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Abstract—Due to the separate memory and computation
units in traditional Von-Neumann architecture, massive data
transfer dominates the overall computing system’s power and
latency, known as the ‘Memory-Wall’ issue. Especially with ever-
increasing deep learning-based AI model size and computing
complexity, it becomes the bottleneck for state-of-the-art AI com-
puting systems. To address this challenge, In-Memory Computing
(IMC) based Neural Network accelerators have been widely
investigated to support AI computing within memory. However,
most of those works focus only on inference. The on-device
training and continual learning have not been well explored yet.
In this work, for the first time, we introduce on-device continual
learning with STT-assisted-SOT (SAS) Magnetic Random Access
Memory (MRAM) based IMC system. On the hardware side, we
have fabricated a SAS-MRAM device prototype with 4 Magnetic
Tunnel Junctions (MTJ, each at 100nm ⇥ 50nm) sharing a
common heavy metal layer, achieving significantly improved
memory writing and area efficiency compared to traditional SOT-
MRAM. Next, we designed fully digital IMC circuits with our
SAS-MRAM to support both neural network inference and on-
device learning. To enable efficient on-device continual learning
for new task data, we present an 8-bit integer (INT8) based
continual learning algorithm that utilizes our SAS-MRAM IMC-
supported bit-serial digital in-memory convolution operations to
train a small parallel reprogramming Network (Rep-Net) while
freezing the major backbone model. Extensive studies have been
presented based on our fabricated SAS-MRAM device prototype,
cross-layer device-circuit benchmarking and simulation, as well
as the on-device continual learning system evaluation.

Index Terms—Continual Learning, In-Memory Computing,
MRAM, Neural Network

I. INTRODUCTION

Nowadays, deep neural networks (DNNs) have demon-
strated great performance improvement in many cognitive
applications, leading to a wide applications of edge/IoT-AI
applications. Such smart devices collect new data across
various domains/tasks in the real world, which will be used to
continuously adapt the background DNN model for improved
performance or even to adapt to different new tasks. This pro-
cess is generally considered as continual learning. Constrained
by the hardware resources (e.g., power, memory, size, etc.) of
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edge or IoT devices, it is common practice to send the newly
collected data to the cloud for learning. Then, the updated
new model will be deployed back to the edge/IoT devices for
local AI inference processing [1]. Nevertheless, this approach
suffers from large communication overhead between cloud and
edge, as well as the user data privacy concern. Thus, on-device

continual learning is essential to be investigated.
From the computing hardware side, DNNs demand nu-

merous multiply and accumulate (MAC) operations and data
movement. In conventional architectures (e.g., CPUs, GPUs),
the energy of massive off-chip data communication could be
almost two orders of magnitude higher than data processing
itself, known as ‘memory wall’ [2]. To address this issue, In-
Memory Computing (IMC) has attracted tremendous attention
as a promising solution due to its capability to perform
computation directly within memory [3], [4]. Different types
of IMC designs based on either CMOS or post-CMOS non-
volatile memory (NVM) technologies have been demonstrated,
such as SRAM [3], [5], DRAM [6], ReRAM [2], [7], MRAM
[4], [8]–[14], PCM [6], and etc.

Among various NVM technologies, Magnetic RAM
(MRAM) holds great promise due to its zero standby leak-
age, high write/read speed & efficiency, compatibility with
CMOS fabrication process, scalability, superior endurance,
excellent retention time, and high integration density [8].
Correspondingly, many MRAM-based IMC designs [9]–[12],
[15], [16] have been proposed to support DNN computation,
especially for inference acceleration. SOT (Spin-Orbit Torque)
MRAM and STT (Spin-Transfer Torque) MRAM are widely
adopted devices in MRAM-based IMC accelerator designs.
However, SOT-MRAM introduces additional access transis-
tors to establish the SOT path, resulting in significant area
overhead. On the other hand, STT-MRAM necessitates large
currents, leading to reduced energy efficiency. To address these
limitations while leveraging the superior properties of SOT-
MRAM and STT-MRAM, a hybrid solution known as STT-
assisted-SOT (SAS) MRAM has been proposed [13], [17]–
[19].

SAS-MRAM offers a compelling alternative by requiring
only a single access transistor to form the SOT path for
multiple Magnetic Tunnel Junctions (MTJs) within the same
heavy metal layer. Consequently, it occupies considerably
less area compared to SOT-MRAM. Compared with STT-
MRAM, the assistance of the SOT path significantly reduces
the current required for writing data, further enhancing its
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energy efficiency. The aforementioned advantages position
SAS-MRAM as a highly favorable choice over STT-/SOT-
MRAM for IMC accelerator designs. However, despite its
promising characteristics, the utilization of SAS-MRAM in
IMC design remains largely unexplored. To the best of our
knowledge, this paper represents the first attempt to investigate
the design space of SAS-MRAM, particularly in the context of
on-device continual learning accelerator design. By embarking
on this research endeavor, we aim to shed light on the potential
of SAS-MRAM as a novel and efficient solution in the field
of IMC for on-device AI learning.

In the traditional continual learning approach, to deploy the
re-trained or fine-tuned DNN model from the cloud to the
NVM-based IMC accelerator, the general practice is to re-
program the NVM cell (e.g., MRAM cell’s conductance) to
update the corresponding weight parameters. However, this
procedure has to update nearly all non-volatile memory cells
to represent the newly learned weight parameters, which is
certainly not an efficient approach. Thus, an efficient and
NVM IMC-friendly on-device continual learning framework
is eagerly desired. There are mainly two roadblocks. First, the
training memory cost (including activation, gradients, weights,
etc.) is significantly higher than the inference-only process. To
address such, memory-efficient continual learning has been
recently investigated for on-device continual learning [20]–
[22]. The second caveat is the complex floating-point MAC
operation. Unlike the forward pass, in which the integer-
only and quantization method have been well studied, DNN
training usually needs to maintain the fidelity of the gradient
during backpropagation to meet the high accuracy demand
[23], which typically requires high-precision floating-point
number operations. However, edge or IoT devices usually have
restricted computation memory and power to support massive
floating-point operations, which is one of the main reasons
most edge/IoT-AI focuses on inference only. To address these
constraints, recent studies have explored the Integer-only train-

ing method to enable efficient learning capabilities for edge
devices, bridging the gap between high-precision demands and
the computational realities of edge computing [24]–[27].

Considering the above-discussed challenges in hardware
memory-wall and on-device continual learning algorithm. In
this work, we present a new on-device continual learning

framework with STT-assisted-SOT (SAS) MRAM-based IMC
design. Our detailed technical contributions are:

I. For the memory device, we fabricated a 4-MTJ SAS-
MRAM device prototype, where 4 MTJs (each with 100nm ⇥
50nm) share the same heavy metal line to form one memory
cell macro, which improves the writing and area efficiency.
This 4-MTJ SAS-MRAM not only inherits the benefits of
MRAM but also shows superior properties to normal STT-
/SOT-MRAM. Our experiment results show that the SAS-
MRAM has ⇠ 3.4⇥ smaller write energy and similar area
as STT-MRAM, but greatly improved density compared with
traditional SOT-MRAM.

II. To the best of our knowledge, we introduce the first
IMC circuits to utilize the SAS-MRAM to implement digital

bit-serial in-memory convolution operations supporting both
neural networks forward and backward passes computations.

In our design, all the operations are performed in a purely
digital way. Thus the power-hungry ADCs/DACs are not
necessary. Moreover, our design only needs regular read/write
operations at the sub-array level. It allows us to reuse the
mature memory array design, but to add digital peripheral
circuits to implement in-memory process element (PE).

III. To demonstrate the potential learning capability and
capitalize the proposed SAS-MRAM IMC design, we present
the INT8 Reprogramming network (Rep-Net), which lever-
ages the digital bit-serial in-memory convolution supported
by our SAS-MRAM IMC hardware. This approach involves
training a compact reprogramming network with a fully 8-bit
integer training method for new task data while keeping the
backbone model fixed. This strategy effectively reduces both
computation and activation memory costs during the on-device
continual learning process, demonstrating the practicality and
efficiency of our design.

IV. Finally, using our experimentally benchmarked SAS-
MRAM device model, we conduct comprehensive cross-layer
device-circuit IMC system evaluation, as well as continual
learning system performance benchmarking.

The rest of the paper is organized as follows: Section II
covers the background. Section III introduces the SAS-MRAM
structure and related works. Section IV demonstrates the SAS-
MRAM-based digital IMC hardware design. The methodology
of the proposed INT8-Rep-Net learning method is given in
Section V. Section VI shows the performance of learning
different tasks and system evaluation based on experimentally
benchmarked cross-layer simulation framework. In the end,
Section VII concludes the paper.

II. BACKGROUND

A. Magnetoresistive random-access memory (MRAM)

Magnetoresistive random-access memory (MRAM) is an
emerging non-volatile memory (NVM) where the data is stored
in terms of electron spin. The Magnetic Tunnel Junction
(MTJ), as the basic memory cell device, typically consists of
multiple layers where two ferromagnetic layers sandwich a
thin insulating layer. One of the two ferromagnetic layers of a
MTJ is a permanent magnet with a particular polarity called
‘fixed layer’. Another ferromagnetic layer’s magnetization
can be changed by external stimulus. Thus, it is called the
‘free layer’. As shown in Fig. 1(a), when the free layer’s
magnetization is opposite that of the fixed layer, this MTJ
is in Anti-Parallel State (AP), making it have high electrical
resistance. On the contrary, in Fig. 1(b), the free layer’s
magnetization has the same polarity as the fixed layer. This
MTJ is in Parallel State (P), with a relatively low electrical
resistance. By measuring the resistance of the MTJ cell, the
resistance-encoded memory data can be read out.

There are multiple switching mechanisms available to
change the free layer’s magnetization. For example, Spin
Transfer Torque (STT) and Spin-Orbit Torque (SOT) were
introduced decades ago and have been widely used in recent
works [8], [28]–[30]. The STT-MRAM has the simple 1T1M
structure, but it requires a high write current and leads to high
programming energy [28]. Also, the STT-MRAM only has
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Fig. 1. (a) Anti-Parallel state with high resistance. (b) Parallel state with low
resistance. (c) 4-MTJ SAS MRAM’s structure with read and write paths.

two terminals, causing the read disturbance failure due to the
same read and write path [29]. The SOT-MRAM separates
the read and write current paths due to the extra heavy
metal layer for writing. With the help of spin-orbit coupling
and separated read/write path, SOT-MRAM requires much
lower write energy and offers much more reliable operation.
However, the extra write transistor seriously affects the high
area density properties of MRAM.

B. Continual learning

Continual learning aims to continually learn multiple tasks
that arrive in a sequential manner, meanwhile without for-
getting prior learned knowledge. Plentiful continual learning
methods have been developed and can be generally divided
into three categories: 1) Regularization-based methods (e.g.,
[31]–[33]) preserve knowledge from old tasks by incorporating
an additional regularization term in the loss function. This
regularization constrains weight updates when learning new
tasks. For instance, Elastic Weight Consolidation (EWC) [33]
evaluates the importance of weights using the Fisher Informa-
tion matrix and regularizes updates on important weights. 2)
Structure-based methods (e.g., [20], [34]–[37]) adapt model
parameters or architectures sequentially as new tasks are
introduced. 3) Memory-based methods can be further divided
into memory-replay methods and orthogonal-projection-based
methods. Memory-replay methods (e.g., [38]–[40]) store and
replay data from old tasks when learning new tasks. On the
other hand, orthogonal-projection-based methods (e.g., [41]–
[45]) update the model for each new task in a direction
orthogonal to the subspace spanned by the inputs of old tasks.

When considering NVM-based accelerator designs, it’s es-
sential to keep in mind that NVMs typically exhibit limited
endurance for data rewriting and consume substantially more
energy for writing or updating data compared to reading
data. Consequently, retraining or updating the entire model
using memory replay or regularization terms may not be well-
suited to these constraints. Additionally, due to the chain
rule involved in backpropagation, saving all intermediate
activations and gradients becomes necessary for calculating

subsequent or preceding layers. Depending on the batch size,
this intermediate data can potentially become much larger than
the model’s weights.

To address this challenge, [20] introduced an innovative
structure known as Rep-Net. Rep-Net incorporates a parallel
re-programmable tiny branch alongside the main backbone
model, and these two branches are combined through element-
wise addition. By avoiding multiple activations and keeping
the backbone model fixed, the training of the small par-
allel re-programmable branch does not require the storage
of activations and gradients on the larger backbone model.
Consequently, training Rep-Net demands significantly fewer
resources, making on-device learning a feasible prospect.

However, it’s worth noting that the original Rep-Net still
relies on floating-point-based operations, which can be inef-
ficient in NVM-based accelerator designs. To overcome this
inefficiency, we have integrated a fully integer-based train-
ing approach with Rep-Net, named INT8-Rep-Net, to enable
NVM-friendly on-device learning.

C. Inference and Training with Weight Quantization

A common approach to compress DNN for the resource-
limited device is quantizing 32-bit floating-point numbers
(FP32) to low-bit discrete representations, i.e., 8-bit integers
(INT8).

Two widely used DNN quantization approaches are Post-
training quantization (PTQ) and Quantization-aware training
(QAT) [46], [47]. Both are supported by popular DNN frame-
works such as Pytorch and TensorFlow. PTQ takes a pre-
trained FP32 network and converts it directly into a fixed-
point/integer network without re-training. Moreover, PTQ has
little hyperparameter tuning, making it easy to use. The funda-
mental step in the PTQ process is finding suitable quantization
ranges for each layer/channel. Then it uses the pre-defined
low-bit fixed-point/integer to represent the FP32 weight &
input to the closest level.

However, when aiming for low-bit quantization of acti-
vations, such as 4-bit and below, it is difficult for PTQ to
mitigate the quantization error incurred by low-bit quantiza-
tion. Quantization-aware training (QAT) has been proposed
to solve this, considering the quantization error/noise during
training, which achieves much better accuracy. However, the
higher accuracy comes with the expected higher cost in
hyperparameter search and training time.

Although PTQ and QAT can successfully quantize DNN
models while keeping high accuracy, they mainly target to
generate weight quantized models for inference but still use
high computation cost floating-point numbers during training.
It thus makes on-device learning to be extremely difficult in
resource-limited devices.

III. STT-ASSISTED-SOT MRAM (SAS-MRAM)
A. SAS-MRAM

Recent advancements in MTJ devices, highlighted by the
experimental work of Garello et al [48]. and Hu et al.
[49], have significantly propelled the field of memory tech-
nology. [48] demonstrates the first full-scale integration of
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Fig. 2. (a) Proposed SAS-MRAM based IMC architecture. (b) compute sub-array for MAC operation. (c) example bit-serial matrix MAC flow.

top-pinned perpendicular MTJs on a 300mm wafer using
CMOS-compatible processes with a notable 210ps SOT-driven
switching. This development underscores the potential of SOT-
MRAM to replace SRAM cache due to its large endurance,
sub-nanosecond switching times, and low power operation. On
the other hand, [49] introduces Double Spin-Torque Magnetic
Tunnel Junctions (DS-MTJs) in STT-MRAM showcases a
reliable 300ps STT-driven switching, along with improved
activation energy and magnetoresistance, indicating its poten-
tial for last-level cache applications. To get the benefit from
both STT-MRAM and SOT-MRAM and avoid/mitigate their
deficiency, the STT-Assisted-SOT MRAM (SAS-MRAM) has
been proposed [13], [17]–[19]. The SAS-MRAM shares the
SOT write path (i.e., heavy metal layer) with multiple MTJs to
separate the read path and write path, leading to several times
memory density improvement compared to SOT-MRAM, as
shown in Fig. 1(c). In SAS-MRAM device, writing can be
performed in a single step and does not require a bidirectional
SOT current as in traditional SOT-MRAM. First, a strong
current pulse, sufficient to overcome the device’s anisotropy,
is applied to the heavy metal layer. The strong SOT torque
effectively neutralizes the device’s state such that the free
layer of the MTJ is suspended midway between the P and
the AP states. Subsequently, it applies a small STT current to
each bitline and releases the SOT pulse. Here, a small STT
torque is sufficient to deterministically break the symmetry
between the P and AP states, causing each bit to relax to the
desired magnetic state. In this process, both the SOT and STT
current are much smaller than the SOT-/STT-only switching
mechanism to save writing energy, while lowering average
transistor counts per bit compared to STT-MRAM. To facilitate
the read operation in SAS-MRAM, the process begins by
applying a small SL read voltage to the shared heavy metal
layer. The gate terminals of the MTJs’ access transistors are
connected to a common wordline (WL) for the simultaneously
read operation. Upon activation of this WL, the P/AP states
of the MTJs are manifested as low/high resistance levels,
respectively. Consequently, the data stored in the SAS-MRAM
is easily retrieved by sensing and interpreting the current in
each BL, which directly correspond to the MTJ’s resistance
states. Our fabricated 4-MTJ SAS-MRAM device prototype
performance is shown in the later experiment section.

B. Related works

Recently, researchers are increasingly drawn to the remark-
able efficiency of SAS-MRAM, leading to the emergence of
SAS-MRAM-based DNN accelerator designs. In reference to
[19] and [13], these studies suggest the stacking of 4 MTJs
on the same heavy metal layer to create a multi-level MRAM
device. This innovative design leverages 4 MTJs per cell,
enabling the representation of 5 distinct states within each
cell: 4AP, 3AP/1P, 2AP/2P, 1AP/3P, and 4P. During both read
and MAC operations, a small read voltage is simultaneously
applied to all 4 MTJs. Subsequently, the read currents are
accumulated on the BL and detected by an ADC to determine
the outcome.

However, this analog computing paradigm doesn’t fully
exploit the potential of SAS-MRAM for several reasons. First,
in a fully digital design, the 4 MTJs could potentially represent
up to 24 = 16 states, resulting in significantly higher storage
density compared to the analog computing system. Second, the
use of power-hungry and area-consuming ADCs diminishes
the efficiency gains offered by SAS-MRAM. Finally, both
[19] and [13] exclusively focus on using SAS-MRAM as the
inference accelerator, while overlooking its potential for on-
device learning. These factors serve as strong motivations for
us to introduce a comprehensive fully digital framework based
on SAS-MRAM. This framework not only facilitates inference
but also enables on-device continual learning.

IV. IMC WITH STT-ASSISTED-SOT MRAM

A. Overview of proposed IMC architecture and circuits

Fig. 2 shows the overview of the proposed IMC architecture
and circuits with SAS-MRAM, where each memory cell con-
sists of 4 MTJs sharing the same heavy metal line representing
4 bits every memory cell macro. The overall system consists of
I/O interface for data exchange, buffers to latch input or tem-
porarily store the intermediate result, and interface controller
to decode instruction. Multiple compute and transposable

memory sub-arrays are grouped as MAT, and multiple MATs
are grouped to construct the bank, in H-tree structure. As the
base component, compute and transposable sub-arrays consist
of SAS-MRAM array (with each cell macro of 4 MTJs),
row/col decoder, WL drivers, SOT/STT write drivers, sense
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Fig. 3. (a) Mapping conventional convolution on SAS-MRAM array. (b)
Mapping depth-wise convolution on SAS-MRAM array. (c) Dataflow of depth-
wise convolution.

amplifiers, shift & adders, and local/global buffers. Each com-
pute and transposable sub-array is designed to perform digital
bit-serial Vector-Matrix Multiplication (VMM) to support in-
memory convolution operation.

B. Continual Learning Model Mapping

As illustrated in Fig. 3 the convolution weight kernel is
mapped to the SAS-MRAM array. Since each SAS-MRAM
cell has 4 MTJs, i.e., 4 bits, we use two adjacent memory cells
in the same world line to represent one 8-bit weight parameter.
The convolution input (i.e., activation) is stored in the local
buffer, which is either from the previous layer or from I/O
interface. It is fed into the SAS-MRAM array in a bit-serial
manner.

Similar to previous studies [10], [12], [50], in order to maxi-
mize parallelism and data reuse, the conventional convolution
kernels are unrolled based on the output feature dimension.
Kernels that correspond to the same output feature are strate-
gically mapped onto identical columns, and those mapped
onto the same rows are designed to share the same input data
as shown in Fig. 3 (a). By implementing this data mapping
and activating the SAS-MRAM array in a sequential row-by-
row order, convolutions across various kernels (represented as
columns in the SAS-MRAM) can be executed simultaneously,
thereby achieving high parallelism.

Regarding depth-wise convolutions, where each input fea-
ture map is associated with its own 2D convolution kernel, the
result retains the same dimension as the input feature map.
This particular character makes it impractical to unroll the
convolution kernel along the output feature dimension, thus
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Fig. 4. Sign extension to handle the negative operands in shift-and-
accumulation based multiplication.
mandating an alternate mapping strategy specifically for depth-
wise convolution. Fig.3 (c) illustrates the data flow for depth-
wise convolution. It is evident that while there is no input
sharing between different kernels, every element in the input
feature map engages in multiplication with every element in
the 2D convolution kernels. The results of these multiplications
are temporarily stored in a local buffer and then incrementally
combined with operands from subsequent cycles. Given SAS-
MRAM’s exclusive support for multiplication, each 2D depth-
wise convolution kernel is linearly unrolled into a 1D vector
and mapped on the same row in SAS-MRAM array, as
depicted in Fig.3 (b). Upon row activation, every element
within the convolution kernel concurrently multiplies with the
same input through the shift-and-accumulate process. These
products are then preserved in the local buffer and methodi-
cally summed in a predefined order to generate the result of
depth-wise convolution.

The continual learning model contains two different mod-
ules: fixed module and learnable module. Given that the
fixed modules within the continual learning model are solely
engaged in the forward pass, whereas the learnable modules
participate in both the forward and backward passes, a clear
distinction in their involvement is evident. In order to effi-
ciently support the VMM, a compute sub-array is employed to
facilitate the mapping of the fixed modules, mainly supporting
the DNN forward operation. The learnable modules in the
continual learning model not only necessitate VMM but also
require VMM with a transposed weight matrix during back-
propagation. Consequently, a specially designed transposable
sub-array is implemented to accommodate the mapping of
the learnable modules to support both forward and backward
operations. The size of the learnable module is much smaller
than the fixed module (e.g., 5%), which determines the ratio
of compute sub-arrays over transposable sub-arrays.

C. Compute Sub-Array for Forward Pass

To better explain the digital bit-serial in-memory convolu-
tion process, as shown in Fig. 2(c), for simplicity, we use a
4-bit input (4b(a)) and 4-bit weight (4b(w)) as an example.
It could be easily extended to 8-bit convolution. For bit-serial
convolution, two steps are needed: 1) one bit partial product
(i.e., bitwise ‘AND’ operation implemented using our memory
cell design), and 2) shift & accumulation, implemented using
the digital peripheral circuits associated with each memory
array.

For the one bit partial product (i.e., bitwise AND opera-
tions), the input bit is broadcasted to the gate terminals of
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the read access transistors connected with the fixed layer
of each MTJ on the same row. Then, based on the stored
weight value (i.e., the high/low resistance level connected with
the drain terminal of the read access transistor), the sense
amplifier (SA) associated with each bit-line could detect the
resistance level (i.e. AND output). For example, if the input bit
is ‘1’, then only the low resistance of MTJ (i.e., representing
weight value as ‘1’), will make the SA outputs ‘1’. It can be
seen that the in-memory-AND operation could be naturally
implemented through the existing read access transistor and
SA by reprogramming the wordline driver to the convolution
input bits. If the input bit is ‘0’ (i.e. gate terminal voltage
is 0), no matter what weight value is stored in the MTJ
cell, the output from the SA should be always ‘0’. Thus,
in this case, all the read access transistors are off, and the
row decoder skips the enable signal for SA making the SA
outputs keep on ‘0’. It’s worth highlighting that, in contrast to
the analog-based IMC design, only a single row is activated
within the same compute sub-array. This distinction arises
from the implementation of the in-memory-AND operation
through the standard read operation. To streamline the design
and minimize overhead, we can leverage the well-established
WL driver and SA design from mature MRAM-based storage
designs. Furthermore, this compute sub-array can also serve as
storage, adding versatility to its functionality. When the next
bit is fed into the array, the previous cycle’s result is collected
at the shift&adder peripheral digital circuits to be shifted and
added with the following cycle result. Through such a way, a
fully digital multi-bit multiplication could be implemented in
a pipeline style as shown in Fig. 2(c).

Given that both the weight and input of the convolution
can be either positive or negative, our design employs a 2’s
complement format to effectively manage negative operands.
This approach aligns closely with the primary steps involved
in the aforementioned unsigned integer scenario. Initially, the
Sense Amplifier (SA) fetches the weight based on the input bit-
serials through the in-memory-AND operation facilitated by
SAS-MRAM. Subsequently, the result undergoes an extension
process to avoid data overflow during the shift&accumulation
phase. Contrary to the unsigned scenario where extended bits
are filled with ‘0’, in the 2’s complement format, these bits
are filled with the sign bit. Specifically, negative values are
extended with ‘1’s, and positive values with ‘0’s to ensure
computational correctness. This process is exemplified in
Fig. 4.

D. Transposable Sub-Array for Forward and Backward Passes

The forward inference computation mainly requires the
above-discussed in-memory convolution. In order to support
on-device learning, we also designed the transposable sub-
array to support both forward and backward passes. The for-
ward pass is the same as the compute sub-array. In backward
pass, the main computations required are error propagation,
gradient calculation, and weight update, as discussed in the
next section, equations 1-3. Those major convolution-related
computations still leverage our existing forward circuits.
While, as shown in equation-1 and -2, the error e and learnable

Transposable Sub-Array
Transposed Sub-array
for BackpropagationForward Passa). b). c).

SA
SA

SA
SA
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SA SA SA SA
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SA SA SA
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SA
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BL0 BL1 BL2 BL3

WL0

WLT0
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T0 BL

T1 BL
T2 BL

T3

Fig. 5. Transposable sub-array design for on-device learning support.

weight w need extra transpose operations. For error e, since it
propagates layer by layer, it will be stored in the local buffer
as the intermediate data. The local controller could effortlessly
implement the transpose of e through the reading buffer in
a transposed order. In contrast, the transpose of learnable
w needs an extra read access transistor per cell to support
transposed read, i.e., transposed in-memory-AND operation,
while the follow-up shift & add circuits could be shared.
However, as we will introduce our INT8-Rep-Net algorithm in
the next section, it’s important to note that only a small portion
(approximately ⇠ 5%) of the total weights needs to be updated
for on-device new task learning. Thus, only a small portion of
weight memory needs the transposed design to support weight
updates.

Figure 5 illustrates the transposable sub-array circuit de-
sign, which builds upon the compute sub-array, incorporating
additional components, such as the transpose transistor, WL,
BL, and peripheral circuits to enable both horizontal and
vertical read access. In the transposable array figure, we only
show the circuit of one 4-MTJ memory macro to illustrate
how to support both forward and backward computations. For
simplicity, we omit the transistor used for the SOT path since it
is solely used for writing data to the SAS-MRAM device, not
in the compute stage leveraging read operations. As depicted
in Figure 5(b), in the forward pass, the sense amplifier, access
transistor, and BL located atop the SAS-MRAM are activated,
while the transpose WL/BL/access transistor/peripheral circuit
remain deactivated. Conversely, during the backpropagation
pass, the activated components are opposite to the forward
pass. Specifically, the transpose access transistor establishes a
connection between SAS-MRAM cells within the same row,
forming the transpose BL, BLT , and transpose WL, WLT .
Consequently, the sense amplifier on the right side of the array
can retrieve the computation result with the transposed weight
matrix wT , as illustrated in Figure 5(c).

V. INT8-REP-NET FOR ON-DEVICE CONTINUAL
LEARNING

In this section, we introduce the proposed INT8-Rep-Net
for on-device continual training framework. As discussed in
our prior work [20], the Rep-Net structure is a memory-
efficient continual learning method. As shown in Fig. 6, it
has a weight-frozen backbone model as the main path (trained
offline on large-scale background dataset, e.g., imagenet), and
a small learnable path (i.e., Rep-Net) to learn new task-specific
feature and accommodate the intermediate activation, for new
downstream task data. This scheme has demonstrated state-
of-the-art new task adaption in both performance and training
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Fig. 6. Reprogramming Network (Rep-Net) for new task learning.

memory/computation cost reduction. While the original Rep-
Net is learned in floating-numbers (FP32), we draw inspiration
from recent studies on integer-only training methods [24]–
[27]. In this work, we propose and redesign the continual
learning process with only INT8 operations to make it IMC
hardware friendly and further reduce computation/memory
cost.

A. Reprogramming Network (Rep-Net)

In the Rep-Net architecture (Fig. 6), the input is fed to
the backbone and Rep-Net paths in parallel. The working
principle is to interchange its intermediate features with the
backbone model through activation connector. In this way,
backbone and Rep-Net can mutually benefit and improve the
overall performance of new task learning. The objective is
to adjust the intermediate activation in a new domain of
knowledge for continual learning. Note that, it is designed
for task-specific continual learning, i.e., one new Rep-Net
for one new task to alleviate the catastrophic forgetting. To
minimize the memory overhead during the training phase and
enable the on-device training feature, the backbone model
is fixed (i.e., both weights and architecture) as highlighted
in grey in Fig. 6. Only the Rep-Net path and the shared
last classification layer (highlighted in orange) are learned on
the new task data. Compared with the backbone model, the
Rep-Net path is a lightweight neural network with only a
few convolution modules and minor memory overhead (i.e.,
activation storage and additional parameters). Although Rep-
Net significantly saves the memory cost during continual
learning, it does not change the high computation demand of
training since the computation during backward propagation
is still performed with floating-point (FP32) operations. To
reduce the high computation cost during training, in this work,
we propose a new hardware-friendly learning method that
uses INT8-only operations during the entire training process,
instead of floating-point (FP32) number operations, to save
both computation and memory cost (i.e., from 32-bit to 8-bit).

B. INT8 Training Scheme

As defined in IEEE 754, a floating-point number consists
of a sign bit, exponential bits, and fraction bits representing
an extensive range of decimal numbers. In contrast, the 8-
bit binary number can only represent up to 256 levels. The
weight/activation usually has a narrow distribution within the
same layer. However, the weight/activation across different

INT8 Matrix 
Multiply

W(l), SW
(l)a(l-1), Sa(l-1)

>>
a(l) 32b

a(l) 8b

Next Layer

Weight 
Update

INT8 Matrix 
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e(l)

a(l-1), Sa
(l-1) Next Layer

g(l) 32b

>>
g(l) 8b

INT8 Matrix 
Multiply

e(l)

Next Layer

e(l-1) 32b

>>
e(l-1) 8b

W(l), SW
(l)

Previous Layer

(a)

(b) (c)

Forward Pass Backward Pass

Fig. 7. Main process graph for both forward pass and backward pass. The
fixed main branch only needs to support the forward pass. The learnable
module needs to support both forward and backward passes for training.

layers may be distributed over an extensive range. Simply
using the 8-bit number for all layers would cause large
quantization errors and lead to an unacceptable performance
drop. Thus, traditional PTQ and QAT use the 8-bit or even
less-bit quantization only in the forward pass. But PTQ and
QAT methods still use the floating-point numbers during
backpropagation to keep high precision, as gradient and error
propagation are usually more sensitive to quantization error,
especially in deeper models. To summarize, the following are
the fundamental computations required during backpropaga-
tion:

Error propagation : el�1 = (W l)T ⇥ el (1)
Gradient : gl = al ⇥ (el)T (2)
Weight Update : W l

new = W l
old � gl (3)

Fig. 7 shows our key steps and method of INT8-Rep-
Net training. Inspired by the observations of weight/activation
distribution, we use a shifting factor (sa), which is shared
within the same layer, to improve the representation range.
The shifting factor is deployed only in the trainable Rep-
Net path and the last classifier layer during training, while
the backbone main path model is frozen with pre-trained 8-
bit quantization. As shown in Fig. 7, weight and activation
have their own shifting factor and are shared within the same
layer. The ‘a’ represents activation, ‘w’ represents weight, ‘e’
represents error, and ‘g’ represents gradient. The upper script
‘l’ represents the l� th layer. The lower script 32 means it is
a 32-bit number. Without explicit notation, the default number
is 8-bit (INT8).

The key component in both forward and backward passes is
the INT8 Matrix Multiply which takes 8-bit number operands
and accumulates the result in 32-bit numbers. For example,
given the activation a and its shifting factor sa, the actual value
is calculated as a⇥ 2sa . Since the shifting factors are shared
by the entire layer, we can extract the shifting operation and
perform it after the INT8 computation, namely, the convolution
between w ⇥ 2sw and a ⇥ 2sa can be transferred as two
steps: 1) calculate the INT8 multiplication w ⇥ a; 2) shift
it by 2sw+sa . The computation result is temporarily stored
as 32-bit number in the buffer. To interface with the INT8
layers before and after, we need to shift it to 8-bit and update
the shifting factor accordingly. Note that, during the backward
pass, the weight and error matrix need to be transposed, which
is supported by our hardware design. Then, the INT8 matrix
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TABLE I
INT8-REP-NET ON-DEVICE CONTINUAL LEARNING ACCURACY

Configuration Flowers Cars CUB Food Pets Aircraft
Classifier-Only(FP32) 91 48.4 67.2 64.3 87.8 43.4

MobileNet-V2 FP32 + Rep-Net FP32 [20] 95 88 71.9 78.22 89.3 78.8
MobileNet-V2 INT8 + Rep-Net FP32 94.7 86.8 71.6 78.2 89.1 78.5
MobileNet-V2 INT8 + Rep-Net INT8 94.7 84.9 70.2 78.1 88.3 77.8

multiply operation is the same as the forward pass. Due to
the limited range of weight in the integer training scheme, it
isn’t easy to adopt the learning rate concept. Therefore, we
use the gradient to determine the magnitude of the update.
Empirically, we observed it works well for the shallow INT8-
Rep-Net path.

VI. EXPERIMENT RESULTS

A. INT8-Rep-Net Performance

In this section, we first evaluate the INT8-Rep-Net for learn-
ing new tasks. For a fair comparison, we choose the popular
MobileNet-V2 [51] as our backbone model, which is pre-
trained off-line on ImageNet dataset. We use the most popular
six datasets for continual learning performance evaluation,
including CUBS [52], Stanford Cars [53], Flowers [54], Food
[55], Pets [56], and Aircraft [57]. For all the experiments,
we report the accuracy of finetuning classification layer (i.e.,
baseline) and Rep-Net with different precision configurations,
as in Table I.

In all experiments, we assign 6 learnable modules for INT8-
Rep-Net, each module consisting of 1 pooling layer and 2
convolution layers. MobileNet-V2 (FP32) + Rep-Net (FP32)
in [20] demonstrated the best state-of-the-art performance in
algorithm with floating-point weights for both backbone and
Rep-Net paths, serving as the SOTA baseline. To deploy in
IMC, we first quantize the backbone model to 8-bit with
QAT and leave Rep-Net in FP32, which shows slightly lower
accuracy. In our method, we leverage our proposed INT8-
training algorithm to only use INT8 operations during Rep-
Net continual learning. As can be seen in Table I, our method
with both backbone and Rep-net in 8-bit achieves close-to full
precision accuracy with only ⇠1% drop on average. While, the
memory cost could be reduced by 4⇥ from 32 bit to 8 bit, as
well as great reduction in computing complexity for on-device
learning.

B. SAS-MRAM Device Prototype and System Evaluation

TABLE II
SAS-MRAM DEVICE PROTOTYPE DATA

Symbol Description Value
↵ damping constant 0.008

✓SHA spin Hall angle 0.6
Ms saturation magnetization 1.3 MA/m
AR MTJ aspect ratio 1.0(z-type) or 3.0(x-type)
tE free layer thickness 1 nm(z-type)
Ku first order uniaxial anisotropy constant 0.31 MJ/m3(x-type)
R Resistance (Low / High) 4408⌦ / 8759⌦

Ewrite Single bit Set/Reset Energy 0.048pJ
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Fig. 8. (a)SEM micrograph of the top electrodes and SOT ohmic contacts in
a 4-MTJ SAS device. (b)TMR (⇠ 100%) curve of a 100nm ⇥ 50nm MTJ
cell.

Fig. 9. Cross-layer device-architecture evaluation framework.

Fig. 8 displays the SEM micrograph of our fabricated 4-MTJ
SAS-MRAM device prototype along with the measured TMR
curve. The device parameters used in hardware evaluation are
summarized in Table II, where our measured TMR is ⇠98.7%.

To establish a comprehensive cross-layer device-architecture
framework for system evaluation and comparison, we de-
veloped an in-house evaluation framework utilizing array-
level circuit modeling techniques based on PIMA-SIM [60],
NVSIM [61], TSMC 28nm Product Development Kit (PDK),
and our experimentally benchmarked Verilog-A SAS MTJ
model, as illustrated in Fig. 9. This framework contains
the development and extraction of SPICE-compatible MRAM
device model, circuit-level performance for sub-array circuits,
and architecture-level performance estimation for peripheral
circuits. For the characterization of bit-cell performance of
MRAM, we employ a combined approach employing the Non-
Equilibrium Green’s Function (NEGF) and Landau-Lifshitz-
Gilbert (LLG) equations, as previously discussed in [16],
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TABLE III
COMPARISON WITH STATE-OF-THE-ART IMC BASED ACCELERATORS

Reference Ours Nature’22 [10] JETCAS’22 [12] TC’22 [14] JSSC’19 [58] ESSCIRC’22 [5] ISSCC’22 [59] JSSC’22 [50]
Technology SAS-MRAM STT-MRAM STT-MRAM SOT + STT SRAM SRAM SRAM ReRAM
Tech Node 28nm 28nm 65nm 28nm 65nm 65nm 28nm 40nm
Capability Inference & Learning Inference Inference Inference Inference Inference Inference Inference
Precision 8-bit 8-bit BNN 8-bit/16-bit BNN BNN 8-bit 8-bit

Bit Cell Density 1.25T 2T-2M 2T-2M 2T-1M 8T 8T 6T 1T-1R
Supply Voltage 0.8V 0.8-1.8V - 0.8-1.8V 0.68-1.2V 0.8V-1.2V 0.8V 0.9V
Max Frequency 200MHz 11.1MHz - - 100MHz 1230MHz 333MHz -

Macro Size 4KB 512B 2KB 14.75KB 4.8KB 2KB 4KB 8KB
Performance (GOPS) ⇠3277(1b) - 3280 - 295 1259.52 - -

Energy Effi.(TOPS/W) ⇠131 405 319(1b/1b) 1.1(16b/16b) 20.6 34.98 27.38(8b/8b) 7(8b)

TABLE IV
HARDWARE SYSTEM SPECIFICATION

Component Area(um2) Energy(pJ)
Memory Array(64 x 512) 429.62 -
Column Decoder + Driver 243.18 7.9

Row Decoder + Driver 37.3 3.4
Shift Adder 2857.93 334.17

Adder Tree(128 units) 44113 814.9
Global Buffer(64 × 112 × 112 × 4) 6500,182 0.002/bit/access

Global ReLU 719.7 0.6

[62], [63]. These equations are instrumental in capturing
the intricate behaviors exhibited by the bit-cells, which are
experimentally benchmarked in this work with our fabricated
SAS MTJ device data in Table II. At the circuit level,
we construct 256 ⇥ 256 memory sub-array with peripheral
circuits, simulated in Cadence Spectre with the 28 nm TSMC
PDK library. Furthermore, to evaluate the timing, energy,
and area characteristics of the various memory technologies
at the architecture level, we leverage the well-established
memory architecture evaluation tools NVSIM and PIMA-
SIM. This combination of tools provides flexibility in memory
configuration, allowing for the organization of banks, mats,
and subarrays, as well as peripheral circuitry design.

The memory configuration is facilitated through the uti-
lization of two levels of configuration files, enabling pre-
cise specification. Specifically, at the cell level, the device
and circuit-level specifications are defined using NVSIM’s
.cell file. Conversely, at the architecture level, the memory
organization and optimization targets are configured through
NVSIM’s .cfg file. This comprehensive configuration scheme
allows for thorough exploration of the memory system and
optimization possibilities. These methodologies leverage the
detailed device and circuit-level data to provide a comprehen-
sive understanding of the application performance within the
studied platforms.

To map the entire model, we construct the memory with
the following hierarchy: 16⇥ 16 banks, each bank has 2⇥ 2
MATs, and each MAT has a 64 ⇥ 512 subarray. Each cycle
only activates 16 ⇥ 2 subarrays, and each subarray activates
only one row. Thus, the whole memory can store 4MB of data,
whereas the MobileNet-V2 has ⇠3.4M parameters.

Fig. 10 demonstrates the area breakdown for the proposed
system design. In order to support the execution of MobilNet-
V2 as the backbone model, the buffer should be large enough
to fit the largest activation, 32⇥112⇥112. Also, the SAS-
MRAM array should be large enough to store all the weight
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Fig. 11. (a) Energy consumption of updating MobileNet-V2 weights in one
training epoch; (b) memory write latency and area comparison.

Fig. 11(a) reports the normalized energy consumption of
updating the MobileNet-V2 weights in one training epoch.
It could be seen that the memory write energy of SRAM
is the smallest. However, if considering the leakage en-
ergy, both the SOT-MRAM and SAS-MRAM achieve much
smaller weight updating energy. In particular, the SAS-MRAM
achieves around 3.36⇥ smaller writing energy than STT-
MRAM counterparts. Fig. 11(b) reports the memory write
latency and cell area comparison. It can been seen that SRAM
has the smallest writing speed. However, due to 6 transistors
per cell design, its area is the largest among all candidates. As
expected, the 1T1M STT-MRAM area is the smallest. Due to
the shared writing path between multiple MTJs in our SAS-
MRAM design, the cell area is close to STT-MRAM and much
smaller than the traditional 2T1M SOT-MRAM.

Table III compares our proposed SAS-MRAM based IMC
accelerator design with other state-of-the-art IMC designs.
While other designs in the field have primarily concentrated on
enabling efficient inference processes, our proposed solution
goes beyond that to incorporate the essential aspect of on-
device learning.
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Samsung [10] introduced an STT-MRAM based crossbar
array that facilitates DNN model inference. This array in-
corporates a time-to-digital converter (TDC) readout circuit
and employs a 2T-2M MRAM structure. In this design, the
dot-product or Vector-Matrix Multiplication (VMM) operation
is achieved by sensing the column resistance using TDC.
To address the challenge of low resistance in individual
Magnetic Tunnel Junctions (MTJs), it implemented a 2T-
2M structure. This structure consists of two parallel 1T-1M
STT-MRAM cells, resulting in a super-linear accumulation of
column resistance, despite the relatively low resistance range
of approximately 13K to 26K Ohms. However, it is worth
noting that the 2T-2M structure is associated with certain
drawbacks. It occupies a substantial area and necessitates a
large amount of current and energy for data writing operations.

Pham et al. [12] utilized a similar 2T-2M structure to
implement in-Memory XNOR operations, limiting its support
to BNN models exclusively. Their approach demonstrates
outstanding energy efficiency by focusing solely on the power
consumption of the array itself, encompassing WL, BL, pre-
charge circuits, and sense amplifiers. While this approach may
be reasonable for small-scale macro-level designs, it becomes
less applicable for large-scale designs. In larger designs, the
energy consumption of interconnections, H-trees, and decoders
significantly surpasses that of the MRAM array itself.

Kim et al. [14] introduced CRISP, a digital IMC architecture
designed for parallel matrix multiplication. Their approach
combines the use of STT and SOT-MRAM in their design,
with STT-MRAM serving as the weight storage array and
SOT-MRAM forming two computing arrays for multiplication
and addition operations respectively. By adopting a digital
IMC design, CRISP presents a solution that eliminates the
necessity for power-intensive ADCs while enabling the execu-
tion of arbitrary precision DNN models with flexibility in cycle
counts. However, it is important to note that this approach has
a drawback in the form of a large number of required cycles,
which affects the throughput and ultimately hampers energy
efficiency as well.

The ReRAM-based design [50] performs analog-domain
computing where the addition operation is implemented by
accumulating current along the same bit-line. Then ADC
converts such current back to the digital domain. Although
ReRAM is another promising NVM with low leakage, due
to the power-hungry ADCs, its overall energy efficiency
(⇠ 7TOPS/W) is not as good as other designs. Other recent
SRAM-based IMC designs [5], [58], [59] implement in-
memory computing by either modifying the bit-cell design or
adding extra digital logic peripheral circuits. Such modification
leverages the SRAM’s fast speed to achieve high throughput.
However, these designs sacrifice area efficiency and inevitably
lead to lower energy efficiency due to the high leakage power.

With consideration of interconnections, decoders, drivers,
and other peripheral circuits, our SAS-MRAM-based fully
digital design shows great performance in terms of (⇠ 3277
GOPS) and energy-efficiency (⇠ 131 TOPS/W). Its high
energy efficiency comes from several aspects: 1) fully digital
design without power-hungry ADCs; 2) NVM significantly
reduces leakage power; 3) our SAS-MRAM cell requires only

5 transistors for every 4 bits; 4) our digital MAC operations
could be efficiently implemented by our bit-serial and effi-
cient in-memory-AND circuit design leveraging the existing
memory read circuits.

VII. CONCLUSION

In this work, we are the first to demonstrate an efficient
on-device continual learning system with SAS-MRAM based
in-memory computing design. Different cross-layer hardware
and algorithm co-designs have been proposed to improve
the overall system performance. From the hardware side, we
fabricated 4-MTJ SAS-MRAM device prototype and design
fully digital in-memory computing circuits to support both
the inference and on-device learning operations. From the
algorithm side, we presented efficient 8-bit reporgamming net-
work for IMC-friendly on-device continual learning algorithm.
Comprehensive experiments have been conducted to prove
the ultra-high energy efficiency of our developed on-device
continual learning AI system.
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