

E2 Ω2
13 + E2

b

E2 Ω2
24 + 2Ea

′Eb
E2 Ω13Ω24 cosφ , (7.18)

Ω2
a′b ≈

E2
a

E2 Ω2
13 + E2

b′

E2 Ω2
24 + 2EaEb

′

E2 Ω13Ω24 cosφ , (7.19)

Ω2
a′b′ ≈

E2
a

E2 Ω2
13 + E2

b

E2 Ω2
24 − 2EaEb

E2 Ω13Ω24 cosφ . (7.20)

Then, in terms of the intrajet angles Ω13,Ω24 and the azimuth φ, the EMD takes the
simpler form:

EMD(1,1)
β=2 (EA, EB) ≈ min

a∈JA, b∈JB
Ea+Eb≤E

E1E3Ω2
13 + E2E4Ω2

24 + 2EaEbΩ13Ω24 cosφ
E

. (7.21)

7.3 Incorporating rotational isometries

For the above analysis, we assumed that we can freely translate the jets to align their axes,
as in eq. (7.6). As discussed in ref. [68], one can also perform rotations to further align the
radiation. This strategy of projecting the original EMD out by translations and rotations is
known as the tangent EMD (TEMD) [34]. For general angles and β, we are unaware of a
closed form expression for the TEMD. By working in the collinear limit and fixing β = 2,
though, we can gain insight from an approximate closed form expression.

Assuming that rotations about the jet axis are isometries, to calculate the TEMD in
the collinear limit, we simply fix the relative azimuthal angle that appears in eq. (7.21) to
the value that minimizes the EMD. This angle is clearly φ = π, and so the TEMD in the
collinear limit with β = 2 is

TEMD(1,1)
β=2 (EA, EB) ≈ min

a∈JA, b∈JB
Ea+Eb≤E

E1E3Ω2
13 + E2E4Ω2

24 − 2EaEbΩ13Ω24
E

. (7.22)

From this expression, the original EMD differs by a non-negative term that depends on the
relative azimuthal angle φ:

EMD(1,1)
β=2 (EA, EB) ≈ TEMD(1,1)

β=2 (EA, EB) + max
a∈JA, b∈JB
Ea+Eb≤E

4EaEbΩ13Ω24
E

cos2 φ

2 . (7.23)

Thus, we see that there is an explicit EMD cost to rotations about the jet axis, which
enforces the relationship:

TEMD(1,1)
β=2 (EA, EB) ≤ EMD(1,1)

β=2 (EA, EB). (7.24)

Both the TEMD and the SEMD respect isometries, so it is interesting to compare their
behavior in the collinear limit with β = 2:

SEMD(1,1)
β=2 (sA, sB)
E

= TEMD(1,1)
β=2 (EA, EB) (7.25)

+ 2
E

(
max

a∈JA, b∈JB
Ea+Eb≤E

EaEbΩ13Ω24 −min[E1E3, E2E4] min[Ω2
13,Ω2

24]
)
.
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The sign of the difference on the second line fixes the relative size of the SEMD with respect
to the TEMD. This difference can be either positive or negative, however, so there exists
no fixed relationship between the SEMD and TEMD. Considering the angular factors first,
note that:

Ω13Ω24 ≥ min[Ω2
13,Ω2

24] . (7.26)

For the energy factors, though, the hierarchy is the opposite:

max
a∈JA, b∈JB
Ea+Eb≤E

EaEb ≤ min[E1E3, E2E4] . (7.27)

Therefore, the relative size of the SEMD and the TEMD depends in detail on how the
energy is shared among the two particles in the jets and how that sharing compares to the
relative angles between particles. This also implies that the relative size of the original
EMD and the SEMD depends sensitively on the particular momentum of the particles in
the jets, which highlights the complementarity of these approaches.

8 A spectral metric for theory space

Finally, we introduce a spectral approach for constructing a metric on the space of theories.
As shown in ref. [15], one can lift the original EMD to a cross-section mover’s distance
(ΣMD), which provides an data-driven way to define the distance between theories. Here, we
introduce the spectral ΣMD, which is invariant to the isometries of a theory by construction,
even if the explicit form of those isometries is not known.

We note that the idea of a metric on theory space has a long history. In conformal field
theories (CFTs), the Zamolodchikov metric [37, 38] is the canonical Riemannian metric
on the space of theories, and it can be used to establish general and far-reaching results
regarding the growth of degrees of freedom due to renormalization group evolution from high
scales to low scales. The differential Zamolodchikov metric, or line element, is defined as the
value of a two-point correlation function between local operators constructed from tangent
vectors on the space of theories. This metric is therefore very nice for spaces that are smooth
under variation of parameters, though not all CFTs are of this form.5 Furthermore, it is
unclear how to practically use the Zamolodchikov metric to interpret realistic collider data.
More recent approaches to theory space include an application of information geometry in
quantum field theory [70] and a reformulation of the exact renormalization group [71] as an
optimal transport problem [72].

In this section, we first review the original ΣMD before constructing its spectral variant.
For the 2-Wasserstein variant of the spectral ΣMD in particular, we can write down an
explicit expression for the metric tensor in terms of Lagrangian parameters. This metric
tensor exhibits an intriguing link between the spectral ΣMD and renormalization group flow.

5See ref. [69] for a discussion of issues and possible resolutions to the shortcomings of the Zamolod-
chikov metric.
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8.1 Review of the original ΣMD

Consider a theory T defined as a set of events Ei with associated cross sections σi. In
analogy to eq. (2.1), we can define T as a distribution over events [15]:

T (E) =
N∑
i=1

σi δ(E − Ei). (8.1)

Integrating over all events, a theory is normalized via:∫
dE T (E) = σtot, (8.2)

where σtot is the total cross section. Strictly speaking, the volume element dE involves
separate integrations over different multiplicity final states.

Given a distance between events d(Ei, Ej), we can define a distance between theories as
the work needed to rearrange theory A to theory B. Since the weight being moved is cross
section, ref. [15] called this the cross-section mover’s distance:

ΣMDγ,S;d(TA, TB) = min
Fab

∑
a∈TA

∑
b∈TB

Fab
d(Ea, Eb)γ

Sγ
+
∣∣∣∣ ∑
a∈TA

σa −
∑
b∈TB

σb

∣∣∣∣, (8.3)

where the transportation plan Fab is constrained analogously to eq. (2.4). The ΣMD
depends on γ and S (the analogies of β and R in the original EMD) and the choice of
ground metric d (the analogy of Ω in the original EMD). While ref. [15] advocated setting
d(Ei, Ej) equal to EMDβ,R(Ei, Ej), the ΣMD can be defined using any ground metric on
event space. The geometry on theory space is then induced by the ΣMD.

8.2 Introducing the spectral ΣMD

Just as the spectral representation of an event in eq. (2.8) is invariant to isometries, we can
introduction a spectral representation of a theory that is invariant to isometries. Unlike
collision events or jets in particle physics, the isometries in theory space are not necessarily
known a priori, unless one has a known model space being studied. In the case of collision
events, the solution was to represent an event exclusively in terms of pairwise angular
distances, weighted by particle energies, which is clearly invariant to O(3) rotations or
reflections of the celestial sphere. In the case of theories, we can represent a theory in terms
of pairwise distances between events, ζ(Ei, Ej).

With this motivation, we introduce the theory spectral function, which is defined
through pairwise distances between events and weighted by event cross sections:

s(ζ) =
∑
i∈T

∑
j∈T

σiσj δ (ζ − ζ(Ei, Ej)) (8.4)

=
∑
i∈T

σ2
i δ(ζ) +

∑
i<j∈T

2σiσj δ (ζ − ζ(Ei, Ej)) .

Here, T ≡ {E} is a set of events as produced in some theory, ζ(Ei, Ej) is the distance between
events i and j, and σi is the cross section for event Ei. By definition, pairwise distances are
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invariant to isometries, and any metric distance between events could be used to define ζ,
including the original EMD or spectral EMD.

From the theory spectral function, we can define its cumulative function as:

S(ζ) =
∑
i∈T

σ2
i Θ(ζ) +

∑
i<j∈T

2σiσj Θ (ζ − ζ(Ei, Ej)) . (8.5)

The spectral ΣMD between theory A and theory B is therefore:

SΣMDp=1(TA, TB) ≡
∫
dζ |SA(ζ)−SB(ζ)| , (8.6)

where the p = 1 subscript reminds us that this is a 1-Wasserstein distance. We have
suppressed integration bounds in this expression, but it ranges over all physical values of ζ,
from 0 up to the maximal distance between events ζmax.

By construction, eq. (8.6) is a metric on the space of theory space spectral functions.
From the theorem of ref. [44] (see appendix A) we expect it to also be a metric on the space
of theories modulo isometries, though there may potentially be some subtleties. Technically,
ref. [44] proved that knowing the unordered pairwise distances of n points in the space
Rk is sufficient to uniquely determine the set of points, up to isometries, as long as all
pairwise distances are distinct. In general, we do not know what the manifold of theories
is nor do we know its topology. We expect, however, that this is not an issue by results
like the Whitney [73] (see, e.g., refs. [74, 75] for modern presentations) or Nash [76–78]
embedding theorems, which establish that smooth manifolds can be isometrically embedded
in sufficiently high dimensional Euclidean space. So, we assume that the theorem of ref. [44]
can be applied to generic theories as long as the number of events is countable, but we
leave a more detailed justification or identification of limitations of this assumption to
future work.

8.3 Riemannian theory space

A key advantage of the spectral ΣMD over the original ΣMD is that we can express it in
closed form. The 2-Wasserstein metric has a Riemannian structure [79–81] and this can
be used to extract a metric tensor for theory space, expressed in terms of the cumulative
theory spectral functions.

Analogous to eq. (2.15), the (squared) 2-Wasserstein version of eq. (8.6) is:

SΣMDp=2(TA, TB) ≡
∫
dσ2

∣∣∣S−1
1 (σ2)−S−1

2 (σ2)
∣∣∣2 , (8.7)

where S−1(σ2) is the inverse cumulative spectral function, whose argument is a squared
cross section. With continuous distributions of pairwise event distances, we can express
this (squared) Riemannian metric in terms of the cumulative spectral function. First, the
cumulative spectral function is

S(ζ) =
∫
dσi dσj Θ (ζ − ζ(Ei, Ej)) , (8.8)
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where dσi is the differential cross section squared for events in ensemble i. The inverse
cumulative spectral function can be written as

S−1(σ2) =
∫
dζ Θ

(
σ2 −S(ζ)

)
. (8.9)

This expression satisfies the inverse function theorem with

dS−1

dσ2 =
(
dS

dζ

)−1
. (8.10)

The expression in eq. (8.9) can be used to evaluate the p = 2 spectral ΣMD of eq. (8.7).
To convert the spectral ΣMD into a metric tensor, we need to define coordinates on

theory space. Let the theory spectral functions be dependent on a set of parameters {λ},
like couplings or masses, that define the theory. We will be interested in the spectral
ΣMD between a theory evaluated at energy scales Q and Q+ dQ, respectively, where these
parameters change under renormalization group flow as

βi = Q
∂λi
∂Q

. (8.11)

Assuming that Q only appears implicitly through the parameters {λ}, the inverse cumulative
spectral function transforms as:

S−1(σ2;{λ(Q+dQ)}) =S−1(σ2;{λ(Q)})+
∑
i

βi
dS−1(σ2;{λ(Q)})

dλi

dQ

Q
+· · · . (8.12)

Plugging this into eq. (8.7), the differential line element is:

lim
dQ→0

√
SΣMDp=2

(
s(ζ; {λ(Q+ dQ)}), s(ζ; {λ(Q)})

)
=
(∑

i,j

βiβjgij

)1/2dQ

Q
, (8.13)

where the symmetric rank-two tensor gij can be viewed as a metric on theory space:

gij ≡
∫
dσ2 ∂S

−1(σ2; {λ})
∂λi

∂S−1(σ2; {λ})
∂λj

. (8.14)

Since it is often more convenient to compute the cumulative spectral function S(ζ)
rather than its inverse S−1

1 (σ2), we provide an alternative expression for the metric tensor
gij . Taking derivates of eq. (8.9) with respect to λi, we find:

∂S−1

∂λi
= −

(
dS

dζ

)−1 ∂S

∂λi
. (8.15)

Using the fact that the cross-section-squared coordinate is related to the event distance
coordinate ζ as σ2 = S(ζ), we find:

dσ2 = dS

dζ
dζ . (8.16)
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Inserting these relations into eq. (8.14) yields an alternative form for gij :

gij =
∫
dζ

(
dS(ζ; {λ})

dζ

)−1 ∂S(ζ; {λ})
∂λi

∂S(ζ; {λ})
∂λj

. (8.17)

The differential line element in eq. (8.13) shares a key property with the Zamolodchikov
metric, namely that non-zero distances are only accumulated with non-zero β-functions.
A key difference, though, is that the spectral ΣMD has a direct connection to measured
quantities in collider events. Here, we just note this fascinating connection and leave a
deeper interpretation and understanding to future work.

9 Conclusions

Equipping the space of particle collision data with a metric opens up a suite of geometric
data analysis strategies. The spectral EMD introduced in this paper offers a complementary
approach to the original EMD from ref. [10]. The spectral EMD respects isometries by
construction, unlike the original EMD which is faithful (though not invariant) to the symme-
tries of the ground metric. Futhermore, since spectral functions are one-dimensional objects,
we can avoid the numerical optimization needed for two-dimensional optimal transport.
Two drawbacks of the spectral approach is that not every spectral function corresponds to
a physical arrangement of particles, and when it does, the spectral function redundantly
encodes the particle information. We view these as reasonable tradeoffs to achieve closed
form expressions for the spectral EMD that are amenable to precision calculations.

This paper has just scratched the surface of potential applications and consequences of
the spectral EMD, and there are several questions introduced in the text that deserve further
study. Both the original EMD and spectral EMD define a metric space for collider events; can
their similarities and differences be made more precise and quantitative? Both the tangent
EMD and spectral EMD are invariant to isometries and have the same behavior at double
logarithmic accuracy; how do their properties differ going to higher orders? The spectral
EMD is not an additive observable, which complicates the analysis of non-perturbative
effects; can we nevertheless understand the apparently small impact of hadronization? The
spectral function provides a unique jet representation up to isometries and sets of measure
zero; is there an experimental impact from degeneracies that can appear due to finite angular
resolution? We focused on a spectral EMD construction based on the 1-Wasserstein metric
where there is a duality between energy ordering and angular ordering; are there advantages
from instead using the 2-Wasserstein metric which exhibits a Riemannian structure? Going
to theory space, we found an intriguing connection between the spectral ΣMD and the
Zamolodchikov metric; can this relation be sharpened, and what distinguishes theories at
different points along their renormalization group flow?

We hope that the spectral EMD and the way that the spectral function encodes
information finds broad applications for physics analyses. For example, the spectral function
approach may provide a novel method for extracting physical quantities like the strong
coupling αs or the top quark mass mt. With the connection to a theory space metric,
perhaps it would unlock new ways to observe and measure the QCD β-function, through the
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flow of QCD as different energy scales are probed. This could also provide a new perspective
on entropy growth as a parton shower evolves to the infrared [82, 83]. Recently, a procedure
for measuring the top quark mass was proposed that exploited the correlation between
pairwise angles and mass scales in the hadronic decay of a top quark [84], utilizing three-
point energy correlators. Energy correlators are the first moment of the spectral function,
or its higher-point generalizations, and their structure has an immediate interpretation as
the correlation function of local operators on the celestial sphere.

Finally, the presence of a (Riemannian) metric implies that collider data lives on a
manifold, and the properties of this manifold can be studied. The study of ref. [28] showed
that N -body massless relativistic phase space is the product of a simplex and a hypersphere,
which has a non-trivial topology as encoded in homotopy groups. This non-trivial topology
has consequences for machine learning on the data and may present obstructions that
cannot be overcome by some architectures [85]. The collider geometry induced by a metric
is sensitive to the structure of phase space and four-momentum conservation, but also
implicitly involves the squared matrix element. In perturbation theory, matrix elements
generically exhibit divergences at phase space boundaries, which might dramatically alter
the geometry and topology relative to the naive expectation from phase space. Does the
simple form of the spectral EMD enable the prediction, calculation, and observation of
quantities like the Ricci curvature in data as an optimal transport space [86]? We hope
that answers to these questions and more will produce a rich and fruitful perspective on
the vast quantities and high dimensionality of collider physics data.
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A Uniqueness of the spectral representation

As mentioned in section 2.2, the spectral function determines an event uniquely up to
isometries and configurations of measure zero. In this appendix, we present a proof of this
statement and highlight some pathological cases.
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It is worth mentioning that there are other approaches to enforce isometries. For
example, one can construct irreducible representations of the isometry group from invariant
polynomials of particle momenta. This is similar in spirit to efforts to establish invariant
operator bases on which equations of motion redundancies have been eliminated; see, e.g.,
ref. [87]. The systematic procedure for doing this is rather challenging, though, especially
as the multiplicity of operators (or particles) increases. Alternatively, if one is willing to
forgo irreducibility, then one can use a jet representation that is overcomplete, like C-
correlators [40] or energy flow polynomials [88]. Such bases can be excessively overcomplete,
though, requiring tens of thousands of terms, even for modest particle multiplicities.6

By contrast, the spectral function of a jet with n resolved particles has
(n

2
)

+ 1 δ-
functions, corresponding to all distinct particle pairs and the contact term at z = 0. While
some of this information is redundant, it is not excessively so, with a quadratic growth of
the required information with multiplicity n. Crucially, this information is encoded in such
a way that distinct jets are represented distinctly, up to isometries.

A.1 Proof of uniqueness

The key assumption for the following proof is that all pairwise distances between particles
in a jet are distinct real numbers. For experimental data, particle locations in the tracker
or calorimeter are discrete because of the finite angular resolution of the detectors. This
complicates the construction of the jet from its spectral function as presented here, but we
leave a detailed study to future work.

The proof of the uniqueness of the spectral function representation goes as follows. We
start with angular information. The spectral function clearly encodes all pairwise distances
between particles in the jet through the location of its δ-function spikes. These pairwise
distances are real numbers and in general have continuous, non-zero probability to lie
anywhere in the interval ω ∈ [0, ωmax]. A jet only ever has a finite integer multiplicity,
and so there is strictly 0 probability that two distinct pairs of particles have the same
pairwise distance.

With this, we can apply Theorem 2.6 of ref. [44], which established the conditions
for constructibility of n points on the plane from their distribution of pairwise distances.
They prove the following result. Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be
two collections of points on the plane, each drawn from some non-degenerate, continuous
probability distributions. Then, with probability 1, if the set of unordered pairwise distances
of points in P and Q are identical, then there exists an isometry in E(2)⊗ Sn that renders
the sets P and Q identical.7 Because we assume 0 probability for multiple pairwise distances
between particles in a jet to be identical, this theorem establishes that the location of
particles in a jet on the celestial sphere can be reconstructed uniquely, up to isometries,
with probability 1.

6See refs. [89, 90] for some techniques to mitigate redundancies.
7The theorem of ref. [44] is actually much more general and establishes equality of collections P and Q

of points in Rk up to the action of an arbitrary isometry group, if their distributions of unordered pairwise
distances are identical.
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We next turn to energy information. To establish particle i’s energy, consider the three
distinct particles i, j, k in the jet. By the result above, the distances between particle pairs
ij, ik, and jk are distinct, and distinct from any other pairwise distances. Therefore, we can
identify them in the spectral function. The weights w with which these pairwise distances
occur in the spectral function is the product of the corresponding energies:

wij = 2EiEj , wik = 2EiEk, wjk = 2EjEk. (A.1)

It then follows that the energy of particle i is:

Ei =
√
wijwik
2wjk

. (A.2)

This procedure can be continued for all particles in the jet. Therefore, both the spatial dis-
tribution of the particles in the jet and their energies can be (nearly) uniquely reconstructed
from the spectral function, up to isometries.

A.2 Near-degenerate configurations

We argued above that the spectral function uniquely specifies a jet with probability 1.
There is, however, a non-empty set of spectral functions that do not uniquely encode the
location of particles, though this set has non-zero codimension with respect to the full space
of jets. Nevertheless, there may be nearly degenerate subspaces with non-zero probability
that could introduce significant ambiguities. One way these subspaces could arise is if
the particles are confined to a grid with finite resolution, as in any realistic experimental
detector. Here, we look at an example of a near-degenerate configuration that might require
a more careful treatment.

Consider two jets, A and B, with the same total energy. Let jet A consist of two
particles {1, 3}, with spectral function:

sA(ω) = (E2
1 + E2

3)δ(ω) + 2E1E3 δ(ω − ω13). (A.3)

Let B consist of three particles {2, 4, 6}, with spectral function:

sB(ω) = (E2
2+E2

4+E2
6)δ(ω)+2E2E4 δ(ω−ω24)+2E2E6 δ(ω−ω26)+2E4E6 δ(ω−ω46). (A.4)

For general θ24, θ26, and θ46, sB(ω) has three peaks for ω > 0, so it can clearly be
distinguished from sA(ω), which only has one. As the particles in jet B approach an
equilateral triangle configuration, though, the three peaks of sB(ω) degenerate to a single
peak. If θ13 = θ24 = θ26 = θ46, then sB(ω) will have a single peak at the same location as for
sA(ω). Furthermore, these peaks will have the same height if E1E3 = E2E4 +E2E6 +E4E6.
Thus, to render these spectral functions identical, there must be four constraints imposed
on the structure of sB(ω), such that the degenerate subspace has codimension 4.

To estimate when experimental resolution might render this configuration problematic,
assume that there is some angular resolution εθ within which all angles are equal and an
energy resolution εE within which energies are equal. Then, the probability that these two
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spectral functions are within resolution of one another scales like ε3θεE , assuming continuous
and smooth probability distributions for pairwise angles and particle energies. A conservative
estimate of these resolution factors exclusively from the resolution of calorimetry at ATLAS
or CMS at the Large Hadron Collider, for example, assumes εθ ∼ εE ∼ 0.1, so these nearly
degenerate configurations are suppressed by at least 10−4 with respect to generic particle
momenta, with no other assumptions on the distributions of particles. There may be
applications that enhance these nearly-degenerate contributions, for example if there are
low multiplicity configurations from resonance decays that have a preferred angular scales.
The main lesson from this study is that one has to be mindful of configurations that can be
close in SEMD even if they are far apart in EMD.

B Comparison with the 2-Wasserstein Metric

In the body of this paper, we focused on the 1-Wasserstein metric for defining the spectral
EMD. As discussed in eq. (2.15), it is also natural to define the (p-th power of) the
p-Wasserstein metric. The p = 2 case is particularly interesting, since the 2-Wasserstein
distance enjoys many of the properties of a Riemannian metric, like the uniqueness of
(affine) geodesics. Indeed, Riemannian manifolds like the surface of the Earth, or Lorentzian
manifolds like space-time, are the most familiar contexts in which a metric is used in physics.
In this appendix, we briefly discuss some properties of the 2-Wasserstein metric on the
spectral function, leaving an in-depth study to future work.

Following eq. (2.15) the (squared) 2-Wasserstein distance between two spectral functions
sA(ω) and sB(ω) is:

SEMDβ,p=2(sA, sB) ≡
∫ E2

0
dẼ2 ∣∣S−1

A (Ẽ2)− S−1
B (Ẽ2)

∣∣2. (B.1)

For simplicity, we have assumed that the two jets have the same total energy E. Unlike the
p = 1 case from eq. (2.11), where we could define the spectral EMD through the cumulative
spectral function, the p = 2 case only has a closed form expression in terms of the inverse
cumulative spectral function S−1, whose argument is a squared energy and whose value is a
pairwise angular distance.

Now we want to repeat parts of the analysis of section 3 and consider the p = 2 spectral
EMD on low-multiplicity jets. If two jets A and B each consist of a single particle with the
same energy E, then their p = 2 spectral EMD is zero:

SEMD(0,0)
β,p=2(sA, sB) = 0. (B.2)

The first non-trivial configuration is when jet A has two particles {1, 3}, with spectral
function given in eq. (3.3), and jet B still has one particle. The corresponding inverse
cumulative distributions, on the domain Ẽ2 ∈ [0, E2], are:

S−1
A (Ẽ2) = Θ(Ẽ2 − E2

1 − E2
3)ω13, (B.3)

S−1
B (Ẽ2) = 0. (B.4)
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This yields a p = 2 spectral EMD of

SEMD(1,0)
β,p=2(sA, sB) =

∫ E2

0
dẼ2 ω2

13 Θ(Ẽ2 − E2
1 − E2

3) = 2E1E3ω
2
13. (B.5)

Using eq. (2.10) with β = 1 (not β = 2), this correspond to half of the squared jet mass. As
a rule of thumb, spectral EMDs with the same value of βp have similar low-order behaviors.

We can continue and calculate the distance between two jets each with two constituents.
This is the situation studied in section 2.4, where the inverse cumulative spectral functions
are given in eqs. (2.20) and (2.21). This yields a p = 2 spectral EMD of

SEMD(1,1)
β,p=2 =

∫ E2

0
dẼ2

∣∣∣ω13 Θ(Ẽ2 − E2
1 − E2

3)− ω24 Θ(Ẽ2 − E2
2 − E2

4)
∣∣∣2 (B.6)

= 2E1E3ω
2
13 + 2E2E4ω

2
24 − 4 min[E1E3, E2E4]ω13ω24.

The p = 2 spectral EMD is similar to the p = 1 case from eq. (3.13) in form, but note that
the last subtracted factor involves a product of pairwise angles in the two jets, rather than
their minimum.
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