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The main question of quantum chaos is to what extent ‘chaotic’ features of the geodesic

flow on a manifold (for example, ergodicity, exponential mixing, etc.) manifest themselves

in the corresponding quantized system; that is, the L? Laplace-Beltrami operator and its

eigenvalues and eigenfunctions. One of the main questions here is whether the quantum

probability measures associated to eigenfunctions of the Laplacian have unique weak-x*



limits (semiclassical measures) as the corresponding eigenvalue tends to infinity. If there is
a unique limit, the manifold is called quantum uniquely ergodic.

In this paper, we work with graphs instead of manifolds and prove results in the spirit
of quantum unique ergodicity for certain families {G;}icz, Z C N of d-regular graphs, with
d > 3 fixed. We will always write G; to refer to such a family of graphs. We write V; for the
vertex set of G;, let IV def |V;| and assume N — oo as i — co. Each G; has an adjacency
matrix that has rows and columns indexed by V;, a 1 in entry (z,y) if there is an edge
between z and y, and 0 otherwise; we view this as an operator on £2(V;). In this paper, (*
norms will be defined with respect to the counting measure.

Given an element ¢ € ¢2(V;) with ||¢||2 = 1, which will usually be an eigenfunction of
the adjacency operator of G;, we associate to ¢ the quantum probability measure' e on 'V;

defined by
ne Y lew) s,
veEV;
where 4, is the unit mass atom at v. Note that ||¢[/2 = 1 implies y, is a probability
measure.
We will say quantum unique ergodicity (QUE) holds for a sequence of adjacency operator
eigenfunctions o; € £2(V;) with ||¢;]|,2 = 1 and a sequence of subsets A4; C V; if

[Ail A
Vil N

He; [A,] —

as i — oo. It is very hard in general to establish this bound for all A;, so we will restrict
to A; that are not too small.

Suppose that G is a finite group and S is a symmetric subset of GG, then we will
denote the Cayley graph associated to the pair (G, S) by Cay(G, S). We write G for the
equivalence classes of irreducible representations of GG, and define

D(G) = min  dim V;
(p,V)eG—triv
i.e. the smallest dimension of a non-trivial representation of G. Then in the language of
Gowers from | ], G is ©(G)-quasirandom?. The first main theorem of the paper is
the following.

Theorem 1.1. Let G; be finite groups with |G| 2o 0o, S; C G; be symmetric subsets
(S; = Sl-_l); G; = Cay(Gy, S;) and t; > 0. Moreover, let M; € N be such that

tim im
oM, Y (dmV)? <6e24 - +2edmv> <1, (1.1)

(7,V)eG;—triv

and let fzj : Vi = R be any collection of functions for j = 1,...,M; and i € N. Then, there
exist orthonormal bases B; of £2(G;) of real-valued eigenfunctions of G; such that for every

'From the point of view of quantum mechanics, this is the probability density function.
2Before the formal naming of this property by Gowers, the property of a group G being |G\5—quasirandom
was used to prove eigenvalue bounds in works of Sarnak and Xue [ ] and Bourgain and Gamburd

[BGOS].
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If fZJ =1, for some subsets Ag CV; then
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which in particular implies that p,[A]] is asymptotic to EARGEARA whenever TAj\ =

Oz%oo(l)
Remark 1.2. The proof of Theorem 1.1 is slightly easier if one only wants complex or-

thonormal eigenbases; see Remark 6.4 at the end of the paper. In this case, one can also
take the functions f/ to be complex-valued.

The condition (1.1) involving M; and t; displays a dependence between the desired
strength of the QUE bound in (1.2), and the number of functions that one simultaneously
wishes the bound to hold for. With knowledge on the size and number of irreducible
representations of the group, one can be more precise with values for ¢; and M;.

The most simple case of this is as follows. For groups with ®(G) > log?(|G|) one can
obtain at least logarithmic improvement in (1.2) while taking the number of functions to
be polynomial in the size of the group.

Corollary 1.3. Let ¢ > 0, and suppose that G is a finite group satisfying ©(G) > log?(|G]).
Moreover, let S C G be a symmetric subset and G = Cay(G,S). Then given M € N
satisfying M < min (;AG’E,QG|_16®£§)> , and functions f; : V — R fori=1,..., M,
there exists an orthonormal basis B of 2(G) of real-valued eigenfunctions of G such that
for everype Bandi=1,..., M,

1 2gec filg) (e + 1) log(IG]) [ fille2
S BN RN 4

Remark 1.4. The proof of Theorem 1.1 shows that if e.g. D(G;) > |G;|* with o > 0 as it
is in cases of interest (see below), if we only want to obtain

_, (Ilff||e2>
e

for ¢, 8 > 0 depending on «, i.e. take the

Y gea, F1(9)

above then we can actually take M; > ec‘G‘ﬁ

number of functions ff to be super-polynomial in |G;].

Example 1.5. If 7 are the prime numbers, G, = PSLy(F,), and G, are any Cayley graphs
of PSLy(F,) with respect to symmetric generators, then a result of Frobenius gives
p—1
D(PSLa(F,) 2 L,
and |G,| =~ p3. So in this setting, Theorem 1.1 gives that for any finite collection
Al ... Al C V, with [AJ] > p**¢ | there are real orthonormal eigenbases of £2(PSLa(F)))



such that for any elements ¢, of these bases,

S 14l

Hop[A7] = [PSLa(F,)| (1+0(»™))

as p — 00.

When ©(G) is polynomial in |G|, we can also obtain a quantum unique ergodicity
result for partitions of the group into sets whose sizes are on scales of the order |G|'~" for
some 7 > 0 dependent upon on the size of ©(G).

Corollary 1.6. Let G be a finite group, S C G be a symmetric subset and G = Cay(G, S).
Suppose that there exists an absolute constant s > 0 such that ©(G) > |G|® and letn = s—¢
forany 0 < e <s. Let A; C G be a collection of subsets partitioning G with sizes satisfying
c|G|1= < |A;| < C|G|1" for some absolute constants c,C > 0. Then, for |G| sufficiently
large (dependent only upon ¢ and n) there is an orthonormal eigenbasis B of the adjacency
operator of G such that for every ¢ and every ¢ € B,

|4l
|G|

K log |G| |Aj]
Glze |Gl

e [Ai]

where K > 0 is a constant dependent only upon c.

So far we have dealt with groups that are at least log?(|G|)-quasirandom. One key
feature of the condition (1.1) is that it enables us to go beyond ®(G) > log?(|G|). This
pertains to the important class of examples where G,, is either the alternating group Alt(n)
or the symmetric group Sym(n).

Proposition 1.7. Let G, = Alt(n) or Sym(n), S, C G, be symmetric subsets and
Gn = Cay(Gy, Sn). Then given M, € N satisfying M, = on—o0(n) and functions f]' :

Vi, =+ R fori=1,...,M,, there exists an orthonormal basis B, of />(Gy) of real-valued
eigenfunctions of G, such that for every ¢ € By, i =1,..., My, and n sufficiently large
> gec, 1i(9) log(n) L' le2(cn)

<192 :
|Gl v V]Gl

The proof of Theorem 1.1 revolves around the fact that all eigenspaces of Cayley graphs

ppfi] — (1.5)

arise from some irreducible representation of the group and hence have multiplicities at
least the dimension of this corresponding representation. This leads to a dichotomy: either
the eigenspace is trivial (which we can deal with directly) or has large dimension if the
group is suitably quasirandom. In the latter case, this allows one to choose a random
basis for the eigenspace using a random matrix of large dimension which is reflected in the
condition (1.1).

We describe in §3 a random model for real eigenbases of Cayley graphs that arise from
products of the classical compact groups with their Haar measures. This model was used
by Sah, Sawhney, and Zhao in | ] to show the existence of eigenbases of Cayley graphs
with close to optimal ¢>° bounds. What we prove here is the following.

Theorem 1.8. Let G be a finite group, S C G be a symmetric subset and G = Cay(G, S).
Let M € N and let f1,..., far € £2(G) be a collection of real-valued functions. Then, for



any t > 0, with probability at least

\/ﬁ im
1-2M Y (dimV)? (Ge_t D Ve o mv) ,
(m,V)eG—triv

if B is a random real orthonormal eigenbasis of G as in §3, then for any ¢ € B and any

1=1,...,M, we have

>gec fi(9)

1 fill 2
<t . 1.6
Rvirel (1.6)

As indicated by Corollaries 1.3 and 1.6, it is good to know that there are an abundance
of |G lé—quasirandom groups for 0 < § < 1. Indeed, for finite simple groups of Lie type with

rank r over finite fields, it is shown in the proof of | , Prop. 3.2] (see also Remark
1.3.6 of | |) using earlier work of | , ] that such groups are |G|-quasirandom
with § depending only on the rank r. We refer to | , §5.2] for the precise definition

of these groups. As such, the values of ¢ in Theorems 1.1 and 1.8 can be taken to have
decay that is polynomial in |G| for this wide class of groups (see Corollary 1.3).

Let us now discuss the strength of the upper bound obtained in Theorems 1.1 and 1.8.
Since the sum of squares of the dimensions of the irreducible representations of a group

equal the size of the group,
1
?(G) <|G|2

which means that the best possible value we could possibly obtain for the right hand side
of (1.3) or (1.6) is

Clog(|G|)

—— 5| flle=-

|Gl

This is still a factor of |G |i off from what is known about random regular graphs: recently
Bauerschmidt, Huang, and Yau | ] obtained a very strong version of QUE for random
regular graphs with respect to the uniform model of fixed degree and number of vertices?.

Theorem 1.9 (Bauerschmidt-Huang-Yau | , Cor. 13]). Let d > 1 and let G,, be a
uniformly random d-regular graph on n vertices. Suppose fy : V, — R, then with probability

tending to one as n — 0o, for any eigenfunction ¢ € (2(Vy,) of the adjacency operators of
3
Gn with eigenvalues Xy, satisfying |A, +2+v/d — 1] > (logn)~2,

ogn 250
<[5
veEVy

The first result about equidistribution of quantum probability measures of eigenfunc-
4

ZvGVn fn(v)

n

> fa()lp()]? ~

’UGVn

tions® on graphs was obtained by Anantharaman and Le Masson in | , Thm. 1].

Theorem 1.10 (] , Thm. 1]). Let G; be d-regular, d > 3, and N def [V(Gi)| — oo
as i — 0o. Suppose that the sequence G; form a family of uniform expanders and converge
to the infinite d-regular tree in the sense of Benjamini and Schramm [ J. Let {cpgi) é\le
be an orthonormal basis of eigenfunctions of the adjacency operator of G;. Let f; : V; — C

3See also | | for the case of growing degree.
4Strictly speaking, Theorem 1.10 is a result about Quantum FErgodicity rather than QUE.



be a sequence of functions with || fillco < 1, then for any § >0

1 €N Y AW @R -+ 3 )| > s 0 D)

veV; veV;
as i — 00.

For related results of quantum ergodicity on quantum graphs, see for example | ,

]. See also the recent work of Naor, Sah, Sawhney and Zhao | | in the

Cayley graph setting, where they prove an incomparable quantum ergodicity result, rather
than quantum unique ergodicity.

1.1 QUE on manifolds

Because the type of results of the current paper draw their inspiration from analogous
questions about manifolds, we include a brief discussion of the state of the art results in
that setting.

Let M be a closed and connected Riemannian manifold and let {¢;};>1 be an orthonor-
mal basis of L?(M) consisting of Laplacian eigenfunctions with corresponding eigenvalues
0=MA1 <Ay <...— 00. A central question is the quantum unique ergodicity conjecture of
Rudnick and Sarnak | |. This says that if M is negatively curved, then the quantum
probability measures of the eigenfunctions weak-* converge as i — oo to the normalized
Riemannian volume form. A more general statement of this conjecture involving microlocal
lifts can be found in the survey article of Sarnak | ]. For manifolds without negative
curvature, there are counterexamples to this conjecture as illustrated for example by Hassel
[ ] for certain ergodic billiards, building upon earlier numerical work by O’Connor
and Heller [ .

Despite counterexamples demonstrating that ergodicity alone is insufficient for quantum
unique ergodicity, there is numerical evidence to support the conjecture in the presence of
negative curvature | , |. In addition, there are striking results of Anantharaman
and Nonnenmacher | ) ] and Dyatlov and Jin | | regarding the entropy
and support of possible limits of quantum probability measures. Moreover, Lindenstrauss
[ | (with an extension by Soundararajan | | for the non-compact case), proved
that the quantum unique ergodicity conjecture holds for Hecke-Laplace eigenfunctions on
arithmetic surfaces.

For closed Riemannian manifolds in general, ergodicity of the geodesic flow alone is
sufficient to prove a weaker result known as quantum ergodicity. This result exhibits the
existence of a density one subsequence of the quantum probability measures that weak-x*
converges to the normalized volume measure | , ) |. Theorem 1.10 above
can be seen as a natural graph analogue of this weaker property. In the manifold setting,
quantum ergodicity has also been investigated for random bases. For example, in | ] it
is shown that random (Haar unitary) eigenbases of the Laplacian for L?(S?) are quantum
ergodic with probability one, despite the standard basis of spherical harmonics failing to
have this property. This is upgraded to quantum unique ergodicity in | ]. Similarly,
quantum ergodicity and quantum mixing properties have been studied for random bases
(not necessarily eigenbases) for general compact Riemannian manifolds | , ] as
well as quantum unique ergodicity | ]



1.2 Outline of the paper

The remainder of the paper proceeds as follows. In §2 we give an overview of the relevant
representation theoretic background and outline the construction of Cayley graphs and how
the adjacency operator acts through representation theory. In §3 we describe the random
bases we use throughout the paper. In §4 we give a deterministic bound on the quantities

ZgGG f(g)

:u’iﬂ[f} - |G’

featuring in the main results. In §5 we give first some basic large deviations estimates
for sums of independent random variables, and then apply these to obtain concentration
results for tensor products of random matrices from the classical compact groups. Finally,
in §6 we prove Theorem 1.8 by combining the deterministic error estimate and our random
matrix results.

2 Background

2.1 Representation theory of finite groups

We begin by outlining basic concepts in representation theory. A more complete background
can be found in | ].

Let GG denote a finite group. We consider unitary representations of G. These are pairs
(m,V) where V is a finite-dimensional complex Hilbert space and 7 : G — GL(V) is a
homomorphism such that 7(g) is unitary for each g € G. When clear, we will just refer
to m or V as a representation. We will denote the trivial representation of G by (triv,C),
where C has the standard inner product and triv(g) is the identity for all g € G.

The group algebra C[G] is the ring of formal complex linear combinations of elements
of G. We identify C[G] with ¢?(G) throughout the paper. Any representation (7, V) of G
linearly extends to 7 : C[G] — End (V') making V' a C[G] module.

Recall that a representation (, V') is irreducible if there are no proper subspaces of V'
that are invariant under 7(g) for all g € G. Two representations (71, V;) and (e, V2) are
equivalent if there is a unitary isomorphism 7" : V7 — V5 that intertwines the representations:
Tom(g) = m(g)oT for all g € G. We will denote the unitary dual of G by G, it is
the collection of equivalence classes of irreducible representations of G. We will not make
any distinction between an equivalence class in G and an element of the equivalence class;
hence we will freely write (7, V), m, V € G.

Given a representation (7, V') of G, the dual representation will be denoted by (7, XV/)
Here, V is the dual space of V equipped with the inner product arising from that of V' on
the corresponding Riesz representation vectors, and 7 is defined by [7(g)a](v) = a(n(g~!)v)
for all g € G and v € V. If (m, V) is irreducible, then so is (7, V).

Given (,V) € G, and vq,v9 € V, the matrix coefficient

\% def
V1,02 :e <

m(g)va, v1)

is in ¢2(@). This extends bilinearly to a map ®" : V ® V — ¢2(G). The inner product on
?%(@G) is given by
def Ry
(fi. f2) = > filg) f2(9).

geG



The space £2(G) is a bimodule for G x G (under left and right multiplication) and the
induced map

Vdim V V
@ G P VeV -6 (2.1)
(m,V)eG (m,V)eG
is a unitary bimodule isomorphism by the Peter-Weyl theorem. We also have the Plancherel
formula

£ = = > dimV]z(f)ls, (2.2)

(7r Vyed

def

where ||7(f)|%s = trv (7 (£)m(f)*).

2.2 Cayley graphs

Let G be a finite group and let S = {s1, sfl, very Sl sgl} be a symmetric subset in G such
that |S| = 2d. The Cayley graph Cay,(G, S) is the directed graph with an edge between g
and h if gs = h for some s € S. The directed edges of Cay,(G,S) have a pairing arising
from matching edges arising from gs = h with the edge arising from g = hs~!; the quotient
by this equivalence relation is the undirected Cayley graph Cay(G, S), which is a 2d-regular
graph. The adjacency operator on £2(G) can be written as

d
) =3 (flgsi) + Flgs 1)) = p(A)1f)(9),

=1

where p is the right regular representation and

o
[

A= (si + sl-_l> e ClG].

=1
3 Random basis construction

In this section we will outline the construction of the bases of eigenfunctions for the
adjacency operator. The idea is to exploit the decomposition of £?(G) as the direct sum
) (mV)EC: V @ V. To obtain a basis of real-valued functions, one must select the basis inside
each irreducible representation dependent upon whether the representation is non-self dual,
real or quaternionic as we explain below.

3.1 Non self-dual representations

We start with the case that (7, V') is an irreducible representation that is not equivalent to
its dual representation (7, f/) Due to their non-equivalence, both VeVand VeV appear
as distinct summands in the decomposition of £2(G) as the direct sum @(9 W)ed Wew.

We will thus seek an orthonormal basis of (V @ V) & (V ® V). As before, let {v!} be
an orthonormal basis of V' consisting of eigenvectors of w(A). Moreover, let {w;/} be any
orthonormal basis of V. Then the collection

1
{\/i(lb}/ﬁgv};%—w}/@ﬁ,‘;) T(w ®vk—w @v)) : j,kzl,...,dimV}



forms an orthonormal basis of (V ® V) @& (V ® V). Moreover, they correspond to functions
in /2(Q)

def VdimV vV Vv 2dim V' vV Vv

= W(W(Q)”k Wi )+ <7Vr(9)171‘g/7w}/>) = ———Re((m(9)vy ,wj )),

o (9) % YV (ol ¥y — (gl w))) =

which are real-valued functions with unit L2-norm that are mutually orthogonal.

1%
Lk,j (9)

VA Y o (w(g)ol  w!Y),

To randomize this basis, we randomize the choice of the basis {wJV}J We fix an

orthonormal basis {e;/} ; of V and then given a Haar random unitary operator v € U(V),
V=

we set w;

ue}/ foreach j=1,...,dimV.

3.2 Self-dual representations

A complex irreducible representation that is equivalent to its dual has a conjugate-linear
intertwining map J : V' — V such that J? = +Id. In the case J? = Id the representation
is called real and in case J? = —Id the representation is called quaternionic | ]. Tt is
not hard to check using uniqueness (up to scalars) of the m-invariant inner product on V
that for all v,w € V

(v, w) = (J(w), J(v)). (3.1)

3.2.1 Real representations.

In this case, J defines a real structure for V. That is, V = V; @ iV; where V; ={v € V :
J(v) = v} is a real vector space. It follows from (3.1) that (e, e) restricts to a real valued
symmetric inner product on V;y, and the inner product on V is obtained from this one by
extension of scalars from R to C.

Since J intertwines with m, for each ¢ € G we have 7(g) : V; — Vj, and so w(A)
is a symmetric operator on (V, (e,e)). Let {v)} denote an orthonormal basis of m(A)
eigenvectors in V; with respect to the real inner product. By extension of scalars, these
also form an orthonormal eigenbasis of 7(A) acting on V.

Fix an orthonormal basis {e}/} of Vj . Choosing a Haar random orthogonal matrix

0€ O(V) we let w;/ def oe;/ for each 1 < j < dim V. The corresponding real random basis
of p(A) eigenvectors in £2(G) is given by

def VdimV
901‘9/3‘(9) = W(W(g)v;‘;,w;{)

These are the image under the inclusion V ® V — 2(G) of the vectors w}/ ® vy (this
makes it clear that they are p(A) eigenvectors).

3.2.2 Quaternionic representations.

Next, suppose that (7, V') is a quaternionic representation of G. In this case, (3.1) implies

(v, J(v)) = (J*(v), J(v)) = (v, ] (v))



hence (v, J(v)) = 0 for any v € V. This implies dim V' is even and since m(A) is Hermitian
and commutes with J we can find an orthonormal basis of V' of eigenvectors of m(A) of the
form {v), J(o) )}

Fix an orthonormal basis {e}/} of V. Choosing a Haar random unitary matrix u € u(V')
we let w;/ def ue}/ for each 1 < j < dim V. The corresponding real random basis of p(A)

eigenvectors in £?(Q) is given by

def 2dimV

2y;(g9) = vl e((m(g)vy , wy ),
def V2dimV

uii(9) = ———=—Im((x(g)v} , w})

|G

These are the image under the inclusion V@ V — /2(G) of the vectors

def 1

o @ ool + TG @ ),
def 1 “

o @Y @ o — JwY) @ Jw))),

iv2
and thus clearly they are p(A) eigenvectors.

Putting together all of the different cases for the type of the representation m, the
random model for the real-valued eigenbasis of ¢?(G) has underlying topological space

X = 11 Uwv) 11 Uv) 11 o),
{(m,V),(%,V)}CG (m,V)ed (m,V)eG
7 non-self-dual pair 7 self-dual and quaternionic 7 self-dual and real

equipped with the product probability measure

P= Il Puy 11 Poovy 1T Powy,  (32)

{(m,V),(#%,V)}CG (m,V)eG (m,V)eG
7 non-self-dual pair 7 self-dual and quaternionic 7 self-dual and real

where Py is the Haar probability measure on the unitary operators U(V') of V, and
Po(vy is the Haar probability measure on the orthogonal operators O(V) of V.
4 Deterministic error term for mean zero functions

In this section we will derive an upper bound for

9 1
> F@)le(9)l? - al > ), (4.1)
geG geq

where ¢ is one of the eigenbasis elements of £2(G) described in the previous section, and f
is a real-valued function on the group G. In fact, we will further make the assumption that

> flg) =0,

geG

10



so that we can instead just bound

> F@)le(g)?

geG

This can be done without any loss of generality since given a non-zero mean function,
we can consider f — |—Cl;| Ygec f (g9) which has zero mean, and then a bound on the above
quantity for this zero mean function provides a bound on the desired difference since

Z( 9) GZf ) Pl =1>" fl9)lely) GZf ) > le()?
geG | ’hEG geG | ’hEG geG
= 1> f(9)le(9) > flg)
geG |G’ geG

as the eigenfunction ¢ is normalized with respect to the counting measure. The bounds we
will obtain later will involve || f||s2, but since the mean of f is just the Fourier component of
f corresponding to the constant eigenfunction, we have || f — ﬁ >ogec F(@lee < [[flle2 and
so any bounds depending on the ¢?-norm of the zero mean function can just be bounded
by the £?-norm of the function itself.

Now, recall that there were three types of functions in the eigenbasis dependent upon the
type of irreducible representation that they come from. In the case of complex irreducible
representations that are not real we have the following two types given by real and imaginary
parts of matrix coefficients

Type 1 - Real Part

(g) = \/dlmV
plg f\/—

Type 2 - Imaginary Part

\/dlmV o e o
cp(g) Z\[r >—<7T(g)v,w)).

In the case of a complex irreducible representation that is real we have the following type
of basis element

Type 3 - Real Matrix Coefficient

vVdimV

v(g9) = e

(m(g)v, w).

In each of the above types, (7, V) is an irreducible unitary representation and v,w € V
are unit vectors.
We will show the following.

Proposition 4.1. Let ¢ : G — R be one of types 1,2 or 3, and let f : G — R have zero

11



mean. If ¢ is of type 1 or type 2, then

dimV
(< G g%%f )(v®v)w®w>)|
<<dlmVZf (m@7)( )(v®v),w®w>)

geG

> F@)le(g)?

geG

_l’_

i

and if ¢ is of type 3, then

> F@leg)f

geG

dimV . .
(< Tel Zf (m@7)( )(v®v),w®w>)‘.

geG
Proof. Suppose that ¢ is type 1. Then,

[P0 = 5T ((r © ma)w ® 0)w® w) + (5 @ A)o) (59 9). 9 )

+ (Tem)(9)(0®v), 0w @w)+ (TRT)(g)(vRDv),ww))
- S Re(((m @ Me)(0 @) we W) + Re(((r @ Do) D) w S w)).

(4.2)

The result is then an immediate application of the triangle inequality using the fact that f
is real-valued. The proof for type 2 functions is essentially the same, and the proof for
type 3 is even simpler (one only needs to deal with 7 ® 7 terms). O

5 Probabilistic ingredients

In this section, we outline some results that we will use in §6 when bounding the probability
that our random bases have the properties of Theorems 1.1 and 1.8.
5.1 Large deviations estimates

We begin by recalling that the y-squared distribution with k-degrees of freedom, denoted
by X%, has probability density function

acg_le 2
fi(@) = =75 Hasop- (5.1)
e ()
If Z;,...,Z; are independent standard normal random variables, then

k
> 727 ~xi-
=1

In this article we will use the following results regarding independent x? and x3 random
variables.

12



Lemma 5.1. If X1,..., Xy are independent x?3-distributed random variables, then

N
P(S x < Y) <o i
=1 2

Proof. By exponential Chebyshev, for any A > 0

P (% X; < t) < AR {e*AZi XZ} _ oAt ﬁE [e—AXI}
i=1

i=1

1 N
At —a(3 +A)d _ At( ) _
H \/g/ z e v V1424

Taking ¢t = % and A = 1 (so that A —log(1 + 2A) < —%) we obtain the stated result. [J
Lemma 5.2. Suppose that (a1, ...,ax) € RN and there exist constants A,C > 0 such that
1. Z —1a; =0,
2. YN, a? <O, and
3. |a;| < A for each 1 <i<N.
Then,

(i) If X1,..., XN are independent x?-distributed random variables then for all t > 0,

N _C
P< 2t>§2(At+{yﬂeﬁ.
=1 C

Z ain
(ii) If X1,..., XN are independent x3-distributed random variables then for all t > 0,

N C
A
P X, >t §2<t+1)ﬂe—ﬁ.
2 2C

Sa
Remark 5.3. Note that condition (3) in Lemma 5.2 immediately follows from condition
(2) since we must have |a;| < /C for all 1 < i < N. Likewise, condition (2) follows from
condition (3) with C' = A2N.

Proof. We start with (i). Notice that

N N N
]P’(Zale Zt>:}I”(ZaZXth)—HP’(—ZaZXth)
=1 =1 =1

Now for any € € [0, ﬁ), exponential Chebyshev inequality along with independence of the

13



X; and the formula (5.1) implies that
N
P (Z a; X; > t)
i=1
N N
e K (exp (5 Z aiXi> ) = H E exp (ca; X;)

i=1 i=1

—te 2 2 1- 25a1)d — —ts
H\/Qﬂ‘/ vore v 1_[\/1—2%Z
= e ®exp (— Zlog (1-— 25a1)> =e ®exp (52&1- + —
i=1

=1

it
8

M

I

m
tmL

e

|
N
N—————

The final equality follows from |2ea;| < 1. Now by assumption (3), we have

and so using assumptions (1) and (2) we have

<Za2X > t) < e “exp (232 Z 2/:15) )

i=1
= e ¥exp <log ((1 — 2A£)_2A?2) — a:s)

~+(t+5)

(&

(1 24¢)342

the second equality following from the fact that |[2Ae[ < 1. We now choose ¢ € [0, 5;) that
minimizes this upper bound. This can readily been seen to be given by

I E{O 1>
E=—— — .
24 ¢+ ¢ 24

We hence obtain the upper bound

N _C_
At 2
P(E CLle>t> S (C+1>2A e_ﬁ,
=1

The same bound applies to P (— Efil a; X; > t) since we may set b; = —a; and then

(b1,...,bn) € RY satisfies assumptions (1), (2) and (3) so that the above computations
still hold.

The proof of (ii) follows identically but using the probability density function fa(x)
rather than fi(x). O

5.2 Random matrix estimates

Lemma 5.4. Suppose that V' is an n-dimensional complex Hermitian inner product space
with orthonormal basis {e;}I",, and u is a Haar random unitary matriz in U(V'). Then,

1. For any fized vector B = 3_1<; j<p Bij€i®€; € VoV with Bij € C, Yo1<ij<n 1Bi|> < C
and >4 By =0, for any 1 <k <n, and any T > 0 we have

nT n
Pucuvy ([(B, uer @ uég)| > T) < 6e 320 42" 6.

14



2. For any fized vector o = 3 1< j<,, aijei®e; € VOV with aij € C and -1 <; j<p |aij|* <
C, forany 1 <k <mn, and any T > 0 we have

nT n
Pucvvy (|Re(a, ue ® ueg)| > T) < 6e 320 4 2¢” 6.

Proof. Proof of Part 1. We have |(8, uey, ® ueg)| = [(u=! Muey, e;)| where M € End(V) is
the operator defined by M (e;) = >, fijei. The conditions on § imply that M has zero
trace and Hilbert-Schmidt norm bounded by v/C.

Write M = Hy +iHy where H; def 1 5 (M + M*) and Ho def 1Z, (M — M*) are Hermitian
operators. We have || Hi||%g + ”H2||HS = ||M|j}s < C and hence

tr(Hy) = tr(Hz) =0, |Hilhs, [Halfs < C.

Also,

T
P(I(3uce 0 Tm) | 2 T) < Y- B (™ Hiven )] = 5 ). (52)
1=1,2

Since each H; is Hermitian, it is conjugate to a real diagonal matrix D; with the same
Hilbert-Schmidt norm and trace zero by a unitary operator, and by bi-invariance of Haar
measure, we obtain

T T
P (|<u1Hiuek,ek>| > 2) <P <|(u1D,~ue1,el>| > 2) .
We treat only D, as the bound for D is the same. Thus we can assume that Hy = Dy =
diag(A1, ..., Adimy) with
dAi=0, YN <,
i i

and we have
](u_lDiuel, €1>‘ = Z )\i|ui1|2.
i

As is well-known® the entries u;; = ﬁni where 7; are independent standard complex
normal random variables and

def n ) 1 2n
N = Z mi|* = §ZYi
i=1 i=1

where Y; are independent y3 random variables. Hence by Lemma 5.1

o3

P (N < Z) <es. (5.3)

n

Thus with probability at least 1 — e, we have N > 5. We have

1

|(u™ Due1,61> IN

ZAX

5A Haar random unitary matrix can be obtained by considering a random matrix whose entries are i.i.d.
standard complex normal random variables, and then making the columns orthonormal by a Gram-Schmidt
procedure on the columns (see for example §§1.2 of | ]). Carrying out this algorithm starting with the
15 column just normalizes the column.
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where X; are independent x3 distributed random variables, and so by Lemma 5.2 Part (ii)

with C = C and A = VC
nT nT _nT_
> )< (24— 8VC 5.4
- 4)‘( 4\/0)6 (54)

'

Combining (5.3) and (5.4) then gives

n

> XX

i=1

3

P (‘(u_lD'uel €1>| > T) < <2+ nT) efsy\L/TE -|—e_% < 3@73;\7/% +e 6
(3 9 - 2 — 4\/5 -~ .

Part 1 then follows from (5.2).

Proof of Part 2. This is similar except here we let M € End(V') be the operator defined
by M(ej) = >_; ajje; and write M = S+ R with S = ey (M +MT) and RY 1L (M MT>
where transpose is defined with respect to the real inner product Re(o,o>. We have
u? Ru = 0 so R makes no contribution to {(a,ue;, ® uey).

The rest of the proof follows analogous lines to the proof of part 1, diagonaliz-
ing the real and imaginary parts of S by orthogonal (unitary) matrices. This leads
to bounding P (’Re( oA > %) and P (|Im( TN > %) where \;, A, € R,
S A2, 3 (M) < C and n;, 1 <i < n are independent standard complex normals. For the
first we have

(e ()| = ) =2 (et 2] )
- nT
=P<;)\i(Xz‘—YE) > 2)

where this time, X; and Y; are independent x? distributed random variables. One can
apply Lemma 5.2 Part (i) with

def )\1 ifizl,...,n,
a; =
Qi ifi=n+1,...,2n

- nT nT T
P | Re (me) > ) < (2+)e e
( = 1 2/C

Dealing with P (|Im (P Ain2)| > %) is similar. These lead to the stated result. O

to obtain

Lemma 5.5. Suppose that V is a real inner product space with n © Yim V. Then for any

fized vector B = 3 1<, j<p Bijei ®€; €V ® f/, 2 o1<ij<n sz! < C and Y Bi =0, for
any 1 <k <n, and any T > 0 we have

POEO (|</3a0€k®0€k>| >T) < 6e 32\F 192 15

Proof. This is just the real version of Lemma 5.4 Part 1. The proof is along exactly the
same lines, using that the first column of an orthogonal random matrix is obtained by
choosing independent standard real normal random variables as the entries, and then
normalizing. Accordingly, one ends up using Lemma 5.2 Part (ii). O
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6 Proof of main results

Let (m,V) € G be an irreducible representation of G, 1 < 5,k <n 4t Qim Viand f: G — R
have zero mean. The randomness of the basis enters into the error term given in Proposition
4.1 via the quantities

<d,2‘v S Ho)r @ Do)l @ i), ®wV>

geG

dim
< |G|sz )(vk®vk)wy®wy>.

geG

def def
Accordingly, let v = v,‘;, e = eV and

def dimV . def dimV
== g 2 Do, vE =53 1) @)  (6.1)
9eG geG
We write
def
Z Tije; @ €j, y = Z Yijei © ej (6.2)
7] 1 ,] 1

for some x;;, y;; € C. The vectors x and y satisfy the following properties.

Lemma 6.1. Let z be defined as in (6.1) and (6.2). Then,

/117, dim V
(Z) an 1 ’xl]P n] 1’ Z]|2 Z‘ZTi and

(ii) > xii = 0.

Proof. Using (6.2), we see that >, ; |zi|* = (z, ), and so computing this inner product
with the expression (6.1), we obtain

(dim V)? . . . .
>l = GE ZZf ®@7)(g)(v @ 0), (r @) (h)(v© D))
ij g
(dim V)2
e 220 m(g)v, m(h)v)[*
g
dim V)2 f(g —|— f
< S 2 e VOO e, iy
g
(dim V)2 2
f 2
e SV g S lrtaen(he)
lelV
| | ||f”€2)
with the last equality following from Schur orthogonality. The same bound holds for y
since (di V
im
>yl = B ZZf m(g)v, m(h)v))?.
ij g

To prove (ii), we see from (6.2) that Y, z;; = (x,>; €; ® €;). Computing this inner product

17



with (6.1

) we obtain

§ Tis = — A7
7

B dimV

B dimV

B dimV

since f has mean zero.

d1m V

|Gl

g

|Gl

g

|Gl

g

Zf Z
> flg

> Flg) =

> Fg) (x(g)v, ™

O

The following bound applies to the error terms that arise from random basis elements

coming from complex non-self-dual or quaternionic representations (type 1 or type 2 in the

previous language) in Proposition 4.1.

Proposition 6.2. Let (m,V) € G be an irreducible representation of G that is either

complex non-self-dual or quaternionic. Then, for any t > 0 and indices 1 < 1,5 <n def

dimV,

Puev vy (

and

Pueu vy (

dimV
Re
< G

< dimV

geG

> flg)

gelG

(m@m)( )(vf@vi)ue ® ue; > >

S fo)r @ D) @) @) uel © uv>

sl )
N

tvdim V. dlm Vv

< 6e~

sl )
2f

\/dlm 1%

< 6e~

+ 2e”

+ 2e”

dim V.

6

dimV

6

\%

Proof. This follows by combining the respective parts of Lemma 5.4 and Lemma 6.1, with
1£1l2
t £

Y

(el

oV and T =

[<h

O

The next bound applies to the other error terms coming from real representations.

Proposition 6.3. Let (m,V) € G be a self-dual real irreducible representation of G and
1<4,57< n dim V', then for any t > 0,

Pocowvy) (

Proof. Let

dimV
G

{

> fl9)

geG

Voo oV
(9)(v) @, )oej ®oej>

18

NSl )
>ty

dlm Vv

< 66_

+ 2e”

mV

)
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Expanding z over the basis {e} ® é}/}m of V ® V we obtain

T = wae ®e

1,j=1

for some x;; € C. Because in this case, the inner product is extended from a real inner
product on the real subspace V; (cf. §§§3.2.1), and all oe; € V;, we have

Re <ZL’, oe}/ ® oe}/> = (B, oe}/ ® oe}/>

where 3 = Z” 1/6’2] , ®€é 51] def Re(z;). We thus have >ij \5ij|2 < > \a:ij|2 <

2 1.
W”ﬁ% and ), Bi; = 0 using Lemma 6.1. We can apply Lemma 5.5 to get the result. [

We are now ready to combine the probabilistic estimates of Propositions 6.2 and 6.3
with the deterministic error estimate of Proposition 4.1 to prove Theorem 1.8.

Proof of Theorem 1.8. Recall the probability space (X,P) and the notation used for the
elements of the random eigenbasis constructed in §3. For each k = 1,..., M, we define

fro=fu— ‘%” > gec fr(g) and set

. def dimV
Fi(m,i,J, fr) = < ka ) (9) () @v)), ue}/®ue}/> ,
geqG
.. def dimV ~ v 7
Fy(m,i,4, fr) = |Re BER ka(g)(ﬂ®77)( (v @), uej @uej )i,
geqG
€ d V . ~—
Fs(m,i, j, fr) R < = ka (m®7%)(g )(vf@vy),oey®06y> ,
geqG

where in F} and F5 we assume V is not real and in F3 we assume that V is a real
representation. In all cases, we may assume that 7 is non-trivial since this is a one
dimensional representation with corresponding eigenspace spanned by the constant function
for which the desired estimates trivially hold.

Let & denote the event that some Fi(m,1,7, fi) or Fa(m, 1,7, fr) with (m, V) complex
or quaternionic, or some F3(m, 1,7, fi) with (m, V') real satisfies

. . fxlle2
Fy(m, i, j, fr) > 1 :
2V/|G]
By carrying out a union bound over all m € G — triv, all functions fi,..., fa in the

collection, and 1 < 4,57 < dimV with the estimates from Propositions 6.2 and 6.3, we
obtain

PE) <2M Y (dimV)? (66—“%3“ it 26—‘“‘1“5) (6.3)
(7,V)eG—triv

Now assume we have a basis B C £2(V(G)) that is not in &, and let ¢ € B. Then, for any
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of the functions f, since || fx||2 < ||f]|2 we obtain from Proposition 4.1 that

1 f
> @)ool = 15 X o) < | kge
9ed geG | |
This completes the proof. -

The proof of Theorem 1.1 is then immediate.

Remark 6.4. The proofs of Theorems 1.1 and 1.8 simplify if one only wishes to consider
complex-valued eigenbases. The construction of these bases is similar to §3. Indeed, given
an irreducible representation (7, V) of G, let {v)'} be an orthonormal basis of V consisting
of m(A) eigenvectors and let {w;/} be any other orthonormal basis of V. The collection

{ij®v}/:i,j:1,...,dimV}

forms an orthonormal basis of V ® Vcorresponding to the following orthonormal adjacency
operator eigenfunctions
(9) & Y2

i j\g € <7T(9)UZV7?U}/>

in /2(G). To randomize this basis, we fix an orthonormal basis {e}/} j of V and then given
a Haar random unitary operator u € U(V), we set w}/ = ue}/ foreach j=1,...,dimV.

The upper bound obtained in Proposition 4.1 for type 3 basis elements then holds for
the collection {(plvj} but with the real part in the upper bound replaced by the absolute
value; the proof of this is analogous. Expanding the vectors in the inner product for this
upper bound as in §6, we recover Lemma 6.1 identically. Thus, we can combine Lemma
6.1 and part 1 of Lemma 5.4 to prove the same probabilistic bound in the first part of
Proposition 6.2 (without the real part) for the go}f ;- Theorems 1.1 and 1.8 then follow via
a union bound over the irreducible representations and basis vectors as in the proof of
Theorem 1.8. In fact, in the complex-valued basis case, one may take the functions to be
complex-valued.

Proof of Corollary 1.3. We use Theorem 1.1 with ¢t = 64(e + I)M. Then,

VO(G)
IM Z (dim V)Q (66_N(}3iinv n 2e_dirln2V) < 12M’G‘€_(8+1)10g(|G|) +4M‘G’6_¥,

(7,V)eG—triv

and so requiring that both terms in this summation are less than % gives the required
bound on M for a basis satisfying (1.4) to exist. O

Proof of Corollary 1.6. Since the collection of subsets A; satisfy the bound ¢|G|'™" <
|A;| < C|G|'~" on their size, there are at most 1|G|7 of them. We take ¢ = 128116

V/2(G)

that when |G| is sufficiently large (dependent only upon c and 7), we have 121|G|7~1 +
4%|G|77He_$‘c’v|n+E < 1. Thus by Theorem 1.1 if one takes the functions to be the at most
%|G | indicator functions on the sets A;, there exists an orthonormal eigenbasis B such
that

fo[Af] — |Ail | _ 128log |G| v/[Ai] _ 128log |G |A]
G T gt VIGE T yela)eE |G
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for every ¢ € B and each set A;, with the last inequality following from /| A;| <
[Ai] O
velG| 2
Proof of Proposition 1.7. For Sym(n), we firstly note that the sign representation is one-
dimensional and the corresponding eigenfunctions are spanned by the function assigning 1
to even permutations and —1 to odd permutations and thus these eigenfunctions already
satisfy the QUE bound exactly after normalization. When doing the randomization in the
proof of Theorem 1.8, we thus only require the union bound to run over the non-sign and
non-trivial permutations. In other words, for Sym(n), Theorem 1.1 holds when

n\/T im
oM, 3 (dim V)? <6e_t B 2e—duv) <1,

J———

(m,V)€eSym(n)—{triv, sign}
instead. Now, consider ¢, = 192%. Since dim V' > n—1 for all non-trivial and non-sign

. . . _tnVdimV _ .
irreducible representations (7, V) we have that e ot < e—3log(dimV) Moreover, for

n > 24 and (7, V) non-sign and non-trivial we have (dim V)Qefdhlgv < (dim V)~ tnle 13,
It follows that

nVdim V. im
2Mp > (dim V)? <6e_t Zas 2€_d12v>
(ﬂ,V)ESy/rn?L)f{triv,sign}
<2M, > @mv)Th| — 2] (64 2n% ). (6.4)

—

(w,V)ESym(n)

The quantity (x.V)eSymn) (dim V)~ is precisely the Witten Zeta function of the symmetric

Sym(n

group at 1. By | , , , ] it is known that

Z (dimV)™' =24+ 0™
(m,V)€Sym(n)

and so (6.4) is O(M,(n~" + n?e~12)). Thus, taking M, = 0,0 (n) is sufficient for the
existence of a basis satisfying (1.5).

In the case of Alt(n), we note that any irreducible representation corresponds to two
irreducible representations of Sym(n) and so Z(mv)em)(dim V)l=14+0(®1). In
addition, ®(Alt(n)) > n — 1 and so an identical argument to the case for Sym(n) (this
time there is no sign representation) gives the same result for Alt(n). O
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