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Learning a many-body Hamiltonian from its dynamics is a fundamental problem in physics. In this
Letter, we propose the first algorithm to achieve the Heisenberg limit for learning an interacting N-qubit
local Hamiltonian. After a total evolution time of Oðϵ−1Þ, the proposed algorithm can efficiently estimate
any parameter in the N-qubit Hamiltonian to ϵ error with high probability. Our algorithm uses ideas from
quantum simulation to decouple the unknown N-qubit Hamiltonian H into noninteracting patches and
learns H using a quantum-enhanced divide-and-conquer approach. The proposed algorithm is robust
against state preparation and measurement error, does not require eigenstates or thermal states, and only
uses polylogðϵ−1Þ experiments. In contrast, the best existing algorithms require Oðϵ−2Þ experiments and
total evolution time. We prove a matching lower bound to establish the asymptotic optimality of our
algorithm.
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Learning an unknown Hamiltonian H from its dynamics
UðtÞ ¼ e−iHt is an important problem that arises in quan-
tum sensing and metrology [1–9], quantum device engi-
neering [10–15], and quantummany-body physics [16–23].
In quantum sensing and metrology, the Hamiltonian H
encodes signals that we want to capture. A more efficient
method to learnH implies the ability to extract these signals
faster, which could lead to substantial improvement in
many applications, such as microscopy, magnetic field
sensors, and positioning systems. In quantum computing,
learning the unknown Hamiltonian H is crucial for cali-
brating and engineering the quantum device to design
quantum computers with lower error rates. In quantum
many-body physics, the unknown Hamiltonian H charac-
terizes the physical system of interest. Obtaining knowl-
edge of H is hence crucial to understanding microscopic
physics. A central goal in these applications is to find the
most efficient approach for learning H.
In this Letter, we focus on the task of learning many-

body Hamiltonians describing a quantum system with a
large number of constituents. For concreteness, we consider
an N-qubit system with geometrically local interactions.
Given any unknown N-qubit geometrically local
Hamiltonian H, we can represent H as

H ¼
XM
a¼1

λaEa: ð1Þ

Here, λ1;…; λM are the unknown parameters and S ¼
fE1;…; EMg ⊆ fI; X; Y; Zg⊗N is a subset of N-qubit

Pauli operators. Each Pauli operator Ea acts nontrivially
on at most k ¼ Oð1Þ qubits, and each qubit is acted on by
Oð1Þ of the Pauli operators in S. Many-body Hamiltonians
with nearest-neighbor interactions on one-dimensional
chains, two-dimensional square lattices, and three-
dimensional cubic lattices are all special cases of geomet-
rically local Hamiltonians. The goal is to learn the
parameters λa in the unknown Hamiltonian H. In previous
works on learning many-body Hamiltonians [24–35], in
order to reach an ϵ precision in estimating the parameters
λa, the number of experiments and the total time required
to evolve the system have a scaling of at least ϵ−2.
However, the ϵ−2 precision scaling is likely not the
best-possible scaling for learning an unknown many-
body Hamiltonian H.
In quantum sensing and metrology, the scaling of ϵ−2 for

learning an unknown parameter to ϵ error is known as the
standard quantum limit. For simple classes of Hamiltonians,
such as a single-qubit Hamiltonian H ¼ ωZ with unknown
parameter ω, one can surpass the standard quantum limit
using quantum-enhanced protocols [1,3,7,36–38]. The true
limit set by the basic principles of quantum mechanics is
known as the Heisenberg limit, which suggests a scaling of
ϵ−1. There are two well-known approaches for achieving
the Heisenberg limit for learning H ¼ ωZ. The first
approach [3–5] considers evolving a highly entangled state
over l ¼ Oðϵ−1Þ qubits of the system under l parallel
Hamiltonian evolutions ðe−iHtÞ⊗l with t ¼ Oð1Þ. The
second approach [1,39,40] considers long-time coherent
evolution e−iωtZ with t ¼ Oðϵ−1Þ over a single qubit.
While the first approach was proposed earlier, the second
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approach has the advantage of requiring only a single qubit
without entanglement.
The ϵ−1 scaling underlying the two approaches corre-

sponds to the “total evolution time.” If a protocol uses J
experiments, where the jth experiment uses the unknown
Hamiltonian evolution e−iHtj;1 ;…; e−iHtj;Kj , then the total
evolution time is defined as

T≜XJ
j¼1

XKj

k¼1

tj;k: ð2Þ

In the first approach, each experiment usesOðϵ−1Þ constant
time Hamiltonian evolutions in parallel, while the second
approach uses Oðϵ−1Þ constant time Hamiltonian evolu-
tions sequentially resulting in a single long-time evolution.
Both quantum sensing approaches result in a total evolution
time of Oðϵ−1Þ.
These quantum-enhanced approaches could be applied

to noninteracting systems as studied in multiparameter
quantum sensing [41–44]. However, they are challenging to
apply in interacting systems with a large system size N and
many unknown parameters. The difficulty stems from the
many-body interactions in the Hamiltonian H. As time t
becomes larger, the entanglement growth in e−itH will
cause all the unknown parameters in H to tangle with one
another. The many-body entanglement can be seen as a
form of decoherence, which kills the quantum enhance-
ment. To prevent the system from becoming too entangled,
prior work on learning many-body Hamiltonians focuses
on a short-time t, which loses the quantum enhancement
and obtains, at best, an ϵ−2 scaling.
In this Letter, we propose the first learning algorithm to

achieve the Heisenberg limit for learning interacting many-
body Hamiltonian. Figure 1 illustrates our algorithm. We
prove the following performance guarantee.
Theorem 1: There is an algorithm robust to state

preparation and measurement error [45] that achieves the
following: For any unknown N-qubit geometrically local
Hamiltonian H ¼ P

M
a¼1 λaEa with jλaj ≤ 1, after a total

evolution time T ¼ Oðϵ−1 logðδ−1ÞÞ, the learning algo-
rithm can obtain estimates λ̂a from the experiments, such
that Pr ½jλ̂a − λaj ≤ ϵ� ≥ 1 − δ for all a ∈ f1;…;Mg.
In quantum sensing and metrology, one often considers

the standard deviation of the estimate. We can show that to

ensure the standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½jλ̂a − λaj2�

q
≤ ϵ, we only

need a total evolution time of T ¼ Oðϵ−1Þ. This is because
each estimate λ̂a comes from a linear combination of Oð1Þ
eigenvalue estimates through a Hadamard transform, as
shown in [ [51], Eq. (25)]. Each eigenvalue estimate has
standard deviation at most OðϵÞ as guaranteed by [ [40],
Theorem I.1]. Consequently, their linear combination λ̂a
also has a standard deviation that scales as OðϵÞ. Hence,
our algorithm saturates the Heisenberg limit in terms of the

standard deviation. Our algorithm has the additional
advantage of not requiring eigenstates or thermal states
of the Hamiltonian H. Each of our experiments consists of
the preparation of a noisy all-zero state j0Ni, the evolution
under the Hamiltonian H interleaved with single-qubit
Clifford gates, and a noisy Z-basis measurement. The total
number of experiments is only Oðpolylogðϵ−1ÞÞ, which is
significantly smaller than Θðϵ−1Þ. After running the experi-
ments, the classical computational time to estimate all
parameters is only OðNpolylogðϵ−1ÞÞ. Detailed statements
can be found in [ [51], Theorems 13 and 21]. We note that
our result generalizes to all low-intersection Hamiltonians
as given in [ [51], Definition 2].
To establish the optimality of the proposed algorithm, we

prove a matching lower bound.
Theorem 2: Suppose there is a learning algorithm

robust to state preparation and measurement error that
achieves the following. For any unknown N-qubit geomet-
rically local Hamiltonian H ¼ P

M
a¼1 λaEa with jλaj ≤ 1,

after a total evolution time T, the learning algorithm can
obtain estimates λ̂a from the experiments, such that
Pr ½jλ̂a − λaj ≤ ϵ� ≥ 1 − δ for all a ∈ f1;…;Mg. Then,
T ¼ Ωðϵ−1 logðδ−1ÞÞ.
Thus, there is no algorithm that can perform asymptoti-

cally better than the one given in Theorem 1. Moreover, the
lower bound can be seen as an algorithmic proof of the
Heisenberg limit with the failure probability δ taken into
account. It holds not only for algorithms with a fixed set of
experiments but also for adaptive experiments that use
information from previous experiment outcomes, following
the setup in [52–55].

(a) (b)

(c)

FIG. 1. Algorithms for learning many-body Hamiltonians.
(a) Our algorithm for achieving the Heisenberg limit ϵ−1. We
perform long-time coherent evolutions interleaved with random
Pauli operators. The effective Hamiltonian is decoupled into
noninteracting patches and can be efficiently learned. The
algorithm only needs Oðpolylogðϵ−1ÞÞ experiments and a total
evolution time of Oðϵ−1Þ. (b) Previous algorithms for achieving
the standard quantum limit ϵ−2. Previous methods [26,29,33,34]
repeatedly run a short-time evolution for many times. One needs
Oðϵ−2Þ experiments and a total evolution time of Oðϵ−2Þ.
(c) Symbols: The symbols used in (a), (b). The unknown
Hamiltonian evolution is UðtÞ ¼ e−iHt.
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In the following, we provide the ideas for designing the
proposed learning algorithm and establishing the proof of
the main results. All parts except for the last are devoted to
Theorem 1. The last part is Theorem 2.
Reshaping an unknown Hamiltonian.—A key technique

used throughout the design of our learning algorithm is the
idea of reshaping an unknown Hamiltonian using
Hamiltonian simulation techniques. Recall that given a
set of Hamiltonians H1;…; HK and the ability to imple-
ment the unitaries e−itH1 ;…; e−itHK , many Hamiltonian
simulation techniques allow one to approximately imple-

ment the unitary e−it
P

K
k¼1

Hk. Note that these approximation
formulas are valid for unitaries and no knowledge of the
underlying Hamiltonian is required. As such, they are
applicable to the learning problem considered here.
For example, a randomized Hamiltonian simulation

algorithm known as qDRIFT [56–58] considers an approxi-
mation (as a quantum channel) given by

e−it
P

K
k¼1

Hk ≈ e−iðt=rÞHkr…e−iðt=rÞHk1 ; ð3Þ

where r is an integer that sets the approximation error,
k1;…; kr are independent random variables sampled
according to some probability distribution over f1;…; Kg.
Alternatively,we can also use the second-orderTrotterization
method [59–61] in our algorithm to reduce the asymptotic
scaling of the number of Clifford gates required. Higher-
order Trotterizations are not used because they require
evolving backward in time.
Now, consider the unknown N-qubit Hamiltonian H that

we hope to learn. We want to reshape it into the following
Hamiltonian to facilitate learning:

H̃≜XK
k¼1

wkHk; ð4Þ

where Hk≜wkUkHU†
k and Uk is a unitary for each

k ¼ 1; 2;…; K. The weights wk ≥ 0. Any choice of uni-
taries Uk and weights wk can be used. Later, to achieve the
Heisenberg limit, we will choose specific Uk and wk to
ensure H̃ disentangles the many-body system into non-
interacting patches involving few qubits and has known
eigenvectors irrespective of what H is. Our choice for each
Uk will be a tensor product of Pauli operators. Using either
qDRIFT or Trotterization, we only need to implement
e−iHk , which can be done through e−iHkt ¼ Uke−iðwktÞHU†

k.
To be more specific, we can implement e−iHKt by first
applying the unitary U†

k, letting the system evolve for time
wkt, and then applying Uk. Using Hamiltonian simulation
techniques, we can evolve under the N-qubit unitary e−itH̃.
This reshaping technique is related to experimental
approaches for engineering Hamiltonians through pulse
sequences or strong fields [62–68]. Similar ideas have

also been used to project H into the quantum Zeno
subspace [69,70]. The reshaping will lead to a small
approximation error, which we discuss later (for a detailed
discussion, see [ [51], Sec. IV and VI]).
Learning a few-qubit Hamiltonian.—We now show how

the Hamiltonian reshaping technique is useful in learning
Hamiltonians. We begin with a simple question: how can
one learn a few-qubit Hamiltonian on Oð1Þ qubits with
Heisenberg-limited precision scaling? If we naively apply
quantum process tomography [54,71–77] to learn the
unknown Hamiltonian, we would have an ϵ−2 dependence
in the number of measurements needed, where ϵ is the
desired precision of the Hamiltonian parameters. Current
methods with a Heisenberg-limited scaling typically
require the Hamiltonian to be of a simple form, e.g.,
H ¼ λX [1–9,39,40]. Therefore we need to consider a
different method.
We show that for a few-qubit Hamiltonian we can learn

all the parameters involved using Oðϵ−1 logðδ−1ÞÞ total
evolution time, and Oðpolylogðϵ−1Þ logðδ−1ÞÞ number of
experiments. As an example, let us consider an arbitrary
two-qubit Hamiltonian,

H ¼
X

P;P0∈fI;X;Y;Zg
λPP0P ⊗ P0; ð5Þ

with jλPP0 j ≤ 1. Suppose we want to estimate the parameter
λXZ. Then we can consider reshaping the unknown
Hamiltonian H using U1 ¼ I, U2 ¼ X1, U3 ¼ Z2,
U4 ¼ X1Z2, and w1 ¼ w2 ¼ w3 ¼ w4 ¼ 1

4
. The new

unknown Hamiltonian, after reshaping, is given by

H̃≜ 1

4
ðH þ X1HX1 þ Z2HZ2 þ X1Z2HX1Z2Þ

¼ λXZX1Z2 þ λXIX1 þ λIZZ2: ð6Þ

The second equality is because the linear combination over
the four terms eliminates all Pauli terms in H that do not
have I or X on the first qubit and I or Z on the second qubit.

This new unknown Hamiltonian H̃ gives us one crucial
advantage: we have access to its eigenstates. This is
because in H̃, for each qubit, there is only one (nonidentity)
Pauli operator associated with it. The eigenbasis for the
new unknown Hamiltonian H̃ is always given by
fjþij0i; jþij1i; j−ij0i; j−ij1ig regardless of the values
of the unknown coefficients. We can use this information,
together with the robust phase estimation algorithm in [40],
to estimate the differences between pairs of eigenvalues,
which in turn yield the parameters λXZ; λXI; λIZ through a
Hadamard transform. The procedure for applying random
Pauli operators and obtaining parameters from eigenvalue
estimation is described in detail in [ [51], Sec. II.B and
III.B]. By using different choices of U1;…; U4 to reshape
H, we can get all the parameters λPP0 in the two-qubit

PHYSICAL REVIEW LETTERS 130, 200403 (2023)

200403-3



Hamiltonian H. The same idea generalizes to arbitrary
Hamiltonians on Oð1Þ qubits.
Learning a many-qubit Hamiltonian through divide and

conquer.—If wewant to learn a many-qubit Hamiltonian by
directly applying the above method, the total evolution time
will scale exponentially with the number of qubits. Here, we
present a divide-and-conquer approach to address this
problem. To illustrate the proposed approach, let us consider
a simple example of an inhomogeneous Heisenberg model
on N qubit with a Hamiltonian given by

H ¼
XN−1

α¼1

ðλαxXαXαþ1 þ λαyYαYαþ1 þ λαzZαZαþ1Þ; ð7Þ

where λαx; λαy; λαz are the unknown parameters, andXα, Yα,Zα

are the Pauli operators acting on qubit α. Suppose we want
to learn the parameter λ1x on the first two qubits. In order
to achieve this, we reshape the unknown Hamiltonian H
with U1 ¼ I, U2 ¼ X3, U3 ¼ Y3, U4 ¼ Z3, and
w1 ¼ w2 ¼ w3 ¼ w4 ¼ 1

4
. The new unknown Hamiltonian

after the reshaping is given by

H̃ ¼ 1

4
ðH þ X3HX3 þ Y3HY3 þ Z3HZ3Þ

¼ H̃1;2 þ H̃≥4; ð8Þ

where

H̃1;2 ¼ λ1;2x X1X2 þ λ1;2x Y1Y2 þ λ1;2x Z1Z2 ð9Þ

and H̃≥4 only contains terms acting on qubits 4; 5;…; N.
The second equality in Eq. (8) holds for the following
reason: for each Pauli operator P ∈ fI; X; Y; Zg⊗N, if it acts
nontrivially on the third qubit, then we can show that

1

4
ðPþ X3PX3 þ Y3PY3 þ Z3PZ3Þ ¼ 0: ð10Þ

On the other hand, for Pauli operator P that acts as identity
on the third qubit, we can show that

1

4
ðPþ X3PX3 þ Y3PY3 þ Z3PZ3Þ ¼ P: ð11Þ

Therefore from Eq. (8), after the reshaping, the new
Hamiltonian H̃ does not generate entanglement between
qubits 1,2 and the rest of the system, and these two qubits
evolve under the Hamiltonian H̃1;2. This enables us to apply
the learning algorithm for few-qubit Hamiltonians to H̃1;2 to
estimate λ1x.
We can apply the above idea to learn every parameter in

the Hamiltonian with a number of experiments that scales
linearly in the system size N rather than exponential in N.
We show that one could do better than linear scaling by a

parallelization technique. In particular, we discuss how one
could learn all the parameters λ1x; λ4x; λ7x; � � � in parallel.
Consider reshaping the unknown N-qubit Hamiltonian H
given in Eq. (7) using U1 ¼ I, U2 ¼ X3X6X9…, U3 ¼
Y3Y6Y9…,U4 ¼ Z3Z6Z9…, andw1¼w2¼w3¼w4¼ 1=4.
Then the new Hamiltonian under reshaping is given by
H̃ ¼ H̃1;2 þ H̃4;5 þ H̃7;8 þ � � �, where H̃α;αþ1 is supported
on qubits α and αþ 1 for all α ¼ 1; 4; 7;…. Using a
reshaping based on four unitaries U1;…; U4, we have
turned the unknown N-qubit interacting Hamiltonian H
into a new Hamiltonian H̃ with many noninteracting
patches of two qubits. Each two-qubit patch is now
evolving independently from the others. This decoupling
enables us to estimate the parameters in parallel using the
algorithm for learning few-qubit Hamiltonians.
This divide-and-conquer method works for any local

Hamiltonian defined in Eq. (1). For this more general class
of Hamiltonians, we determine how the reshaping is done by
performing a coloring over its cluster interaction graph
(a graph consisting of clusters of qubits that are acted on
by a Pauli term in the Hamiltonian) [ [51], Lemma 5]. The
coloring enables us to choose qubits, on which we apply
random I, X, Y, Z operators to decouple clusters of the same
color from each other, thus enabling parallel estimation of
the parameters associated with these clusters. For details,
see [ [51], Sec. I.B, II, and V]. A complete description of
our algorithm for general local Hamiltonians can be found
in [ [51], Algorithm 2]. The cost of the algorithm is
summarized in [ [51], Theorems 13 and 21] (for the ran-
domization and Trotterization approaches, respectively).
Characterizing approximation error in reshaping

Hamiltonians.—The estimation error of the proposed
learning algorithm depends on the quantum measurement
error as well as the approximation error when we reshape
the unknown Hamiltonian into other forms. One way to
analyze the approximation error is through the error
analysis considered in [56] if we use qDRIFT to reshape
or in [78] when using the second-order Trotter formula.
However, these analyses are concerned with the error in the
worst-case scenario over all possible input states and all
observables. For the learning task given here, it leads to an
overestimation of the approximation error as some key
properties of the problem are not incorporated.
Consider the example of learning an inhomogeneous

Heisenberg model onN qubits given in the previous section.
To evolve under the N-qubit Hamiltonian reshaped H̃ for
time t, the analysis in [56] shows that the approximation error
of qDRIFT with r steps is given by OðN2t2=rÞ. Here, H̃ is
decoupled into many two-qubit patches that do not interact
with each other, which prevents errors from propagating
across the entire N-qubit system. We are interested only in
the accuracy of evolving each patch, and the error from
elsewhere in the system should not affect estimations of
local observables. Similar considerations have been used
to improve the error analysis of Hamiltonian simulation
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methods based on observable and initial state inform-
ation [79–83]. In our case, a tighter analysis [84] using these
facts shows that the approximation error is given byOðt2=rÞ
without anN dependence.We give the improved analysis for
reshaping Hamiltonians using the randomization approach
in [ [51], Sec. IV]. The improved analysis for using the
second-order Trotter formula is given in [ [51], Sec. VI].
Establishing a matching lower bound.—We prove a

matching lower bound of T ¼ Ωðϵ−1 logðδ−1ÞÞ on the total
evolution time T [86]. The optimality with respect to the ϵ
dependence is obtained by the Heisenberg limit. However,
the optimalitywith respect to the failure probability δ has not
been proven in the literature. We consider any learning
algorithm that can run new experiments based adaptively on
the outcomes of previous experiments. In order to handle
adaptivity, we consider the rooted tree representation of the
learning algorithm [53,55], and consider the task of dis-
tinguishing between two distinct HamiltoniansH� ¼ �ϵZ.
We begin by considering how well one could use a single

experiment to distinguishH�, which is characterized by the
total variation (TV) distance between the probability
distribution over experimental outcomes under H�. We
characterize the TV distance in a single experiment. Then
we consider an induction over every subtree of the learning
algorithm to establish the TV distance over multiple
experiments. A central technique is to control how each
additional experiment improves one’s ability to distinguish
H�. The proof of the lower bound is given in [ [51],
Sec. VII].
Discussion.—Our work shows that the Heisenberg limit

can be achieved in the task of learning a large class of
many-body local Hamiltonians with many unknown
parameters. On the theoretical side, the central open
question is whether our result can be extended to learning
other classes of many-body Hamiltonians. For example, in
an N-qubit Hamiltonian with all-to-all two-body inter-
actions, our techniques achieve the Heisenberg limit with
a quadratic dependence on system size N by learning all
pairwise interactions one by one. This gives rise to the
following question: can we achieve a scaling of T ¼
Oðϵ−1 logðδ−1ÞÞ for N-qubit Hamiltonians with all-to-all
interactions? In addition to the above example, can we
achieve the Heisenberg limit for learning fermionic or
bosonic many-body Hamiltonians? Answering these ques-
tions is important for applications such as reconstructing
the structure of large molecules or learning the interactions
in an exotic quantum material. Even more ambitiously, can
one achieve the above scaling for learning the unknown
parameters in an arbitraryN-qubit Hamiltonian without any
structure? On the practical side, the central question is how
to achieve the Heisenberg limit with minimal controllable
quantum operations. For example, could one achieve the
scaling T ¼ Oðϵ−1 logðδ−1ÞÞ for learning N-qubit local
Hamiltonian H in a restricted model where we cannot
interleave the unknown Hamiltonian evolution with

single-qubit gates and can only control state preparation
and measurement? Understanding these questions will be
crucial for physically achieving the Heisenberg limit in
learning many-body Hamiltonians.
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I. PRELIMINARIES

We begin with definitions used throughout the work as well as a basic lemma that follows immediately from the
chromatic number of a graph.

A. Notations

Throughout this work, we will write QP to denote the set of all mappings from P to Q for finite sets P and Q. We
also denote [N ] = 1, 2, · · · , N . For the product of a sequence of operators O1, O2, · · · , OL, we write

←∏
1≤l≤L

Ol = OL · · ·O2O1,
→∏

1≤l≤L

Ol = O1O2 · · ·OL. (1)

We generally omit the arrows when taking a product of commuting operators. We use [A,B] = AB − BA to denote
the commutator between A and B, and we also write adA(B) = [A,B]. Throughout this work when we say that an
operator is diagonal relative to a basis, what we mean is:

Definition 1 (Diagonal operator). Let B = {|vl⟩} be a basis of a Hilbert space. We say an operator O is diagonal
relative to B if B is an eigenbasis of O.

For a subsystem A of the N -qubit system we consider, we use trA to denote the partial trace after tracing out A.
By extension, we use tr[N ]\A to denote the partial trace after tracing out all qubits not contained in A. We consider I
to be the identity matrix, X to be the Pauli-X matrix, Y to be the Pauli-Y matrix, and Z to be the Pauli-Z matrix.
We consider an N -qubit Pauli operator P to be an element in the set of N -qubit observables {I,X, Y, Z}⊗N . We
also use subscript to denote which qubit the Pauli operator acts on. For example, we use Xα to denote the Pauli-X
operator acting on qubit α, and γα, γ ∈ {I,X, Y, Z}, to denote all Pauli operators acting on this qubit.

B. Hamiltonians

We begin with a brief overview of the terminology for interacting many-body Hamiltonians.

• Local Hamiltonians are Hamiltonians H =
∑

j hj , where each interaction term hj acts only on O(1) qubits.

• Geometrically-local Hamiltonians are local Hamiltonians that only involve geometrically-local interactions, i.e.,
hj only acts on nearby qubits under some geometric distance. The notion of distance comes from an underlying
geometry, such as one-dimensional chains, two-dimensional square lattices, three-dimensional cubic lattices,
hexagonal lattices, Kagome lattices, etc.

• Low-intersection Hamiltonians, also known as bounded-degree local Hamiltonians, are local Hamiltonians where
each qubit only has constantly many interaction terms acting on it. It is not hard to show that a geometrically
local Hamiltonian is a special case of a low-intersection Hamiltonian.

By expanding any Hermitian operator hj in the Pauli basis {I,X, Y, Z}⊗n, we can establish the following definition.

Definition 2 (Low-intersection Hamiltonian). A low-intersection Hamiltonian acting on N qubits is a Hamiltonian
H that takes the following form:

H =

M∑
a=1

λaEa (2)

where each Ea is an N -qubit Pauli operator acting non-trivially on at most k = O(1) qubits, and for each a, Ea

overlaps with d = O(1) of Eb’s.

Following Ref. [1], we assume that Ea’s are known a priori, and the goal is to estimate λa for each a. Also, as a
consequence of k, d = O(1), we have M = O(N). Below we introduce a set V to describe how the qubits interact with
each other.
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Definition 3 (Interacting cluster). For each a, let Supp(Ea) be the support of Ea, i.e., the collection of qubits on
which Ea acts nontrivially. From the set {Supp(Ea)}, we remove all Supp(Ea) such that Supp(Ea) ⊂ Supp(Eb) for
some b ∈ [M ]. The remaining Supp(Ea)’s form the set V. Each element of V we call an interacting cluster.

From the above construction it is clear that |V| ≤ M . We then define the cluster interaction graph as follows.

Definition 4 (Cluster interaction graph). The cluster interaction G = (V, E) has interacting clusters (from V in
Definition 3) as its vertices. The set of edges E is defined as follows: for each pair of interacting clusters C and C ′

(C ̸= C ′) in V, (C,C ′) ∈ E if C ∩ C ′ ̸= ∅ or if there exists C ′′ ∈ V such that C ∩ C ′′ ̸= ∅ and C ′ ∩ C ′′ ̸= ∅.

From the definition of the low-intersection Hamiltonian, the degree of G, deg(G), is upper bounded by a constant
that is independent of the system size N . More precisely, deg(G) ≤ d2 where d is defined in Definition 2.
For parallel estimation of different interacting clusters, we need to color the graph G so that adjacent vertices have

different colors. The number of colors χ needed, which is the chromatic number of the graph, satisfies χ ≤ deg(G)+1 =
O(1). Therefore we have the following lemma

Lemma 5 (Coloring of the cluster interaction graph). V can be divided into disjoint union

V =

χ⊔
c=1

Vc, (3)

where no two adjacent vertices are in the same Vc. In other words, for any C and C ′ in Vc, C ∩C ′ = ∅, and for any
C ′′ ∈ V, either C ∩ C ′′ = ∅ or C ′ ∩ C ′′ = ∅. Moreover χ = O(1).

II. RESHAPING HAMILTONIANS USING RANDOMIZATION

Below we describe how to reshape the unknown N -qubit Hamiltonian H into a new Hamiltonian with a simpler form
based on a randomized Hamiltonian simulation algorithm known as qDRIFT [2]. Given a probability distribution D
over N -qubit Pauli operators {I,X, Y, Z}⊗N , we consider the new Hamiltonian after reshaping to be

H̃(D) ≜ E
P∼D

[PHP ]. (4)

The qDRIFT algorithm can approximate (as a quantum channel) dynamics under H̃(D) by dynamics under H as
follows,

e−itH̃(D) ≈ e−iτPkrHPkr . . . e−iτPk1
HPk1 = Pkr

e−iτHPkr
. . . Pk1

e−iτHPk1
, (5)

where r is an integer that determines the approximation error (larger r implies smaller error), τ ≜ t/r, and Pk1
, . . . , Pkr

are independent random Pauli operators sampled from D. In the original paper [2] on qDRIFT, it was shown that
the approximation holds when one considers the expectation of the unitary (treated as a quantum channel) over the
random Pauli operators Pk1

, . . . , Pkr
. In a subsequent work [3], it was shown that the approximation holds even with

a single realization of Pk1
, . . . , Pkr

with high probability.
By choosing different distribution D, we can reshape the unknown Hamiltonian H into new Hamiltonians with a

much simplified form. In particular, the reshaping technique is useful for: (1) decoupling the N -qubit system into
many few-qubit noninteracting patches, and (2) isolating the diagonal Hamiltonian in each of the few-qubit patches.

A. Decoupling into noninteracting patches

Recall that for each color c ∈ [χ], Vc is a set of interacting clusters (i.e., few-qubit patches). For each color c ∈ [χ],
we define a distribution Dc over P ∈ {I,X, Y, Z}⊗N as follows. For each qubit α ∈ [N ],

• If qubit α is in one of the interacting clusters in Vc, we consider Pα = I.

• If qubit α is not in any of the interacting clusters in Vc, we sample Pα ∈ {I,X, Y, Z} uniformly.

Then we let P =
∏

α Pα. We establish the following lemma.
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Lemma 6 (Decoupling into noninteracting patches). Defining Dc as above, we have

H̃(Dc) = E
P∼Dc

[PHP ] =
∑
C∈Vc

HC , (6)

where HC ≜
∑

a:Supp(Ea)⊂C λaEa is the sum of all terms in H that are supported on C.

Proof. Recall that H =
∑

a λaEa. For each a, we consider the following.

• If Ea acts non-trivially on a qubit that is not in any of the interacting clusters in Vc, then there is 1/2 probability
that P ∼ Dc commutes with Ea, so that PEaP = Ea, and 1/2 probability that P ∼ Dc anti-commutes with
Ea, so that PEaP = −Ea. Consequently,

E
P∼Dc

[PEaP ] =
1

2
(Ea − Ea) = 0. (7)

• If Ea acts trivially on all qubits that are not in any of the interacting clusters in Vc, then P ∼ Dc always
commutes with Ea because the supports of these two operators do not overlap. As a result, we have

E
P∼Dc

[PEaP ] = Ea. (8)

Therefore H̃(Dc) = EP∼D[PHP ] contains only those terms that are supported on
⋃

C∈Vc
C.

Next we show that those terms are supported on only a single C ∈ Vc. If Ea is supported on both C ∈ Vc and
C ′ ∈ Vc, then the support of Ea overlaps with both C and C ′, making them adjacent by Definition 4, which precludes
them from being including in the same Vc, thus resulting in contradiction. Therefore each Ea is supported on only a
single C ∈ Vc.

Recall that an interacting cluster C ∈ Vc is a set of at most k qubits. Hence HC is an N -qubit Hamiltonian that

acts non-trivially on at most k = O(1) of qubits. For each c ∈ [χ], the evolution under the new Hamiltonian H̃(Dc)
after reshaping is given by

e−itH̃(Dc) =
⊗
C∈Vc

e−itHC , (9)

which is decoupled into many few-qubit patches that do not interact with each other. In our algorithm we will learn
all HC ’s in parallel for a given c ∈ [χ]. Because we prepare product states in all experiments, and measure observables
that are local to each C ∈ Vc, we can perform all the experiments in parallel as long as we evolve for the same length
of time t. To be more precise, in each experiment, we perform the evolution (in terms of the density operator)

ρ(0) =
⊗
C∈Vc

ρC 7→ e−iH̃(Dc)tρ(0)eiH̃(Dc)t =
⊗
C∈Vc

e−iHCtρCe
iHCt, (10)

where ρ(0) is the initial state, and ρC is the initial state for each C ∈ Vc. The qubits not contained in
⋃

C∈Vc
C are

neglected because they are decoupled from the dynamics. We then measure observables OC (supported on C) for
each C individually. The quantities we extract from the experiments are

tr[OCe
−iHCtρCe

iHCt] = tr[(OC ⊗ I)e−iH̃(Dc)tρ(0)e−iH̃(Dc)t], (11)

where the identity operator I acts on [N ] \ C. We do not need to rerun the experiment for each C because OC ’s
commute with each other. Therefore, from now on we focus on a single C and discuss how to learn HC .

B. Isolating the diagonal Hamiltonian

Recall from Section IA that any γ ∈ {I,X, Y, Z}C is a function mapping from a subset of qubits C ⊆ [N ] to a
Pauli operator {I,X, Y, Z}. Using this notation, we can write down the Hamiltonian HC in the Pauli basis as follows,

HC =
∑

γ∈{I,X,Y,Z}C

λγ

∏
α∈C

γ(α)α, (12)
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where γ(α)α is the Pauli operator γ(α) acting on qubit α. Hence, learning HC is equivalent to learning λγ ’s. Each
λγ corresponds to λa in (2) for some a ∈ [M ]. More specifically, λγ = λa for a ∈ [M ] with Ea =

∏
α∈C γ(α)α (if there

does not exist such an a then λγ = 0). In order to learn HC , we again utilize the reshaping technique. We reshape
the Hamiltonian HC into a easier-to-learn form using the following distributions. Given γ ∈ {X,Y, Z}C . We define
the distribution DC,γ over N -qubit Pauli operator Q as follows. For each qubit i ∈ [N ],

• If qubit α is in C, we consider Qα = I or γ(α) with equal probability.

• If qubit α is not in C, we consider Qα = I.

Then we let Q =
∏

α Qα. We can establish the following lemma showing the new Hamiltonian H̃C(DC,γ) after
reshaping.

Lemma 7 (Isolating the diagonal Hamiltonian). Using the definition of DC,γ , we have

H̃C(DC,γ) = E
Q∼DC,γ

[QHCQ] =
∑

b∈{0,1}C

λb

∏
α∈C

(γ(α)α)
b(α) ≜ HC

diag(γ), (13)

where λb = λγ′ for some γ′ ∈ {I,X, Y, Z}C given by

γ′(α) =

{
I, if b(α) = 0,

γ(α), if b(α) = 1.
(14)

Proof. Each Pauli operator in HC can be written as P =
∏

α∈C γ′(α)α for some γ′ ∈ {I,X, Y, Z}C . If γ(α) ̸= γ′(α)
and γ′(α) ̸= I for any α ∈ C, P will commute with half of the Q’s and anti-commute with the other half (we can
simply count for how many α’s we have γ(α) ̸= γ′(α) and γ′(α) ̸= I; if the number is even, P and Q commute, and
if the number is odd, they anti-commute). Therefore in EQ∼DC,γ

[QHCQ] all these terms cancel out, and only terms
that are products of γ(α)α for α ∈ C, i.e., the diagonal terms, remain.

Let us define the Pauli eigenbases of an interacting cluster C. Using this definition, BC(γ) is the orthonormal
eigenbasis for the diagonal Hamiltonian HC

diag(γ). This means we have acquired a very important knowledge about

the new unknown Hamiltonian HC
diag(γ) after reshaping HC : we know the eigenbasis of HC

diag(γ). In constrast, we do
not know what the eigenbases for HC are.

Definition 8 (Pauli eigenbases of an interacting cluster). For any interacting cluster C, and γ ∈ {X,Y, Z}C , we
define BC(γ) to be the orthonormal basis that simultaneously diagonalizes γ(α)α, ∀α ∈ C. We denote the set of all
such bases for C by BC = {BC(γ) : γ ∈ {X,Y, Z}C}.

C. Combining the two reshaping procedures

We can combine the two reshaping procedures into a single one. Given a color c ∈ [χ], which corresponds to a set Vc

of many interacting clusters C, and γC ∈ {X,Y, Z}C for every interacting cluster C ∈ Vc. We consider a distribution
Dc,{γC}C∈Vc

over N -qubit Pauli operators P̄ defined by Algorithm 1. In Algorithm 1, Lines 2 to 3 are for generating
the P operator used in Section IIA to decouple each C from the rest of the system, and Lines 4 to 6 are for generating
the Q operator used in Section II B to isolate the diagonal Hamiltonian. The Pauli operator P̄ generated from this
algorithm is therefore a product of P and Q. Consequently, from Lemmas 6 and 7, we can establish the following
lemma.

Algorithm 1 Generating the random Pauli operators

Input: c ∈ [χ], γC ∈ {X,Y, Z}C for each C ∈ Vc

1: for α ∈ [N ] do
2: if α /∈

⊔
C∈Vc

then

3: Let sα be uniformly randomly drawn from {I,X, Y, Z};
4: else
5: Let C be the interacting cluster containing α;
6: Let sα be uniformly randomly drawn from {I, γC(α)};
7: end if
8: end for
Output: P̄ =

⊗
α∈[N ] sα.
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Lemma 9. Given the definition of Dc,{γC}C∈Vc
, we have

H̃(Dc,{γC}C∈Vc
) = E

P̄∼DC,{γC}C∈Vc

[
P̄HP̄

]
=
∑
C∈Vc

HC
diag(γC), (15)

where each HC
diag(γC) is defined in Eq. (13).

Proof. To show this lemma, first note that

E
P̄∼DC,{γC}C∈Vc

[
P̄HP̄

]
= E

QC∼DC,γC
,

∀C∈Vc

[( ∏
C∈Vc

QC

)
E

P∼Dc

[PHP ]

( ∏
C∈Vc

QC

)]
. (16)

All the Pauli operators P and QC for all C ∈ Vc have disjoint supports. By Lemma 6 we have

E
P∼Dc

[PHP ] =
∑
C∈Vc

HC . (17)

Then by Lemma 7 and Eq. (16) we have

E
P̄∼DC,{γC}C∈Vc

[
P̄HP̄

]
=
∑
C∈Vc

E
QC∼DC,γC

[QCHCQC ] =
∑
C∈Vc

HC
diag(γC), (18)

which establishes the lemma.

III. LEARNING THE UNKNOWN HAMILTONIAN AFTER RESHAPING

In this section we will discuss how to learn parameters (coefficients) from the new unknown Hamiltonians after
reshaping. We first present how the experiments are executed in Section IIIA. Then we give the procedure to estimate
the coefficients of terms that are diagonal in a given Pauli eigenbasis for a single cluster in Section III B. Finally, we
talk about how to estimate parameters for all clusters in parallel in Section III C.

A. Executing quantum experiments

We begin by describing how the experiments are executed. Given a color c ∈ [χ], and a Pauli assignment γC ∈
{X,Y, Z}C for each interacting cluster C ∈ Vc, we initialize the quantum system in a product state which can be

prepared using single-qubit Clifford gates. We then evolve under the new unknown Hamiltonian H̃(Dc,{γC}C∈Vc
) after

reshaping for time t. Based on the qDRIFT algorithm, we can approximate the unitary dynamics e
−itH̃(Dc,{γC}C∈Vc

)

by

P̄re
−iHτ P̄r . . . P̄1e

−iHτ P̄1 = e−iτP̄rHP̄r . . . e−iτP̄1HP̄1 , (19)

where r is a large integer, τ = t/r, and P̄j is a random N -qubit Pauli operator sampled from distribution Dc,{γC}C∈Vc

using Algorithm 1. After evolving the system, we then measure an observable OC , supported on C, for every C ∈ Vc.
Because OC ’s do not overlap with each other, these measurements can be performed simulataneously. In this way we
are able to estimate parameters for all clusters in Vc in parallel.

Using a density matrix formulation, the experiment begins by preparing an initial state ρ(0) =
⊗

C∈Vc ρC ⊗ ρres,
where ρres is the state of the qubits not contained in

⊔
C∈Vc C. After the randomized evolution, the final state before

the measurements is given by

ρ(t) = E
P̄j∼Dc,{γC}C∈Vc

 ←∏
1≤j≤r

e−iP̄jHP̄jτρ(0)
→∏

1≤j≤r

eiP̄jHP̄jτ

 . (20)

In the limit of τ → 0 (equivalently r → ∞), the system will evolve under H̃(Dc,{γC}C∈Vc
) =

∑
C∈Vc H

C
diag(γC) as

shown in Lemma 9. This means if we look at an observable supported on the interacting cluster C ∈ Vc, its expectation
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value will be approximately tr[OCe
−iHC

diag(γC)tρCe
iHC

diag(γC)t]. Note that everything in this expression depends only
on the cluster C.

In an actual experiment, r cannot be infinite. The theorem below tells us how small τ (or equivalently how large
r = t/τ) needs to be for the above procedure to achieve a given accuracy ε. The proof of this theorem is given in
Section IV.

Theorem 10 (Number of required random Pauli operators). There exists r0 = O(t2/ε) such that for any r > r0, any
initial state ρ(0), any C ∈ Vc, and any OC supported on C with ∥OC∥ ≤ 1, we have∣∣∣ tr[(OC ⊗ I)ρ(t)]− tr[OCe

−iHC
diag(γC)tρCe

iHC
diag(γC)t]

∣∣∣ ≤ ε, (21)

where ρC = tr[N ]\C ρ(0).

B. Estimating the diagonal

Let us focus on how to estimate the parameters for terms that are diagonal in a given Pauli eigenbasis BC(γC) as
defined in Definition 8 for a cluster C. One advantage of having the system evolve under HC

diag is that we have access

to its eigenstates, which we denote by |ξ⟩

|ξ⟩ =
⊗
α∈C

|ψα⟩ , (22)

for ξ ∈ {0, 1}C , where |ψα⟩ is the (−1)ξ(α)-eigenstate of γC(α). For example, if γC(α) = X, then |ψα⟩ = |+⟩ if
ξ(α) = 0, and |ψα⟩ = |−⟩ if ξ(α) = 1. Importantly, |ξ⟩ can be prepared using a tensor product of single-qubit Clifford
gates. For each |ξ⟩, the corresponding eigenvalue can be calculated through

HC
diag(γC) |ξ⟩ =

∑
b∈{0,1}C

λb(−1)ξ·b |ξ⟩ , (23)

where ξ · b =
∑

α∈C ξ(α)b(α) is the inner product between ξ and b. The eigenvalues are therefore

εξ =
∑

b∈{0,1}C

(−1)ξ·bλb. (24)

The eigenvalues and the parameters are therefore related via the Hadamard transform. We can recover the parameters
from the eigenvalues through

λb =
1

2|C|

∑
ξ∈{0,1}C

(−1)ξ·bεξ. (25)

From the above discussion we can see that the parameters λb can be estimated from the eigenvalues εξ. Rather
than estimating εξ directly, which is impossible because of the presence of a global gauge, we will estimate εξ − εξ′ for
pairs of ξ and ξ′. Moreover from (25) we can see that, with the exception of the global phase λ0C (we denote by 0C

that maps all elements of C to 0), all other λb’s depend only on the differences between εξ’s. To this end we need to
prepare a superposition of |ξ⟩ and |ξ′⟩. We note that when the Hamming distance between ξ and ξ′ is 1, then this is

easy to do, because (|ξ⟩+ |ξ′⟩)/
√
2 is still a product state, and each of its tensor product component can be prepared

using a single Clifford gate. We denote the unitary preparing this state by

Uξξ′ |0|C|⟩ = 1√
2
(|ξ⟩+ |ξ′⟩). (26)

This unitary is a tensor product of single-qubit Clifford gates. Similarly we can construct a unitary in the form of
single-qubit Clifford gates that satisfy

Vξξ′ |0|C|⟩ = 1√
2
(|ξ⟩+ i |ξ′⟩). (27)

This can be done by replacing the Hadamard gate in Uξξ′ with SH where S is the phase gate.
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Now we run experiments as follows: starting from |0|C|⟩, we apply Uξξ′ , and then evolve with e−iHC
diag(γC)t (which

is approximately obtained by randomly applying Pj and Qj as discussed above). Then we apply U†
ξξ′ , and measure

all the k qubits. The probability of all qubits being returned to the 0 state is

| ⟨0|C||U†
ξξ′e

−iHC
diag(γC)tUξξ′ |0|C|⟩ |2 =

1

2
(1 + cos((εξ − εξ′)t)). (28)

Similarly we can design an experiment in which the probability of returning to |0|C|⟩ is

| ⟨0|C||V †
ξξ′e

−iHC
diag(γC)tUξξ′ |0|C|⟩ |2 =

1

2
(1 + sin((εξ − εξ′)t)). (29)

We let τ ′ = π/2|C|+2 so that τ ′|εξ − εξ′ | ≤ π/2 (we know from (24) that |ε| ≤ 2|C|). Then let t = ℓτ ′ for positive
integer ℓ, the two probabilities in (28) and (29) become

p0(ℓ) =
1

2
(1 + cos(ℓτ ′(εξ − εξ′))),

p+(ℓ) =
1

2
(1 + sin(ℓτ ′(εξ − εξ′))),

(30)

corresponding to the probabilities in [4, Theorem I.1]. Using the robust phase estimation technique in [4, Theorem

I.1], we can then estimate τ ′(εξ − εξ′) with standard deviation ϵ′τ ′/3, by running e−iHC
diag(γC)τ ′

O(ϵ′−1τ ′−1) times.
Therefore the total evolution time with H is O(ϵ′−1τ ′−1) × τ ′ = O(ϵ′−1). The number of experiments scale like
O(polylog(ϵ′−1τ ′−1)) = O(poly(|C|+ log(ϵ′−1))) ≤ O(poly(k + log(ϵ′−1))). Here we use the fact that |C| ≤ k.

With this we can estimate εξ − εξ′ with standard deviation ϵ′/3. Our ultimate goal is to ensure that the estimate
has low error with high probability. Therefore we can repeat the experiment O(log(ϑ−1)) times and take the median
to ensure that the error is below ϵ′ with probability at least 1−ϑ. In the procedure above, in order to estimate εξ−εξ′
to precision ϵ′ with probability at least 1 − ϑ, we need a total evolution time of

O(ϵ′−1 log(ϑ−1)), (31)

and the number of experiments required is

O(poly(k + log(ϵ′−1)) log(ϑ−1)). (32)

The above procedure only gets us the differences εξ − εξ′ for ξ and ξ′ that differ by one bit. Next we will discuss
how to estimate each εξ. Because the global phase is undetectable we can assume ε0C = 0 (here ε0C is the eigenvalue
corresponding to the mapping that maps all elements of C to 0). We can then estimate each εξ by the Hamming
weight of ξ. Starting with w = 1, once we have εξ′ for all ξ

′ with Hamming weight w− 1, we can estimate all εξ with
Hamming weight w, by estimating εξ − εξ′ for some ξ′ that differs from ξ by one bit and has Hamming weight w− 1.
This allows us to estimate all εξ, each of which through

εξ =
w−1∑
l=0

(εξl+1
− εξl), (33)

where ξw = ξ, ξ0 = 0C (which means ξ0 maps all elements of C to 0), ξl has Hamming weight l, and ξl+1 and ξl differ
by only one bit. Because the summand on the right-hand side has at most |C| ≤ k terms, we only need to estimate
each εξl+1

− εξl to precision ϵ′ = ϵ/k to ensure that the final error is at most ϵ.

This procedure can be seen as traversing a shortest path tree: if we define a graph with all ξ ∈ {0, 1}C as vertices,
and link ξ and ξ′ if their Hamming distance is 1, we will have a |C|-hypercube. Then we can define the shortest path
tree as follows.

Definition 11 (Shortest path tree). The shortest path tree T C
SPT = ({0, 1}C , EC

SPT ) is a subgraph of the |C|-hypercube,
with root 0C , and EC

SPT is the set of edges. T C
SPT satisfies that the path from the root to each vertex in the tree has the

shortest distance in the |C|-hypercube.

For each (ξ, ξ′) ∈ EC
SPT , we estimate εξ − εξ′ , and with this we can obtain the value of any εξ by traversing the

path leading from 0C to ξ in T C
SPT.

There are in total 2|C|−1 pairs of ξ and ξ′ such that we need to estimate εξ−εξ′ , because a tree with 2|C| nodes has

2|C| − 1 edges. In order to ensure that each estimate of εξ has confidence level 1− δ, each εξ − εξ′ needs a confidence
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level of 1 − δ/k by union bound. Therefore, substituting ϵ′ = ϵ/k and ϑ = δ/k into (31), for each εξ − εξ′ the total
evolution time we need is

O(kϵ−1 log(kδ−1)), (34)

and the number of experiments needed is, by substituting into (32),

O(poly(k + log(kϵ−1)) log(kδ−1)). (35)

Once all εξ are estimated with precision ϵ, we can get all λb in (13) with precision ϵ through (25).

C. Estimating for all bases and clusters

In Section III B we have focused on a single interacting cluster and a fixed Pauli eigenbasis. This procedure needs
to be repeated for all interacting clusters C, the number of which is upper bounded by M , and for all 3|C| possible
choices of basis (there is a lot of double counting involved, for which further optimization may be possible), in order to
cover the parameters of all terms involved in (2). Note that in Sections IIA and IIC we have showed that interacting
clusters within the same Vc (having the same color in the coloring of the cluster interaction graph G) can be estimated
in parallel. Therefore we only need an overhead of χ = O(d2) (the chromatic number in Lemma 5) rather than M to
get all interacting clusters.

Algorithm 2 Learning the Hamiltonian

Input: Low-intersection Hamiltonian H (Definition 2).
1: Generate the cluster interaction graph G = (V, E) (Definition 4);
2: Color the cluster interaction graph: V =

⊔
c∈[χ] Vc (Lemma 5);

3: for C ∈ V do
4: Generate T C

SPT = (VC
SPT, EC

SPT), the shortest path tree of the |C|-hypercube (Definition 11);
5: end for
6: for c ∈ [χ] do
7: Let SC = {(γ, ξ, ξ′) : γ ∈ {X,Y, Z}C , (ξ, ξ′) ∈ EC

SPT} for each C ∈ Vc;
8: while

∑
C∈Vc

|SC | > 0 do
9: for C ∈ Vc do

10: if SC ̸= ∅ then
11: Choose (γC , ξC , ξ

′
C) ∈ SC ;

12: Discard (γC , ξC , ξ
′
C) from SC ;

13: else
14: Randomly draw γC from {X,Y, Z}C ; {This step is merely for notation consistency; we can let C remain idle

when SC = ∅.}
15: end if
16: end for
17: Generate random Pauli operators {P̄j} using Algorithm 1 (with c and {γC} as input);
18: Use robust phase estimation [4] to estimate εξC −εξ′

C
for all C ∈ Vc simultaneously, by letting the system evolve under

H and inserting the Pauli operators {P̄j} (Section III B, insertion of random Pauli operators described in Section II C);
19: end while
20: for C ∈ Vc, γC ∈ {X,Y, Z}C do

21: Use {εξC − εξ′
C

: (ξC , ξ
′
C) ∈ EC

SPT} generated above to generate estimate λ̂a for parameter λa of each term supported

on C and diagonal in the Pauli eigenbasis BC(γC) (Sections III B and III C, for the Pauli eigenbasis see Definition 8);
22: end for
23: end for
Output: Estimate λ̂a of λa for each a ∈ [M ].

We summarize our procedure in Algorithm 2. From (34) and (35), we can get the total evolution time and number
of experiments needed to learn all the parameters to within error ϵ, with a confidence level of 1− δ for each estimate:
they are respectively

3kχ× (2k − 1)×O(kϵ−1 log(kδ−1)) = O(k6kd2ϵ−1 log(kδ−1)), (36)

and

3kχ× (2k − 1)×O(poly(k + log(kϵ−1)) log(kδ−1)) = O(6kd2poly(k + log(kϵ−1)) log(kδ−1)). (37)
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When k = O(1) and d = O(1), they become O(ϵ−1(log(δ−1))) and O(polylog(ϵ−1) log(δ−1)) respectively.
In the above analysis we only considered the τ → 0 limit, i.e., we apply random Pauli operators infinitely frequently.

This is impossible in reality. Fortunately, the robust phase estimation algorithm we use is robust to error below a
constant threshold. More precisely, in (28) and (29), we can tolerate an error up to 1/

√
8 [4]. Therefore we only need

to apply random Pauli operators with a finite frequency. Theorem 10 tells us what the necessary frequency is. Below
we summarize the cost of our algorithm.

Theorem 12. Assume the following: for any t > 0, c ∈ [χ], {γC}C∈Vc (with χ and Vc defined in Lemma 5), we can
start from initial state ρ(0) =

⊗
C∈Vc

ρC ⊗ ρres (each ρC is a density matrix for C, and ρres is the density matrix
for the qubits not contained in

⊔
C∈Vc

C) and apply random Pauli operators so that at time t the quantum system,
evolving under Hamiltonian (2), is in the state ρ(t) satisfying∣∣∣ tr[OCe

−iHC
eff (γC)tρCe

iHC
eff (γC)t]− tr[(OC ⊗ I)ρ(t)]

∣∣∣ ≤ 1√
8
, (38)

where HC
eff(γC) is as defined in (13) (for γ = γC), and OC is any Hermitian operator supported on C with ∥OC∥ ≤ 1.

Under this assumption, we can generate estimates {λ̂a} for parameters {λa} in (2), such that

Pr[|λ̂a − λa| > ϵ] < δ (39)

for all a ∈ [M ] with the following cost:

1. O(k6kd2ϵ−1 log(kδ−1)) total evolution time;

2. O(6kd2poly(k + log(kϵ−1)) log(kδ−1)) number of experiments.

By Theorem 10, the condition (38) in the above theorem can be satisfied by choosing r = O(t2). Therefore we
arrive at our main result:

Theorem 13 (Learning many-body Hamiltonian by reshaping with randomization). Assume that H is a low-

intersection Hamiltonian defined in Definition 2. Then using Algorithm 2, we can generate estimates {λ̂a} for
parameters {λa} in (2), such that

Pr[|λ̂a − λa| > ϵ] < δ (40)

for all a ∈ [M ] with the following cost:

1. O(ϵ−1 log(δ−1)) total evolution time;

2. O(polylog(ϵ−1) log(δ−1)) number of experiments;

3. O(Nϵ−2polylog(ϵ−1) log(δ−1)) single-qubit Clifford gates;

Moreover, this algorithm is robust against SPAM error.

Note that in this theorem we assume d = O(1) and k = O(1), and therefore do not consider the dependence on
these two parameters.

Proof. The total evolution time and the number of experiments are direct consequences of Theorem 12. Therefore
we only need to focus on how many single-qubit Clifford gates are needed. For each experiment, we need O(N) such
gates in Uξξ′ (defined in (26)) to prepare the initial state and in Vξξ′ (defined in (27)) to perform measurements.
These two tasks require O(Npolylog(ϵ−1) log(δ−1)) single-qubit Clifford gates as a result. For each experiment, if
the time evolution goes from 0 to t, then r = O(t2), meaning that we need O(Nt2) single-qubit Clifford gates to
implement the random Pauli operators. t = O(ϵ−1) for all experiments due to [4], and therefore the total number
of single-qubit Clifford gates is O(Nϵ−2) multiplied by the number of experiments O(polylog(ϵ−1) log(δ−1)), yielding
the scaling stated in the theorem.

To see why the algorithm is robust against SPAM error, note that the probabilities of the output distribution can
differ from those in (28) and (29) by as much as 1/

√
8, and the robust phase estimation algorithm in [4] will still

work. As a result our algorithm can tolerate SPAM error below the threshold 1/
√
8.



11

IV. DEVIATION FROM THE LIMITING DYNAMICS IN THE RANDOMIZATION APPROACH

In this section we will prove Theorem 10. In fact, we will prove a stronger result, as stated in the following theorem:

Theorem 14. We assume that H is a low-intersection Hamiltonian as defined in Definition 2. We assume random
Pauli operators P̄l, 1 ≤ l ≤ r, are generated independently and are identically distributed as P̄ , which satisfies

E[P̄HP̄ ] = HC
eff +Henv, (41)

where HC
eff is supported on a subsystem C (|C| = O(1)) and Henv is supported on the rest of the system. Then∥∥∥∥∥E

 →∏
1≤l≤r

(P̄le
iHτ P̄l)(OC ⊗ I)

←∏
1≤l≤r

(P̄le
−iHτ P̄l)

− eiH
C
eff tOCe

−iHC
eff t ⊗ I

∥∥∥∥∥ = O(t2/r), (42)

for any OC supported on C satisfying ∥OC∥ ≤ 1. In particular, the constant in O(t2/r) does not depend on the system
size N or the number of terms M .

We will postpone proving this theorem to later. As can be seen from (42), this theorem concerns the evolution of
a local observable OC in the Heisenberg picture. At time t, with the system evolving under H and random Pauli
operators inserted, OC becomes

E

 →∏
1≤l≤r

(P̄le
iHτ P̄l)(OC ⊗ I)

←∏
1≤l≤r

(P̄le
−iHτ P̄l)

 (43)

in the Heisenberg picture and in the τ → 0 limit it should converge to

eiH
C
eff tOCe

−iHC
eff t ⊗ I. (44)

What the above theorem says is the following: when then random Pauli operators P̄l’s are applied sufficiently fre-
quently, the evolution of OC is entirely determined by the local effective Hamiltonian HC

eff up to a small error. The
local effective Hamiltonian HC

eff , in the context of our algorithm, is HC
diag(γ) defined in (13). If we turn our attention

to the observable expectation value, then the above theorem directly enables us to bound the error in observable
expectation value, through the following corollary:

Corollary 15. Under the same assumption as Theorem 14, if the system is initially in a state ρ(0), and at time t
evolves to

ρ(t) = E

 ←∏
1≤l≤r

e−iP̄jHP̄jτρ(0)

→∏
1≤l≤r

eiP̄jHP̄jτ

 , (45)

then ∣∣∣tr[(OC ⊗ I)ρ(t)]− tr[OCe
−iHC

eff tρCe
iHC

eff t]
∣∣∣ = O(t2/r), (46)

where ρC = trenv ρ(0) (trenv denotes the partial trace after tracing out the system outside C), and OC is supported on
C with ∥OC∥ ≤ 1.

Before we prove this corollary let us first introduce some notations. The actual dynamics of the operator OC

supported on C at time tu = uτ for 1 ≤ u ≤ r, when the system is evolving under H with random Pauli operators
inserted as described in Section IIC, is described by

O
(u)
C = E

 →∏
1≤l≤u

(P̄le
iHτ P̄l)(OC ⊗ I)

←∏
1≤l≤u

(P̄le
−iHτ P̄l)

 , (47)

where O
(r)
C is the operator we get at time t, i.e., the end of the experiment. The limiting dynamics is, for τ → 0,

OC(t) = eiH
C
eff tOCe

−iHC
eff t. (48)
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Proof of Corollary 15. By Theorem 14 we have ∥O(r)
C − OC(t) ⊗ I∥ = O(t2/r). The left-hand side of (46) can be

written as ∣∣∣ tr[ρ(0)O(r)
C ]− tr[ρ(0)(OC(t)⊗ I)]

∣∣∣
=

∣∣∣ tr[ρ(0)(O(r)
C −OC(t)⊗ I)]

∣∣∣
≤ ∥O(r)

C −OC(t)⊗ I∥.

(49)

Therefore by Theorem 14 we arrive at (46).

This corollary, in turn, directly implies Theorem 10.

Proof of Theorem 10. By Lemma 9, for a fixed cluster C, we can write

E[P̄HP̄ ] = HC
diag(γC) +

∑
C′∈Vc,C′ ̸=C

HC′

diag(γC′). (50)

Here the first term on the right-hand side is supported only on C and the support of the second term on the right-hand
side does not overlap with C, by virtue of the coloring in Lemma 5. Therefore the effective Hamiltonian has the form
as required in (41). Thus by Corollary 15 we have∣∣∣ tr[(OC ⊗ I)ρ(t)]− tr[OCe

−iHC
diag(γC)tρCe

iHC
diag(γC)t]

∣∣∣ = O(
t2

r
). (51)

In order to ensure that O( t
2

r ) ≤ ε, it suffices to choose r ≥ r0 for some r0 = O(t2/ε).

We will then set about to prove Theorem 14.

Proof of Theorem 14. Using the notation introduced in (47) and (48), (42) can be written as

∥O(r)
C −OC(t)⊗ I∥ = O

(
t2

r

)
. (52)

We will prove this inequality in two steps. We define

Ō
(u)
C =

(
I + iτadHC

eff

)u

OC , (53)

This operator can be seen as a result of simulating the dynamics of OC(t) up to first order using Euler’s method. It
satisfy the following recursion relation:

Ō
(u)
C = Ō

(u−1)
C + iτ [HC

eff , Ō
(u−1)
C ] (54)

with Ō
(0)
C = OC .

In the first step we will show that

∥Ō(r)
C ⊗ I −O

(r)
C ∥ = O

(
t2

r

)
. (55)

Note that the right-hand side does not depend on the system size. Because Ō
(r)
C ⊗ I acts non-trivially only on the

cluster C, what the above bound means is that O
(r)
C approximately only acts non-trivially on C, despite the fact that

the dynamics due to H will spread OC to the rest of the system. This inequality will be proved as Lemma 16 in
Section IVA.

In the second step, we will show that

∥OC(t)− Ō
(r)
C ∥ = O

(
t2

r

)
(56)

Again the right-hand side does not depend on the system size. This inequality will be proved as Lemma 17 in Section

IVB. For the above inequality, both OC(t) and Ō
(r)
C are local operators supported on C, and therefore it characterizes

the deviation of the local dynamics from the limiting dynamics. Combining (55) and (56), we have (52) by the triangle
inequality.
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A. The decoupling error

In this section we will prove (55). We restate it in the following lemma

Lemma 16. Under the same assumptions as in Theorem 14, we have

∥Ō(r)
C ⊗ I −O

(r)
C ∥ = O

(
t2

r

)
,

where O
(r)
C and Ō

(r)
C are defined in (47) and (53) respectively.

Proof. We define

M (u−1) = E[(P̄ue
iHτ P̄u)(Ō

(u−1)
C ⊗ I)(P̄ue

−iHτ P̄u)]− Ō
(u)
C ⊗ I, (57)

and

R(u) = M (u−1) + E[(P̄ue
iHτ P̄u)R

(u−1)(P̄ue
−iHτ P̄u)], (58)

with R(0) = 0. Then we can inductively verify that

O
(u)
C = Ō

(u)
C ⊗ I +R(u). (59)

Therefore we only need to prove that ∥R(r)∥ = O
(

t2

r

)
.

We first bound ∥M (u−1)∥. Using Taylor expansion, we have

E[(P̄ue
iHτ P̄u)(Ō

(u−1)
C ⊗ I)(P̄ue

−iHτ P̄u)] =
∞∑
j=0

(iτ)j

j!
E[P̄uad

j
H(P̄u(Ō

(u−1)
C ⊗ I)P̄u)P̄u]. (60)

From this we want to upper bound ∥adjH(P̄u(Ō
(u−1)
C ⊗ I)P̄u∥ for j ≥ 2. We have

adjH(P̄u(Ō
(u−1)
C ⊗ I)P̄u) =

∑
a1,a2,··· ,aj

λaj
· · ·λa1

[Eaj
, · · · [Ea1

, P̄u(Ō
(u−1)
C ⊗ I)P̄u] · · · ]. (61)

Note that for the right-hand side, most of the terms are zero. We need to figure out how many terms are non-

zero. For a1, we note that P̄u(Ō
(u−1)
C ⊗ I)P̄u is supported on C, and therefore only terms that acts non-trivially

with C has non-zero contribution. Therefore we only need to consider a1 such that SuppEa1
∩ C ̸= ∅. For a2,

because · · · [Ea1 , P̄u(Ō
(u−1)
C ⊗ I)P̄u] has support on SuppEa1 ∪ C, we only need to consider a2 such that SuppEa2 ∩

(SuppEa1 ∪ C) ̸= ∅. From this we can conclude that the only non-zero terms are for a⃗ = (a1, a2, · · · , aj), where
SuppEav ∩ (

⋃
ν<v SuppEaν ∪C) ̸= ∅. We denote by Aj the set of a⃗ satisfying the above condition, and from (61) we

have

adjH(P̄u(Ō
(u−1)
C ⊗ I)P̄u) =

∑
a⃗∈Aj

λaj
· · ·λa1

[Eaj
, · · · [Ea1

, P̄u(Ō
(u−1)
C ⊗ I)P̄u] · · · ].

Note that |λaj
· · ·λa1

| ≤ 1, and [Eaj
, · · · [Ea1

, P̄u(Ō
(u−1)
C ⊗ I)P̄u] ≤ 2j∥Ō(u−1)

C ∥. Therefore

∥adjH(P̄u(Ō
(u−1)
C ⊗ I)P̄u)∥ ≤ 2j |Aj |∥Ō(u−1)

C ∥. (62)

We then count |Aj |: for a1, by Definition 2, there are at most d+ 1 choices because this is the number of terms that
overlap with C (which is the support of a certain term in H), and for a2, there are at most 2(d+ 1) choices, because
the second operator can either overlap with C or the first operator. Going until aj , we can see that we have at most
j!dj choices. Consequently |Aj | ≤ j!(d + 1)j . Substituting this into (62) and further into the remainders terms in
(60), we have

∞∑
j=2

τ j

j!
E[∥P̄uad

j
H(P̄u(Ō

(u−1)
C ⊗ I)P̄u)P̄u∥] ≤

∞∑
j=2

(2(d+ 1)τ)j∥Ō(u−1)
C ∥ =

(2(d+ 1)τ)2

1− 2(d+ 1)τ
∥Ō(u−1)

C ∥, (63)
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For the first two terms in (60) corresponding to j = 0, 1, we compute what they are:

1∑
j=0

(iτ)j

j!
E[P̄uad

j
H(P̄u(Ō

(u−1)
C ⊗ I)P̄u)P̄u]

= Ō
(u−1)
C ⊗ I + iτ [HC

eff , Ō
(u−1)
C ]⊗ I = Ō

(u)
C ⊗ I,

(64)

where in the first equality we have used (41), and in the second equality (53). Substituting this and (63) into (60),
we have

∥M (u−1)∥ = ∥E[(P̄ue
iHτ P̄u)(Ō

(u−1)
C ⊗ I)(P̄ue

−iHτ P̄u)]− Ō
(u)
C ⊗ I∥ ≤ (2(d+ 1)τ)2

1− 2(d+ 1)τ
∥Ō(u−1)

C ∥. (65)

It still remains to bound ∥Ō(u−1)
C ∥. To simplify our discussion, we note that for sufficiently small dτ (smaller than

a constant), (2(d+1)τ)2

1−2(d+1)τ ≤ A1d
2τ2 for some constant A1. From (65), we have

∥Ō(u)
C ∥ ≤ ∥E[(P̄ue

iHτ P̄u)(Ō
(u−1)
C ⊗ I)(P̄ue

−iHτ P̄u)]∥+A1d
2τ2∥Ō(u−1)

C ∥ ≤ (1 +A1d
2τ2)∥Ō(u−1)

C ∥. (66)

Combining this with the assumption that ∥OC∥ ≤ 1, we have

∥Ō(u)
C ∥ ≤ (1 +A1d

2τ2)u ≤ (1 +A1d
2t2/r2)r ≤ 2, (67)

for sufficiently small d2t2/r. Therefore

∥M (u−1)∥ = ∥E[(P̄ue
iHτ P̄u)(Ō

(u−1)
C ⊗ I)(P̄ue

−iHτ P̄u)]− Ō
(u)
C ⊗ I∥ ≤ A2d

2τ2, (68)

for some constant A2.
With this we can now bound R(u). By (58), we have

∥R(u)∥ ≤ ∥M (u−1)∥+ ∥R(u−1)∥. (69)

Therefore

∥R(u)∥ ≤
u−1∑
l=1

∥M (l)∥ ≤ A2ud
2τ2. (70)

In particular

∥R(r)∥ ≤ A2
d2t2

r
, (71)

which proves the lemma.

B. The error in the local dynamics

We now prove (56), which we restate in the following lemma:

Lemma 17. Under the same assumptions as in Theorem 14, we have

∥OC(t)− Ō
(r)
C ∥ = O

(
t2

r

)
,

where OC(t) and Ō
(r)
C are defined in (48) and (53) respectively.

Proof. Thanks to the Taylor’s theorem, one has

Ō
(u)
C = Ō

(u−1)
C + iτ [HC

eff , Ō
(u−1)
C ] = eiH

C
effτ Ō

(u−1)
C e−iHC

effτ + R̄(u−1), (72)
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where

R̄(u−1) =

∫ τ

0

eiH
C
effs[HC

eff , [H
C
eff , Ō

(u−1)
C ]]e−iHC

effs(τ − s) ds. (73)

Here by (67), one has

∥R̄(u−1)∥ ≤ ∥HC
eff∥2τ2 = ∥HC

eff∥2
t2

r2
. (74)

Denote tu = uτ with u = 0, 1, · · · , r so that tr = t. The difference between Ō
(u)
C and OC(tu) can be written as

Ō
(u)
C −OC(tu) = eiH

C
effτ

(
Ō

(u−1)
C −OC(tu−1)

)
e−iHC

effτ + R̄(u−1).

Taking the norm on both sides, we have

∥Ō(u)
C −OC(tu)∥ ≤ ∥Ō(u−1)

C −OC(tu−1)∥+ ∥R̄(u−1)∥.

It then follows from (74) and Ō
(0)
C −OC(0) = 0 that

∥Ō(r)
C −OC(t)∥ ≤

r−1∑
u=0

∥R̄(u)∥ ≤ ∥HC
eff∥2

t2

r
.

It only remains to show that ∥HC
eff∥ = O(1). Recall that HC

eff comes from the effective Hamiltonian E[P̄HP̄ ] in (41).
For each term Ea in H, P̄EaP̄ preserves its support because P̄ and Ea are both Pauli operators. Therefore

HC
eff =

∑
a:SuppEa⊂C

λaE[P̄EaP̄ ]. (75)

From this, and |λa| ≤ 1, we have

∥HC
eff∥ ≤ |{a ∈ [M ] : SuppEa ⊂ C}| ≤ 4|C| ≤ 4k = O(1). (76)

Therefore we have proved the lemma.

V. RESHAPING HAMILTONIANS USING TROTTERIZATION

Here we consider reshaping the unknown N -qubit Hamiltonian H using the second-order Trotter formula. The
main idea is the following: In the randomization approach we have constructed an effective Hamiltonian that is a sum
of exponentially (in N) many terms of the form PHP , and here we will consider implementing a similar sum using
the 2nd-order Trotter formula. Importantly, this time the sum involves a number of terms that is independent of N .

A. Decoupling the dynamics using Trotterization

First we define a new graph known as a qubit interaction graph.

Definition 18 (Qubit interaction graph). First denote Ac =
⊔

C∈Vc
C, for c ∈ [χ] and Vc defined in Lemma 5. The

qubit interaction graph corresponding to color c ∈ [χ] is defined to be Gc
q = (Vc

q , Ec
q ), where Vc

q = [N ] \ Ac contains the
qubits that are not contained in Ac, and for any α, α′ ∈ Vc

q (α, α′) ∈ Ec
q iff there exists Ea such that α, α′ ∈ Supp(Ea)

and Supp(Ea) ∩ Ac ̸= ∅.

We also need to color this graph. The number of colors is given by the following lemma.

Lemma 19. Gc
q admits a coloring with χq colors. Here χq ≤ (d+1)(k− 2) + 1 (d and k are defined in Definition 2).

Proof. We will prove that deg(Gc
q) ≤ (d+ 1)(k − 2), and as a result χq ≤ deg(Gc

q) + 1 ≤ (d+ 1)(k − 2) + 1. For each
qubit α, there are at most d+ 1 Ea’s such that they act non-trivially on α and on at least one qubit in Ac. Each Ea

acts non-trivially on at most k−1 other qubits, one of which must be in Ac. Therefore there are at most (d+1)(k−2)
choices of α′ such that (α, α′) ∈ Ec

q .
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We number the colors using [χq]. We also denote by cq(α) the color of qubit α. We now show that, for each color c
of the cluster interaction graph G (Definition 4), we can choose Pauli operators P from a set Pc (to be specified later)
of size 4χq such that

1

|Pc|
∑
P∈Pc

PHP =
∑
C∈Vc

HC +Hres, (77)

where Hres is supported on [N ]\Ac. We then implement the sum on the right-hand side using the second-order Trotter
formula (higher-order formulae will involve evolving backward in time and is therefore unrealistic in our setting). To
be more precise, we implement

→∏
1≤ν≤|Pc|

e−iPνHPντ
′

←∏
1≤ν≤|Pc|

e−iPνHPντ
′
=

→∏
1≤ν≤|Pc|

Pνe
−iHτ ′

Pν

←∏
1≤ν≤|Pc|

Pνe
−iHτ ′

Pν , (78)

where we order the elements in Pc so that Pc = {Pν}, and τ ′ = τ/(2|Pc|). and this will approximate e−i(
∑

C∈Vc
HC+Hres)τ

up to second order (with a remainder of order τ3).
Now we will discuss how to choose Pc. We define Pc as follows:

Pc =
{ ∏

α∈[N ]\Ac

γ(cq(α))α : γ ∈ {I,X, Y, Z}[χq ]
}
, (79)

where Ac =
⊔

C∈Vc C as defined in Definition 18, and cq(α) is the color of qubit α in the coloring of the qubit

interaction graph. To see why (77) is true, let us look at each Pauli terms Ea of H. In the first case, if the support of
Ea is contained in Ac, then [P,Ea] = 0 for all P ∈ Pc. This is because the support of each P does not overlap with
Ac by definition. Consequently PEaP = Ea, and

1

|Pc|
∑
P∈Pc

PEaP = Ea. (80)

In the second case, if the support of Ea is not contained in Ac, but overlaps with Ac, then we denote supp(Ea)\Ac =
{α1, α2, · · · , αl} where l ≤ k. By Definition (18), in a coloring of the graph α1, α2, · · · , αl are all colored differently
because they are all linked to each other. Therefore, if we uniformly randomly draw a Pauli operator from Pc, each
Pauli operator on α1, α2, · · · , αl will be chosen independently. From this we can see, just like previously for the
randomization method, half of the Pauli operators in Pc commute with Ea and the other half anti-commute. As a
result

1

|Pc|
∑
P∈Pc

PEaP = 0. (81)

In the third case, if the support of Ea is disjoint from Ac, then each PEaP also acts trivially on Ac. We group these
terms into the residual term Hres. Combining (80) and (80) we have (77).

B. Isolating the diagonal Hamiltonian using Trotterization

For each cluster C ∈ Vc, we want to learn the diagonal elements of HC with respect to a Pauli eigenbasis indexed
by γC ∈ {0, x, y, z}C , as defined in Definition 8.
To this end, for a set of Pauli eigenbases indexed by {γC}C∈Vc , we define

Qc =
{ ∏

C∈Vc

∏
α∈C

(γC(α)α)
bζC (α) : b1, b2, · · · , bk ∈ {0, 1}

}
, (82)

where ζC : C → [|C|] is an arbitrary fixed ordering of C. Then we will have

1

|Qc||Pc|
∑

Q∈Qc

∑
P∈Pc

QPHPQ =
∑
C∈Vc

HC
diag(γC) +Hres, (83)

where

HC
diag(γC) =

1

|Qc|
∑

Q∈Qc

QHCQ. (84)
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is the diagonal of the Hamiltonian HC with respect to the Pauli eigenbasis indexed by γC . It is the same Hamiltonian
as given in (13). Therefore, to extract the diagonal Hamiltonian, we can implement

U(τ) =
→∏

1≤ν≤|Rc|

e−iPνHPντ
′

←∏
1≤ν≤|Rc|

e−iPνHPντ
′

=
→∏

1≤ν≤|Rc|

Pνe
−iHτ ′

Pν

←∏
1≤ν≤|Rc|

Pνe
−iHτ ′

Pν

≈ e−i(
∑

C∈Vc
HC

diag(γC)+Hres)τ = e−iHresτ
∏

C∈Vc

e−iH
C
diag(γC)τ ,

(85)

where Rc = {PQ : P ∈ Pc, Q ∈ Qc} = {Pν}, τ ′ = τ/(2|Rc|), and in ≈ we neglected all terms that are of order τ3 or
higher.

The number of Pauli operators needed to implement a step for a short time τ scale linearly with |Rc| = |P|c|Qc|.
Because, by Lemma 19,

|Pc| = 4χq ≤ 4(d+1)(k−2)+1, |Qc| ≤ 2k, (86)

we have

|Rc| ≤ 4(d+1)(k−2)+k/2+1. (87)

It is important to note that |Rc| is independent of the system size N .
Below we estimate how many Trotter steps are needed to make the actual dynamics close to limiting dynamics.

The proof of this theorem is given in Section VI.

Theorem 20 (Number of Trotter steps needed). Assume that H is a low-intersection Hamiltonian defined in Defi-
nition 2, and V =

⊔
c∈[χ] Vc is a coloring according to Lemma 5, c ∈ [χ], and γC ∈ {X,Y, Z}C for each C ∈ Vc. Let

U(τ) be defined in (85), and let ρ(t) = U(τ)rρ(0)(U(τ)†)r be the state of the quantum system at time t after being
initialized in state ρ(0). Then there exists r0 = O(t3/2/ε1/2) such that for any r > r0, such that for any C and OC

supported on C, with ∥OC∥ ≤ 1, we have∣∣∣ tr[(OC ⊗ I)ρ(t)]− tr[OCe
−iHC

diag(γC)tρCe
iHC

diag(γC)t]
∣∣∣ ≤ ε, (88)

where ρC = tr[N ]\C ρ(0).

In our Hamiltonian learning algorithm, we only need to ensure that the actual dynamics deviate from the limiting
dynamics by a small constant. Therefore it suffices to choose r = O(ϵ−3/2) in the above theorem (ϵ is the precision for
Hamiltonian parameters, and ϵ−1 is the evolution time needed for robust phase estimation), as opposed to r = O(ϵ−2)
needed in the randomization approach. We summarize the costs of the Trotter-based approach in the following
theorem

Theorem 21 (Learning many-body Hamiltonian by reshaping with Trotter formula). Assume that H is a low-

intersection Hamiltonian defined in Definition 2. Then we can generate estimates {λ̂a} for parameters {λa} in (2),
such that

Pr[|λ̂a − λa| > ϵ] < δ (89)

for all a ∈ [M ] with the following cost:

1. O(ϵ−1 log(δ−1)) total evolution time;

2. O(polylog(ϵ−1) log(δ−1)) number of experiments;

3. O(Nϵ−3/2polylog(ϵ−1) log(δ−1)) single-qubit Clifford gates.

Moreover, this algorithm is robust against SPAM error.

The SPAM-robustness follows in a similar way as in the proof of Theorem (13).
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VI. DEVIATION FROM THE LIMITING DYNAMICS IN TROTTERIZATION

In this section we will prove Theorem 20. Following the discussion in Section IV, we only need to prove the following
theorem, providing an error bound for the evolution of an arbitrary local operator in the Heisenberg picture.

Theorem 22. We assume that H is a low-intersection Hamiltonian as defined in Definition 2, let U(τ) be as defined
in (85), where the set of Pauli operators Rc satisfies

1

|Rc|
∑

P∈Rc

PHP = HC
eff +Henv, (90)

where HC
eff is supported on a subsystem C (|C| = O(1)) and Henv is supported on the rest of the system. Then∥∥∥ (U(τ)†)r (OC ⊗ I)U(τ)r − eiH

C
eff tOCe

−iHC
eff t ⊗ I

∥∥∥ = O(t3/r2), (91)

for any OC supported on C satisfying ∥OC∥ ≤ 1. In particular, the constant in O(t3/r2) does not depend on the
system size N or the number of terms M .

Proof. We rewrite the U(τ) defined in (85) as U(τ, 0), and also write it as the unitary time evolution operator due to
a time-dependent Hamiltonian:

U(τ, 0) = T e−i
∫ τ
0

H̃(s) ds, (92)

where H̃(s) is a piecewise time-dependent Hamiltonian and is defined as follows: we divide the interval [0, τ ] into

2|Rc| sub-intervals, and one each sub-interval H̃ equals PHP with P ∈ Rc and then reverse the order.
Notice that, in order to prove (91), because the long time error grows linearly with respect to r thanks to the

triangle inequality and the unitarity of both underlying dynamics, it is sufficient to bound the one-step error (i.e., the
local truncation error using the terminology of numerical analysis [5])∥∥∥(eiHC

effτOCe
−iHC

effτ
)
⊗ I − U(τ, 0)† (OC ⊗ I)U(τ, 0)

∥∥∥ = ∥Teff(τ)− Ttr(τ)∥ , (93)

where

Teff(τ) =
(
eiH

C
effτOCe

−iHC
effτ

)
⊗ I, Ttr(τ) = U(τ, 0)† (OC ⊗ I)U(τ, 0). (94)

We start by performing series expansion of both terms on the left-hand side in (93). By the Taylor’s theorem, we
have

eiH
C
effτOCe

−iHC
effτ

=OC + iτ [HC
eff , OC ]−

τ2

2
[HC

eff , [H
C
eff , OC ]]− i

∫ τ

0

(τ − s)2

2
eiH

C
effs[HC

eff , [H
C
eff , [H

C
eff , OC ]]]e

−iHC
effs ds.

For the second term, a key observation is that

Ttr(t) = T ei
∫ t
0
adH(t−s) ds (OC ⊗ I) . (95)

To see this, denote OC ⊗ I as O and F (t, s) := U(s, t)OU(t, s), it follows from taking the derivative of F (t, s) with
respect to s that

∂sF (s, t) = −i[H(s), F (s, t)] = −iadH(s)F (s, t), F (s = t, t) = O,

so that

∂sF (t− s, t) = i[H(t− s), F (t− s, t)] = iadH(t−s)F (t− s, t), F (t− s, t)|s=0 = O.

We now perform the Dyson series expansion to (95) and arrive at

Ttr(τ) =
∞∑

N=0

iN
∫ τ

0

dt1

∫ t1

0

dt2 · · ·
∫ tN−1

0

dtnadH(τ−t1) ◦ adH(τ−t2) ◦ · · · ◦ adH(τ−tn)(O)

=

∞∑
N=0

iN
∫ τ

0

ds1

∫ τ

s1

ds2 · · ·
∫ τ

sN−1

dsn[H(s1), [H(s2), · · · , [H(sn), O] · · · ]].



19

Gathering terms of O(τ0), one has OC ⊗ I. The terms of O(τ1) read

i

∫ τ

0

ds1[H(s1), OC ⊗ I] = i

[
τ

|Rc|
∑

P∈Rc

PHP,OC ⊗ I

]
= iτ [HC

eff , OC ]⊗ I.

The terms of O(τ2) are

−
∫ τ

0

ds1

∫ τ

s1

ds2[H(s1), [H(s2), OC ⊗ I] = − τ2

4|Rc|2

2|Rc|∑
j=1

Hj ,

|Rc|∑
l=j

Hl, OC ⊗ I


=− τ2

4|Rc|2

|Rc|∑
j=1

Hj ,

2 |Rc|∑
l=1

Hl −
j∑

l=1

Hl, OC ⊗ I

+

 2|Rc|∑
j=|Rc|

Hj ,

[
j∑

l=1

Hl, OC ⊗ I

]
=− τ2

2
[HC

eff , [H
C
eff , OC ]]⊗ I,

where we used the fact that H(s) is piece-wise constant, and we label its value on each piece as Hj so that Hj+|Rc| =
H|Rc|−j for 1 ≤ j ≤ |Rc|. It can be seen that the first three terms of Ttr(τ) match those of Teff(τ). For the terms

with j ≥ 3, we note that for each s, H̃(s) = PHP for some Pauli operator P , and H̃(s) therefore consists of Pauli
operators that have exactly the same supports as those in H. Consequently, using the same argument as (61)-(62),
each term can be bounded through

∥[H(s1), [H(s2), · · · , [H(sn), O] · · · ]]∥ ≤ j!(2(d+ 1))j . (96)

As a result the sum of these terms is bounded by O(τ3). Also note that the last term of (95) can be bounded by

4
∥∥HC

eff

∥∥3 τ3/3, where HC
eff = O(1) as argued in the proof of Lemma 7. Therefore, we can conclude that

∥Teff(τ)− Ttr(τ)∥ ≤ A5τ
3,

for some constant A5 independent of the system size, and hence∥∥∥(eiHC
eff tOCe

−iHC
eff t

)
⊗ I −

(
U(τ, 0)†

)r
(OC ⊗ I) (U(τ, 0))r

∥∥∥ ≤ A5rτ
3 = A5

t3

r2
, (97)

which establishes the claim of this theorem.

VII. LOWER BOUND FOR LEARNING HAMILTONIAN FROM DYNAMICS

In this section, we present a fundamental lower bound on the total evolution time for any learning algorithm that
tries to learn an unknown Hamiltonian from dynamics.

A. Model of quantum experiments

We consider a unitary U(t) parameterized by time t that implements e−iHt for an unknown N -qubit Hamiltonian
H. A learning agent can access U(t) by quantum experiments. We define a single ideal quantum experiment as
follows. The definition resembles the formalism given in [6].

Definition 23 (A single ideal experiment). Given an unknown N -qubit unitary U(t) = e−iHt parameterized by time
t. A single ideal experiment E(0) is specified by:

1. an arbitrary N ′-qubit initial state |ψ0⟩ ∈ C2N
′

with an integer N ′ ≥ N ,

2. an arbitrary POVM F = {Mi}i on N ′-qubit system,

3. an N ′-qubit unitary of the following form,

UK+1(U(tK)⊗ I)UK . . . U3(U(t2)⊗ I)U2(U(t1)⊗ I)U1, (98)

for some arbitrary integer K, arbitrary evolution times t1, . . . , tK ∈ R, and arbitrary N ′-qubit unitaries
U1, . . . , UK , UK+1. Here I is the identity unitary on N ′ −N qubits.



20

A single run of E(0) returns an outcome from performing the POVM F on the state

UK+1(U(tK)⊗ I)UK . . . U3(U(t2)⊗ I)U2(U(t1)⊗ I)U1 |ψ0⟩ . (99)

The evolution time of the experiment is defined as t(E(0)) ≜
∑

k |tk|.

The learning algorithm can adaptively choose each quantum experiment based on past measurement outcomes. We
consider the quantum experiments to have a small unknown state preparation and measurement (SPAM) error. Given
an initial state |ψ0⟩, the actual initial state being prepared on the quantum system is ρ0, which is equal to |ψ0⟩⟨ψ0|
up to a small constant error η in the trace norm. Similarly, given a POVM F = {Mi}i, the actual POVM being

measured is F̃ = {M̃i}i, where M̃i is equal to Mi up to a small constant error η in the trace norm. A small SPAM
error is always present in any quantum experiment. Measurement noises are particularly assured as measurements
require the quantum system to interact with the macroscopic classical world, which often result in decoherence. A
practically useful algorithm for characterizing and benchmarking quantum systems [4, 6–11] has to be robust against
a small amount of SPAM error.

If a learning algorithm works for any small unknown SPAM error, then the learning algorithm must apply to
experiments where only the measurement is subject to a small depolarizing noise η. We give a single experiment with
measurement noise η in the following definition. The lower bound will be proved assuming access to the experiments
with a small measurement noise η = Θ(1).

Definition 24 (A single experiment with measurement noise). A single experiment E(η) with measurement noise
η = Θ(1) is specified by the same parameters as a single ideal experiment E0. Given the ideal POVM F = {Mi}i, the
measurement outcome of E(η) is obtained by performing the noisy POVM F (η) = {(1 − η)Mi + η tr(Mi)(I/2

N ′
)} on

the state

UK+1(U(tK)⊗ I)UK . . . U3(U(t2)⊗ I)U2(U(t1)⊗ I)U1 |ψ0⟩ . (100)

The evolution time of the experiment is defined as t(E(η)) ≜
∑

k |tk|.

We formally define a learning algorithm with total evolution time T as follows.

Definition 25 (Learning algorithm with bounded total evolution time). Given T > 0, 0.5 > η > 0. A learning
algorithm with total evolution time T and measurement noise η can obtain measurement outcomes from an arbitrary

number of experiments E
(η)
1 , E

(η)
2 , . . . as long as ∑

i

t(E
(η)
i ) ≤ T. (101)

The parameters specifying each experiment E
(η)
i can depend on the measurement outcomes from previous experiments

E
(η)
1 , . . . , E

(η)
i−1.

B. Learning task and lower bound

After defining the learning algorithm and the possible sets of experiments, we are ready to state the lower bound on
the total evolution time required to learn an N -qubit Hamiltonian from dynamics. The theorem is stated as follows.
This scaling matches that of our proposed learning algorithm.

Theorem 26. Given two integers N,M , two real values ϵ, δ ∈ (0, 1), and a set {E1, . . . , EM} ⊆ {I,X, Y, Z}⊗N\{I⊗N}
of M Pauli operators. Consider any learning algorithm with a total evolution time T and a constant measurement

noise η ∈ (0, 0.5), such that for any N -qubit Hamiltonian H =
∑M

a=1 λaEa with unknown parameters |λa| ≤ 1,
after multiple rounds of experiments, the algorithm can estimate λa to ϵ-error with probability at least 1 − δ for any
a ∈ {1, . . . ,M}. Then

T ≥ log(1/2δ)

2ϵ log(1/η)
= Ω

(
log(1/δ)

ϵ

)
. (102)

Even when the measurement noise η = 10−10, we still have T ≥ log(1/2δ)/(40ϵ).
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C. Proof of Theorem 26

The proof of the lower bound is separated into four parts. The first part in Section VIIC 1 reduces the learning
problem to a binary distinguishing task. The second part in Section VIIC 2 provides an upper bound for the total
variation (TV) distance between the distribution over measurement outcomes under a single experiment. The third
part in Section VIIC 3 uses a learning tree representation described in [12, 13] and provides an upper bound for the
total variation distance between distribution over the leaf nodes of the tree. The fourth part in Section VIIC 4 utilizes
LeCam’s two-point method to turn the TV upper bounds into a lower bound for the total evolution time.

1. Reduction

If a learning algorithm can achieve the original learning task considered in Theorem 26, then it could solve a simpler
learning task, where the unknown Hamiltonian H can only be one of the following two choices. The unknown N -qubit
Hamiltonian H is either ϵE1 or −ϵE1 with equal probability, where E1 ∈ {I,X, Y, Z}⊗N \ {I⊗N} is an N -qubit Pauli
operator that is not an identity operator. We denote U±(t) to be the unitary corresponding to evolution under the
two Hamiltonians. If there is a learning algorithm with a total evolution time at most T that succeeds in the learning
task stated in Theorem 26, then we can use the learning algorithm to successfully distinguish between ±ϵE1 with
probability at least 1−δ. Hence, a lower bound on T for this simpler learning task immediately implies a lower bound
on T for the original learning task.
We can characterize the diamond distance between the two unitaries U±(t). For a unitary U , we consider U(ρ) =

UρU † to be the corresponding quantum channel (CPTP map).

Lemma 27 (Diamond distance between U±(t)). ∥U+(t)− U−(t)∥⋄ ≤ 4ϵ|t|.

Proof. The spectrum of U+(t)
†U−(t) is given by ei2ϵt, e−i2ϵt. From [14, 15], we have

∥U+(t)− U−(t)∥⋄ = 2 sin(2ϵ|t|) (103)

if 2ϵ|t| < π/2, otherwise we have

∥U+(t)− U−(t)∥⋄ = 2. (104)

In both cases, we have ∥U+(t)− U−(t)∥⋄ ≤ 4ϵ|t|.

2. TV upper bound for a single experiment

We begin by proving the upper bound on total variation distance for a single quantum experiment.

Lemma 28 (TV for one experiment). Given an unknown unitary U(t) equal to either U+(t) or U−(t), and a single
experiment E(η) with measurement noise η specified by the following parameters,

1. an arbitrary N ′-qubit initial state |ψ0⟩ ∈ C2N
′

with an integer N ′ ≥ N ,

2. an arbitrary POVM F = {Mi}i on N ′-qubit system,

3. an N ′-qubit unitary of the following form,

UK+1(U(tK)⊗ I)UK . . . U3(U(t2)⊗ I)U2(U(t1)⊗ I)U1, (105)

for some arbitrary integer K, arbitrary evolution times t1, . . . , tK , and arbitrary N ′-qubit unitaries U1, . . . , UK , UK+1.
Here I is the identity unitary on N ′ −N qubits.

Let p±(i) be the probability of obtaining the measurement outcome i by performing F (η) = {(1−η)Mi+η tr(Mi)(I/2
N ′

)}
on the output state when U(t) = U±(t). Then

TV(p+, p−) ≤ (1− η)min(2ϵt(E(η)), 1), (106)

where t(E(η)) =
∑K

k=1 |tk| is the total evolution time in this single experiment E(η).
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Proof. We define |ψ±⟩ = UKU±(tK) . . . U3U±(t2)U2U±(t1)U1 |ψ0⟩. By triangle inequality and telescoping sum, we
have the following upper bound on the trace distance,

∥|ψ+⟩⟨ψ+| − |ψ−⟩⟨ψ−|∥1 ≤
K∑

k=1

∥U+(tk)− U−(tk)∥⋄ ≤ 4ϵ
K∑

k=1

|tk| = 4ϵt(E(η)). (107)

The second inequality follows from Lemma 27. We can now upper bound the total variation distance for the classical
probability distribution when we measure the final state using the ideal POVM measurement F = {Mi}i,

1

2

∑
i

|⟨ψ+|Mi |ψ+⟩ − ⟨ψ−|Mi |ψ−⟩| ≤
1

2
∥|ψ+⟩⟨ψ+| − |ψ−⟩⟨ψ−|∥1 ≤ 2ϵt(E(η)). (108)

Because the total variation distance is upper bounded by 1, we have

1

2

∑
i

|⟨ψ+|Mi |ψ+⟩ − ⟨ψ−|Mi |ψ−⟩| ≤ min(2ϵt, 1). (109)

When we measure using the noisy POVM F (η) = {M̃i = (1−η)Mi+η tr(Mi)(I/2
N ′

)} instead of F , the total variation
distance between the measurement outcome distribution is

1

2

∑
i

∣∣∣⟨ψ+| M̃i |ψ+⟩ − ⟨ψ−| M̃i |ψ−⟩
∣∣∣ (110)

=
1

2
(1− η)

∑
i

|⟨ψ+|Mi |ψ+⟩ − ⟨ψ−|Mi |ψ−⟩| ≤ (1− η)min(2ϵt(E(η)), 1). (111)

By definition, we have p±(i) = ⟨ψ±| M̃i |ψ±⟩. Hence, TV(p+, p−) ≤ (1 − η)min(2ϵt(E(η)), 1), which is the total
variation distance between the measurement outcome distribution over the two Hamiltonians under a single experi-
ment.

3. TV upper bound for many experiments

To handle adaptivity in the choice of experiments, we consider the rooted tree representation T described in [12, 13].
Each node in the tree corresponds to the sequence of measurement outcomes the algorithm has seen so far. We can
also think of the node as the memory state of the algorithm. At each node v, the algorithm runs a single experiment

E
(η)
v with measurement noise η specified by

1. an arbitrary N ′
v-qubit initial state |ψv,0⟩ ∈ C2N

′
v with an integer N ′

v ≥ N ,

2. an arbitrary POVM Fv = {Mv,i}Lv
i=1 with Lv outcomes on N ′

v-qubit system,

3. an N ′
v-qubit unitary of the following form,

Uv,Kv+1(U(tv,Kv )⊗ I)Uv,Kv . . . U3,v(U(tv,2)⊗ I)Uv,2(U±(tv,1)⊗ I)Uv,1, (112)

for some arbitrary integer Kv, arbitrary evolution times tv,1, . . . , tv,Kv ∈ R, and arbitrary N ′
v-qubit unitaries

Uv,1, . . . , Uv,K+1. Here I is the identity unitary on N ′
v −N qubits.

Each experiment E
(η)
v produces a measurement outcome i ∈ {1, . . . , Lv}, which moves the algorithm from the node

v to one of its child node. At a leaf node ℓ, the algorithm stops. By considering the rooted tree representation
and allowing the experiment to depend on each node in the tree, we cover all possible learning algorithm that can
adaptively choose the experiment that it runs based on previous measurement outcomes.

For each node v on tree T , we denote p
(T )
± (v) to be the probability of arriving at the node v in the experiments

when the unknown unitary U(t) = U±(t) and the algorithm begins from the root of T . We can establish the following
total variation upper bound.

Lemma 29 (TV for multiple experiments). Consider a rooted tree representation T for a learning algorithm with
total evolution time T and measurement noise η ∈ (0, 0.5). We have

TV(p
(T )
+ , p

(T )
− ) ≤ 1− η2ϵT , (113)

which is an upper bound for the total variation of the outcomes under multiple experiments.
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Proof. For each node v, we give the following definitions,

• Tv is the subtree with root v.

• p
(v)
± is the distribution over the child nodes of v by considering the probability of moving from v to that child

node under the unknown unitary U±(t).

• p
(Tv)
± is the distribution over the leaf nodes for subtree Tv by considering the probability of ending at that leaf

node starting from node v under the unknown unitary U±(t).

• t(v) ≜ t(E
(η)
v ) ≥ 0 is the evolution time for the single experiment E

(η)
v .

• t(Tv) is the maximum of the sum of the evolution time over all paths from root v of the subtree Tv to a leaf
node of Tv,

t(Tv) = max
P :path on Tv

∑
w∈P

t(E(η)
w ). (114)

Because the total evolution time of the learning algorithm is upper bounded by T , the total evolution time of
the full tree T satisfies t(T ) ≤ T .

We will prove this lemma by an induction over the subtree of T . The inductive hypothesis is given as follows. For
any subtree Tv with root v,

1− TV(p
(Tv)
+ , p

(Tv)
− ) ≥ η2ϵt(Tv). (115)

The base case is when v is a leaf node. At the leaf node ℓ, we have TV(p
(Tℓ)
+ , p

(Tℓ)
− ) = 0 and t(Tℓ) = 0. Hence, the

induction hypothesis holds.
To prove the inductive step, we define child(v) the be the set of child node of v and recall the following identity on

two probability distributions p± over a set X ,

1− TV(p+, p−) =
∑
x∈X

min
(
p+(x), p−(x)

)
. (116)

We can obtain a lower bound on the failure probability for the node v as follows,

1− TV(p
(Tv)
+ , p

(Tv)
− ) (117)

=
∑

ℓ∈leaf(Tv)

min
(
p
(Tv)
+ (ℓ), p

(Tv)
− (ℓ)

)
(118)

=
∑

w∈child(v)

∑
ℓ∈leaf(Tw)

min
(
p
(v)
+ (w)p

(Tw)
+ (ℓ), p

(v)
− (w)p

(Tw)
− (ℓ)

)
(119)

≥
∑

w∈child(v)

min
(
p
(v)
+ (w), p

(v)
− (w)

) ∑
ℓ∈leaf(Tw)

min
(
p
(Tw)
+ (ℓ), p

(Tw)
− (ℓ)

)
(120)

=
∑

w∈child(v)

min
(
p
(v)
+ (w), p

(v)
− (w)

)(
1− TV

(
p
(Tw

+ , p
(Tw)
−

))
(121)

≥
(
1− TV(p

(v)
+ , p

(v)
− )

)
min

w∈child(v)

(
1− TV

(
p
(Tw

+ , p
(Tw)
−

))
. (122)

We can apply the induction hypothesis on Tw for w ∈ child(v). This gives us

1− TV(p
(Tv)
+ , p

(Tv)
− ) ≥

(
1− TV(p

(v)
+ , p

(v)
− )

)
η2ϵt(Tw). (123)

By definition, we have t(Tv) ≥ t(v) + t(Tw) for any child node w of v, hence

1− TV(p
(Tv)
+ , p

(Tv)
− ) ≥ η2ϵ(t(Tv)−t(v))

(
1− TV(p

(v)
+ , p

(v)
− )

)
. (124)

From Lemma 28 that bounds the total variation distance for a single experiment, we have

TV(p
(v)
+ , p

(v)
− ) ≤ (1− η)min(2ϵt(v), 1). (125)
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Hence, we can obtain

1− TV(p
(Tv)
+ , p

(Tv)
− ) ≥ η2ϵ(t(Tv)−t(v))

(
1− (1− η)min(2ϵt(v), 1)

)
(126)

≥ η2ϵ(t(Tv)−t(v))ηmin(2ϵt(v),1) (127)

≥ η2ϵ(t(Tv)−t(v))η2ϵt
(v)

= η2ϵt(Tv). (128)

The second inequality uses 1 − (1 − η)x ≥ ηx for any η ∈ (0, 0.5) and x ∈ [0, 1], which follows from the convexity of
f(x) = ηx − 1 + (1− η)x and the fact that f(0) = f(1) = 0. We have proved the inductive step.
Using induction and the fact that t(T ) ≤ T , we have

TV(p
(T )
+ , p

(T )
− ) ≤ 1− η2ϵT , (129)

which is the claimed result.

4. Lower bound from TV upper bound

From the reduction step in Section VIIC 1, for any learning algorithm with a total evolution time at most T that
succeeds in the learning task stated in Theorem 26, we can use the learning algorithm to successfully distinguish
between U±(t) with probability at least 1 − δ. By the construction of the rooted tree representation T , after the
multiple experiments, the only information the learning algorithm can access corresponds to a leaf node of the tree T .
Hence, if the learning algorithm can distinguish between U±(t), then it can distinguish between the two probability

distributions p
(T )
+ , p

(T )
− with probability at least 1 − δ.

Using LeCam’s two point method, if there is an algorithm that can distinguish the two probability distributions

p
(T )
+ , p

(T )
− with probability at least 1 − δ, then 1− 2δ ≤ TV(p

(T )
+ , p

(T )
− ). Thus,

2δ ≥ η2ϵT ⇐⇒ T ≥ log(1/2δ)

2ϵ log(1/η)
. (130)

Recalling that η ∈ (0, 0.5) is a constant close to 0, we have

T = Ω

(
log(1/δ)

ϵ

)
. (131)

We have thus established Theorem 26.
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