
DeepShuffle: A Lightweight Defense Framework against Adversarial Fault Injection
Attacks on Deep Neural Networks in Multi-Tenant Cloud-FPGA

Yukui Luo
Northeastern University

luo.yuk@northeastern.edu

Adnan Siraj Rakin
Binghamton University

arakin@binghamton.edu

Deliang Fan
Johns Hopkins University

dfan10@jhu.edu

Xiaolin Xu
Northeastern University
x.xu@northeastern.edu

Abstract—FPGA virtualization has garnered significant indus-
try and academic interests as it aims to enable multi-tenant
cloud systems that can accommodate multiple users’ circuits
on a single FPGA. Although this approach greatly enhances the
efficiency of hardware resource utilization, it also introduces
new security concerns. As a representative study, one state-
of-the-art (SOTA) adversarial fault injection attack, named
Deep-Dup [1], exemplifies the vulnerabilities of off-chip data
communication within the multi-tenant cloud-FPGA system.
Deep-Dup attacks successfully demonstrate the complete fail-
ure of a wide range of Deep Neural Networks (DNNs) in a
black-box setup, by only injecting fault to extremely small
amounts of sensitive weight data transmissions, which are
identified through a powerful differential evolution searching
algorithm. Such emerging adversarial fault injection attack
reveals the urgency of effective defense methodology to protect
DNN applications on the multi-tenant cloud-FPGA system.

This paper, for the first time, presents a novel moving-
target-defense (MTD) oriented defense framework DeepShuffle,
which could effectively protect DNNs on multi-tenant cloud-
FPGA against the SOTA Deep-Dup attack, through a novel
lightweight model parameter shuffling methodology. DeepShuf-
fle effectively counters the Deep-Dup attack by altering the
weight transmission sequence, which effectively prevents ad-
versaries from identifying security-critical model parameters
from the repeatability of weight transmission during each infer-
ence round. Importantly, DeepShuffle represents a training-free
DNN defense methodology, which makes constructive use of the
typologies of DNN architectures to achieve being lightweight.
Moreover, the deployment of DeepShuffle neither requires
any hardware modification nor suffers from any performance
degradation. We evaluate DeepShuffle on the SOTA open-
source FPGA-DNN accelerator, Vertical Tensor Accelerator
(VTA), which represents the practice of real-world FPGA-DNN
system developers. We then evaluate the performance overhead
of DeepShuffle and find it only consumes an additional ∼3%
of the inference time compared to the unprotected baseline.
DeepShuffle improves the robustness of various SOTA DNN
architectures like VGG, ResNet, etc. against Deep-Dup by
orders. It effectively reduces the efficacy of evolution searching-
based adversarial fault injection attack close to random fault
injection attack, e.g., on VGG-11, even after increasing the

attacker’s effort by 2.3×, our defense shows a ∼93% improve-
ment in accuracy, compared to the unprotected baseline.

Index Terms—Deep Neural Network, Security, Defense, Multi-
tenant Cloud-FPGA

1. Introduction

Public leasable cloud computing infrastructures have
witnessed significant growth in recent years and become
the main workhorse for accelerating diverse computation-
intensive applications, such as Deep Neural Network (DNN)
based AI. One of the main contributors to these high-
performance cloud infrastructures is the underlying hard-
ware accelerators, e.g., the graphic computing unit (GPU).
These emerging cloud infrastructures can be configured to
offer two types of services, i.e., platform as a service (PaaS)
[2] and infrastructure as a service (IaaS) [3], which not
only store and manage data but also enable the deployment
of systems, computation tasks, and data processing in the
cloud.

To fully exploit the benefits of cloud infrastructures,
the leading cloud service vendors, like Amazon AWS [4]
and Microsoft Azure [5], have adopted techniques in the
following two directions: hardware virtualization and inte-
gration of high-efficiency hardware accelerators. Currently,
these vendors have achieved virtualization of traditional
hardware components, such as CPUs, GPUs, and DDR
memories, by executing a virtual machine monitor (VMM),
yet the ‘Hypervisor’ [6]. More recently, these cloud service
vendors have started integrating new hardware accelerators,
like field programmable gate array (FPGA), into their cloud
servers, for the following reasons. Unlike the conventional
hardware accelerators like CPUs and GPUs that optimize
instruction streams for acceleration, FPGAs allow users
to directly reconfigure the underlying gate-level hardware
resources. Such flexible and direct control flows combined
with customized hardware lead to significant performance
and energy efficiency improvement. For example, AMD Xil-
inx’s high-end AI Adaptive Compute Acceleration Platform
(ACAP) card VCK5000 [7] achieves ∼1.8× frames per
second per watt (FPS/W) compared to the Nvidia Ampere
flagship GPU: A100 SXM [8] in a standard MLPerf [9]
benchmark (Inference ImageNet with ResNet-50) [10].

Compared to the mature hardware virtualization tech-
nologies for CPU and GPU, FPGA virtualization in the
cloud is an emerging topic and has received great attention
in recent years, but is still in its infant stage. Most existing
works in this domain have focused on enabling resource
sharing on cloud-FPGA, i.e., for multi-tenancy. For example,
in [11], Zha et al. proposed solutions to relax the tight cou-
pling between FPGA applications compilation and resource
allocations. Meanwhile, several other works target building
end-to-end frameworks to enable multi-tenant cloud-FPGA,
including AmorphOS [12] built on the AWS EC2 F1, Coyote
[13] built on AMD-Xilinx Heterogeneous Accelerated Com-
pute Clusters (HACC), and OPTIMUS [14] built with Intel
Hardware Accelerator Research Program (HARP) platform.

Although encouraging, the current development of such
multi-tenant cloud-FPGA has mainly focused on perfor-
mance, leaving the security perspective largely under-
explored. Specifically, the sharing of critical hardware re-
sources, e.g., the power supply, enables “indirect” interac-
tion between the circuit applications of different users. As
a result, a number of recent works have demonstrated the
vulnerabilities of multi-tenant cloud-FPGA associated with
diverse applications.

In a recent USENIX Security’21 work [1], Rakin et al.
presented an adversarial fault injection attack framework,
Deep-Dup, which leverages the supply voltage fluctuations
and a side-channel-guided attacking controller to inject well-
timed faults at run-time to degrade the performance of DNN
models executing in a cloud-FPGA context. The Deep-
Dup attack successfully demonstrates complete fail of wide
ranges of neural networks in a black-box setup (assuming no
availability of neural network architecture, weight parameter
values, training/test data, etc.), with only injecting fault to an
extremely small amount (tens out of millions) of sensitive
weight data transmission packages from external memory
to on-chip buffer. Its high attack efficiency and efficacy are
achieved through a powerful differential evolution searching
algorithm that could leverage the repeatability property (i.e.,
fixed pattern) of weight parameter transmission during each
inference round. Although compelling, the Deep-Dup work
also has several critical limitations and future works:

(i) The victim DNN models used in [1] are primarily
handcrafted at the register-transfer level (RTL), which do not
accurately reflect the SOTA design practice, i.e., generating
high-performance DNN models with contemporary FPGA-
DNN compilation frameworks. In this paper, we opt for
Versatile Tensor Accelerator (VTA) [15], an open-source,
instruction-flow-driven DNN accelerator that is more suit-
ably utilized in the cloud environment. VTA not only enables
customization for IaaS but is also well-suited for Deep
Learning as a Service (DLaaS), as this accelerator is highly
optimized and supported by a mature software compiler:
Apache TVM [16].

(ii) The underlying attacking principle and its impact
on the DNN model behaviors is still unclear. For example,
how do the injected faults propagate through the DNN
model layer by layer and finally affect the final inference
results? What are the impacts on the DNN feature space

with adversarial fault injection? Investigating such questions
is important in understanding the attacking principle, thus
developing effective defense strategies.

(iii) Most importantly, to the best of our knowledge,
there is still no effective systematic defense framework
against such Deep-Dup like adversarial fault injection.

The followings are the main contributions of this work:
• We prototype a multi-tenant cloud-FPGA using the

SOTA open-source acceleration framework and accel-
erator: Apache TVM [16] and VTA [15], to gener-
ate DNN model implementations, towards formulating
generic study and evaluation platform. Using such SOTA
experimental setup, we re-implement the end-to-end at-
tack flow of Deep-Dup to re-calibrate its applicability
on the VTA-generated DNN model deployment.

• We conduct thorough and detailed analyses of neural
network model behavior under Deep-Dup generated ad-
versarial fault injection. In particular, we focus on the
input feature maps for both the clean model and the
post-attack model. We visualize the layer-wise feature
map changes to conduct fine-grained analysis. Through
such studies, we discover that adversarial fault injection
mainly introduces three types of changes to neural net-
work models: brightness fluctuation, erasing the existing
feature, and creating void features that do not exist.

• Gaining knowledge of the principle of Deep-Dup
like adversarial fault injection on DNN model execu-
tion, we develop DeepShuffle, a moving-target-defense
(MTD) oriented lightweight defense strategy. Specifi-
cally, DeepShuffle constructively utilizes the layer-wise
data-dependency and convolution channel-wise indepen-
dency to shuffle DNN model parameters at run-time,
so as to break the foundation of these searching-based
adversarial fault injection attacks, which mainly leverage
the repeatability property (i.e., fixed pattern) of weight
parameter transmission during each inference round to
identify the most sensitive weight parameters. It thus
significantly improves the robustness of a DNN model
against adversarial fault injection attacks.

• We embed our proposed DeepShuffle framework in an
end-to-end multi-tenant cloud-FPGA and conduct a thor-
ough analysis of its working principles. We test the
effectiveness of DeepShuffle against adversarial fault
injection attacks on different vision datasets like CIFAR-
10, ImageNet, and speech command recognition dataset,
as well as with various DNN architectures (e.g., VGG,
ResNet, and MobileNet), where Deep-Dup has already
been successfully demonstrated. Our experimental re-
sults demonstrate that DeepShuffle can enhance the ro-
bustness of a wide range of DNNs. For example, for the
VGG-11 implementation on VTA, even after increas-
ing the attacker’s effort by 2.3×, our defense shows a
∼60% (un-targeted attack) & ∼93% (targeted attack)
improvement compared to the baseline in accuracy after
an attack. To achieve this strong defense performance,
DeepShuffle does not require any training stage over-
head and also maintains the model performance (e.g.,
accuracy) for benign (i.e., no attack) operation.

• We validate the effectiveness of DeepShuffle in very
extreme scenarios like black-box setup. Furthermore, we
envision a strong attacker who even has the knowledge
of the shuffling principles of DeepShuffle and strives
to bypass its protection. Our experiments show that
DeepShuffle can still provide sufficient defense capa-
bility against such extremely strong attacks.
The remainder of this paper is structured as follows.

Sec. 2 reviews the background, related works, and the most
commonly used FPGA-DNN acceleration framework, VTA,
along with an explanation of the mechanism behind the
Deep-Dup attack. Sec. 3 presents the threat model and re-
calibrates the performance of Deep-Dup concerning DNN
applications executed on VTA. Sec. 4 delves into the prin-
ciples underpinning DeepShuffle. This section provides ex-
amples of implementing channel shuffling in modern DNN
architectures and demonstrates both the Deep-Dup attack
and the protective effects of DeepShuffle within DNN layers.
Sec. 5 evaluates the performance of DeepShuffle across var-
ious datasets and DNN architectures under both untargeted
and targeted Deep-Dup attacks. Sec. 6 and Sec. 7 discuss
the adaptive attack and defense set, future work, and present
the conclusion.

2. Background and Related Works

2.1. Attacking DNNs in CPU and GPU

The security of DNNs has been challenged by many
attacks, such as the adversarial example attacks that add
imperceptible noise to the input data to manipulate the
inference of DNN models [17], [18], [19]. As mitigation, a
number of defense strategies [19], [20], [21] have been de-
veloped against such adversarial input attacks. These attacks
and defenses are mostly developed from the algorithmic
perspective, leaving the vulnerabilities associated with the
hardware acceleration system under-explored.

Recently, a number of hardware-induced attacks have
been proposed against the security of DNN models. Yao et
al. [22] propose to inject faults on DNN models executed
on a CPU, using the so-called Rowhammer attack [23] to
flip the critical model parameters (e.g., the quantized weight
values) stored in DRAM, so as to degrade the inference
accuracy of DNN models. In [24], Yan et al. demonstrate a
successful DNN model architecture extraction attack using
the cache side-channels. Similarly, Zhu et al. [25] shows
an attack that recovers a whole model by monitoring the
plaintext packets transmitted over the PCIe bus of a GPU.
Correspondingly, several defense mechanisms have been
developed against the hardware-induced attacks [26], [27],
[28], [29], [30]. For example, reducing the bit-width (e.g.,
binary [30]) of the weights of a DNN model is highly
effective in mitigating bit error propagation across layers.
In addition, [28], [29] have developed random DRAM row-
swapping mechanisms to break the correlation between at-
tacker and victim rows.

2.2. FPGA-DNN Acceleration Framework

Various acceleration frameworks have been proposed to
enable the hardware-software co-design of DNN models
to achieve high performance. Apache TVM [16] is a
representative DNN acceleration framework, which supports
diverse hardware platforms, such as CPU, GPU, and FPGA.
Specifically, the Apache TVM framework offers a Versatile
Tensor Accelerator (VTA) [31], an open-source framework
to accelerate DNN models on FPGAs. To bridge the gap
between popular front-end software programs like PyTorch
and Tensor flow, the Apache TVM framework serves as
a compiler to convert the DNN model into an instruction
stream executed by VTA on FPGAs. It offers different
quantization schemes from 32-bit floating point to 8-bit
integers, graph optimization, and tensor optimization to gen-
erate VTA-executable instruction streams. These instruction
streams can be optimized for different FPGA devices, and
Apache TVM also provides corresponding optimization and
auto-scheduling tools called Ansor [32] to explore the best
model candidate for a specific FPGA device.

2.3. Multi-tenant Cloud-FPGA

The software-programmable devices like CPU or GPU
can be easily managed by the hypervisor. In contrast, FP-
GAs enable users to directly reconfigure the underlying
hardware resources, which presents a unique challenge for
virtualization. Enabling multi-tenancy in the cloud-FPGA
is an emerging topic that receives great attention from
both industrial and research communities. In addition to
the recent FPGA virtualization technologies presented in
Sec. 1, there are also many industrial advancements, such
as the Stacked Silicon Interconnect (SSI) technology from
Xilinx [33], which integrates multiple dies into a single
FPGA chip to provide ultra-high interconnect bandwidth,
lower power consumption and 1

5 the latency of standard
I/Os between dies. Dynamic Function eXchange (DFX)
technology [34] is another recent technology that facilitates
the development of multi-tenant cloud-FPGA. It has been
developed and integrated with the SSI technology in the
high-end FPGAs like Xilinx Alveo U280 [35].

2.4. Attacking DNNs in Multi-tenant Cloud-FPGA

A malicious cloud-FPGA user can use power-hungry
circuits [36], [37], e.g., a number of ring-oscillators [38],
to suddenly increase the power demand and fluctuate the
voltage supply. As a result, the circuit applications (of other
users) will be possibly injected with faults. Leveraging such
attacks, Krautter et al. [38] successfully extracted the key
of advanced encryption standard (AES). In [39], Tian et al.
demonstrate how to remotely extract the DNN architecture
on a multi-tenant cloud-FPGA.

The main adversarial fault attack case study used in
this paper, i.e., Deep-Dup [1], adopts similar attack schemes
to inject faults on DNN models running on a multi-tenant
cloud-FPGA. Deep-Dup takes full advantage of practical

layer-wise DNN model execution on an FPGA, i.e., there
exist frequent data (model parameters) transmission between
the on-chip and off-chip memories. Launching attacks dur-
ing this transmission process causes the on-chip weight
buffer to acquire and retain erroneous data, effectively
implementing adversarial weight injection at the hardware
level. Deep-Dup implements a complete black-box attack
process. It applies an on-chip sensor like the Time-to-
Digital Converter (TDC) to identify the computation and
data transfer of the victim DNN inference application. Com-
bined with the progressive differentiate evolution search (P-
DES) algorithm, the Deep-Dup attack can profile and launch
appropriate fault injections during each data transmission.

3. Threat Model and Baseline in this Work

3.1. Threat Model

Without loss of generality, we adopt the same threat
model for multi-tenant cloud-FPGA used in related hard-
ware security works [1], [36], [38], [39], as well as the
FPGA virtualization works [11], [12], [13], [14]. The threat
model has the following characteristics. There are multiple
users who can run their circuit applications simultaneously
on the same cloud-FPGA, with the assumption that the
hypervisor of the cloud service is trustworthy. For security
concerns, the circuits of different users are independent, i.e.,
their circuit applications are physically isolated. Each FPGA
tenant has the ability to program their application as long
as there is sufficient hardware resource. For example, the
attacker can implement power-hungry circuits to inject faults
into the victim DNN models. Following [1], we also assume
that the attacker knows the type of data being transmitted
between the on-chip and off-chip memories, e.g., either a
DNN model or input data. Note this can be achieved using
the TDC-based side-channel [1], [38], [39].

3.2. General Experimental Setup in This Work

FPGA-DNN Prototype: We build a multi-tenant FPGA
prototype using a ZCU104 FPGA [40], for the following
two reasons: (i) The used FPGA device ZCU104 has similar
hardware configurations (e.g., ARM core and on/off-chip
memories) to these high-end FPGAs in the commercial
cloud like AWS F1 [41] and Alibaba Cloud F3 [42]; (ii)
With a local-accessible prototype, we will be able to con-
duct fine-grained analysis, especially to control the timing
of fault injections. In contrast to the existing works that
mostly use a handcrafted DNN accelerator as the victim
implementation [1], [43], we resort to the SOTA open-
source VTA framework as the DNN accelerator. The most
notable difference between these two setups is that VTA is
a highly optimized FPGA-based accelerator offering several
advanced features like parallel computing, enabling us to
mimic real-world design practice.

Victim: In our setup, the victim utilizes the VTA as
the FPGA-DNN acceleration framework. The victim may

represent a user who deploys his/her own accelerators on the
cloud-FPGA for inference acceleration, or a service provider
offering deep learning as a service (DLaaS). As an instruc-
tion flow-driven DNN accelerator, VTA has specific weight-
loading instructions to transfer the DNN model parameters
from the onboard DRAM to the on-chip memory (BRAM),
which creates attacking opportunities for a Deep-Dup attack.

Attacker: We assume the attacker is a malicious cloud-
FPGA user whose circuit application is co-located with the
victim user’s, i.e., the VTA-based FPGA-DNN accelerator.
Specifically, the attacker can use malicious power-hungry
circuit to corrupt the inference flow of the DNN accelerator.

Un-targeted and Targeted Attacks: We define two
attacking objectives following [1]: (i) Un-targeted attack that
aims at degrading the overall inference accuracy of a DNN
model, i.e., for all input classes; (2) Targeted attack that only
causes misclassification of a specific (target) input class.

3.3. Baseline in This Work

No. of Attack Rounds
20 40 60 80 100 120 140

100

80

60

40

20

0

Ac
cu

ra
cy

 (%
)

V-Top5
V-Top1
M-Top5
M-Top1

(a)�UnͲtargeted attack performance comparison

No. of Attack Rounds
20 40 60 80 100 120 140

100

80

60

40

20

0

Ac
cu

ra
cy

 (%
)

V-Top5
V-Top1
M-Top5
M-Top1

(b) Targeted attack performance comparison

Figure 1. Deep-Dup attack on different accelerators. (a) Test accuracy
degradation due to Un-targeted attack. (b) Targeted attack on class-269.

Since VTA has a highly optimized architecture, e.g., a
GEMM core offering multiple input and output channels,
which is significantly different from the previous hand-
crafted FPGA-DNN accelerators. Therefore, we first rebuild
the baseline in this work, using VTA as the victim acceler-
ator. To get comprehensive conclusions, we conducted both
un-targeted and targeted attacks that uses the “grey wolf”
of class-269 as a case study. Furthermore, we manually
made DNN models for comparison. The attacking results
for both DNN accelerators are illustrated in Fig. 1(a) and
(b), respectively, in which we show the Top-5 and Top-1
inference performance for the manually (“M”) generated
DNN accelerator and VTA (“V”), under different attacking
conditions. As shown in Fig. 1, VTA is more robust than
the manually made DNN accelerators against adversarial
fault injection attacks. The main reason is VTA executes the

1st Conv2D layer and the last fully connected (FC) layer
outside the FPGA hardware, i.e., on the ARM processor.
In the remainder of this paper, we use the VTA attacking
results as the baseline. Additionally, in Sec. 5.6, we conduct
a fine-grained analysis to investigate the layer-wise impact
of adversarial fault injections on VTA.

4. Our Proposed Defense: DeepShuffle

4.1. Revisiting Hardware-induced Adversarial
Fault Injection Attacks on DNNs

Although most hardware-induced fault injection attacks
on DNNs can be conducted in a random manner, i.e., do not
follow certain rules, none of these SOTA advanced attacks
adopts this strategy. The reason is simple, the fault injection
attacks on DNNs mainly target manipulating the model
parameters like weight values. Due to the ever-increasing
size of modern DNN models, there exist a large number of
such candidates, making random fault injection less efficient.
For example, injecting faults to randomly selected model
parameters may only introduce trivial performance loss, as
demonstrated in [1], [22]. As a result, most SOTA fault
injection attacks are conducted in an adversarial manner.
Taking the DeepHammer attack [22] and Deep-Dup [1] as
examples, they both employ searching framework to identify
the most critical attacking opportunities. Similarly, other
hardware-induced fault injection attacks, e.g., using laser
beams [44], also require the attacker to focus on a specific
area of the victim chip.

4.2. DeepShuffle: A Channel-Wise Shuffling De-
fense for DNN Models at Run-time

Gaining knowledge of these SOTA hardware-induced
attacks on DNNs, we conclude that accurate profiling of
the attacking opportunities associated with specific model
parameters (e.g., layer or weights) is critical to make these
attacks efficient and stealthy. Therefore, an efficient defense
method is to invalidate such profiled attacking opportunities.
To achieve this goal, we propose a lightweight defense
framework DeepShuffle that adopts the so-called moving
target defense (MTD) philosophy.

Although this defense philosophy is straightforward, it
is nontrivial to deploy such a strategy in practice due to
the strong data dependency between different DNN model
layers, since any improper change in the model structure or
parameters will render the inference result to be incorrect.

Key observation: We analyze the representative DNN
model architectures shown in Fig. 2(a), and find that the
2D convolution (Conv2D) layer is the most fundamental
building block. Typically, the inputs to such a layer consist
of three parts:

(1) A 4-dimensional input feature maps (IN) with size
(N , IC, Hi, Wi), where N denotes the batch size, rep-
resented by n ∈ [0, N − 1] for the nth batch, IC is the
input channel size represented by ic ∈ [0, IC − 1] for the

icth input channel, and Hi and Wi stand for the height and
width of the input feature map, respectively.

(2) A 4-dimensional kernel (W) with size (IC, OC, Kh,
Kw), where each 2-dimensional plane with height (Kh) and
width (Kw) is referred to as a filter. In other words, a kernel
contains IC×OC filters, w OC is the output channel size,
represented by oc ∈ [0, OC−1] for the octh output channel.

(3) A 1-dimensional bias (b) with size OC. The output
(O) of a Conv2D layer can be expressed as a 4-dimensional
tensor with size (N,OC,Ho,Wo), where Ho and Wo de-
pend on the padding method, Kh, Kw, and the stride size for
the filter sliding during the execution of the cross-correlation
operator (⋆) [45], see Eq. 1.

Conv2D௜ Conv2D௜ାଵ

...

Conv2D௜ Conv2D௜ାଵ

...

(a) Original model

(b) Shuffled model

Passive Channel
Shuffling (PCS)

Active Channel
Shuffling (ACS)

feature
maps

݋ܿ݋
ȭ

Input
channels

output
channels

feature
maps

Input
channels

output
channels

filter

ܱሺ݊ǡ ሻܿ݋
ȭ݋ܿ݋

Figure 2. Illustration for Active and Passive Channel Shuffling. The green
and yellow channels are exchanged from (a) to (b).

We can see from the original model in Fig. 2 (a), al-
though different model layers have strong data dependency,
such dependency mainly exists along the channel-wise.
Specifically, the convolution result for output channel oc
(O(n, oc)) in the Con2D layer i is the summation of cross-
correlation operator results derived from the corresponding
filters and input channel feature maps, as expressed in Eq. 1.

O(n, oc) = b(oc) +
IC−1∑

ic=0

W (oc, ic) ⋆ IN(n, ic) (1)

We highlight such a channel-wise data dependency with
different colors in Fig. 2. For example, there are three filters
connected to the masked output channel (oc) in yellow,
each of them is cross-correlated with its corresponding
input feature map and added together to produce the output
O(n, oc). From the model inference flow, O(n, oc) bridges
its two neighbour layers, by serving as the output of the ith

Conv2D layer and the input of the (i+ 1)th Conv2D layer.
Inspired by this observation, we propose a training-free

defense strategy, DeepShuffle, which applies channel-wise
shuffling to change the underlying DNN model topology
while still maintaining the original layer-wise inference flow.
Taking the illustrated DNN model in Fig. 2 (b) as an
example, if we change the position of the oc channel within
the 4-dimensional space, e.g., from Fig. 2 (a) to (b), the
position of the output O(n, oc) in the 4-dimensional output
feature map will also change. Following these operations, we

can simply shuffle the input channels of the connected layer
accordingly to ensure computational correctness, without
introducing extra operators.

To clearly describe these channel-wise topology
changes, we define two types of model shuffling: (1) Active
channel shuffling (ACS) that is applied to an earlier (e.g., the
ith) Conv2D layer, which changes the connections between
the input and output channels in that layer; and (2) Passive
channel shuffling, which shuffles the (i+1)th Conv2D layer,
to follow the channel-wise topology change in the ith layer
and ensure the inference correctness.

We summarize these basic operations into the following
two model shuffling principles to guide the implementation
of DeepShuffle:
• Principle 1: For a Conv2D layer i, if we shuffle its

weight parameters along the output channel, the output
feature maps of this layer will be shuffled accordingly.

• Principle 2: If we apply active channel shuffling (ACS)
on a Conv2D layer i following a specific shuffling
rule (SRi), the same rule should also be applied to
its connected layers in order to maintain computational
correctness in the DNN inference without using any
additional operators.

4.3. DeepShuffle: Adaption and Integration with
Different DNN Model Blocks and Layers

How to apply DeepShuffle: As discussed in Sec. 4.1, a
strong attacker can launch adversarial fault injections on the
FPGA-DNN accelerator in a black-box setup, i.e., without
knowing the detailed architecture and weight parameters of
the victim model. Therefore, applying a static or constant
model shuffling rule (SR) cannot fully defend against such
attacks, since it only changes the victim model to another
topology. Instead, we should create a large search for the
SRs and keep updating them, so as to invalidate the profiled
attacking opportunities by the adversary, in accordance with
the moving target defense (MTD) philosophy.

Deploy DeepShuffle in Practice: We propose the fol-
lowing method to integrate with the VTA acceleration
framework. Our proposed method makes constructive use
of the data structure of this accelerator, without making any
modification to its hardware implementations. Specifically,
during the model loading process, VTA stores the weights
in an array following the (IC, OC, Kh, Kw) format. We
use DeepShuffle to read the lengths of IC and OC and
generate a shuffling rule (SR), following which we perform
reordering on the weights, along the IC and OC dimen-
sions. Note that this reorder operation does not reload the
weight array, but merely changes the order of the program
pointers along the corresponding dimensions. Therefore, it
is very lightweight, see Sec. 4.4.

Where to apply DeepShuffle: While the basic prin-
ciples of DeepShuffle are straightforward, it is nontrivial
to integrate them with different DNN model operators and
blocks. We summarize the following SRs:

(1) The input channel of the first layer in a DNN model
should not be shuffled, for the following two reasons: (a)

A

B

...

C

ݕ

Ԣݕ

ܴܵ
௜

A

B

...

C

ݕ

Ԣݕ

D

ܴܵ
௜ା

ଵ

(b) Residual block (c) Residual block
w/ down sampling

A

B

...

C

ݕ

Ԣݕ

[,]

(d) Dense block

BN: ܧ ݕ ǡ ݎܸܽ ݕ ǡ ǡߛ ߚ

ݕ

Ԣݕ

(a) Batch Norm (BN)

A

ܴܵ
௜

ܴܵ
௜

ሾܴܵ
௜ ǡܴܵ

௜ା
ଵ ሿ

ܴܵ
௜

Figure 3. Shuffling examples in various convolutional-based architecture
blocks: (a) Shuffling rule implemented on the Batch Normalization layer.
(b) Shuffling rule distributed in the residual block. (c) Shuffling rule
distribution in the residual block with a down-sampling convolution layer
D. (d) Shuffling rule distribution within the dense block.

Low efficiency. Taking a DNN model for image classifica-
tion as an example, shuffling the input channels of its first
layer will change the structure of the input feature map.
As a result, all inputs must be pre-processed accordingly to
fit the SR. (b) The input channel size of the first Conv2D
layer is very limited. We scan the DNN models in the
Model Zoo [46] and find they all have very small input
channels, e.g., the input channel sizes for Gray, RGB, and
CMYK images are simply 1, 3, and 4, respectively. As a
result, the maximum applicable channel SRs is no more
than 4!. Instead, shuffling the output channel of the first
layer will significantly increase the number of applicable
SRs. Taking a ResNet-18 DNN model trained for ImageNet
as an example, its first Conv2D layer has 64 output channels.
Therefore, if the shuffling is only applied on the output
channel of this layer, we can have available SRs of 64!.

(2) The output channels of the last layer (i.e., the one
that generates logits output) should not be shuffled. The
number of output channels in the last layer is usually equal
to the number of input classes, which are regulated in a
fixed order. Therefore, if any SRs are applied, the user must
also update the class labels (e.g., a lookup table), which is
unnecessary since we can create a large search space by only
shuffling the input channel of the last layer. Again we take a
ResNet-18 model trained with the ImageNet as an example,
the input features to its last fully-connection (FC) layer are
generated by the output channel of the previous Conv2D
layer of size 512, which can generate a huge enough SR
search space of 512!.

Adapting DeepShuffle to modern DNNs: Modern
DNN models have various specialized layers and complex
connectivity patterns in addition to Conv, which requires
special adaptions. We illustrate four representative layers in
Fig. 3 and introduce how to adapt DeepShuffle to them each.
• Batch normalization (BN) layer. As illustrated in Fig.

3(a), a BN layer has a different set of four parameters
defining its channels: running mean (E[y]), running

௦ݐ ௘ݐ

௦ݐ ௘ݐ

ʹ௡ௗ Conv2D layer (a) Original Model Inference

FPGA

...

...

...

Weight
Pointer

Select each
channel
sequentially

Image

...

in
p

bu
ffe

r Accelerator

wgt
buffer ou

p
bu

ffe
r

Label

After DN
N

 inference

(b) Deep-dup attack w/o defense

FPGA

...

...

...

Weight
Pointer

Select each
channel
sequentially

Image

...

in
p

bu
ffe

r Accelerator

wgt
buffer ou

p
bu

ffe
r

Label

(c) Deep-dup attack w/ Deep-shuffle

FPGA

...

...

...

Weight
Pointer

Image

...

in
p

bu
ffe

r Accelerator

wgt
buffer ou

p
bu

ffe
r

Label

Active Channel
Shuffling (ACS)

ʹ௡ௗ Conv2D layer

ʹ௡ௗ Conv2D layer

...

...

...

Processing by
Previous Layers

Passive
Channel
Shuffling
(PCS)

Processing by
Previous Layers

ݐ

ݐ

ݐ

࢏ࢉ࢕

࢏ࢉ࢕

࢏ࢉ࢕

࢏ࢉ࢏

࢐ࢉ࢏

௘ ࢐ࢉ࢏

௘
࢏ࢉ࢏

Figure 4. Visualization demonstrations of the 2nd Conv2D layer in ResNet-18 on ImageNet, showcasing various inference environment scenarios. The
layer’s input and output comprise 64 channels each, and we examine these channels across all scenarios. (a) Normal inference scenarios. (b) Attacker
targeting the weight transmission process, intelligently searching for attacking moments. (c) Application of DeepShuffle as a defense mechanism against
the attack in (b).

variance (V ar[y]), weight (γ), and bias (β). Therefore,
while applying DeepShuffle, we must shuffle all these
four parameters accordingly, to fit the shuffling rule (SR)
inherited from the layer A’s output channels.

• Residual block. We consider two types of residual
blocks used in ResNet. Specifically, one of them has
a down-sampling convolution layer D on the cross-layer
connection (Fig. 3(c)), while the other does not have
(Fig. 3(b)). These two structures share a similarity, they
both add the cross-layer connection to the output, i.e.,
layer C’s output. Differently, the structure in Fig.3(b)
applies the same shuffling rule (SRi) to the output
channels of layers A and C, and the input channel of
layer B, while the structure shown in Fig. 3(c) applies
SRi to layer A’s output channel and layers B and D’s
input channels. The SRi+1 is applied simultaneously to
the output channels of layer D and layer C.

• Dense block. Fig. 3(d) illustrates the unique cross-
layer connection of a DenseNet, which employs con-
catenation at the junction. In this structure, SRi and
SRi+1 must be combined. During concatenation, layer
A’s output comes first, followed by layer C’s output.
Since SRi and SRi+1 represent channel indices, the
latter needs to be added to the former’s total count
during the combination. For example, if layer A has
three output channels with SRi = [3, 1, 2] and layer C
also has three output channels with SRi+1 = [2, 3, 1],
the concatenation will yield six output channels. In this
case, SRi remains unchanged, while each element in
SRi+1 will be increased by three as [5, 6, 4]. The new
combined shuffling rule then becomes [3, 1, 2, 5, 6, 4].
Considering the complexities of modern DNN layers

and their interconnections, we formulate the third design
principle, which aims to make DeepShuffle more generic for
applications across a broader range of DNN architectures.
• Principle 3: In a DNN layer with multiple channels,

it is essential to adapt layers with trainable parameters
meticulously. In contrast, layers without trainable pa-
rameters, such as pooling and activation layers, do not
necessitate any specialized design considerations.

4.4. DeepShuffle: An End-to-End Demonstration

We demonstrate the end-to-end workflow of DeepShuffle
using a ResNet-18 model-based image classifier trained with
ImageNet. To formulate generic conclusions, we conduct all
experiments in this section with a “wolf” image. Meanwhile,
we conduct adversarial fault injections on the original model
(i.e., the one w/o protection) and the model protected by
DeepShuffle, to investigate the fine-grained impacts of the
adversarial fault injection attacks and DeepShuffle.

Original model: We take the 2nd Conv2D layer of the
ResNet-18 as an example to illustrate the data transmission
and processing. The configuration of this layer is [IC, OC,
Kh, Kw, Hi, Wi, Ho, Wo] = [64, 64, 3, 3, 56, 56, 56, 56].
Fig. 4 (a) displays how the original model processes data
using FPGA accelerators in the following steps:

1 The pointer of the DNN weight loading program
points to the starting address of the layer weights stored in
external memory (DDR4), and then transmits them sequen-
tially to the on-chip weight buffer (BRAM) of the FPGA.

2 The DNN program loads the input feature maps of
this layer from external memory to the on-chip input buffer
(BRAM) of the FPGA for inference.

Typical input of a DNN layer has input feature maps and
weights. For certain layers, the size of input feature maps
is much larger than the weights. In accelerator design, the
weights of a layer are usually fully loaded onto the on-chip
weight buffer. However, the size of the on-chip input feature
buffer generally cannot accommodate all input feature maps.
Therefore, DNN accelerators usually perform block-wise
computations for each layer, as detailed in VTA’s blocking
strategy [15]. Therefore, we can observe that the weight
parameters do not change after being loaded onto the on-
chip weight buffer until all computations in this layer are
completed. This is also the root reason an attacker can apply
black-box attacks in Deep-Dup [1].

Model under attack: We deploy the fault injection
attack in [1] on the 2nd layer, assuming the weights of
channel ici are transmitted during the time interval from
ts to te. The results are shown in Fig. 4 (b), from which we
observe a largely changed output feature map, compared
to Fig. 4 (a). Note that such changes will spread and be
amplified in all subsequent layers, ultimately leading to an
incorrect result.

(a) Original model output feature maps
a-1 a-2 a-3

(b) Output feature maps w/ Deep-Dup
b-1 b-2 b-3

Figure 5. Affect examples.

We find three major changes in the feature map changes
caused by fault injections, as illustrated in Fig. 5: (1) Bright-
ness fluctuation (a-1 and b-1); (2) Erasing existing features
(a-2 and b-2); (3) Creating void features that do not exist (a-
3 and b-3). These three changes are fatal and will directly
cause the inference of the input data to deviate from the
preset path. We furthermore evaluate the post-attack impacts
on the 2nd Conv2D layer for all 64 output feature maps. The
results are shown in Fig. 10 in Appendix A.

Model under DeepShuffle protection: We adopt
the same attacking patterns from Fig. 4 (b) to evaluate
DeepShuffle. Simply, we apply random channel shuffling
to the model, which swaps the transmission order of input
channels ici and icj . As a result, the input features and
weights of both channels will be exchanged simultaneously
in the transmission order, as illustrated in Fig. 4 (c). If
the input feature of the icj channel contains little or no
information, the attack at the original time period will be
completely ineffective. The experimental results are shown

in Fig. 4 (c), from which we observe that the oci output is
the same as that of the original model in Fig. 4 (a).

4.5. DeepShuffle against Adversarial Fault Injec-
tion in Black-Box Setup

We note that trivial or static shuffling is not always
sufficient for the following reasons.

(1) The adversary can always increase the number of
fault injections, making any defense less efficient. However,
such attacking practice will also render it less or not stealthy;
thus we do not consider it in this work.

(2) As discussed in Sec. 4.1, advanced searching algo-
rithms significantly help the fault injection attacks, which
may even learn the shuffling rules of DeepShuffle and
bypass its protection, especially for attacks like Deep-Dup
that can be conducted in a black-box setup.

S[(݌ଵ, ݍଵ), (݌ଶ, ݍଶ), ...,
[(௭ݍ ,௭݌) ,... ,(௜ݍ ,௜݌)

Start ݊௧௛iteration

Start a Loop: i

wgt buffer wgt buffer
...

S[(݌ଵ, ݍଵ), (݌ଶ, ݍଶ), ...,
[(௭ݍ ,௭݌) ,... ,(௜ݍ ,௜݌)

Select each
channel
sequentially

Deep-
Shuffle

Select the ݅௧௛weight in set S

mut id Loss

1 63 1.69

2 125 1.78

3 300 1.96

4 89 1.63

index 1 2 ... i ... z

Loss 1.12 1.23 ... 1.75 ... 1.62

Crossover Step

Selection Step

Initialization Step

Fitness Function Evaluation

Mutation Step
(௜ǡ௠௨௧ଵݍ ,௜ǡ௠௨௧ଵ݌)
(௜ǡ௠௨௧ଶݍ ,௜ǡ௠௨௧ଶ݌)
(௜ǡ௠௨௧ଷݍ ,௜ǡ௠௨௧ଷ݌)
(௜ǡ௠௨௧ସݍ ,௜ǡ௠௨௧ସ݌)

Select 3 to update the
݅௧௛ weight index in S

Select 3 to update the
݅௧௛ weight index in S

(a) Original model (b) Shuffled model

mut id Loss

1 45 1.70

2 806 1.79

3 571 1.66

4 36 1.85

Figure 6. The impact of DeepShuffle on the P-DES.

We take the Progressive Differential Evolutionary Search
(P-DES) used in Deep-Dup [1] as an example and analyze
how the DeepShuffle defense could invalidate such advanced
attacks in a black-box setting. We illustrate the mechanism
of P-DES in Fig. 6 (a), which involves the following param-
eters: (1) Fitness function that evaluates the attack objective
at a given attack iteration. (2) The number of evolution z,
which is selected during the initialization step, as shown
in Fig. 6. The more z values, the higher the probability
of finding a more suitable weight candidate to be attacked.
Deep-Dup used z = 500 in their experiments. However, we
found that neither z nor the No. of Attack Rounds alone
can adequately represent the difficulty of deploying a Deep-
Dup on hardware. This is because before deploying Deep-
Dup, the attacker needs to conduct profiling. Therefore, we
define a new metric: “Deep-Dup profiling inferences” (see
Eq. 2). (3) Mutation functions are used to generate new

attack candidates that can directly affect the performance of
the search algorithm. For example, P-DES incorporated 4
mutation methods.

As illustrated in Fig. 6, DeepShuffle can potentially
affect the winner selection of P-DES at two stages. The
first step of the search algorithm is to generate a set of
the initial population with z size and evaluate their loss
function shown in Fig. 6 (a). As shown in 1 , during the
initialization step, P-DES generates z attack configurations,
i.e., referred as candidate. Then, P-DES performs z attacks
one at a time and calls inferences to evaluate the candidate,
i.e., calculating the loss. During this process, DeepShuffle
will randomly shuffle the sequences of these weights, and
thus the loss profile 2 loses its reference index due to
shuffling. For example, consider the above example in Fig.
6 (a), where the highest loss value can be achieved by
the ith index. Ideally, with no shuffle ith index is the
winning candidate among the current population. But after
applying DeepShuffle, the winning candidate in the current
iteration will no longer be at the ith position, completely
disrupting the attacker’s reference point even before starting
the evolutionary search. Note that in our evaluation, we
apply DeepShuffle for every inference call making it even
harder for the search algorithm.

In the next step, P-DES applies mutation to each can-
didate. As shown in Fig. 6 (b), four mutation strategies
are adopted for each candidate i. P-DES evaluates these
four strategies and decides whether to update the attack
configuration corresponding to the candidate i. In Fig. 6 (b),
we show that, without the influence of DeepShuffle, P-DES
uses the 3rd mutation strategy with an id of 300 to update
the current ith candidate in this mutation step. However,
when DeepShuffle applies, the mutation indexes reference
gets shuffled, then P-DES will be “fooled” to select the
same reference mutation index, i.e., the 3rd mutation but
a completely different candidate index of 507, as in 3 . It
will result in selecting the wrong mutation strategy 3rd one
instead of the 4th mutation, resulting in a weaker attack,
i.e., a lower increment in loss value.

In summary, DeepShuffle injects randomness into the
P-DES process when evaluating, mutating, and updating
candidates. This ultimately affects the selection step 4 and
results in selecting the wrong winner candidate. As a result,
we expect the performance of Deep-Dup to deteriorate close
to the level of random attacks.

5. Experimental Analysis

5.1. Experimental Setup

Dataset and DNN Models: We employ popular datasets
covering a wide range of models, including CIFAR-10 [47]
and ImageNet [48], which have different input image sizes
and numbers of classes. CIFAR-10 consists of images with
an input size of 32×32 and 10 classes, while ImageNet
consists of images with an input size of 224×224 and 1,000
classes. We also exhibit the performance of DeepShuffle

across a wide range of DNNs architectures to demonstrate
its compatibility. For CIFAR-10, we conduct inference on
ResNet-20 [49] and VGG-11 [50]. For ImageNet, we apply
ResNet-18, ResNet-50 [49], and MobileNet-V2 [51]. Our
evaluation model architecture follows the same setting as
the prior Deep-Dup attack [1]. In addition, we have added
a new evaluation dataset using Google’s speech command
dataset [52] in the Appendix.

VTA Hardware Configuration: We configure the VTA
hardware as follows.
1) VTA uses 8-bit integer data types for both input and pa-

rameters. The parallel computation module has a 16×16
GEMM kernel, meaning that both input and output
channels have a parallelism of 16.

2) The buffer size for input and output is 32 KiB, while
the parameter buffer size is 256 KiB. The internal result
buffer size reserved for the multiply-accumulate (MAC)
operator is 128 KiB.

3) After testing, we found that the maximum executing
frequency (Fmax) of VTA on ZCU104 is 450MHz. We
set the VTA executing frequency to 400MHz, to ensure
an adequate frequency margin of ∼10%.
General Deep-Dup Configuration: We test the un-

targeted attack on CIFAR-10 and ImageNet, as shown in
Sec. 5.2, and perform targeted attack on CIFAR-10, shown
in Sec. 5.3. We randomly selected 128 & 64 images from
the test dataset for CIFAR-10 and ImageNet to implement
un-targeted attacks, respectively. For the targeted attack, we
choose a specific class, “ship” (class-8), and then randomly
select 128 images from the targeted class for implementa-
tion. Therefore, for these attacks and if the batch size for
each inference is 1, the attacker needs to perform 128 or
64 inference steps for CIFAR-10’s un-targeted and targeted
Deep-Dup, and ImageNet’s un-targeted Deep-Dup, during
the fitness function evaluation.

Evaluation Metric and Hyper-parameters: We utilize
Test Accuracy (TA) as the primary performance metric. TA
represents the percentage of samples accurately classified
by the network. Post-Attack TA refers to the test accuracy
measured after the attack. Moreover, we report the No. of
Attack Rounds required to achieve the attacker’s desired
test accuracy degradation as an evaluation metric for attack
efficacy. Since the increased number of attacks implies that
the attacker requires more resources (e.g., time, memory
resources) and requires changing a significant portion of the
model, we consider increasing attack rounds as a metric to
evaluate our defense success.

To compare the clean model with the Deep-Dup affected
model, we measure the similarity of specific layer output
feature maps using Feature Similarity Index Method
(FSIM) [53]. FSIM provides a similarity score between 0
and 1, where 1 represents two parts in comparison are the
same, and 0 represents they are completely different. We
introduce Deep-Dup profiling inferences (DPI) in Eq. 2,
a new metric to measure the complexity of deploying the
Deep-Dup attack and its overhead. DPI is based on several
factors, including the number of evolutions (z), mutation

TABLE 1. SUMMARY OF UN-TARGETED ATTACK ACROSS MULTIPLE DNN ARCHITECTURE AND DATASETS.

Dataset Model Top-1
TA (%)

Baseline (No Defense) DeepShuffle (Proposed Defense)
Top-1

Post-Attack
TA (%)

No. of
Attack
Rounds

DPI
(Attack Overhead)

Weight
Change (%)

Top- 1
Post-Attack

TA (%)

No. of
Attack
Rounds

DPI
(Attack Overhead)

Weight
Change (%)

CIFAR-10 VGG-11 90.13 11.98 241 616,960 0.0002 72.8 1,000 2,560,000 0.0008
ResNet-20 90.79 11.8 68 174,080 0.025 11.8 456 1,167,360 0.0168

ImageNet
ResNet-18 69.5 0.22 213 272,640 0.00194 6.84 1,000 1,280,000 0.0091
ResNet-50 75.78 0.52 374 478,720 0.0016 60.7 1,000 1,280,000 0.0043

MobileNet-V2 71.13 0.13 2 2,560 0.00009 1.88 20 25,600 0.0009

numbers (M), the number of attack rounds (AR), the num-
ber of samples (S) input for attack deployment, and the
input batch size (Bs), which represents how many samples
are in one batch, we adopt Bs = 1 for all experiments.

DPI = z ×M ×AR× S

Bs
(2)

DPI reflects the amount of inference calls the attackers
make to achieve the desired objective. Since an increasing
number of inference calls is associated with increased attack
time and hardware resources, it is an ideal metric to measure
the impact of our defense on attack overhead. A higher DPI
value indicates that the attacker requires more time, more
hardware resources and sacrifices attack stealthiness.

Similar to un-targeted Deep-Dup [1], we consider reduc-
ing the Post-Attack TA of the target model to the level of
random guess as a successful attack. Hence, as an evaluation
metric, we report the number of attack rounds required
to degrade the model accuracy to a random guess level.
For example, for the CIFAR-10 dataset with 10 classes,
Post-Attack TA of ∼10% is considered a random guess
accuracy. However, for ImageNet, due to its large scale
with 1000 classes, the Post-Attack accuracy below ∼1%
oscillates even after increasing attack iteration. Hence, we
relax the condition by reporting the attack iteration required
to reach below ∼1% since, at this point, the model is entirely
malfunctioning, and the attack practically succeeded.

5.2. Evaluation of DeepShuffle against Un-targeted
Deep-Dup Attack

We evaluate our proposed defense performance against
the un-targeted Deep-Dup attack across multiple DNN ar-
chitectures and vision datasets, following the same approach
as Deep-Dup paper [1] presented, summarized in Tab. 1.

Setup: Attack Evolution z = 5; Max No. of Attack
Rounds: 1,000; Shuffle frequency: every inference.
CIFAR-10 Evaluation. As shown in Tab. 1, the baseline
models are incredibly vulnerable to Deep-Dup attack [1].
For example, the VGG-11 and ResNet-20 require just 241
and 68 rounds of attack, respectively, to completely fail, i.e.,
close to 10 % test accuracy/random guess case for a 10 class
classification. In contrast, once equipped with DeepShuffle,
both model shows significantly improved robustness. In
particular, for VGG-11, our proposed defense can overcome
the impact of Deep-Dup attack. It shows that even after
1,000 rounds of attack, the attack fails to degrade the model
accuracy below 72 %. For ResNet-20, again DeepShuffle

increases its robustness by requiring ∼6.7× more attack
rounds to achieve similar accuracy degradation.

The above observation concludes that the proposed
DeepShuffle can better resist the Deep-Dup attack for dense
models such as VGG-11. However, protecting compact mod-
els (e.g., ResNet-20) using DeepShuffle is more challenging.
This conclusion is similar to prior works [1], [54] as they
have also confirmed the vulnerability of compact models
against weight perturbation. Nevertheless, our DeepShuffle
can still significantly increase the attacker’s overhead (i.e.,
high DPI) and resist the Deep-Dup attack even on compact
model architecture.
ImageNet Evaluation. Our evaluation of the DeepShuffle
defense on the ImageNet dataset is shown in Tab. 1. Again,
our test case model architectures ResNet-18, ResNet-50 &
MobileNet-v2 are extremely vulnerable to Deep-Dup attack.
For the residual models, compact ResNet-18 is more vulner-
able (i.e., 213 attack rounds) than the larger ResNet-50 (i.e.,
374 attack rounds). However, once our proposed defense
was incorporated into the inference stage, it can defend the
attack successfully. We observe that even after 1,000 rounds
of attack for both models, the attack fails to reach the same
level of accuracy degradation as the baseline model (i.e., no
defense) when DeepShuffle protects the model.

For the compact model, MobileNet-v2 shows lower re-
sistance to Deep-Dup and only needs two rounds of attack,
to reduce its Post-Attack Accuracy to a random guess level.
However, after applying DeepShuffle, the model’s robust-
ness is improved by 10×. While DeepShuffle has increased
robustness against the Deep-Dup attack on MobileNet-v2,
it is not as effective as the other models. Note that we
evaluate DeepShuffle on MobileNet-v2 to make a fair de-
fense evaluation with the baseline Deep-Dup attack, which
also has reported the extreme vulnerability of MobileNet-
v2. However, MobileNet-v2 is a unique DNN architecture
in our test, designed to be lightweight and efficient, i.e.,
it is naturally more vulnerable to Deep-Dup. Even so, our
propose DeepShuffle still enhances its robustness, by 10x.

Based on these results, we draw the following con-
clusions: DeepShuffle can defend the Deep-Dup attack on
most dense model architectures (e.g., ResNet-18, ResNet-
50, VGG-11), as increasing the attack complexity near
1,000 makes the attack practically very expensive (i.e., high
DPI). However, some specially optimized models are more
vulnerable to Deep-Dup because of their compact nature and
architectural design. Even though DeepShuffle can not fully
defend Deep-Dup on compact models, we still observed a
large (e.g., ∼10×) improvement in robustness after applying

TABLE 2. TARGETED ATTACK ON CLASS-8 (SHIP CLASS) OF CIFAR-10 DATASET.

Model Top-1
TA (%)

Target
Class
Top-1

TA (%)

Baseline (No Defense) DeepShuffle (Proposed Defense)
No. of
Attack
Rounds

DPI
(Attack Overhead)

Target Class
Post-Attack

TA (%)

Post-Attack
Model
TA (%)

No. of
Attack
Rounds

DPI
(Attack Overhead)

Target Class
Post- Attack

TA (%)

Post-Attack
Model
TA (%)

VGG-11 90.17 93.2 434 4,444,160 1.80 51.63 1,000 10,240,000 95.00 88.58
ResNet-20 90.79 93.0 188 1,925,120 1.88 27.5 1,000 10,240,000 69.75 72.6

our DeepShuffle.

5.3. Evaluation of DeepShuffle Against Trageted
Deep-Dup Attack

Setup: Attack Evolution z = 5; Max No. of Attack
Rounds: 1,000; Shuffle frequency: every inference.

We examine the performance of DeepShuffle in targeted
attacks using CIFAR-10, see Tab. 2. We test targeted attacks
aimed at class-8 (i.e., Ship) on VGG-11 and ResNet-20
models. Post-Attack Target Class TA represents the prob-
ability of correctly predicting the target class samples after
an attack. And Post-Attack Model TA represents the impact
of targeted attacks on the overall model inference Top-1
accuracy. The targeted Deep-Dup attack is very threaten-
ing, which can successfully miss-classify most target class
samples (i.e., ∼1% target class accuracy after an attack).
However, after applying DeepShuffle as a defense, even after
1000 rounds of attack, the model performance on VGG-
11 does not deteriorate, with a Post-Attack target class TA
holding at 95% and an overall Top-1 Post-Attack TA holding
at 88.58%, ultimately eliminating the efficacy of Deep-Dup
attack. On top of that, even for a compact vulnerable Resnet-
20 model, DeepShuffle resists the targeted attack well, by
not allowing the attacker to degrade the target class accuracy
below 72%, even after 1,000 rounds of attack. In conclusion,
our proposed DeepShuffle successfully eliminates the risk
of a Deep-Dup attack by resisting it after many attack
iterations, increasing attack complexity and overhead as
highlighted in the DPI (proportional to attack overhead)
column of Tab. 2.

5.4. Observation of Attack Evolution with Increas-
ing Attack Rounds

Setup: Attack Evolution z = 5; Max No. of Attack
Rounds: 400; Shuffle frequency: every inference.

We demonstrate the performance of DeepShuffle on
ResNet-18 on the ImageNet dataset by gradually increasing
the attack rounds and reporting the accuracy degradation
at each attack step. Similar to Fig. 1, the clean (i.e., orig-
inal) model Top-1 and Top-5 TA are 69.5% and 89.92%,
respectively. After attacking the model using Deep-Dup for
200 rounds, the Post-Attack Top-1 and Top-5 accuracy drop
to 0.22% and 0.84%. Next, we exhibit the performance
of DeepShuffle. As shown in Fig. 7, with the protection
of DeepShuffle, the Post-Attack Top-1 and Top-5 accuracy
remain around ∼35% and ∼60% respectively, after approx-
imately 400 attack rounds.

No. of Attack Rounds
Deep-Dup (Top-5)
Deep-Dup (Top-1)

Deep-Dup w/ DeepShuffle (Top-5)
Deep-Dup w/ DeepShuffle (Top-1)

50 100 150 200 250 300 350 400

100

80

60

40

20

0

Ac
cu

ra
cy

 (%
)

Figure 7. DeepShuffle applied on ResNet-18 with ImageNet dataset.

In this experiment of Fig. 7, we randomly shuffle the
channel order of the model for every inference on ResNet-18
to infer the ImageNet dataset. According to the architecture
of ResNet-18 shown in Fig. 1, 14 shuffling rules (SRs) are
used, and the searching space for all SRs on ResNet-18 is
2× 64! + 4× 128! + 4× 256! + 4× 512!. On the attacker’s
side, we set the parameters for the Deep-Dup attack as z =
5, with four mutation strategies (M = 4) and a maximum
of 400 attack rounds.

To observe the statistical patterns of DeepShuffle, we
conduct 20 independent experiments, starting from a clean
model, and apply the P-DES algorithm in the Deep-Dup
attack by automatically selecting and optimizing the at-
tacked DNN layer and the attack moments of the weight
transmission. We plot the standard deviation and mean of TA
in Fig. 7. A relatively more significant variance exists during
100 to 300 attack rounds, and the DeepShuffle protection
converges after the attack rounds increase beyond 300. This
experiment indicates that DeepShuffle fiercely resists Deep-
Dup throughout the attack evolution stages. Compared with
the random attack degradation line, it is clear that DeepShuf-
fle mitigates the effect of P-DES on Deep-Dup attacks. In
summary, DeepShuffle offers improved resistance against
the Deep-Dup attack by maintaining a clear improvement
margin throughout the attack evolution.

5.5. Feature Similarity Analysis on the Output of
a Single Layer

To further demonstrate the Deep-Dup attack and the ef-
fectiveness of DeepShuffle defense, we select attacks explic-
itly targeting the 2nd Conv2D layer of a ResNet-18 model.
We report the defense performance by only protecting the
2nd Conv2D layer in Fig. 8. Note that this experiment is
explicitly for fine-grained analysis purpose, as the Deep-
Dup attack could not accurately manipulate a specific layer,
in a black-box setup. In this experiment, we analyze the

1
0.98
0.96
0.94
0.92
0.90

0 10 20 30 40 50 60 70 80

Deep-Dup Deep-Dup w/ DeepShuffle

No. of Attack Rounds

FS
IM

Figure 8. Feature-based similarity index (FSIM) with the number of attacks:
output feature maps collected from the 2nd Conv2D layer.

similarity between the feature maps obtained from the 64
output channels of this layer and the clean model’s feature
map from the same layer. We use the feature-based similarity
indexing method (FSIM) to measure the feature similarity.
We expect that the similarity of the features for two different
scenarios, i.e., without or with defense will demonstrate how
proposed DeepShuffle is minimizing the error propagation
resulting from the attack. We observe that in a DNN model
without the protection of DeepShuffle, the overall FSIM
of the 64 channels decreased to around ∼0.9 after nearly
80 rounds of attack. In contrast, under the protection of
DeepShuffle, the similarity of the layer is maintained at
around 0.95. A larger score indicates that the proposed
DeepShuffle prevents significant change in the output values
of a given layer compared to the baseline (Deep-Dup) attack.
Hence, the model prediction result and accuracy should hold
better using our defense strategy.

5.6. Layer-Wise Profiling of DeepShuffle

Setup: Attack Evolution z = 5; Max No. of Attack
Rounds: 400; Shuffle frequency: every inference.

We profile the effect of DeepShuffle for each model layer
by independently attacking one layer’s weight and recording
the accuracy impact for preset attack rounds (e.g., 400). The
results are shown in Fig. 9, which demonstrate the attack
effects of the Deep-Dup attack deployed separately on ith

Conv2D layer of ResNet-20, where i ∈ [1, 19]. Fig. 9 (a)
demonstrates the No. of Attack Rounds to reach random-
guess accuracy or maximum preset number (e.g., 400), and
Fig. 9 (b) demonstrates the inference accuracy after the
attack, a.k.a Post-Attack TA. For example, when the Deep-
Dup attack is launched on the 1st Conv2D layer, after 74
attack rounds, the inference accuracy drops from 90.79%
to 11.74%. In contrast, even after 400 rounds of attack, the
attack fails to degrade the accuracy below 20% for the same
layer with our defense.

In Fig. 9 (a), it is evident that the attacker can cause a
drop in the Post-Attack accuracy to ∼ 10% for the inference,
regardless of the layer targeted with the Deep-Dup attack.
In ResNet-20, the last (i.e., the 19th) layer and layer 7 are
particularly vulnerable and only need ∼ 30 attack rounds to
achieve the random guessing goal. The 10th layer, which
is the middle layer, is the most robust; after 400 attack
rounds, the Post-Attack accuracy is 14%. After applying

400

300

200

100

0N
o.

 o
f A

tt
ac

k
Ro

un
ds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Layer ID

Deep-Dup Deep-Dup w/ DeepShuffle

(a) Profiling the No. of Attack Rounds of each layer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Layer ID

(b) Profiling the Post-Attack TA of each layer.

Ac
cu

ra
cy

 (%
) 100

80

60

40

20

0

74

11.74

90.79

Figure 9. Deep-Dup effects on each layer individually. (a) shows the results
of the Deep-Dup attack w/o any protection. (b) shows the results of the
Deep-Dup attack met the DeepShuffle protection scheme.

our proposed DeepShuffle, we found that the robustness
properties of the layers themselves affect the effectiveness of
DeepShuffle. Still, it can consistently improve the robustness
across all the layers. For example, layers 10-18 require more
than 200 attack rounds to achieve ∼10% of Post-Attack
accuracy. However, our proposed DeepShuffle defends the
attack by holding accuracy at or above 60 % even after
400 rounds of attack at these noise-resilient layers. Our
prior hypothesis supports this observation that layers 10-
18 have many parameters, and we expect dense layers to
be more resilient to noise than compact layers (e.g., 1-4 &
19). Hence, the protection of DeepShuffle is amplified for
dense layers compared to compact ones. These experimental
results are expected and also discussed in prior works [18],
[54], that noise added to the early layers has the potential to
be multiplied/amplified as it propagates through the model.

5.7. The Performance Overhead of DeepShuffle

Setup: Shuffle frequency: every inference.
We test four ResNet architectures with increasing depth,

namely ResNet-18, 34, 50, 101, on ImageNet. It is worth
noting that ResNet-18 and 34 have a direct scaling relation-
ship, while ResNet-50 and 101 also have a direct scaling
relationship. Therefore, in the experiments, we only select
ResNet-18 and 50 for experiment. Here, we mainly explore
the scalability of model depth and DeepShuffle overhead.

In this experiment, we still apply DeepShuffle for each
inference because this is the worst-case performance over-
head. Since we only apply channel-wise shuffling, the data
in the external memory (DDR) buffer did not need to be re-
freshed, which greatly increases the feasibility of DeepShuf-
fle. We only need to change the channel-wise pointer order
from external memory to the FPGA on-chip buffer during

TABLE 3. THE PERFORMANCE OVERHEAD AND SCALABILITY WHILE
DNN IS IMPLEMENTED ON VTA

ResNet Model Architectures
ResNet-18 ResNet-34 ResNet-50 ResNet-101

No. of
Conv2D 19 35 51 102

Inference
Time (ms) 500 900 1300 2400

DeepShuffle
Time(ms) 12.1 23.4 33.6 67.9

Overhead
Ratio(%) +2.42 +2.6 +2.58 +2.83

weight transmission, and most of the consumption come
from the time spent in generating all the shuffling layer
pointer orders. As shown in Tab. 3, we find that this time
consumption is linear and scalable because the time required
to generate SRs increases proportionally with the depth of
the DNN architecture. Overall, the performance overhead
of DeepShuffle is ∼2.5× of the inference time consumed
on VTA. For DNNs running on VTA, the overhead of
DeepShuffle is negligible. As this paper focuses on the effec-
tiveness and scalability of DeepShuffle, we do not consider
the performance of DeepShuffle on faster accelerators but
consider this as future work.

6. Adaptive Attack & Defense

6.1. DeepShuffle against Strong Attackers

Setup: Attack Evolution z is a variable; Max No. of At-
tack Rounds: Unlimited; Shuffle frequency: every inference.

In the following experiments, we assume the attacker
knows a defense strategy is being deployed to protect against
Deep-Dup. To improve the efficiency of Deep-Dup given
a knowledgeable attacker, they may increase the Deep-
Dup evolution number z to overcome the protection of
DeepShuffle. Since the Deep-Dup attack’s fundamental prin-
ciple relies on the evolutionary search algorithm, thus, an
adaptive attacker’s only tool to bypass randomness in the
search step is increasing the attack evolution z. Tab. 4 shows
the correlation between z and the required attack rounds to
nullify DeepShuffle. We observe that by increasing the at-
tack evolution z the attacker can reduce the number of attack
rounds to achieve the same level of accuracy degradation as
the baseline case. However, increasing the value of z again
comes at the cost of attacking overhead (i.e., DPI). Hence,
even though an adaptive attacker may achieve a similar
attack success rate with lower attack rounds by increasing
the value of z; it will still cost the same overhead due
to the increasing number of inference calls. In conclusion,
DeepShuffle can increase the attacker’s effort and overhead
even after considering a white-box threat model, where a
knowledgeable attacker knows the principle of our defense.

6.2. Effect of Shuffling Frequency on DeepShuffle

Setup: Attack Evolution z = 20; Max No. of Attack
Rounds: Unlimited; Shuffle frequency: variable.

TABLE 4. THE IMPACT OF ATTACK EVOLUTION z ON THE
DEEPSHUFFLE.

Baseline (No Defense) DeepShuffle (Proposed Defense)

z Post-Attack
TA (%)

No. of
Attack
Rounds

DPI Post-Attack
TA (%)

No. of
Attack
Rounds

DPI

5 11.58 68 174,080 11.8 456 1,167,360
20 11.86 16 163,840 11.8 193 1,976,320

100 10.85 11 563,200 11.93 112 5,734,400
500 10.52 7 1,792,000 11.55 106 27,136,000

TABLE 5. EFFECT OF VARYING SHUFFLING FREQUENCY ON THE
DEFENSIVE PERFORMANCE. HERE z IS THE ATTACK EVOLUTION.

Shuffle Frequency Post-Attack TA (%) No. of Attack Rounds
Every Inference 11.8 193

Every 2 Inference 11.88 93
Every 5 Inference 11.78 73

No defense 11.86 16

We investigate the defender’s tools to impact the defense
performance and overhead. A critical consideration for our
proposed DeepShuffle defense is the choice of shuffling fre-
quency and its impact on the defense performance. Suppose
the attacker selects z = 20, and we gradually reduce the
frequency of applying DeepShuffle from every inference to
every two inferences until there is no defense. We find that
periodically reducing the shuffling frequency of DeepShuffle
decreases its effectiveness. Therefore, to achieve the best
defense effect, the defender must update the channels at ev-
ery inference but pay the highest overhead of approximately
∼3% on VTA, as shown in Sec. 5.7.

7. Future Work and Conclusion

DeepShuffle is a general, training-free defense method-
ology for a wide range of deep learning models in various
domains, such as computer vision, natural language pro-
cessing, and robotics. As expected, we also observe that
DeepShuffle is less effective when attackers keep increasing
their attacking rounds. This is since as a type of “moving-
target-defense” (MTD), DeepShuffle strives to randomize
the well-profiled attacking opportunities by a strong adver-
sary, so as to increases the number of attack rounds and
reduce the likelihood of successful attacks [55], [56]. To
date, no prior works have successfully demonstrated the
Deep-Dup attack on large-language models due to their
size (i.e., billions of parameters) and the associated com-
putational and memory overhead in FPGA. Moreover, these
potential attacks need a set of newly defined attack objec-
tives, searching algorithm, and evaluation criteria for attack
success. We acknowledge that these present a limitation
of the original Deep-Dup attack, not the effectiveness of
DeepShuffle. We envision that DeepShuffle can be applied
to protect these application with further optimization, e.g.,
to address the challenges posed by recent large-language
processing models like BERT [57]. We plan to investigate
these directions in our future work.

Based on the experimental evaluation results, we con-
clude that some design properties of the VTA accelerators,

e.g., placing the first layer on the CPU for high parallelism,
also enhance the defensive capabilities of DNN models. The
last FC layer is computed using floating-point calculations
and placed on the CPU to ensure the accuracy of the quan-
tized model. However, as shown in Fig. 9, these two layers
are relatively vulnerable within the overall model. Therefore,
using VTA to run DNNs has, to some extent, improved
the baseline robustness. We believe that in cloud scenarios
where CPUs are usually quite powerful, performing some
vulnerable computations on CPU for security purposes can
effectively avoid attacks like Deep-Dup. This paper provides
a preliminary exploration in Fig. 1 on which layers are
suitable to be placed on the CPU. Additionally, we found
that traditional, sequential models have stronger robustness
in resisting Deep-Dup, and DeepShuffle greatly amplifies
this defensive effect.

Acknowledgments

The authors would like to thank the shepherd from
the IEEE S&P’24 committee and the anonymous re-
viewers, for their insightful comments that greatly en-
riched the quality of our work. This work is supported
in part by the U.S. National Science Foundation under
Grants CNS-2019548, CNS-2153525, OAC-2319962, CNS-
2239672, CNS-2153690, CNS-2326597, and CNS-2247892.

References

[1] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, “Deep-dup: An adversarial
weight duplication attack framework to crush deep neural network
in multi-tenantfpga,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 1919–1936.

[2] “What is paas?” [Online]. Available: https://azure.microsoft.com/en-
gb/resources/cloud-computing-dictionary/what-is-paas/

[3] “What is iaas?” [Online]. Available: https://azure.microsoft.com/en-
gb/resources/cloud-computing-dictionary/what-is-iaas/

[4] “Cloud computing services - amazon web services (aws).” [Online].
Available: https://aws.amazon.com/

[5] “Microsoft azure: Cloud computing services.” [Online]. Available:
https://azure.microsoft.com/en-us

[6] “What is a hypervisor?” [Online]. Available: https://aws.amazon.
com/what-is/hypervisor/

[7] “Vck5000 versal development card.” [Online]. Available: https:
//www.xilinx.com/products/boards-and-kits/vck5000.html

[8] “Nvidia a100 tensor core gpu.” [Online]. Available: https://www.
nvidia.com/en-us/data-center/a100/

[9] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-
J. Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou et al.,
“Mlperf inference benchmark,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 446–459.

[10] “Amd/xilinx takes aim at nvidia with improved vck5000
inferencing card.” [Online]. Available: https://www.hpcwire.
com/2022/03/08/amd- xilinx- takes- aim- at- nvidia- with- improved-
vck5000-inferencing-card/

[11] Y. Zha and J. Li, “Virtualizing fpgas in the cloud,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020, pp. 845–
858.

[12] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J.
Rossbach, “Sharing, protection, and compatibility for reconfigurable
fabric with amorphos,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 2018, pp. 107–127.

[13] D. Korolija, T. Roscoe, and G. Alonso, “Do os abstractions make
sense on fpgas?” in Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, 2020, pp. 991–1010.

[14] J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. M. Eneyew, Z. Qi,
and B. Kasikci, “A hypervisor for shared-memory fpga platforms,” in
Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2020, pp. 827–844.

[15] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm,
Z. Jiang, L. Ceze, C. Guestrin et al., “A hardware–software blueprint
for flexible deep learning specialization,” IEEE Micro, vol. 39, no. 5,
pp. 8–16, 2019.

[16] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “Tvm: An automated end-to-end
optimizing compiler for deep learning,” in 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), 2018,
pp. 578–594.

[17] E. D. Cubuk, B. Zoph, S. S. Schoenholz, and Q. V. Le, “Intriguing
properties of adversarial examples,” ICLR workshop, 2018.

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[19] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=rJzIBfZAb

[20] Z. He, A. S. Rakin, and D. Fan, “Parametric noise injection: Trainable
randomness to improve deep neural network robustness against adver-
sarial attack,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 588–597.

[21] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified
defenses against adversarial examples,” in International Confer-
ence on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=Bys4ob-Rb

[22] F. Yao, A. Rakin, and D. Fan, “Deephammer: Depleting the intelli-
gence of deep neural networksthrough targeted chain of bit flips,” in
29th USENIX Security Symposium (USENIX Security 20), 2020.

[23] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” in ACM
SIGARCH Computer Architecture News, vol. 42, no. 3. IEEE Press,
2014, pp. 361–372.

[24] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn dnn architectures,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 2003–2020.

[25] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes attack: Steal dnn
models with lossless inference accuracy,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[26] J. Li, A. S. Rakin, Y. Xiong, L. Chang, Z. He, D. Fan, and
C. Chakrabarti, “Defending bit-flip attack through dnn weight recon-
struction,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2020, pp. 1–6.

[27] L. Liu, Y. Guo, Y. Cheng, Y. Zhang, and J. Yang, “Generating robust
dnn with resistance to bit-flip based adversarial weight attack,” IEEE
Transactions on Computers, 2022.

[28] G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Randomized
row-swap: mitigating row hammer by breaking spatial correlation
between aggressor and victim rows,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2022, pp. 1056–1069.

[29] J. Woo, G. Saileshwar, and P. J. Nair, “Scalable and secure row-swap:
Efficient and safe row hammer mitigation in memory systems,” arXiv
preprint arXiv:2212.12613, 2022.

[30] Z. He, A. S. Rakin, J. Li, C. Chakrabarti, and D. Fan, “Defending and
harnessing the bit-flip based adversarial weight attack,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 14 095–14 103.

[31] T. Moreau, T. Chen, Z. Jiang, L. Ceze, C. Guestrin, and A. Krish-
namurthy, “Vta: an open hardware-software stack for deep learning,”
arXiv preprint arXiv:1807.04188, 2018.

[32] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang,
J. Yang, D. Zhuo, K. Sen et al., “Ansor: Generating high-performance
tensor programs for deep learning,” in Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implemen-
tation, 2020, pp. 863–879.

[33] “Xilinx stacked silicon interconnect technology delivers breakthrough
fpga capacity, bandwidth, and power efficiency.” [Online]. Avail-
able: https://docs.xilinx.com/v/u/en-US/wp380 Stacked Silicon
Interconnect Technolog

[34] “Vivado design suite user guide: Dynamic function exchange
(ug909).” [Online]. Available: https://docs.xilinx.com/r/en-US/ug909-
vivado- partial- reconfiguration/Introduction- to- Dynamic- Function-
eXchange

[35] “Alveo u280 data center accelerator card data sheet.”
[Online]. Available: https://www.xilinx.com/content/dam/xilinx/
support/documents/data sheets/ds963\protect\discretionary{\char\
hyphenchar\font}{}{}u280.pdf

[36] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, “Fp-
gadefender: Malicious self-oscillator scanning for xilinx ultrascale+
fpgas,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 13, no. 3, pp. 1–31, 2020.

[37] Y. Luo, C. Gongye, Y. Fei, and X. Xu, “Deepstrike: Remotely-guided
fault injection attacks on dnn accelerator in cloud-fpga,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp.
295–300.

[38] J. Krautter, D. R. Gnad, and M. B. Tahoori, “Fpgahammer: Remote
voltage fault attacks on shared fpgas, suitable for dfa on aes,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
pp. 44–68, 2018.

[39] S. Tian, S. Moini, A. Wolnikowski, D. Holcomb, R. Tessier, and
J. Szefer, “Remote power attacks on the versatile tensor accelerator in
multi-tenant fpgas,” in 2021 IEEE 29th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2021, pp. 242–246.

[40] “Zcu104 board user guide (ug1267).” [Online]. Available: https:
//docs.xilinx.com/v/u/en-US/ug1267-zcu104-eval-bd

[41] Developer preview – ec2 instances (f1) with programmable hard-
ware. https://aws.amazon.com/cn/blogs/aws/developer-preview-ec2-
instances-f1-with-programmable-hardware/.

[42] Create an f3 instance. https://www.alibabacloud.com/help/en/elastic-
compute-service/latest/create-an-f3-instance.

[43] H. Yu, H. Ma, K. Yang, Y. Zhao, and Y. Jin, “Deepem: Deep neural
networks model recovery through em side-channel information leak-
age,” in 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2020, pp. 209–218.

[44] F. Benevenuti, F. Libano, V. Pouget, F. L. Kastensmidt, and P. Rech,
“Comparative analysis of inference errors in a neural network imple-
mented in sram-based fpga induced by neutron irradiation and fault
injection methods,” in 2018 31st Symposium on Integrated Circuits
and Systems Design (SBCCI). IEEE, 2018, pp. 1–6.

[45] Pytorch, “Conv2d.” [Online]. Available: https://pytorch.org/docs/
stable/generated/torch.nn.Conv2d.html

[46] “Vitis ai model zoo,” https://github.com/Xilinx/Vitis-AI/tree/master/
model zoo.

[47] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[48] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition. Ieee, 2009,
pp. 248–255.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[50] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[51] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Mobilenetv2: The next generation of on-device computer vision
networks,” in CVPR, 2018.

[52] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” arXiv preprint arXiv:1804.03209, 2018.

[53] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “Fsim: A feature
similarity index for image quality assessment,” IEEE transactions on
Image Processing, vol. 20, no. 8, pp. 2378–2386, 2011.

[54] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural
network with progressive bit search,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 1211–1220.

[55] H. Okhravi, W. W. Streilein, and K. S. Bauer, “Moving target tech-
niques: leveraging uncertainty for cyber defense,” Lincoln Laboratory
Journal, vol. 22, no. 1, pp. 100–109, 2016.

[56] D. Evans, A. Nguyen-Tuong, and J. Knight, “Effectiveness of mov-
ing target defenses,” Moving Target Defense: Creating Asymmetric
Uncertainty for Cyber Threats, pp. 29–48, 2011.

[57] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understand-
ing,” arXiv preprint arXiv:1810.04805, 2018.

[58] W. Dai, C. Dai, S. Qu, J. Li, and S. Das, “Very deep convolutional
neural networks for raw waveforms,” in 2017 IEEE international
conference on acoustics, speech and signal processing (ICASSP).
IEEE, 2017, pp. 421–425.

[59] “Speech command classification with torchaudio,” https :
//pytorch.org/tutorials/intermediate/speech command classification
with torchaudio tutorial.html.

[60] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural
network with progressive bit search,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2019, pp.
1211–1220.

Appendix A.
The complete output of the 2nd Conv2D layer

In Sec. 4.4, we demonstrated the workflow of DeepShuf-
fle, where we intercepted the output of the 2nd Conv2D layer
in a ResNet-18 implementation. This model inference a wolf
image belonging to the ImageNet. In Fig. 10, we provide
the complete output of all 64 channels of the 2nd Conv2D
layer, highlighting the three different effects introduced by
the Deep-Dup attack, as shown in Fig. 5. We observe that
the Deep-Dup injects faults into the weight transmission
process, which then propagates to the output feature maps.
The information-rich feature maps exhibit three different
changes: brightening (red channels), disappearance (yellow
channels), and appearance (blue channels). These channel-
wise changes in information will further propagate in sub-
sequent layers of inference and eventually lead to misclas-
sification.

(a) Clean model output feature maps of the ʹ௡ௗ Conv2D layer (Baseline)

(b) Output feature maps w/ Deep-Dup on the ʹ௡ௗ Conv2D layer

Figure 10. The internal result of the 2nd Conv2D layer in ResNet-18 while applying a wolf image from the ImageNet. (a) The outputs w/o any attack.
(b) Applying Deep-Dup attacks on the corresponding layer and output all channels’ results.

Appendix B.
Evaluation on Speech Dataset

In addition to these image processing tasks/applications,
we also evaluate the performance of DeepShuffle on
Google’s Speech Command Dataset, a popular vocabulary
recognition dataset [52], with M5 architecture [58]. It takes
input speech audio and classifies them into 35 different
output classes. We follow the experimental evaluation setup
as the official Pytorch website [59]. We summarize the
results of our experimental evaluation in Tab. 6.

TABLE 6. EVALUATION OF DEEPSHUFFLE ON GOOGLE’S SPEECH
COMMAND DATASET. IT HAS 35 DIFFERENT CLASSES, HENCE THE

ATTACK OBJECTIVE IS TO REACH 3 % (I.E., RANDOM LEVEL)
ACCURACY. WE USED z = 10 FOR THIS EXPERIMENT.

Method Clean
Accuracy

No. of
Attack Rounds

Accuracy
Under Attack

Baseline 84.0 49 3.0
DeepShuffle 84.0 351 (7×) 3.0

Our evaluation demonstrates that the original Deep-Dup
attack also remains equally effective on attacking speech
datasets. Nevertheless, our proposed DeepShuffle improves
model robustness against the Deep-Dup attack by increasing
the attacker’s efforts, i.e., the required number of attacking
rounds to degrade the accuracy to a random level (e.g.,
3%) by 7×. This result is consistent with our evaluation
of the vision dataset and demonstrates the effectiveness
of DeepShuffle against Deep-Dup across multiple domain
tasks.

Appendix C.
Applicability of DeepShuffle

In Sec. 4.3, we exhibit DeepShuffle’s applicability be-
yond convolutional layers through its implementation on
VGG-11’s fully connected (FC) layers. This highlights
DeepShuffle’s generality, i.e., extending to architectures
such as RNN, LSTM, DenseNet, and GRU. Principally, a
layer or operator meets two criteria to harness DeepShuffle:
(1) exhibits multi-channel structure with consistent opera-
tions across channels, and (2) contains trainable parameters.

Appendix D.
Meta-Review

D.1. Summary

This paper presents DeepShuffle to protect neural net-
works against fault injection attacks on multi-tenant cloud
FPGAs. It achieves the goal by dynamically shuffling
model parameters at runtime, effectively preventing attack-
ers from obtaining critical information required for the
attacks. DeepShuffle requires no hardware modification or
additional training.

D.2. Scientific Contributions

• Addresses a Long-Known Issue.
• Provides a Valuable Step Forward in an Established

Field.
• Creates a New Tool to Enable Future Science.

D.3. Reasons for Acceptance

1) The paper addresses a long-known issue. The proposed
framework effectively thwarts the recently-proposed ad-
versarial fault injection attacks (Deep-Dup [1], USENIX
Security’21) on cloud FPGAs that significantly degrade
the performance of DNN models.

2) The paper provides a valuable step forward in an es-
tablished field. The authors highlight the limitations of
Deep-Dup on fault injection attacks and re-implement
the end-to-end attack flow using a multi-tenant cloud-
FPGA setup. They re-calibrate the attack on the VTA-
generated DNN models and conduct a thorough analysis
of DNN model behaviors under the work. Based on
the analysis, the authors propose a systematic defense
framework against Deep-Dup like adversarial fault in-
jection attacks.

3) The paper creates a new tool to enable future science.
The proposed solution requires no hardware modifica-
tion or extra training, which can be a good tool for
facilitating future research.

D.4. Noteworthy Concerns

1) One concern shared by reviewers is the defense
generalizability—whether DeepShuffle can achieve sim-
ilar results for a broader range of neural networks other
than image processing models, whether it can scale to
large networks, and whether it can defend against similar
attacks other than Deep-Dup.

2) Another concern is the significance of the solution as
some results in the paper indicate that DeepShuffle is
less effective when adversarial increase their attacking
strength.

Appendix E.
Response to the Meta-Review

E.1. Concern about the defense generalizability

E.1.1. Apply DeepShuffle on a broader range of neural
networks other than image processing models. Princi-
pally, the applicability of DeepShuffle is not dependent on
a specific application/task, as the fault injection attack will
not be limited to any specific models. In addition to image
processing models, we evaluated DeepShuffle on Google’s
Speech Command Dataset with M5 architecture [58] using
a combination of CNN and FC layers in Appendix B.

E.1.2. DeepShuffle can scale to large networks. Until
now, the original Deep-Dup attack [1] has only been val-
idated/demonstrated on architectures using fully-connected
and convolutional layers, which is also our choice, for fair
defense evaluation purposes. Concerning large networks, we
evaluated DeepShuffle on ResNet-50 using the ImageNet
dataset, which represents large image processing networks,
i.e., both the model and dataset are large following the
standard evaluation practice in most DNN security papers.

E.1.3. DeepShuffle can defend against other relevant
adversarial fault injection attacks. Following the threat
model (Sec.3.1), DeepShuffle is geared against Deep-
Dup attack (i.e., adversarial fault injection during off-chip
data communication) in a black-box setting. Since most
SOTA adversarial weight attacks can only be executed
in white/gray-box attacks, such as the Bit Flip Attack
(BFA) [60]; therefore, we envision that DeepShuffle can bol-
ster the robustness of DNN models and potentially protect
them against similar adversarial fault injection attacks other
than Deep-Dup, as long as the same defense philosophy (i.e.,
moving-target-defense) is applied to challenge the attacker.

E.2. Concern about the effectiveness of DeepShuffle
when adversaries increases their attacking strength.

We agree with the reviewers about this concern. How-
ever, the basic defense philosophy of ”moving-target-
defense” (MTD) lies in “randomizing cyber system compo-
nents to reduce the likelihood of successful attacks” [55], so
as to “make it much more difficult for an attacker to exploit
a vulnerable system by changing aspects of that system to
present attackers with a varying attack surface” [56]. As an
example defense strategy of MTD, DeepShuffle increases
the number of attack rounds, making it infeasible for an
attacker to consistently degrade the model’s accuracy, as
confirmed in most studies on adversarial weight attacks and
defenses [26], [30].

Meanwhile, we acknowledge that increasing attack
rounds introduces additional overhead in terms of resources
and time, making such attacks more susceptible to detection.
Therefore, DeepShuffle proves effective and successful in
only a few cases where the post-attack accuracy is around
40%, significantly amplifying the attack overhead by mul-
tiple folds (3-10×).

In the future, we plan to explore ways to enhance the
internal robustness of the DNN through improved model ar-
chitecture and training algorithms, which can further support
the effectiveness of DeepShuffle.

