
Citation: Angizi, S.; Fahmi, N.A.;

Najafi, D.; Zhang, W.; Fan, D.

PANDA: Processing in Magnetic

Random-Access Memory-

Accelerated de Bruijn Graph-Based

DNA Assembly. J. Low Power Electron.

Appl. 2024, 14, 9. https://doi.org/

10.3390/jlpea14010009

Academic Editor: Kenneth S. Stevens

Received: 17 December 2023

Revised: 16 January 2024

Accepted: 31 January 2024

Published: 2 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

PANDA: Processing in Magnetic Random-Access

Memory-Accelerated de Bruijn Graph-Based DNA Assembly

Shaahin Angizi
1,

*, Naima Ahmed Fahmi
2
, Deniz Najafi

1
, Wei Zhang

2
and Deliang Fan

3

1 Department of Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07103, USA

2 Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
3 Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
* Correspondence: shaahin.angizi@njit.edu

Abstract: In this work, we present an efficient Processing in MRAM-Accelerated De Bruijn Graph-
based DNA Assembly platform, named PANDA, based on an optimized and hardware-friendly
genome assembly algorithm. PANDA is able to assemble large-scale DNA sequence datasets from all-
pair overlaps. We first design a PANDA platform that exploits MRAM as computational memory and
converts it to a potent processing unit for genome assembly. PANDA can not only execute efficient
bulk bit-wise X(N)OR-based comparison/addition operations heavily required for the genome
assembly task but also a full set of 2-/3-input logic operations inside the MRAM chip. We then
develop a highly parallel and step-by-step hardware-friendly DNA assembly algorithm for PANDA
that only requires the developed in-memory logic operations. The platform is then configured with a
novel data partitioning and mapping technique that provides local storage and processing to utilize
the algorithm level’s parallelism fully. The cross-layer simulation results demonstrate that PANDA
reduces the run time and power by a factor of 18 and 11, respectively, compared with CPU. Moreover,
speed-ups of up to 2.5 to 10⇥ can be obtained over other recent processing in-memory platforms to
perform the same task, like STT-MRAM, ReRAM, and DRAM.

Keywords: processing in memory; DNA assembly; SOT-MRAM

1. Introduction

With the advent of high-throughput second-generation parallel sequencing technolo-
gies, the process of generating fast and accurate large-scale genomics data has seen sig-
nificant advancements. Such data can enable us to measure the molecular activities in
cells more accurately by analyzing the genomic activities, including mRNA quantification,
genetic variant detection, and differential gene expression analysis. Thus, by understanding
transcriptomic diversity, we can improve phenotype predictions and provide more accurate
disease diagnostics [1]. However, the reconstruction of the full-length transcripts consid-
ering sequencing errors is a challenging task in terms of computation and time. Current
cDNA sequencing cannot read whole genomes at once [2]. This leads to fragmented data
with repeated chunks, duplicated reads, and gaps. Genome assembly aims to merge these
fragments into contiguous sequences (i.e., contigs) to reconstruct the original chromosome
(Figure 1a) [3].

J. Low Power Electron. Appl. 2024, 14, 9. https://doi.org/10.3390/jlpea14010009 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea14010009
https://doi.org/10.3390/jlpea14010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0003-3605-9373
https://doi.org/10.3390/jlpea14010009
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea14010009?type=check_update&version=2

J. Low Power Electron. Appl. 2024, 14, 9 2 of 23

Figure 1. (a) The de Bruijn graph-based genome assembly process, (b) break down of execution time
of Meraculous genome assembler for human and wheat datasets [2,4].

Today’s bioinformatic application acceleration solutions are mostly based on the von Neu-
mann architecture, with separate computing and memory components connecting via buses,
and, inevitably, consume a large amount of energy in data movement between them [5–8].
The emerging Non-Volatile Memories (NVMs), i.e., Phase-Changing Memory (PCM) [9],
Spin-Transfer Torque Magnetic Random-Access Memory (STT-MRAM) [10], and Resistive
Random-Access Memory (ReRAM) [11], provide promising features such as high density,
ultra-low stand-by power, promising scalability, and non-volatility. In the last two decades,
processing in-memory (PIM) architecture, as a potentially viable way to solve the memory wall
challenge, has been well explored for different applications [6,12–14]. Meanwhile, processing
in non-volatile memory architecture has achieved remarkable success by dramatically
reducing data transfer energy and latency [15–18]. The key concept behind PIM is to realize
logic computation within memory to process data by leveraging the inherent parallel com-
puting mechanism and exploiting large internal memory bandwidth. Moreover, most of
CPU [19,20]-/GPU [20,21]-/FPGA [22]- and even PIM [5,6]-based efforts have only focused
on the DNA short read alignment problem, while the de novo genome assembly problem
still relies mostly on CPU-based solutions [23]. De novo assemblers fall into Overlap Layout
Consensus (OLC), greedy, and de Bruijn graph-based types. De Bruijn graph-based assem-
blers, gaining attention, solve the problem with the Euler path in polynomial time, unlike
the NP-hard Hamiltonian path in OLC-based assemblers [24]. CPU-based assemblers like
Velvet [25] and Trinity [26] use the bi-directed de Bruijn graph. GPU–Euler [23,27,28] is
among the few GPU-accelerated assemblers. This mainly comes from the nature of the
assembly workload that is not only computationally intensive but also extremely data-
intensive, requiring very large working memories. Therefore, adapting such a problem
to use GPUs with their limited memory capacities has brought many challenges [29]. A
graph-based genome assembly process, as shown in Figure 1a, as the main focus of this
work, basically consists of multiple stages, i.e., k-mer analysis for creating a Hashmap,
graph construction, and traversal, and scaffolding and gap closing. Figure 1b depicts a
breakdown of execution time for the well-known Meraculous assembler [4] for the human
and wheat datasets. We observe that Hashmap and graph construction/traversal are the
two most expensive components, which together take over 80% of the total run time.

This motivates us to show that the genome assembly problem and, especially, com-
putationally loaded components can exploit the large internal bandwidth of a Magnetic
Random-Access Memory (MRAM) chip for PIM acceleration. Genome assembly heavily
relies on comparison and addition operations, requiring extensive X(N)OR logic computa-
tion. However, the intrinsic complexity of X(N)OR logic affects the throughput of PIM
platforms [6,15,16,30]. Moreover, in-memory X(N)OR logic involves multi-cycles of ma-
jority/AND/OR functions, introducing extra latency and energy consumption through

J. Low Power Electron. Appl. 2024, 14, 9 3 of 23

intermediate data write-back and multi-cycle operations. Intermediate data write-back is
necessary as operands for in-memory logic come from the corresponding memory sub-
array. In this work, we explore a highly parallel and PIM-friendly implementation of de
Bruijn graph-based genome assembly that can accelerate, in particular, the first two stages
of the algorithm. Overall this paper makes the following contributions:

(1) We propose a high-throughput comparison/addition-friendly (requiring only one
cycle) processing in MRAM architecture for a de Bruijn graph-based genome assembly. We
develop PANDA based on a set of innovative microarchitectural and circuit-level schemes
to realize a data-parallel computational core for genome assembly;

(2) We reconstruct the existing genome assembly algorithm in a step-by-step fashion
to be fully implemented in the proposed PANDA platforms. It supports short read analysis,
graph construction, and traversal;

(3) We propose a dense data mapping and partitioning scheme to process the indices
locally and handle DNA sequences of various lengths;

(4) We extensively assess and compare PANDA’s performance, energy efficiency, and
memory bottleneck ratio with a CPU and recent potential PIM platforms.

For clarification, in [30,31], we presented a DRAM-based PIM platform with new ISA
to solve three main challenges in the volatile DRAM domain, namely, row initialization,
low-throughput X(N)OR logic, and reliability concern about triple row activation. At
the application level, we only focused, designed, and discussed the acceleration of DNA
assembly’s first stage, i.e., Hashmap. We left full algorithm discussion, data partitioning,
and mapping implementation of the de Bruijn graph construction (presented as stage two in
Section 3.2) and traversal for the Euler path (stage three in Section 3.3) for this submission.
The proposed customized and memory-friendly three-stage DNA assembly algorithm
in this work could be used for any PIM platform supporting bulk bit-wise X(N)OR and
addition operations. The remainder of the paper is designed as follows: Section 2 presents
our accelerator design, i.e., the PANDA platform, performance analysis, and software
support. Section 3 delineates PANDA’s algorithm and mapping support for the genome
assembly application. Section 4 is dedicated to our bottom-up evaluation framework and
simulation results. Finally, Section 5 concludes this work.

2. PANDA Platform

2.1. SOT-MRAM
Figure 2a shows the spin–orbit torque magnetic random-access memory (SOT-MRAM)

device structure used in this work. The storage element in SOT-MRAM is SHE-MTJ [32],
a composite device structure of Spin Hall Metal (SHM) and Magnetic Tunnel Junction
(MTJ). The binary data are stored as resistance states of MTJ. Data-“0”(/“1”) are encoded
as the MTJ’s lower (/higher) resistance or parallel (/anti-parallel) magnetization in both
magnetic layers (free and fixed layers). Here, the flow of charge current (±y) through the
SHM (Tungsten, b�W [33]) will cause the accumulation of oppositely directed spin on
both surfaces of the SHM due to spin Hall effect [32]. Thus, a spin current flowing in ±z
is generated and further produces spin–orbit torque (SOT) on the adjacent free magnetic
layer, causing a switch of magnetization. Each cell located in the computational sub-array
is connected with a Write Word Line (WWL), Write Bit Line (WBL), Read Word Line (RWL),
Read Bit Line (RBL), and Source Line (SL). The bit-cell structure of 2T1R SOT-MRAM and
its biasing conditions are shown in Figures 2b and 2c, respectively.

In this work, the magnetization dynamics of the Free Layer (m) are modeled by the
LLG equation with spin-transfer torque terms, which can be mathematically described
as [32]:

dm
dt

= �|g|m⇥ He f f + a(m⇥ dm
dt

) + |g|b(m⇥mp ⇥m)� |g|be0(m⇥mp) (1)

b = | h̄
2µ0e

| IcP
AMTJtFL Ms

(2)

J. Low Power Electron. Appl. 2024, 14, 9 4 of 23

where h̄ is the reduced plank constant, g is the gyromagnetic ratio, Ic is the charge current
flowing through MTJ, tFL is the thickness of free layer, e0 is the second spin transfer torque
coefficient, and He f f is the effective magnetic field, P is the effective polarization factor,
AMTJ is the cross sectional area of MTJ, and mp is the unit polarization direction. Note that
the ferromagnets in MTJ have In-plane Magnetic Anisotropy (IMA) in the x-axis [32]. With
the given thickness (1.2 nm) of the tunneling layer (MgO), the Tunnel Magnetoresistance
(TMR) of the MTJ is ⇠171.2%.

Pinned Layer
Tunneling barrier
Free Layer
Heavy Metal

(SHM)

X
Y

Z

Write 0 Write 1

MTJ

(a)

IREAD

WWL

W
B

L

SL

RB
L

RWL

IWRITE

MTJ

SHM Operations Write
“1”(“0”) Read

WWL VDD 0
RWL 0 VDD
RBL 0 IREAD
WBL VWP(VWN) 0

SL 0 0

(b) (c)

Figure 2. (a) SOT-MRAM device structure and spin Hall effect, (b) schematic, and (c) biasing
conditions of SOT-MRAM bit-cell.

2.2. Architecture Design
We develop the PANDA platform based on a typical SOT-MRAM hierarchy. Each

memory chip consists of multiple memory banks divided into 2D sub-arrays of SOT-MRAM
cells, as shown in Figure 3a. We then apply our modification to the sub-array level to make
it reconfigurable to support both memory operation and in-memory bit-line computation.
As depicted in Figure 3b, the computational memory sub-array (C-Sub.) of PANDA consists
of a modified memory row decoder, column decoder, write driver, and reconfigurable Sense
Amplifier (SA). The data-parallel intra-sub-array computation of sub-array is timed and
controlled using a Controller (ctrl) with respect to the physical address of operands.

PANDA is specially designed to support bulk bit-wise operations between operands
stored in each BL. Therefore, the in-memory computational throughput is solely limited
by the physical memory row size, i.e., 4 KB/8 KB in modern main memory chips. The
storage demands for executing DNA-related processing are consistently substantial. Even
when employing von Neumann computing architecture, researchers face the challenge of
storing immense data to facilitate any form of processing. The PANDA platform envisions
a main memory implementation, ensuring accessibility to a sufficient number of memory
cells for in-memory computing. Digital Processing Units (DPUs) are also shared between
computational sub-arrays to handle the nonparallel computational load of the platform. In
the following, we explain different elements and the supported functions by PANDA.

J. Low Power Electron. Appl. 2024, 14, 9 5 of 23

Bank

bu
ffe

r
I/

O
Ct

rl

PANDA chip
GWWL

GRBL

Ctrl

CM

Cmd
Decoder

Cmd

Add

Timing Ctrl

Da
ta

 fl
ow

 ct
rl

CO
R3

CA
ND

3
CM

AJ

Ctrl

Res-box

ROR3

RMAJ

CMAJ

COR3

Isense (CAND3 , CMAJ , COR3 , CM)

Carry

Iref
RAND3

RM
CM

CAND3

Sum

Add-box

Vsense

D+W
e

D.W
e

RBL

Column Decoder

W
BL

1

RB
L1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

M3

SL3
RWL3

Ctrl

W
BL

2

W
BL

3

M
od

ifi
ed

 R
ow

 D
ec

od
er

Din-Intra
Din-InterD+W

e
D.W

e DD+W
e

D.W
e

Vwr

-Vwr

SA_out1
SA_out2

Gl
ob

al
 D

ec
od

er C-Sub.

Decoder Driver

De
co

de
r

Reconfig. SA

C-Sub.

Decoder Driver

De
co

de
r

Reconfig. SA

C-Sub.

Decoder Driver

De
co

de
r

Reconfig. SA

C-Sub.

Decoder Driver

De
co

de
r

Reconfig. SAGRWL

Bank

Bank

Bank
C-Sub.

Decoder Driver

De
co

de
r

Reconfig. SA

C-Sub.

Decoder Driver

De
co

de
r

Reconfig. SA

Row Buffer

DPU DPU

HDD/SDD

Clk

Clk Clk

Vsense Vref

OUT OUT

Ho
st

PANDA C-Sub.

GWBL

Write Driver

Figure 3. PANDA platform: (a) memory organization, (b) computational sub-array, (c) the new
reconfigurable sense amplifier designed to implement a full set of 2- and 3-input logic operations.

2.3. PIM Operations
Write Operation: To write “0” (/“1”) in a cell, e.g., in the cell of the first column and

second row (M2 in Figure 3b), the associated write driver first pulls WBL1 to negative
(/positive) write voltage. This will provide a preset charge current flow from �Vwr to
GND (/+Vwr to GND) that eventually changes the cell’s resistance to Low-RP/(High-RAP).
We considered all the overheads imposed by peripherals to calculate the energy, latency,
and area at the application level. This method could be easily replaced with a dual-side
single-voltage source write method, where WBL = Vwr and SL = 0 writes “1” and WBL = 0
and SL = Vwr writes “0” in the memory cell.

Reference Selection and Bit-line Computing: PANDA leverages the reference selection
and bit-line computing method on top of a novel reconfigurable SA design, as shown in
Figure 3c, to handle memory read and in-memory computation. The main idea of reference
selection is to simultaneously compare the resistance state of selected SOT-MRAM cell(s)
with one or multiple reference resistors in SA(s) to generate the results. PANDA’s SA
consists of three sub-SAs with a total of four reference resistors. The ctrl unit could pick
the proper reference using enable control bits (CAND3, CMAJ , COR3, and CM) to realize the
memory read and a full set of 2- and 3-input logic functions, as tabulated in Table 1. We
designed and tuned the sense circuit based on StrongARM latch [34], as shown in Figure 3c.
Each read/in-memory computing operation requires two clock phases: pre-charge (Clk
“high”) and sensing (Clk “low”). For instance, to realize the read operation, the memory row
decoder first activates the corresponding RWL; then, a small sense current (Isense) flows
from the selected cell to ground and generates a sense voltage (Vsense) at the input of SA-III.
This voltage is accordingly compared with the memory mode reference voltage-activated by
CM (Vsense,P < Vref,M < Vsense,AP), as shown in Figure 4a. The SA-III produces high (/low)

J. Low Power Electron. Appl. 2024, 14, 9 6 of 23

voltage if the path resistance is higher (/lower) than RM (memory reference resistance), i.e.,
RAP (/RP). PANDA could implement one-threshold in-memory operations ((N)AND, (N)OR,
etc.) by activating multiple RWLs simultaneously, and only by activating one SA’s enable
at a time, e.g., by setting CAND3 to “1”, 3-input AND/NAND logic can be readily implemented
between operands located in the same bit-line. To implement 2-input logics, two rows
initialized by “0”/“1” are considered in every sub-array such that functions can be made
out of 3-input functions, as indicated by Row Init. in Table 1.

Table 1. Control bits for reconfigurable SA.

Operations CAND3 CMAJ COR3 CM Active SA Row Init.
(1)

Read 0 0 0 1 SA-III No

(N)AND3/(N)AND2 1 0 0 0 SA-III No/Yes

(N)OR3/(N)OR2 0 0 1 0 SA-I No/Yes

X(N)OR2 1 1 1 0 SA-I-II-III Yes

Maj (Carry)/Min 0 1 0 0 SA-II No

XOR3 (Sum) 1 1 1 0 SA-I-II-III No
(1) Row initialization is needed to convert a three-input PIM operation to a two-input operation. For instance,
XOR2 function is made of XOR3 output by setting one of the memory operands to binary “0”.

VP VAP

Read

Vsense

RM
1

R1
Ise

ns
e

SA

RM

Ire
f

Vref

VP,P,P VP,P,AP VAP,AP,AP

MAJ

Vsense

RM
1

R1

Ise
ns
e

RM
2

R2

SA

RM
AJ
/

RA
N
D
3/

RO
R3

Ire
f

VrefRM
3

R3

VP,AP,AP

AND3OR3
30 40 50 60 70 80 90 100 110 120

0
100
200

RAP RP

20 25 30 35 40 45 50 55 60
0

100
200

(RAP//RAP) (RAP//RP) (RP//RP)

10 15 20 25 30 35 40
Vsense (mV)

0
100
200

(RAP//RAP//RAP) (RAP//RAP//RP) (RP//RP//RAP) (RP//RP//RP)

43.31 mv

14.62 mv5.82 mv

4.28 mv

(a) (b)

Figure 4. (a) Reference comparison to realize in-memory operations, (b) Monte Carlo simulation
of Vsense.

Addition: PANDA’s SA is enhanced with a unique circuit design that allows single-
cycle implementation of addition/subtraction (add/sub) operation quite efficiently. By
activating three memory rows at the same time (RWL1, RWL2, and RWL3 in Figure 3b),
OR3, Majority (MAJ), and AND3 functions can be readily realized through SA-I, SA-II, and
SA-III, respectively. Each SA compares the equivalent resistance of parallelly connected
input cells and their cascaded access transistors with a programmable reference by SA
(ROR3/RMAJ/RAND3). The idea of voltage comparison between Vsense and Vref to realize
these functions is depicted in Figure 4a. While there are several addition-in-memory designs
in the non-volatile memory domain, they typically apply a large circuitry after SA to realize
a multi-cycle design. In order to implement a single-cycle addition operation, we then
reformulate the full-adder Boolean expression to make it PIM-friendly. We noticed when
the majority function of three inputs is 0, the Sum can be implemented by OR3 function,
and when the majority function is 1, Sum can be achieved through AND3 function. This
behavior can be implemented by a multiplexer circuit shown in Add-box in Figure 3c. The
Boolean logic of such in-memory addition function is written as:

Carry = AB + AC + BC = Maj(A, B, C) (3)

J. Low Power Electron. Appl. 2024, 14, 9 7 of 23

Sum = ((AB + AC + BC) · (A + B + C)) + ((AB + AC + BC) · ((ABC))

= Maj(A, B, C) · (OR(A, B, C) + MAJ(A, B, C) · (AND(A, B, C)

= Carry · (OR(A, B, C) + Carry · (AND(A, B, C)

(4)

The carry-out of the full-adder can be directly produced by the MAJ function (Carry in
Figure 3c) just by setting CMAJ to “1” in a single memory cycle. For the MAJ operation, RMAJ
is set at the midpoint of RP//RP//RAP (“0”,“0”,“1”) and RP//RAP//RAP (“0”,“1”,“1”),
as depicted in Figure 4a. Here, assuming the M1, M2, and M3 operands (Figure 3b), the
PANDA can generate Carry-MAJ and Sum-XOR3 in-memory logics in a single memory cycle.
The ctrl’s configuration for such an add operation is tabulated in Table 1.

It is noteworthy that the PANDA architecture does not rely on a specific NVM technol-
ogy or cell structure; it operates effectively as long as the technology is resistive-cell-based,
such as PCM and RRAM. Our experiments show that utilizing PCM and RRAM cells with a
high ON/OFF ratio in the PANDA architecture results in a significantly larger read margin
compared to SOT-MRAM. This, in turn, leads to higher reliability even when activating
more rows (e.g., up to a 64-row operation for PCM), while it is possible to use other emerg-
ing NVMs for better read margin, it is worth noting that PCM and RRAM cells generate a
larger sensing voltage, leading to higher power consumption compared to STT-MRAM and
SOT-MRAM. In summary, PANDA based on SOT-MRAM sacrifices some sense margin for
lower power consumption. Other NVMs may provide a larger sense margin but at the cost
of energy efficiency.

Comparison: The PANDA platform offers a single-cycle implementation of XOR3 in-
memory logic (Sum). To realize the bulk bit-wise comparison operation based on XNOR2,
one memory row in each PANDA’s sub-array is initialized to “1”. In this way, XNOR2 can
be readily implemented out of the XOR3 function. Therefore, every memory sub-array can
potentially perform parallel comparison operations without the need for external add-on
logic or multi-cycle operation.

2.4. Performance Analysis
Functionality: To verify the circuit functionality of PANDA’s sub-array, we first model

the SOT-MRAM cell by jointly applying the Non-Equilibrium Green’s Function (NEGF) and
Landau–Lifshitz–Gilbert (LLG) with spin Hall effect equations [6,32]. We then develop a
Verilog-A model of a 2-transistor–1-resistor SOT-MRAM device, with the parameters listed
in Table 2 to co-simulate with the other peripheral CMOS circuits displayed in Figure 3 in
Cadence Spectre and SPICE. We use the 45 nm North Carolina State University (NCSU)
Product Development Kit (PDK) library for our circuit analysis. The transient simulation
result of a single 256 ⇥ 256 sub-array is shown in Figure 5. We take M1, M2, and M3 as
three SOT-MRAM cells located in the first column as the inputs for our evaluation. Here,
we consider four input combination scenarios for the write operation, as indicated by 000,
100, 110, and 111 in Figure 5. For the sake of clarity of waveforms, we assume a 3ns period
clock synchronizes the write and read operation. However, a 2ns period can be used for a
reliable read and in-memory computation.

During the precharge phase of SA (Clk = 1), ±Vwrite voltage is applied to the WBL
to change the MRAM cell resistance to Rlow = 5.6 kW or Rhigh = 15.17 kW. Prior to the
evaluation phase (Eval.) of SA, WWL and WBL are grounded, while RBL is fed by the very
small sense current, Isense = 3 µA. In the evaluation phase, RWL goes high and, depending
on the resistance state of parallel bit-cells and, accordingly, SL, Vsense is generated at the
first input of SAs when Vref is generated at the second input of SAs. A voltage comparison
between Vsense and Vref for AND3 and OR3 and the output of SAs are plotted in Figure 5. For
example, we observe only when Vsense > Vref,AND (M1M2M3 = 111), the SA-III outputs
binary “1”, whereas the output is “0” . Figure 5 also shows the in-memory XOR3 function
(Sum) accomplished in a single memory cycle through three SA outputs.

J. Low Power Electron. Appl. 2024, 14, 9 8 of 23

Table 2. Device parameters.

Parameter Value

Free layer dimension (W ⇥ L⇥ t)FL 60⇥ 40⇥ 2 nm3

SHM dimension 60⇥ 80⇥ 2 nm3

Demagnetization factor, Dx; Dy; Dz 0.066; 0.911; 0.022
Spin flip length, lsh 1.4 nm
Spin Hall angle, qsh 0.3
Gilbert damping factor, a 0.007
Saturation magnetization, Ms 850 kA/m
Oxide thickness, tox 1.2 nm
RA product, RAp/TMR 10.58 W·µm2/171.2%
Supply voltage 1 V
CMOS technology 45 nm
SOT-MRAM cell area 69 F2

Access transistor width 4.5 F
Cell aspect ratio 1.91

-100
0

100

0 1 2 3 4 5 6 7
Time (ns)

-0.5
0

0.5
1

0
0.5

1

C
lk (V
)

0
0.5

1

0
1
2

0
0.5

1

R
W

L
 (V

)

0
0.5

1

 in
pu

ts

M
1M

2M
3

M3 M2 M1
0

0.5
1

SA
-I

 (
V)

0
0.5

1

SA
-II

I
 (

V)

0
20
40

(m
V)

Vsense VRef-OR VRef-AND

0 2 4 6 8 10 12
Time (ns)

0
0.5

1

(V
)

0
0.5

1

SA
-II

 (
V)

Vsense(V)

Write Im (7A)

1st exp.

2st exp.

~25nA
~900nA

SAout(V)

'1'

'1'

'0'

Eval. Eval. Read
Precharge

Vsense<Vref

Eval. Eval.Precharge

1

1OR3

Carry

Sum

AND3

compute. compute. compute.

0 1

1 1

100

0

0 0 0

0

1

1

compute.

000 100 110 111
Vsense>Vref-AND

Figure 5. Transient simulation wave-forms of PANDA’s sub-array and its reconfigurable SA for
performing single-cycle in-memory operations.

Reliability: We assess the variation tolerance in the proposed sub-array and SA
circuit by running a Monte Carlo simulation. We run the simulation for 10,000 iterations
considering two sources of variations in SOT-MRAM cells: first, a s = 5% process variation
on the Tunneling Magnetoresistance (TMR) and, second, a s = 2% variation on the
Resistance–Area product (RAP). The results illustrated in Figure 4b prove that the sense
margin reduces by increasing the number of selected input cells for in-memory operations.
We observe the sense margin for three-input in-memory logic is relatively small, wherein
the P//P//P and P//P//AP margin shows a minimal⇠3mV margin. Such a sense margin
could be enhanced by either increasing oxide thickness (tox) or the sense current, but
obviously by imposing more power consumption. To show this, we first explore such a
worst-case scenario in a 3-input logic voltage margin considering the different stochastic
variations on MTJ’s RAP/TMR (2%/5%, 5%/2%, and 5%/5%) in Figure 6a by increasing
tox, from 1 nm to 3 nm, as experimentally demonstrated in [35]. We correspondingly

J. Low Power Electron. Appl. 2024, 14, 9 9 of 23

plot the TMR values achieved from our experimentally benchmarked model in the top
x-axis. Note that Isense is set to 5 µA. We observe increasing tox from 1.2 nm to 2.6 nm
(corresponding to 171.2% to 211% increase in TMR value) increases the sense margin by
⇠28.4 mV, which considerably improves the reliability of the OR3 operation in PANDA.
Such an increase in TMR will enlarge the margin for MAJ and AND3 operations as well.
Furthermore, we performed an extensive circuit-level Monte Carlo statistical analysis to
investigate the process variation effects on the triple row activation mechanism considering
±10% variation and noises in different components of the MRAM array, such as RBL
capacitance, SOT-MRAM bit-cell’s access transistor, and SA (width/length of transistors).
Figure 6b shows the experiment results of the sense voltage margin for memory read, and
all supported 2-/3-input in-memory operations with a Gaussian-distributed variation (3s)
added to the parameters. We gradually increase the Isense to plot the impact of sense current
in the process. We observe that the larger Isense is, the larger the voltage margin achieved
for different operations. Based on this, a ⇠15 µA increase in sense current will lead to a
⇠25 mV increase in the OR3 case.

PANDA architecture does not necessarily rely on a certain NVM technology or cell
structure. As long as the technology is based on resistive cells, i.e., Phase-Changing Memory
(PCM) and Resistive Random-Access Memory (ReRAM), PANDA can readily perform in-
memory computation. Based on our experiments, leveraging PCM and ReRAM cells (with
a high ON/OFF ratio) in PANDA architecture leads to a significantly larger read margin
compared with SOT-MRAM, which further translates to higher reliability even by activating
more number of rows (e.g., up to 64-row operation for PCM). Therefore, it is possible to use
other types of emerging NVMs to achieve a better read margin. Notwithstanding, PCM
and ReRAM generate a larger sensing voltage and consequently consume more power
compared with SOT-MRAM. In conclusion, sacrificing the sense margin provides PANDA
(based on SOT-MRAM) with a lower power consumption. However, a larger sense margin
can be obtained using other NVMs forfeiting energy efficiency.

5 10 15 20 25
Sense current (7A)

0

20

40

60

80

100

120

Se
ns

e
vo

lta
ge

 m
ar

gi
n

(m
V) read

OR2(P||P & P||AP)
AND2(P||AP & AP||AP)
OR3(P||P||P & P||P||AP)
MAJ3(P||P||AP & P||AP||AP)
AND3(P||AP||AP & AP||AP||AP)

1 1.4 1.8 2.2 2.6 3
MTJ oxide thickness (nm)

0

10

20

30

40

50

Se
ns

e
vo

lta
ge

 m
ar

gi
n

(m
V)

P|
|P

||P
 &

 P
||P

||A
P

2%-5%
5%-2%
5%-5%

165 176 187 199 211 224
TMR(%)

~28.4mV
~25mv

(a) (b)

Figure 6. (a) Sense voltage margin of 3-input operation between P//P//P and P//P//AP cases vs.
tox and TMR with different variations in RAP/TMR with a fixed Isense = 5 µA. (b) Voltage margin
between sensitive states of PANDA’s operations vs. Isense with a tox = 1.2 nm and 10% variation
added to the array.

Sub-array level Performance: To explore the hardware overhead of PANDA on top of
a standard unmodified SOT-MRAM platform, we perform an iso-capacity performance
comparison. We develop both platforms with a sample 32 Mb single bank, 512-bit data
width in the NVSim memory evaluation tool. The circuit-level data are adopted from our
circuit-level simulation and then fed into an NVSim-compatible PIM library to report the
results. Table 3 lists the performance measures for dynamic energy, latency, leakage power,
and area. We observe that there is a ⇠30% increase in the area to support the proposed
in-memory computing functions for genome assembly. As for dynamic energy, PANDA
shows an increase in R (Read) energy despite the power gating mechanism used in the

J. Low Power Electron. Appl. 2024, 14, 9 10 of 23

reconfigurable SA to turn off non-selected SAs (SA-I and -II while reading operation). In
this way, C-Add (C stands for Computation) requires ⇠2.4⇥ more power compared with a
single SA read operation. However, Table 3 shows PANDA is able to offer a close-to-read
latency for C-AND3 and C-Add compared with the standard design. There is also an
increase in leakage power obviously coming from the add-on CMOS circuitry.

Table 3. Performance comparison between an standard SOT-MRAM chip and PANDA.

Designs
Area

(mm
2
)

Dynamic Energy

(nJ)

Latency

(ns) Leak. Power

(mW)
R W C-AND3 C-Add R W C-AND3 C-Add

Standard 7.06 0.57 0.66 - - 3.85 4.5 - - 402

PANDA 9.3 0.78 0.69 0.85 1.93 3.91 4.59 3.91 3.91 586

2.5. Software Support
PANDA is designed to be an efficient and independent accelerator for DNA assembly;

nevertheless, it needs to be exposed to programmers and system-level libraries to use it.
PANDA could be directly connected to the memory bus or through PCI Express lanes as
a third-party accelerator. Thus, it could be integrated similar to that of GPUs. Therefore,
an ISA and a virtual machine for parallel and general-purpose thread execution need to
be developed like NVIDIA’s PTX. With that, at install time, the programs are translated to
the PANDA’s ISA discussed here to implement the in-memory functions listed in Table 1.
We introduce PANDA_Mem_insert (des, src, size) instruction to read source data from the
memory and write it back to a destination memory location consecutively. The size of input
vectors for in-memory computation could be at most a multiple of PANDA’s sub-array row
size. PANDA_Cmp (src1, src2, size) performs parallel bulk bit-wise comparison operation
between source vector 1 and 2. PANDA_Add (src1, src2, size) runs element-wise addition
between cells located in a same column as will be explained in next section.

Regarding software reliability, most Error Correcting Codes (ECC)-enabled DIMMs
rely on calculating some hamming code at the memory controller and use it to correct
any soft errors. Unfortunately, such a feature is not available for most PIM platforms [36]
including PANDA, as the data being processed are not visible to the memory controller.
Employing in-memory error-correcting code techniques [37] is vital in future PIMs to
maintain data reliability in the presence of computation mechanisms using memory and
growing noise and reliability problems. To overcome this issue, PANDA can potentially
augment each row with additional ECC bits that can be calculated and verified at the
memory module level or bank level. Augmenting PANDA with reliability guarantees is
left as future work.

3. PANDA Algorithm and Mapping

The genome assembly algorithm consists of three main stages, as visualized in Figure 7.
First, breaking down each short read in the sequence into smaller chunks of k-mers in
a consecutive manner and keeping the frequency of each distinct k-mer in a Hashmap;
second, generating a de Bruijn Graph out of the Hashmap; third, traversing through the
de Bruijn Graph to reconstruct the entire genome using the Euler Path traversal concept
(stages II and III are so-called contig. generation). There is a final stage called scaffolding to
close the gaps between contigs, which is the result of the de novo assembly [2].

The first three stages always take the largest fraction of execution time and compu-
tational resources (over 80%) in both CPU and GPU implementations [2]. To effectively
handle the huge number of short reads, we modularized the assembly algorithm by focus-
ing on parallelizing the main steps by loading only the necessary data at each stage into
the PANDA platform and leaving stage 4 as our future work.

J. Low Power Electron. Appl. 2024, 14, 9 11 of 23

Figure 7. The genome assembly stages.

3.1. Stage One: Hash Table
Algorithm 1 shows the construction of Hashmap(S,k) in which the algorithm loops

through all the input sequences(S) to generate a mapping of k-mers and its occurances in
the genome. For each new k-mer, it creates a hash table entry (key) in the Hashmap with
frequency = 1 as the initial value. This step is visualized in Figure 8. If the k-mer has been
reported previously and is already in the hash table, the frequency is then increased by 1
(New_frq). As indicated, Hashmap procedure can be implemented through PANDA_Cmp
(comparison), PANDA_Add (addition), and PANDA_Mem_insert (memory W/R) in-memory
operations. Such functions are iteratively used in every step of “for” loop and PANDA
is specially designed to handle such computation-intensive load through performing the
comparison, summing, and copying operations.

Figure 8. The hash table generation out of k-mers.

Considering the fact that the number of different keys in the hash table is almost
comparable to the genome size G, the memory space requirement to save the hash is given
by ⇠ 2⇥ G⇥ (k + 1) bits (The factor of 2 is given to represent 2 bits per nucleotide). For
instance, storing the hash table for the human genome with G ⇠3 ⇥ 109 and k = 32 requires
⇠23 GB mostly associated with storing the key. Due to the very large memory space
requirement of the hash table for assembly-in-memory algorithm [2], we partition these
tables into multiple sub-arrays to fully leverage PANDA’s parallelism and to maximize
computation throughput. Obviously, larger memory units [38] and distributed memory
schemes [2,39] are preferable.

J. Low Power Electron. Appl. 2024, 14, 9 12 of 23

Algorithm 1 Procedure Hashmap (S, k)
Step 1. Initialization:

1: Hashtable named Hashmap = {}
Step 2. Fill out the table:

2: for i := 0 to length(S)-k+1 do

3: k_mer S[i : i + k] . copy values of S[i to i + k] into variable k_mer
4: if PANDA_Cmp(k_mer, Hashmap) == 0 then

5: PANDA_Mem_insert(k_mer, 1)
6: else

7: New_ f rq PANDA_Add(k_mer, 1) . increment frq by 1
8: PANDA_Mem_insert(k_mer, New_ f rq) . insert into Hashmap again
9: end if

10: end for

11: return Hashmap

The proposed correlated partitioning and mapping methodology, as shown in Figure 9a,
locally stores correlated regions of k-mer (980 rows) vectors, where each row stores up to
128 bps (A,C,G,T encoded by 2 bits) and value (32 rows) vectors in the same sub-array.
To count the frequencies of each distinct k-mer, the ctrl first reads and parses the short
reads from the original sequence bank to the specific sub-array. As depicted in Figure 9a,
assuming S = CGTGTGCA as the short read, the k-mers- ki-ki+n are extracted and written
into the consecutive memory rows of k-mer region. However, when a new query such as
ki+3 arrives (while ki-ki+2 are already in the memory), it will be first written to the temp
region. A parallel in-memory comparison operation (PANDA_Cmp) will be performed
between temp data and already-stored k-mers. Figure 9b intuitively shows PANDA_Cmp
procedure, where the entire temp row can be compared with a previous k-mer row in
a single cycle. Then, a built-in ctrl’s AND unit in DPU readily takes all the results to
determine the next memory operation according to the algorithm. To increase the frequency
of a specific k-mer, PANDA_Add is leveraged to perform in-memory addition without
sending data to the off-chip processor.

1 1 1 0 1 1

WL

BWT
S = ATTCG$

low
high

FM-Index

Gene

..TTC...

AACGT... ...ATTCG... ...ATTAA

Query

R = TTC

0 1

1 0
0 0

1 1
0 1

BW
T

(C
)

1 1

1 0
0 0

1 1
0 1

1 0

1 0
0 0

1 1
0 1

R
W

L

T
C

G

A

0 0 1 1 0 1
not

matched

not
matched

0 0

0 1

0 1
1 1

1 1

0 1

1 1
1 0

1 1

0 1

1 1
1 0

Ge
t c

or
re

sp
on

di
ng

 m
ar

ke
r

DPU

marker_add

col_add

BW matrix

CR
ef

A T

G T
C G

G
T

G C G

Co
rr

es
po

nd
in

g
m

ar
ke

r

4-
r

98
0-

r

TC G A

32
-b

it

Compute

K-mer
(key)

reserved

0 0

a0

a1

a30

a31

b0

b1

b30

b31

c0

c1

c30

c31

d0

d1

d30

d31

 Carry

(a)

Compute.
 Sub-arrays

Lcp

Gene

..CTA...

AACGT... ...TCCTA... ...ATTAA

Query

S: TCCTA$
R:CTA

matched

DPU
DPU

BWT(S) = G$TCTA

R:TTC
R:TTC

R:TTC
R:TTC

(a)

MT

reserved

32

e0

e1

e30

e31

f0

f1

f30

f31

g0

g1

g30

g31

h0

h1

h30

h31

+1

0 0

1 0
0 0

1 1
0 1

1 1

1 0
0 0

1 1
0 1

1 1

1 0
0 0

1 1
0 1

1 1 1 0 1 1
not

matched
matched
+1

+1

matched
CR

ef

m
ar

ke
r

BW
T

(C
)

BWT

CRef
MT

reserved

(c) (d)

MT

reserved

method-II

Sub-array1

Sub-array2

contigs 2

scaffolds 3

2

GTGC

TGCT

GCTT

C
on

tig
-I:

 C
G

TG
C

TT

CTTA

TTAG

TTAC

TACG

ACGG

C
on

tig
-II

: T
TA

C
G

G

TAGG C
on

tig
-II

I:
TT

A
G

G

Original Sequence Bank

Hash Table

G G

T

C G

G G

TG G

temp

8-
r

value

32
-r

TC G AGC G TAG A

TC G AG C G TAG A CC T

T

1 1

1 0 1 0
1 1 0 1 1 1

WL

1

Pi
 =

 F
1,

i

Pi
-1

=
 F

1,
i-1

Pi
-2

 ≠
 F

1,
i-2

2 3

4

1 1 0 0

ki
ki+1

TC G G C G TAG A CCC TG G

ki ≠ kj

DPU

PI
M

_
X

N
O

R

1

2

k-mer k3

WL 1 1 1 0

1 1

1 1

1 1 0 1 1 1
WL

1 1 1 1

ki = kj

DPU

(P
ar

al
le

l X
N

O
R

)

if
ki
≠

kj

ki+3kiki+1

T G

ki+2

ki+2

M
E

M
_i

ns
er

t
(k

_m
er

, 1
)

M
E

M
_i

ns
er

t
(k

_m
er

, N
ew

_f
re

q)

Base

T

G

A

C

Binary code
0 0
0 1
1 0
1 1

Sub-array Organization

Procedure: Hashmap(S, k)

for i 0 to length(S)-k +1:

 k_mer S[i to i+k]

 if PIM_XNOR (k_mer, Hashmap) == 1:

 MEM_insert (k_mer, 1)

 else

 Old_freq Hashmap [k_mer]

 New_freq Old_freq + 1

 MEM_insert (k_mer, New_freq)

 Return Hashmap

Procedure: Hashmap(S, k)
for i 0 to length(S)-k +1:

 k_mer  S[i to i+k]

else

 Return Hmap

Procedure: DeBruijn (Hashmap, k)
for each k_mer in Hmap.keys():

node_1 k_mer [0 to k-2]

 Return Nodes and Edges

 node_2  k_mer[1 to k-1]
MEM_insert node_1 into Nodes_list

 MEM_insert edges_list (node1, node2)

Procedure: Traverse (G)
for i 0 to i<N:

(b)

(c)

if G[i][j] > 0

if G[j][i] > 0

Fleury-Algorithm(G, v, edge_count, out_degree[])
 Return Euler path

out_degree[i]  PIM_Add (out_degree[i] + int(G[i][j]))
Edge_count  PIM_Add (Edge_count, 1)

in_degree[i]  PIM_Add (in_degree[i] + int(G[i][j]))
Edge_count  PIM_Add (Edge_count + 1)

 if PIM_XNOR (k_mer, Hmap) == 1:
 MEM_insert (k_mer, 1)

 New_freqPIM_Add (k_mer, 1)
 MEM_insert (k_mer, New_freq)

temp
k-mer

G G

CT
T

T

T

T A TG GT

A GT G
ki+3

1

m
at

ch

fr
eq

ue
nc

y

C G AG C G TAG A CC T

TC G G C G TAG A CCC T G

C

A

A

A

AA

M
E

M
_i

ns
er

t
(k

_m
er

, N
ew

_f
re

q)

 v1 v2 v3 v4 v5 v6
v1 0 0 1 0 0 0
v2 1 0 0 0 0 0
v3 0 0 0 2 0 0
v4 0 1 0 0 0 1
v5 0 0 0 0 0 0
v6 0 0 0 0 1 0

memory-intensive
adjacency matrix-G

v1 0
1

m
-2

m
-1

0 1 m
-1Src.

(2) allocation

allocation

PA
ND

A
Ch

ip
 0

PANDA Chip M-1

2

Ds
t.

m
-2

m
-3

m
ap

pi
ng

PA
ND

A
Ch

ip
 m

-1

1 1 1 0 1 1

RWL
0 1

1 1 1 0

A T

G T
C G

G
T

G C G

4-
r

98
0-

rTC G A

32
-b

it

Compute

K-mer
(key)

0 0

0 0

Original Sequence Bank
Hash Table

G G
T

C G

G G

TG G

temp

8-
r

value

32
-r

TC G AGC G TAG A
TC G AG C G TAG A CC T

T

1 1

1 0 1 0
1 1 0 1 1 1

RWL

1 1 0 0

ki
ki+1

TC G G C G TAG A CCC TG G

ki ≠ kj

DPU

PA
N

D
A

_
C

m
p

1

2

RWL 1 1 1 0

1 1

1 1

1 1 0 1 1 1
RWL

1 1 1 1

ki = kj

DPU

(P
ar

al
le

l X
N

O
R

)

if
ki
≠

kj

ki+3
ki ki+1

T G

ki+2

ki+2

M
em

_i
ns

er
t

(k
_m

er
, 1

)

M
em

_i
ns

er
t

(k
_m

er
, N

ew
_f

rq
)

Base

T

G

A

C

Binary code
0 0
0 1
1 0
1 1

Sub-array Organization

temp
k-mer

G G

CT
T

T

T

T A TG GT

A GT G
ki+3

1

m
at

ch

fr
eq

ue
nc

y

C G AG C G TAG A CC T
TC G G C G TAG A CCC T G
C

A

A

A
AA

M
em

_i
ns

er
t

(k
_m

er
, N

ew
_f

rq
)

(a)

(b)

sparse matrix-G

v3 v1 v4 v2 v6 v5
v1 v2 v3 v4 v4 v6

 1 1 2 1 1 1

Hashmap

0% 25% 50% 75% 100%

Hashmap Scaffold.

Scaffold.

Graph construction and traversal

Graph construction and traversal human genome

wheat genome

focus of this work

GCGT

CGTG GTGC

TGCG

TGCTGCTT

v1 v2

v3 v4

v5 v6

deBruijn graph-G

Src
Dst
#E

1

2

3

4

5
Sub-array

#0

y1
1
0

0
0
1

0
0
1

1
0
1

0
1
1

1
1
0

0
1
1

0
0
0

1
1
1

0
1
0

0
0
0

0
0
0

 parallel
compute

x

out_degree[v3]
in_degree[v3]

out_degree[v3]>in_degree[v3]

1
1
0

0
0
1

0
0
1

1
0
1

0
1
1

1
1
0

0
1
1

0
0
0

1
1
1

0
1
0

0
0
0

0
0
0

v1

PA
ND

A
Ch

ip
 1

Vertices are (k-1)-mers
Edges are k-mers

 v1 v2 v3 v4 v5 v6
v1 0 0 1 0 0 0
v2 1 0 0 0 0 0
v3 0 0 0 2 0 0
v4 0 1 0 0 0 1
v5 0 0 0 0 0 0
v6 0 0 0 0 1 0

memory-intensive
adjacency matrix-G

v1 0
1

m
-2

m
-1

0 1 m
-1Src.

allocation

PA
ND

A
Ch

ip
 0

2

Ds
t.

m
-2

m
-3

m
ap

pi
ng

PA
ND

A
Ch

ip
 m

-1

sparse matrix-G

v3 v1 v4 v2 v6 v5
v1 v2 v3 v4 v4 v6

 1 1 2 1 1 1

GCGT

CGTG GTGC

TGCG

TGCTGCTT

v1 v2

v3 v4

v5 v6

deBruijn graph-G

CGTGC 2
GTGCG 1
TGCGT 1
GCGTG 1
GTGCT 1
TGCTT 1

k_mer value
Hash table

Src
Dst
#E

1

2

3

4

5
Sub-array

#0

y1
1
0

0
0
1

0
0
1

1
0
1

0
1
1

1
1
0

0
1
1

0
0
0

1
1
1

0
1
0

0
0
0

0
0
0

 parallel
compute

x

out_degree[v3]
in_degree[v3]

out_degree[v3]>in_degree[v3]

1
1
0

0
0
1

0
0
1

1
0
1

0
1
1

1
1
0

0
1
1

0
0
0

1
1
1

0
1
0

0
0
0

0
0
0

PA
ND

A
Ch

ip
 1

TGCGT

v3 v1 v4 v2 v6 v5
v1 v2 v3 v4 v4 v6

 1 1 2 1 1 1

Src
Dst
#E x

x
x
x

x
x
1
0

x
x
x
x

1
0
x
x

e0

e1

e30

e31

f0

f1

f30

f31

g0

g1

g30

g31

h0

h1

h30

h31

v1
v1
v2

x
x
x
x

x
x
x
x

c0
c1

c30

c31

d0
d1

d30

d31

x
x
0
1

x
x
x
x

0
1
x
x

x
x
x
xv3

v4
x
x
x
x

x
x
x
x

x
x

x
x

x
x

x
xv5

x
x

1
0

x
x

x
x

x
x

1
0v6

x
x

x
x

v2 v3 v4 v5 v6

out_degree[v4]=2

RWL
RWL

RWL
RWL

CGTG GTGC

TGCG

TGCT

v2

v4

v6v3

in_degree[v4]=2
1
x

x
x

1
x

1
x

x
x

0
x

PANDA_Add

Sum x
0

x
x

x
0

x
0

x
x

x
1

ou
t_

de
gr

ee
co

m
pu

te

x
x
x
x

x
x
1
0

x
x
x
x

1
0
x
x

x
x
x
x

x
x
x
x

x
x
0
1

x
x
0
0

0
1
0
0

x
x
1
1

x
x
1
1

x
x
0
0

x
0

x
1

x
0

x
1

x
1

1
0

x
x

x
x

x
x

1
0

x
x

x
x

RWL

RWL

PANDA_Cmp
0 0 1 1 1 1

sh
or

t r
ea

ds
k-

m
er

s

CGTGC (CGTGCGTGCTT)
GTGCG (CGTGCGTGCTT)
TGCGT (CGTGCGTGCTT)
GCGTG (CGTGCGTGCTT)
CGTGC (CGTGCGTGCTT)
GTGCT (CGTGCGTGCTT)
TGCTT (CGTGCGTGCTT)

S = CGTGCGTGCTT...

K
 =

 5

CGTGC 2
GTGCG 1
TGCGT 1
GCGTG 1
GTGCT 1
TGCTT 1

Hash Table
k-mer value
CGTGC 2
GTGCG 1
TGCGT 1
GCGTG 1
GTGCT 1
TGCTT 1

Hash Table
k-mer value

sh
or

t r
ea

ds
k-

m
er

s

CGTGC (CGTGCGTGCTT)
GTGCG (CGTGCGTGCTT)
TGCGT (CGTGCGTGCTT)
GCGTG (CGTGCGTGCTT)
CGTGC (CGTGCGTGCTT)
GTGCT (CGTGCGTGCTT)
TGCTT (CGTGCGTGCTT)

S = CGTGCGTGCTT...

K
 =

 5

CGTGC 2
GTGCG 1
TGCGT 1
GCGTG 1
GTGCT 1
TGCTT 1

Hash Table
k-mer value

Figure 9. (a) The proposed correlated data partitioning and mapping methodology for creating a
hash table, (b) realization of the parallel in-memory comparator (PANDA_Cmp) between k-mers in a
computational sub-array.

3.2. Stage Two: Graph Construction
The next step is to construct and access the de Bruijn graph based on the pre-generated

Hash structure. Each “key” in the Hashmap is a k-mer, where the “value” associated with

J. Low Power Electron. Appl. 2024, 14, 9 13 of 23

it is the total occurrence of the k-mer in the genome sequence. To represent a k-mer in the
de Bruijn graph, each k-length string will be divided into two nodes: one with the prefix
of length k�1 and the other with the suffix of length k�1 (e.g., CGTGC ! CGTG and
GTGC), and therefore, a directed edge will be connected between the two nodes from left
to right. Likewise, k-mers with frequency n will be connected with n edges. The de Bruijn
graph G for the sample hash table in Figure 8 is constructed and illustrated in Figure 10
(step 1). Algorithm 2 shows the construction of the de Bruijn graph for PANDA, taking the
Hashmap and k as inputs and returning the output graph G. For each key in the hash table,
the PANDA_Mem_insert instruction creates an entry in G for node1 and node2s. Leveraging
adjacency matrix representation for the direct mapping of such a humongous sparse graph
into memory comes at a cost of significantly increased memory requirement and run time.
The size of the adjacency matrix will be V ⇥ V for any graph with V nodes, where a sparse
matrix could be represented by a 3 ⇥ E matrix, where E is the total number of edges in
the graph. PANDA utilizes sparse matrix representation shown in Figure 10 (step 2) for
mapping purpose. Each entry in the third row of the sparse matrix represents the number
of connections between two nodes in the first and second rows.

Algorithm 2 Procedure de Bruijn (Hashmap, k)
Step 1. Initialization:

1: G = [], Nodes_List = [], i = 1
Step 2. Sparse graph construction:

2: for 8k_mer 2 Hashmap.keys(), i ++ do

3: node_1 k_mer[0 : k� 2]
4: node_2 k_mer[1 : k� 1]
5: PANDA_Mem_insert(G[1][i], node_1)
6: PANDA_Mem_insert(G[2][i], node_2)
7: PANDA_Mem_insert(G[3][i], Hashmap[k_mer])
8: end for

9: return G

To balance the workloads of each PANDA’s chip and maximize parallelism, we lever-
age the interval-block partitioning method. We use a hash-based approach [40] by splitting
the vertices into M intervals and then dividing edges into M2 blocks, as shown in Figure 10
(step 3: mapping). Then, each block is allocated to a chip (step 4: allocation) and mapped to
its sub-arrays. Having an m-vertex sub-graph with Ns activated sub-arrays (size = x⇥ y),
each sub-array can process n vertices (n  f |n 2 N, f = min(x, y)) (step 5: parallel compu-
tation). In this way, the number of processing sub-arrays for an N-vertex sub-graph can be
formulated as Ns =

l
N
f

m
.

 v1 v2 v3 v4 v5 v6
v1 0 0 1 0 0 0
v2 1 0 0 0 0 0
v3 0 0 0 2 0 0
v4 0 1 0 0 0 1
v5 0 0 0 0 0 0
v6 0 0 0 0 1 0

memory-intensive
adjacency matrix-G

v1 0
1

m
-2

m
-1

0 1 m
-1Src.

allocation

PA
ND

A
Ch

ip
 0

2

Ds
t.

m
-2
m
-3

m
ap

pi
ng

PA
ND

A
Ch

ip
 m

-1

sparse matrix-G

v3 v1 v4 v2 v6 v5
v1 v2 v3 v4 v4 v6

 1 1 2 1 1 1

GCGT

CGTG GTGC

TGCG

TGCTGCTT

v1 v2

v3 v4

v5 v6

deBruijn graph-G

CGTGC 2
GTGCG 1
TGCGT 1
GCGTG 1
GTGCT 1
TGCTT 1

k_mer value
Hash table

Src
Dst
#E

1

2

3

4

5
Sub-array

#0

y1
1
0

0
0
1

0
0
1

1
0
1

0
1
1

1
1
0

0
1
1

0
0
0
1
1
1

0
1
0

0
0
0

0
0
0

 parallel
compute

x

out_degree[v3]
in_degree[v3]

out_degree[v3]>in_degree[v3]

1
1
0

0
0
1

0
0
1

1
0
1

0
1
1

1
1
0

0
1
1

0
0
0
1
1
1

0
1
0

0
0
0

0
0
0

PA
ND

A
Ch

ip
 1

Figure 10. Graph construction with a sparse matrix with partitioning, allocation, and parallel computation.

J. Low Power Electron. Appl. 2024, 14, 9 14 of 23

After graph construction, it is possible to perform a round of simplification on the
sparse graph stored in PANDA without the loss of information to avoid fragmentation of
the graph. As a matter of fact, the blocks are broken up each time a short read starts or ends
leading to linearly connected subgraphs [25]. This fragmentation imposes longer execution
times and larger memory spaces. The simplification process easily merges two nodes
within memory if node A has only one outgoing edge directed to node B with only one
incoming edge.

3.3. Stage Three: Traversal for Euler Path
The input of this stage will be the sparse representation of graph G. In the ideal case,

connecting all the edges of the graph G in a continuous manner will reconstruct the entire
genome sequence. For traversing all the edges of graph G, we use Fleury’s algorithm to
find the Euler path of that graph (a path that traverses all the edges of a graph). Basically,
a directed graph has an Euler path if the in_degree and out_degree (the in_degree [i]
shows how many edges are coming into a vertex-i and out_degree [i] means how many
out-going edges vertex-i has) of every vertex is same or, there are exactly two vertices
which have |in_degree � out_degree|= 1. Finding the starting vertex is very important
to generate the Eulerian path, and we cannot consider any random vertex as the starting.
The reconstructed PIM-friendly algorithm for finding the start vertex in graph G is shown
in Algorithm 3. For each node, this stage deals with a massive number of iteratively used
PANDA_Add to calculate the number of in_degree, out_degree, and edge_cnt (total number
of edges). Moreover, in order to check the condition (|out_degree = in_degree|+ 1), a
parallel PANDA_Cmp operation is required.

Algorithm 3 Procedure find start vertex (G)
Step 1. Initialization:

1: start 0, end 0
2: edge_cnt 0 . For counting number of edges in G
3: Len size(G)

Step 2. Find the start vertex:
4: for n in Nodes do

5: in_degree[i] 0
6: out_degree[i] 0
7: end for

8: for n in Nodes do

9: for k :=1 to Len do

10: if PANDA_Cmp(G[1][k], n) then . node n has an out-going edge
11: out_degree[n] PANDA_Add(out_degree[n], int(G[3][k]))
12: in_degree[int(G[2][k])] PANDA_Add(in_degree[int(G[2][k])], int(G[3][k]))
13: edge_cnt PANDA_Add(edge_cnt, int(G[3][k]))
14: end if

15: end for

16: if PANDA_Cmp(out_degree[n], in_degree[n] + 1) then

17: start n
18: else

19: start f irst_node
20: end if

21: end for

22: return start and edge_cnt and out_degree

After finding the start node, PANDA has to traverse through the length of the sparse
matrix G from the starting vertex, checking the two aforementioned conditions for each
edge and accordingly adding qualified edges to the Eulerian path. Algorithm 4 shows the
reconstructed Fleury algorithm. If an edge is not a bridge (removing the edge will disconnect
the graph into two parts) and is not the last edge of the graph, edge (start, v) is added in the
Eulerian path, and the edge will be removed from the graph. isValidNextEdge() function
will check if the edge (u, v) is valid to be included into the Eulerian path. If v is the only
adjacent vertex remaining for u, it means all other adjacent vertices have been traversed
already, so this edge could be counted now. The second condition counts the number

J. Low Power Electron. Appl. 2024, 14, 9 15 of 23

of reachable nodes from u before and after removing the edge. If the number changes
or decreases, it means the edge was a bridge previously, so it cannot be removed from
the graph.

Algorithm 4 Procedure Fleury (G, node, edge_count, out_degree)
1: for v := 0 to N do

2: if G[1][k] == start then

3: v G[2][k]
4: if isValidNextEdge(v) then

5: PANDA_Mem_insert(v) . add (start, v) in the Eulerian path
6: PANDA_Add(out_degree[start],�1)
7: PANDA_Add(G[3][k],�1) . remove one edge from the graph
8: PANDA_Add(edge_cnt,�1)
9: end if

10: end if

11: Fleury(G, v, edge_count, out_degree[]) . run Fleury again for the next node v
12: end for

In the interest of space, we show out_/in_degree and edge_cnt mapping and compu-
tation in the PANDA platform in Figure 11, which basically sums up all the entries of a
particular node i of valid links connected to a vertex to find the start vertex. As can be seen,
we use the sparse matrix representation to store the matrix-G. In our mapping technique,
each column is assigned to a distinct source vertex in the graph and then filled out with
the number of edges (#E) only linked to existing destination vertices in a vertical fashion.
Therefore, we do not assign destination vertices to the memory rows as in direct adjacency
matrix mapping. Here, we consider a 4-bit representation for the simplicity. For example,
v4 has outgoing edges to v2 and v6 that are stored vertically in a sub-array. PANDA could
perform parallel in-memory addition to calculate the total number of out_ degrees for
all nodes in parallel. For this task, two rows in the sub-array are initialized to zero as
Carry reserved rows such that they can be selected along with two operands (here v4! v2
data (0001) and v4! v6 data (0001)) to perform parallel in-memory addition. To perform
parallel addition operation and generate initial Carry and Sum bits, PANDA takes every
three rows to perform a parallel in-memory addition. The results are written back to the
memory reserved space (Resv.). Then, the next step only deals with the multi-bit addition
of resultant data starting bit-by-bit from the LSBs of the two words and continuing towards
MSBs. Then PANDA is able to perform a comparison between a number of out_degree
and in_degree for each node in parallel to determine the start node. After finding the start
node as shown in Figure 11, contig. generation can be readily accomplished by finding the
Eulerian path and putting together each vertex data from different sub-arrays.

Sub-array #w

1 1 1 0 1 1

WL

BWT
S = ATTCG$

low
high

FM-Index

Gene

..TTC...

AACGT... ...ATTCG... ...ATTAA

Query

R = TTC

0 1

1 0
0 0

1 1
0 1

BW
T

(C
)

1 1

1 0
0 0

1 1
0 1

1 0

1 0
0 0

1 1
0 1

R
W

L

T
C

G

A

0 0 1 1 0 1
not

matched

not
matched

0 0

0 1

0 1
1 1

1 1

0 1

1 1
1 0

1 1

0 1

1 1
1 0

Ge
t c

or
re

sp
on

di
ng

 m
ar

ke
r

DPU

marker_add

col_add

BW matrix

CR
ef

A T

G T
C G

G
T

G C G

Co
rr

es
po

nd
in

g
m

ar
ke

r

4-
r

98
0-

r

TC G A

32
-b

it

Compute

K-mer
(key)

reserved

0 0

a0

a1

a30

a31

b0

b1

b30

b31

c0

c1

c30

c31

d0

d1

d30

d31

 Carry

(a)

Compute.
 Sub-arrays

Lcp

Gene

..CTA...

AACGT... ...TCCTA... ...ATTAA

Query

S: TCCTA$
R:CTA

matched

DPU
DPU

BWT(S) = G$TCTA

R:TTC
R:TTC

R:TTC
R:TTC

(a)

MT

reserved

32

e0

e1

e30

e31

f0

f1

f30

f31

g0

g1

g30

g31

h0

h1

h30

h31

+1

0 0

1 0
0 0

1 1
0 1

1 1

1 0
0 0

1 1
0 1

1 1

1 0
0 0

1 1
0 1

1 1 1 0 1 1
not

matched
matched
+1

+1

matched

CR
ef

m
ar

ke
r

BW
T

(C
)

BWT

CRef
MT

reserved

(c) (d)

MT

reserved

method-II

Sub-array1

Sub-array2

contigs 2

scaffolds 3

2

GTGC

TGCT

GCTT

C
on

tig
-I:

 C
G

TG
C

TT

CTTA

TTAG

TTAC

TACG

ACGG

C
on

tig
-II

: T
TA

C
G

G

TAGG C
on

tig
-II

I:
TT

A
G

G

Original Sequence Bank

Hash Table

G G

T

C G

G G

TG G

temp

8-
r

value

32
-r

TC G AGC G TAG A

TC G AG C G TAG A CC T

T

1 1

1 0 1 0
1 1 0 1 1 1

WL

1

Pi
 =

 F
1,

i

Pi
-1

=
 F

1,
i-1

Pi
-2

 ≠
 F

1,
i-2

2 3

4

1 1 0 0

ki
ki+1

TC G G C G TAG A CCC TG G

ki ≠ kj

DPU

PI
M

_
X

N
O

R

1

2

k-mer k3

WL 1 1 1 0

1 1

1 1

1 1 0 1 1 1
WL

1 1 1 1

ki = kj

DPU

(P
ar

al
le

l X
N

O
R

)

if
ki
≠

kj

ki+3kiki+1

T G

ki+2

ki+2

M
E

M
_i

ns
er

t
(k

_m
er

, 1
)

M
E

M
_i

ns
er

t
(k

_m
er

, N
ew

_f
re

q)

Base

T

G

A

C

Binary code
0 0
0 1
1 0
1 1

Sub-array Organization

Procedure: Hashmap(S, k)

for i 0 to length(S)-k +1:

 k_mer S[i to i+k]

 if PIM_XNOR (k_mer, Hashmap) == 1:

 MEM_insert (k_mer, 1)

 else

 Old_freq Hashmap [k_mer]

 New_freq Old_freq + 1

 MEM_insert (k_mer, New_freq)

 Return Hashmap

Procedure: Hashmap(S, k)
for i 0 to length(S)-k +1:

 k_mer  S[i to i+k]

else

 Return Hmap

Procedure: DeBruijn (Hashmap, k)
for each k_mer in Hmap.keys():

node_1 k_mer [0 to k-2]

 Return Nodes and Edges

 node_2  k_mer[1 to k-1]
MEM_insert node_1 into Nodes_list

 MEM_insert edges_list (node1, node2)

Procedure: Traverse (G)
for i 0 to i<N:

(b)

(c)

if G[i][j] > 0

if G[j][i] > 0

Fleury-Algorithm(G, v, edge_count, out_degree[])
 Return Euler path

out_degree[i]  PIM_Add (out_degree[i] + int(G[i][j]))
Edge_count  PIM_Add (Edge_count, 1)

in_degree[i]  PIM_Add (in_degree[i] + int(G[i][j]))
Edge_count  PIM_Add (Edge_count + 1)

 if PIM_XNOR (k_mer, Hmap) == 1:
 MEM_insert (k_mer, 1)

 New_freqPIM_Add (k_mer, 1)
 MEM_insert (k_mer, New_freq)

temp
k-mer

G G

CT
T

T

T

T A TG GT

A GT G
ki+3

1

m
at

ch

fr
eq

ue
nc

y

C G AG C G TAG A CC T

TC G G C G TAG A CCC T G

C

A

A

A

AA

M
E

M
_i

ns
er

t
(k

_m
er

, N
ew

_f
re

q)

 v1 v2 v3 v4 v5 v6
v1 0 0 1 0 0 0
v2 1 0 0 0 0 0
v3 0 0 0 2 0 0
v4 0 1 0 0 0 1
v5 0 0 0 0 0 0
v6 0 0 0 0 1 0

memory-intensive
adjacency matrix-G

v1 0
1

m
-2

m
-1

0 1 m
-1Src.

(2) allocation

allocation

PA
ND

A
Ch

ip
 0

PANDA Chip M-1

2

Ds
t.

m
-2

m
-3

m
ap

pi
ng

PA
ND

A
Ch

ip
 m

-1

1 1 1 0 1 1

RWL
0 1

1 1 1 0

A T

G T
C G

G
T

G C G

4-
r

98
0-

rTC G A

32
-b

it

Compute

K-mer
(key)

0 0

0 0

Original Sequence Bank
Hash Table

G G
T

C G

G G

TG G

temp

8-
r

value

32
-r

TC G AGC G TAG A
TC G AG C G TAG A CC T

T

1 1

1 0 1 0
1 1 0 1 1 1

RWL

1 1 0 0

ki
ki+1

TC G G C G TAG A CCC TG G

ki ≠ kj

DPU

PA
N

D
A

_
C

m
p

1

2

RWL 1 1 1 0

1 1

1 1

1 1 0 1 1 1
RWL

1 1 1 1

ki = kj

DPU

(P
ar

al
le

l X
N

O
R

)

if
ki
≠

kj

ki+3
ki ki+1

T G

ki+2

ki+2

M
em

_i
ns

er
t

(k
_m

er
, 1

)

M
em

_i
ns

er
t

(k
_m

er
, N

ew
_f

rq
)

Base

T

G

A

C

Binary code
0 0
0 1
1 0
1 1

Sub-array Organization

temp
k-mer

G G

CT
T

T

T

T A TG GT

A GT G
ki+3

1

m
at

ch

fr
eq

ue
nc

y

C G AG C G TAG A CC T
TC G G C G TAG A CCC T G
C

A

A

A
AA

M
em

_i
ns

er
t

(k
_m

er
, N

ew
_f

rq
)

(a)

(b)

sparse matrix-G

v3 v1 v4 v2 v6 v5
v1 v2 v3 v4 v4 v6

 1 1 2 1 1 1

Hashmap

0% 25% 50% 75% 100%

Hashmap Scaffold.

Scaffold.

Graph construction and traversal

Graph construction and traversal human genome

wheat genome

focus of this work

GCGT

CGTG GTGC

TGCG

TGCTGCTT

v1 v2

v3 v4

v5 v6

deBruijn graph-G

Src
Dst
#E

1

2

3

4

5
Sub-array

#0

y1
1
0

0
0
1

0
0
1

1
0
1

0
1
1

1
1
0

0
1
1

0
0
0

1
1
1

0
1
0

0
0
0

0
0
0

 parallel
compute

x

out_degree[v3]
in_degree[v3]

out_degree[v3]>in_degree[v3]

1
1
0

0
0
1

0
0
1

1
0
1

0
1
1

1
1
0

0
1
1

0
0
0

1
1
1

0
1
0

0
0
0

0
0
0

v1

PA
ND

A
Ch

ip
 1

Vertices are (k-1)-mers
Edges are k-mers

 v1 v2 v3 v4 v5 v6
v1 0 0 1 0 0 0
v2 1 0 0 0 0 0
v3 0 0 0 2 0 0
v4 0 1 0 0 0 1
v5 0 0 0 0 0 0
v6 0 0 0 0 1 0

memory-intensive
adjacency matrix-G

v1 0
1

m
-2

m
-1

0 1 m
-1Src.

allocation

PA
ND

A
Ch

ip
 0

2

Ds
t.

m
-2

m
-3

m
ap

pi
ng

PA
ND

A
Ch

ip
 m

-1

sparse matrix-G

v3 v1 v4 v2 v6 v5
v1 v2 v3 v4 v4 v6

 1 1 2 1 1 1

GCGT

CGTG GTGC

TGCG

TGCTGCTT

v1 v2

v3 v4

v5 v6

deBruijn graph-G

CGTGC 2
GTGCG 1
TGCGT 1
GCGTG 1
GTGCT 1
TGCTT 1

k_mer value
Hash table

Src
Dst
#E

1

2

3

4

5
Sub-array

#0

y1
1
0

0
0
1

0
0
1

1
0
1

0
1
1

1
1
0

0
1
1

0
0
0

1
1
1

0
1
0

0
0
0

0
0
0

 parallel
compute

x

out_degree[v3]
in_degree[v3]

out_degree[v3]>in_degree[v3]

1
1
0

0
0
1

0
0
1

1
0
1

0
1
1

1
1
0

0
1
1

0
0
0

1
1
1

0
1
0

0
0
0

0
0
0

PA
ND

A
Ch

ip
 1

TGCGT

v3 v1 v4 v2 v6 v5
v1 v2 v3 v4 v4 v6

 1 1 2 1 1 1

Src
Dst
#E

x
x
x
x

x
x
1
0

x
x
x
x

1
0
x
x

e0

e1

e30

e31

f0

f1

f30

f31

g0

g1

g30

g31

h0

h1

h30

h31

v1
v1
v2

x
x
x
x

x
x
x
x

c0
c1

c30

c31

d0
d1

d30

d31

x
x
0
1

x
x
x
x

0
1
x
x

x
x
x
xv3

v4
x
x
x
x

x
x
x
x

x
x

x
x

x
x

x
xv5

x
x

1
0

x
x

x
x

x
x

1
0v6

x
x

x
x

v2 v3 v4 v5 v6

out_degree[v4]=2

RWL
RWL

RWL
RWL

CGTG GTGC

TGCG

TGCT

v2

v4

v6v3

1
x

x
x

1
x

1
x

x
x

0
x

PANDA_Add

Sum x
0

x
x

x
0

x
0

x
x

x
1

ou
t_

de
gr

ee
co

m
pu

te

x
x
x
x

x
x
1
0

x
x
x
x

1
0
x
x

x
x
x
x

x
x
x
x

x
x
0
1

x
x
0
0

0
1
0
0

x
x
1
1

x
x
1
1

x
x
0
0

x
0

x
1

x
0

x
1

x
1

1
0

x
x

x
x

x
x

1
0

x
x

x
x

PANDA_Cmp
0 0 1 1 1 1

sh
or

t r
ea

ds
k-

m
er

s

CGTGC (CGTGCGTGCTT)
GTGCG (CGTGCGTGCTT)
TGCGT (CGTGCGTGCTT)
GCGTG (CGTGCGTGCTT)
CGTGC (CGTGCGTGCTT)
GTGCT (CGTGCGTGCTT)
TGCTT (CGTGCGTGCTT)

S = CGTGCGTGCTT...

K
 =

 5

CGTGC 2
GTGCG 1
TGCGT 1
GCGTG 1
GTGCT 1
TGCTT 1

Hash Table
k-mer value
CGTGC 2
GTGCG 1
TGCGT 1
GCGTG 1
GTGCT 1
TGCTT 1

Hash Table
k-mer value

sh
or

t r
ea

ds
k-

m
er

s

CGTGC (CGTGCGTGCTT)
GTGCG (CGTGCGTGCTT)
TGCGT (CGTGCGTGCTT)
GCGTG (CGTGCGTGCTT)
CGTGC (CGTGCGTGCTT)
GTGCT (CGTGCGTGCTT)
TGCTT (CGTGCGTGCTT)

S = CGTGCGTGCTT...

K
 =

 5

CGTGC 2
GTGCG 1
TGCGT 1
GCGTG 1
GTGCT 1
TGCTT 1

Hash Table
k-mer value

 C
ar

ry

1
0

1
0

0
1

1
0

v1

v3
0
0

1
0

x
x
x
x

x
x
x
x

x
x
0
1

1
0
x
xv4

v2
x
x
x
x

x
x
x
x

x
x

x
x

x
x

1
0v6

x
x

x
x

x
x

x
x

x
x

x
x

1
0

x
x

v2 v3 v4

RWL
RWL

RWL
RWL

0
x

0
x

0
x

0
x

0
x

0
x

PANDA_Add

Su
m

1
0

1
0

0
1

0
1

0
0

1
0

ou
t_

de
gr

ee
 c

om
pu

te

in_degree[v4]=2

out_degree[v1]=1
out_degree[v2]=1
out_degree[v3]=2

v5

v5

v6

v1 v4

v4

v2 v5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

v6

0
0

0
0

0
0

0
0

0
0

0
0

RWL
RWL

0
0

0
0

0
0

0
0

0
0

0
0

out_degree[v5]=0
out_degree[v6]=1

v1 v2 v3 v4 v5 v6 finding start node
out_degree[v3]=in_degree[v3]+1

GCGT

CGTG GTGC

TGCG

TGCTGCTT v1

v2

v4

v5 v6

deBruijn graph-G

1

GCTT
v5

C G
TG

T G

T

T
fr

eq
ue

nc
y

G

st
ar

t

C
A

T G C

Sub-array #z
C
TG

T G

T

T

G

A
TG G C

T
A

A

A

Sub-array #z

TG G C
C G T G

A

Contig gen.

v4

v3

Figure 11. PANDA in-memory addition and comparison scheme for finding the start vertex.

J. Low Power Electron. Appl. 2024, 14, 9 16 of 23

4. Performance Estimation

4.1. Setup
Accelerator: To the best of our knowledge, this work is the first to explore the perfor-

mance of a PIM platform for genome assembly problems, therefore, we have to create the
evaluation test bed from scratch to have an impartial comparison with both von Neumann
and non-von Neumann architectures. We configure the PANDA’s computational memory
sub-array with 1024 rows and 256 columns, 4⇥ 4 memory matrix (with 1/1 as row/column
activation) per bank organized in H-tree routing manner, 16 ⇥ 16 banks (with 1/1 as
row/column activation) in each memory chip. For comparison, we consider five com-
puting platforms: (1) A general purpose processor (GPP): a Quad-Core Intel Core i7-7700
CPU @ 3.60 GHz processor with 8192MB DIMM DDR4 1600MHz RAM and 8192KB Cache;
(2) A processing in STT-MRAM platform capable of performing bulk bit-wise operations [41];
(3) A recently developed processing in SOT-MRAM platform for DNA sequence alignment
optimized to perform comparison-intensive operations [6]; (4) A processing in ReRAM
accelerator designed for accelerating bulk bit-wise operations [42]; (5) A processing in
DRAM accelerator based on Ambit [12] working with triple row activation mechanism
to implement various functions. The detailed evaluation framework developed for PIM
platforms is shown in Figure 12. All PIM platforms have an identical physical memory
configuration as PANDA. Additionally, we developed a similar cross-layer simulation
framework starting from device-level simulation all the way to circuit- and architectural
level as explained for PANDA in Section 2.4. The results of the architecture evaluation of
all PIM platforms were then fed to a high-level in-house simulator developed in Matlab to
perform each genome assembly stage based on our customized and PIM-friendly algorithm
and estimate the overall performance. It is noteworthy that DPU was developed in HDL
and the performance results were extracted with Synopsys design compiler [43] and fed to
the developed NVSim library for each PIM platform.

MTJ modeling using
NEGF-LLG

(Verilog-A)De
vi

ce

Extracting Performance Parameters i.e. Delay, Energy, Area
(Spectre/Spice)

Ci
rc

ui
t

Co
nt

ro
lle

r

(S
yn

op
sy

s
 D

es
ig

n
Co

m
pi

le
r)

STT-MRAM

1T1C circuit level
(Spectre)

DRAM

DRAM cell parameters
from Rambus

ReRAM

Design & Verification of a single 1024x256 sub-array
(Cadence Spectre)

Circuit level
(Spectre)

Default NVSim
ReRAM .cell file

Verilog-A 1T1R
ReRAM

Verilog-A
1T1R STT-

MRAM

Ar
ch

ite
ct

ur
e

Modified Cacti based on
circuit level DRAM data

Extracting Performance Parameters i.e. Delay, Energy, Area for the system w.r.t.
memory configuration file (.cfg)

Application-level Simulation with Matlab

Extracting App-level Performance Parameters i.e. Delay, Energy, Area

Configure Modified NVSIM for existing memory
technologies

Verilog-A
2T1R SOT-

MRAM

MTJ modeling using
NEGF-LLG & SHE

(Verilog-A)

SOT-MRAM

Ap
pl

ic
at

io
n

 Generate 60952 reads through
Trinity with 519771 unique k-mers.

Figure 12. Evaluation framework developed for processing in-memory platforms.

To evaluate the CPU performance, we use Trinity-v2.8.5 [26] which was shown to be
sensitive and efficient in recovering full-length transcripts. Trinity constructs the de Bruijn
graph from short-read sequences employs an enumeration algorithm to score all branches,
and keeps possible ones as isoforms/transcripts.

J. Low Power Electron. Appl. 2024, 14, 9 17 of 23

Experiment: In our experiment, we create 60,952 short reads through the Trinity sample
genome bank with 519,771 unique k-mers. We initially set the k-mer length, k, to default 25,
and then change it to 22, 27, and 32 as typical values for most genome assemblers. To clarify,
the CPU executes the Inchworm, Chrysalis, and Butterfly steps in Trinity, while PIM platforms
run three main procedures in genome assembly shown in Figure 7, i.e., Hashmap, DeBruijn,
and Traverse for under-test PIM platforms. We compare Trinity’s power consumption
and execution time to that of other PIM assemblers by several measures. To have a fair
comparison with such a comprehensive assembler (that performs full genome assembly
task with scaffolding step), we penalized the PIM platforms with ⇠25% excessive time and
power. We believe this could provide a more realistic comparison with a von Neumann
architecture-based assembler. We developed a high-level compiler program connected to
our architectural simulator to perform a preprocessing step and essentially convert each
step of the customized algorithms (Algorithms 1–4) to the corresponding predefined ISA
shown in Section 2. As shown in previous works, such designs could efficiently solve
the operand locality issue in PIM platforms. The developed framework initially traverses
through the original sequence bank and organizes the k-mers before mapping into the
sub-array. Accordingly, the k-mers are mapped and aligned in the computational sub-array
with respect to the user’s provided configuration file. In this way, we ensure that k-mers
and values are correctly aligned in the memory before the computation step.

4.2. Run Time
The execution time of genome assembly tasks for different platforms is reported in

Figure 13. For k = 25, the CPU platform executes the Inchworm, Chrysalis, and Butterfly
steps [26] of Trinity in ⇠32 s, where Chrysalis for clustering the contigs and constructing
complete de Bruijn graph takes the largest fraction of run time (28 s) as expected. How-
ever, the comparison operation-intensive Hashmap procedure for k-mer analysis takes the
largest fraction of execution time across all PIM platforms (over 40% of total run time). A
larger k-mer length typically diminishes the de Bruijn graph connectivity by simultane-
ously reducing the number of ambiguous repeats in the graph and the chance of overlap
between two reads. This is why the run time for all platforms reduces with an increase in
k-mer length.

k=22 k=25 k=27 k=32
0
5

10
15
20
25
30
35
40

R
un

 T
im

e
(s

)

k=22 k=25 k=27 k=32
0

10

20

30

40

ru
n

tim
e

(s
)

Inchworm Chrysalis Butterfly Hashmap DeBruijn Traverse

k=22 k=25 k=27 k=32
0

50
100
150
200
250
300

Po
w

er
 (W

)

29s32s

918#

DRAM RRAMPANDA SOT

STT
CPU

98.5#

911#

 CPU PIM

Figure 13. The breakdown of run time for under-test platforms running different k-mer length
genome assembly task. In each bar group from left to right: CPU, processing in STT-MRAM [41],
PANDA, processing in SOT-MRAM [6], processing in DRAM [12], and processing in RRAM [42].

We can observe that PIM platforms reduce the run time remarkably compared to the
CPU. As shown, PANDA reduces the run time by ⇠18⇥ compared to the CPU platform
for k = 25 (18.8⇥ on average over four different k-mer lengths). The PANDA platform
essentially accelerates the graph construction and traversal stages by ⇠21.5⇥ compared
with the CPU platform. Here, by increasing the k-length to 32, a higher speed-up is
even achievable. Compared with counterpart PIM platforms, our X(N)OR-friendly de-

J. Low Power Electron. Appl. 2024, 14, 9 18 of 23

sign reduces the run time on average by 4.2⇥ and 2.5⇥ compared to the STT-PIM [41]
and SOT-PIM [6] platforms, respectively, as the fastest counterparts. This comes from
the fact that under-test PIM platforms require multi-cycle operations to implement addi-
tional operations. Moreover, the SOT-based device intrinsically shows higher write speed
compared to STT devices. Compared to DRAM and RRAM platforms, PANDA achieves
on average 10.9 ⇥ and 6 ⇥ speed-up for various length k-mer processing. It is worth
pointing out that the processing in DRAM platforms possesses a destructive computing
operation and requires multiple memory cycles to copy the operands to particular rows
before computation. As for Ambit [12], seven memory cycles are needed to implement the
in-memory-X(N)OR function.

4.3. Power Consumption
We estimated the power consumption of different PIM platforms for running different

length k-mers compared to the CPU platform as shown in Figure 14. Based on our results,
a significant reduction in power consumption can be reported for all under-test PIM
platforms compared with the CPU. The breakdown of energy consumption is also shown
for the PIM platforms; however, this could not be accurately achieved for the CPU and
overall power consumption is reported. In our experiment, processing in SOT-MRAM
design [6] achieves the smallest power consumption (on average) to run the three main
procedures, as compared with the CPU and other PIM platforms. The PANDA platform
stands as the second most power-efficient design. This is mainly due to the three-SA-based
bit-line computing scheme in PANDA compared with the two-SA per bit-line technique in
the counterpart design; while the proposed scheme brings more speed-up compared with
the design in [6], it requires relatively more power. PANDA reduces power consumption by
⇠9.2⇥ on average compared with the CPU platform over different length k-mers. Moreover,
it reduces the power consumption by ⇠18% compared with the STT-MRAM [41] platform.
The main reason behind this improvement is more efficient addition operation in PANDA.
The addition operation requires additional memory cycles in the STT-MRAM [41] platform
to save and carry the bit back to the memory and use it again for the computation of the next
bits. Compared to DRAM and RRAM platforms, PANDA obtains on average 2.11⇥ and
55% power reduction for various length k-mer processing.k=22 k=25 k=27 k=32

0
5

10
15
20
25
30
35
40

R
un

 T
im

e
(s

)

k=22 k=25 k=27 k=32
0

10

20

30

40

ru
n

tim
e

(s
)

Inchworm Chrysalis Butterfly Hashmap DeBruijn Traverse

k=22 k=25 k=27 k=32
0

50
100
150
200
250
300

Po
w

er
 (W

) k=22k=25k=27k=32
0

5

10

15

Intel Core i7-7700 Hashmap DeBruijn Traverse

98.5#

911#

918#

32s 29s

 PIM CPU

PANDA

CPU

CPU

STT

STT

PANDA

SOT DRAM

DRAM
SOT

RRAM

RRAM

Figure 14. The breakdown of power consumption for PIM platforms running different k-mer length
genome assembly task compared to CPU. In each bar group from left to right: CPU, processing in
STT-MRAM [41], PANDA, processing in SOT-MRAM [6], processing in DRAM [12], and processing
in RRAM [42].

We estimated the energy consumption imposed by the sensing circuit at the sub-array
level in order to analyze the adverse impacts of boosting the sense current for read, 2-input,
and 3-input PIM operation as a follow-up discussion to the reliability part in Section 2.4.
Figure 15 shows that by increasing the sense current, the sub-array’s dynamic energy will
increase correspondingly. Our experiment shows that to increase the average sense margin
by ⇠25–38 mv, the PANDA’s computational sub-array consumes ⇠1.5⇥ more energy. This
could be considered a significant factor in designing sensing circuitry.

J. Low Power Electron. Appl. 2024, 14, 9 19 of 23

5 10 15 20 25
Sense current (7A)

0.6

0.8

1

1.2

1.4

1.6

1.8

D
yn

am
ic

 e
ne

rg
y

co
ns

um
pt

io
n

 (n
J)

read op
2-input logic
3-input logic

~25mv-38mv
increase
in sense margin

~1.5x
more
energy

Figure 15. The dynamic energy consumption trade-off with the sense current as a countermeasure to
improve the sense margin in PANDA.

4.4. Speed-Up/Power Efficiency Trade-Off
We investigate the power efficiency and speed-up of the three best under-test PIM

platforms, based on the run time and power consumption results in the previous sub-
sections, by tuning the number of active sub-arrays (Ns) associated with the comparison
and addition operations. A parallelism degree (Pd) can then be defined as the number
of replicated sub-arrays to boost the performance of the PIM platforms through parallel
processing, as shown in prior works [6,15]. For example, when Pd is set to 2, two parallel
sub-arrays are undertaken to process the in-memory operations, simultaneously. We expect
such parallelism to improve the performance of genome assembly at the cost of sacrificing
the power consumption and area. Figure 16 plots the existing trade-off between run time
and power consumption vs. Pd for k = 25. The estimated CPU power budget required to
execute Trinity is also shown. It can be seen that for all platforms the run time reduces
by increasing the parallelism. For example, for the PANDA platform in an extreme case,
increasing Pd from 1 to 8 increases the power consumption from⇠19 W to 128 W (⇠7⇥) and
reduces the execution time by a factor of 3, which might not be a favorable case. Therefore,
a user can meticulously tailor the PANDA performance to meet the system/application
constraints. Here, we show the optimum theoretical performance of PANDA and other PIM
platforms by pinpointing the intersection between power and run time curves in Figure 16.
We observe that PANDA achieves the smallest run time and power consumption task with
a Pd ⇠ 2 compared with the others.

k=22 k=25 k=27 k=32
0

10

20

30

40

R
un

 T
im

e
(s

)

k=22 k=25 k=27 k=32
0

10
20
30
40

ru
n

tim
e

(s
)

Inchworm Chrysalis Butterfly Hashmap DeBruijn Traverse

k=22 k=25 k=27 k=32
0

50

100

150

200

250

Po
w

er
 (W

)

k=22k=25k=27k=32
0

5

10

15

Intel Core i7-7700 Hashmap DeBruijn Traverse

1 2 4 8
Parallelism Degree

0

100

200

300

Po
w

er
 C

on
um

pt
io

n
(W

)

0

5

10
R

un
 ti

m
e

(s
)

PANDA SOT-PIM STT-PIM

1 2 4 8
Parallelism Degree

0

50

100

150

200

250

Po
w

er
 C

on
um

pt
io

n
(W

)

0

2

4

6

8

10

R
un

 ti
m

e
(s

)

PANDA SOT-PIM STT-PTM data4 data6

29s32s

CPU STT-PIM PANDA SOT-PIM

PANDA
SOT-PIM

918#

STT-PIM

 PIM

911#

98.5#

 CPU

 PIM

X: 2.244
Y (Stacked): 12.5
Y (Segment): 4.375

CPU Power on Trinity

PANDA

SOT-PIM

STT-PIM

Run timePower

Figure 16. Trade-off between power consumption and run-time with respect to parallelism degree in
k = 25.

J. Low Power Electron. Appl. 2024, 14, 9 20 of 23

4.5. Memory Wall Challenge
The power efficiency and speed-up of PIM platforms against the von Neumann

architecture-based CPU were discussed in prior subsections. Here, we further explore the
reasons behind the numbers reported by considering two new measures, i.e., Memory
Bottleneck Ratio (MBR) and Resource Utilization Ratio (RUR). We define MBR as the time
fraction needed for data transfer from/to on-chip or off-chip when the computation has
to wait for data, i.e., memory wall happens. We also define RUR as the time fraction in
which the computation resources are loaded with data. The memory wall is considered as
the main bottleneck that brings large power consumption and lengthens execution time
in the CPU. The MBR is reported in Figure 17a. The peak throughput for each design
in four distinct k-mer lengths is taken into account for performing the evaluation. This
evaluation mainly considers the number of memory accesses. As shown, the PANDA uses
less than ⇠17% time for data transfer due to the PIM acceleration schemes, while CPU’s
MBR increases to 65% when k = 25. Moreover, we observe that all the other PIM platforms
except DRAM also spend less than ⇠17% time for data communication. The smaller MBR
can be translated as the higher RUR for the accelerators plotted in Figure 17b. The lower
MBR can be understood as a higher RUR. We can see that with up to ⇠82%, PANDA
achieves the highest RUR. Taking everything into account, PIM acceleration schemes offer
a high utilization ratio (>60% excluding DRAM) confirming the conclusion drawn in
Figure 17a. The memory wall evaluation shows the efficiency of the PANDA platform for
solving the memory wall challenge.

k=22 k=25 k=27 k=32
0

20

40

60

80

M
BR

 (%
)

CPU STT PANDA SOT DRAM RRAM

k=22 k=25 k=27 k=32
0

10
20
30
40
50
60
70
80
90

100

R
es

ou
rc

e
U

til
iz

at
io

n
R

at
io

 (%
)

k=22 k=25 k=27 k=32
0

20

40

60

80

M
BR

 (%
)

k=22 k=25 k=27 k=32
0

25

50

75

100

R
U

R
 (%

)

(b)(a)

Figure 17. (a) The memory bottleneck ratio and (b) resource utilization ratio for CPU and three
under-test PIM platforms for running genome assembly tasks.

4.6. Area Overhead
To estimate the area overhead of PANDA on top of the original MRAM die, three

crucial hardware cost sources must be taken into consideration. First, the controller unit
is located in the sub-array and MAT level; second, add-on WBL and RBL voltage drivers
and peripherals; and third, add-on transistors to SAs to enable in-memory computing.
Figure 18a depicts the breakdown of the area overhead resulting from add-on hardware
to original PANDA memory at MAT level. Our experiments show that, in total, PANDA
imposes ⇠7.9% area overhead to the memory die, where the modified controller, drivers,
and then SA contribute more than 70% of this area overhead. We also calculated the area
overhead of the processing-SOT-MRAM platform in [6] as the most similar counterpart
implemented with the same technology, as shown in Figure 18b. Please note that we
considered the area overhead of DPU for both designs as well. This design incurs a smaller
overhead (5.9%) to the memory die.

J. Low Power Electron. Appl. 2024, 14, 9 21 of 23

Figure 18. The breakdown of area-overhead in MAT level for (a) PANDA and (b) processing in
SOT-MRAM platform [6].

5. Conclusions

The processing-in-memory paradigm has emerged as an efficient computing approach
for analyzing large-scale data, including DNA sequences. In this paper, we presented
PANDA as a new processing-in-SOT-MRAM platform to accelerate the comparison/
addition-extensive genome assembly application using PIM-friendly operations. We de-
veloped PANDA based on a set of new circuit-level schemes to realize a data-parallel
computational core for genome assembly. The platform is configured with a novel data
partitioning and mapping technique that provides local storage and processing to fully
utilize our customized algorithm-level parallelism. The cross-layer simulation results
demonstrate that PANDA reduces the execution time and power by ⇠18⇥ and ⇠11⇥,
respectively, compared with the CPU. Moreover, speed-ups of up to 2–4⇥ can be obtained
over recent processing in MRAM platforms to perform a similar task. Future endeavors can
take diverse paths. Firstly, delving into different innovative PIM platforms to enhance the
speed of each phase of DNA assembly. Secondly, developing new hardware mapping and
processing techniques that are correlated with minimizing the overhead associated with
intermediate results write-backs. Thirdly, introducing algorithmic innovations in graph
construction to further enhance the performance of the accelerator.

Author Contributions: Investigation, S.A., N.A.F., W.Z. and D.F.; Methodology, S.A., N.A.F. and
D.N.; Supervision, W.Z. and D.F.; Visualization, S.A. and D.N.; Writing—original draft, S.A. and
N.A.F.; Writing—review & editing, S.A. and D.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported in part by the National Science Foundation under Grant No.
2349802 and No. 2314591.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Li, H.; Homer, N. A survey of sequence alignment algorithms for next-generation sequencing. Brief. Bioinform. 2010, 11, 473–483.
[CrossRef] [PubMed]

2. Georganas, E.; Buluç, A.; Chapman, J.; Oliker, L.; Rokhsar, D.; Yelick, K. Parallel de bruijn graph construction and traversal for
de novo genome assembly. In Proceedings of the SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, New Orleans, LA, USA, 16–21 November 2014; IEEE: New York, NY, USA, 2014;
pp. 437–448.

3. Sinha, A.; Yang, H.-C.; Liu, P.-Y.; Kuo, Y.-S.; Fang, Y.; Chang, T.-S.; Li, K.-H.; Lai, B.-C. DSIM: Distributed Sequence Matching on
Near-DRAM Accelerator for Genome Assembly. J. Emerg. Sel. Top. Circuits Syst. 2022, 12, 486–499. [CrossRef]

4. Chapman, J.A.; Ho, I.; Sunkara, S.; Luo, S.; Schroth, G.P.; Rokhsar, D.S. Meraculous: De novo genome assembly with short
paired-end reads. PLoS ONE 2011, 6, e23501. [CrossRef] [PubMed]

5. Zokaee, F.; Zarandi, H.R.; Jiang, L. Aligner: A process-in-memory architecture for short read alignment in rerams. IEEE Comput.
Archit. Lett. 2018, 17, 237–240. [CrossRef]

http://doi.org/10.1093/bib/bbq015
http://www.ncbi.nlm.nih.gov/pubmed/20460430
http://dx.doi.org/10.1109/JETCAS.2022.3172774
http://dx.doi.org/10.1371/journal.pone.0023501
http://www.ncbi.nlm.nih.gov/pubmed/21876754
http://dx.doi.org/10.1109/LCA.2018.2854700

J. Low Power Electron. Appl. 2024, 14, 9 22 of 23

6. Angizi, S.; Sun, J.; Zhang, W.; Fan, D. AlignS: A processing-in-memory accelerator for DNA short read alignment leveraging
SOT-MRAM. In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June
2019; pp. 1–6.

7. Shahroodi, T.; Miao, M.; Lindegger, J.; Wong, S.; Mutlu, O.; Hamdioui, S. An In-Memory Architecture for High-Performance
Long-Read Pre-Alignment Filtering. arXiv 2023, arXiv:2310.15634.

8. Rumpf, M.D.; Alser, M.; Gollwitzer, A.E.; Lindegger, J.; Almadhoun, N.; Firtina, C.; Mangul, S.; Mutlu, O. SequenceLab: A
Comprehensive Benchmark of Computational Methods for Comparing Genomic Sequences. arXiv 2023, arXiv:2310.16908.

9. De Sandre, G.; Bettini, L.; Pirola, A.; Marmonier, L.; Pasotti, M.; Borghi, M.; Mattavelli, P.; Zuliani, P.; Scotti, L.; Mastracchio,
G.; et al. A 90 nm 4 Mb embedded phase-change memory with 1.2 V 12 ns read access time and 1MB/s write throughput. In
Proceedings of the 2010 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 7–11 February 2010.

10. Tsuchida, K.; Inaba, T.; Fujita, K.; Ueda, Y.; Shimizu, T.; Asao, Y.; Kajiyama, T.; Iwayama, M.; Sugiura, K.; Ikegawa, S.; et al. A 64
Mb MRAM with clamped-reference and adequate-reference schemes. In Proceedings of the 2010 IEEE International Solid-State
Circuits Conference-(ISSCC), San Francisco, CA, USA, 7–11 February 2010.

11. Chang, M.F.; Shen, S.J.; Liu, C.C.; Wu, C.W.; Lin, Y.F.; King, Y.C.; Yamauchi, H. An Offset-Tolerant Fast-Random-Read Current-
Sampling-Based Sense Amplifier for Small-Cell-Current Nonvolatile Memory. J. Solid-State Circuits 2013, 48, 864–877. [CrossRef]

12. Seshadri, V.; Lee, D.; Mullins, T.; Hassan, H.; Boroumand, A.; Kim, J.; Kozuch, M.A.; Mutlu, O.; Gibbons, P.B.; Mowry, T.C. Ambit:
In-memory accelerator for bulk bitwise operations using commodity DRAM technology. In Proceedings of the 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), New York, NY, USA, 14–18 October 2017; pp. 273–287.

13. Yu, J.; Nane, R.; Ashraf, I.; Taouil, M.; Hamdioui, S.; Corporaal, H.; Bertels, K. Skeleton-based Synthesis Flow for Computation-In-
Memory Architectures. IEEE Trans. Emerg. Top. Comput. 2017, 2, 545–558. [CrossRef]

14. Zhang, F.; Angizi, S.; Fahmi, N.A.; Zhang, W.; Fan, D. PIM-Quantifier: A Processing-in-Memory Platform for mRNA Quantifica-
tion. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December
2021; pp. 43–48.

15. Li, S.; Xu, C.; Zou, Q.; Zhao, J.; Lu, Y.; Xie, Y. Pinatubo: A processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories. In Proceedings of the 53rd Annual Design Automation Conference, New York, NY, USA,
5–9 June 2016; pp. 1–6.

16. Chowdhury, Z.I.; Zabihi, M.; Khatamifard, S.K.; Zhao, Z.; Resch, S.; Razaviyayn, M.; Wang, J.P.; Sapatnekar, S.S.; Karpuzcu, U.R.
A DNA Read Alignment Accelerator Based on Computational RAM. IEEE J. Explor. Solid-State Comput. Devices Circuits 2020,
6, 80–88. [CrossRef]

17. Kang, W.; Wang, H.; Wang, Z.; Zhang, Y.; Zhao, W. In-memory processing paradigm for bitwise logic operations in STT–MRAM.
IEEE Trans. Magn. 2017, 53, 1–4.

18. Angizi, S.; Sun, J.; Zhang, W.; Fan, D. GraphS: A graph processing accelerator leveraging SOT-MRAM. In Proceedings of the 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25–29 March 2019; pp. 378–383.

19. Li, R.; Yu, C.; Li, Y.; Lam, T.W.; Yiu, S.M.; Kristiansen, K.; Wang, J. SOAP2: An improved ultrafast tool for short read alignment.
Bioinformatics 2009, 25, 1966–1967. [CrossRef] [PubMed]

20. Richard Wilton, A.S.S. Performance optimization in DNA short-read alignment. Bioinformatics 2022, 38, 2081–2087. [CrossRef]
[PubMed]

21. Liu, C.M.; Wong, T.; Wu, E.; Luo, R.; Yiu, S.M.; Li, Y.; Wang, B.; Yu, C.; Chu, X.; Zhao, K.; et al. SOAP3: Ultra-fast GPU-based
parallel alignment tool for short reads. Bioinformatics 2012, 28, 878–879. [CrossRef] [PubMed]

22. Arram, J.; Kaplan, T.; Luk, W.; Jiang, P. Leveraging FPGAs for accelerating short read alignment. IEEE/ACM Trans. Comput. Biol.
Bioinform. 2016, 14, 668–677. [CrossRef] [PubMed]

23. Mahmood, S.F.; Rangwala, H. Gpu-euler: Sequence assembly using gpgpu. In Proceedings of the 2011 IEEE International
Conference on High Performance Computing and Communications, Banff, AB, Canada, 2–4 September 2011; pp. 153–160.

24. Varma, B.S.C.; Paul, K.; Balakrishnan, M. FPGA-Based Acceleration of De Novo Genome Assembly. In Architecture Exploration of
FPGA Based Accelerators for BioInformatics Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 55–79.

25. Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008,
18, 821–829. [CrossRef]

26. Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng,
Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652.
[CrossRef] [PubMed]

27. Goswami, S.; Lee, K.; Shams, S.; Park, S.J. Gpu-accelerated large-scale genome assembly. In Proceedings of the 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, BC, Canada, 21–25 May 2018; pp. 814–824.

28. Ren, S.; Ahmed, N.; Bertels, K.; Al-Ars, Z. An Efficient GPU-Based de Bruijn Graph Construction Algorithm for Micro-Assembly.
In Proceedings of the 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan,
29–31 October 2018; pp. 67–72.

29. Lu, M.; Luo, Q.; Wang, B.; Wu, J.; Zhao, J. GPU-accelerated bidirected De Bruijn graph construction for genome assembly.
In Proceedings of the Asia-Pacific Web Conference, Sydney, Australia, 4–6 April 2013; pp. 51–62.

http://dx.doi.org/10.1109/JSSC.2012.2235013
http://dx.doi.org/10.1109/TETC.2017.2760927
http://dx.doi.org/10.1109/JXCDC.2020.2987527
http://dx.doi.org/10.1093/bioinformatics/btp336
http://www.ncbi.nlm.nih.gov/pubmed/19497933
http://dx.doi.org/10.1093/bioinformatics/btac066
http://www.ncbi.nlm.nih.gov/pubmed/35139149
http://dx.doi.org/10.1093/bioinformatics/bts061
http://www.ncbi.nlm.nih.gov/pubmed/22285832
http://dx.doi.org/10.1109/TCBB.2016.2535385
http://www.ncbi.nlm.nih.gov/pubmed/26955050
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1038/nbt.1883
http://www.ncbi.nlm.nih.gov/pubmed/21572440

J. Low Power Electron. Appl. 2024, 14, 9 23 of 23

30. Angizi, S.; Fahmi, N.A.; Zhang, W.; Fan, D. PIM-Assembler: A processing-in-memory platform for genome assembly. In Pro-
ceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 20–24 July 2020;
pp. 1–6.

31. Angizi, S. Processing-in-Memory for Data-Intensive Applications, from Device to Algorithm. Ph.D. Thesis, Arizona State
University, Tempe, AZ, USA, 2021.

32. Fong, X.; Kim, Y.; Yogendra, K.; Fan, D.; Sengupta, A.; Raghunathan, A.; Roy, K. Spin-transfer torque devices for logic and
memory: Prospects and perspectives. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2015, 35, 1–22. [CrossRef]

33. Pai, C.F.; Liu, L.; Li, Y.; Tseng, H.; Ralph, D.; Buhrman, R. Spin transfer torque devices utilizing the giant spin Hall effect of
tungsten. Appl. Phys. Lett. 2012, 101, 122404. [CrossRef]

34. Razavi, B. The StrongARM latch [a circuit for all seasons]. IEEE Solid-State Circuits Mag. 2015, 7, 12–17. [CrossRef]
35. Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal

Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004, 3, 868. [CrossRef]
36. Mutlu, O.; Ghose, S.; Gómez-Luna, J.; Ausavarungnirun, R. A Modern Primer on Processing in Memory. arXiv 2020,

arXiv:2012.03112.
37. Patel, M.; Kim, J.S.; Hassan, H.; Mutlu, O. Understanding and modeling on-die error correction in modern DRAM: An

experimental study using real devices. In Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Portland, OR, USA, 24–24 June 2019; pp. 13–25.

38. Li, R.; Zhu, H.; Ruan, J.; Qian, W.; Fang, X.; Shi, Z.; Li, Y.; Li, S.; Shan, G.; Kristiansen, K.; et al. De novo assembly of human
genomes with massively parallel short read sequencing. Genome Res. 2010, 20, 265–272. [CrossRef]

39. Simpson, J.T.; Wong, K.; Jackman, S.D.; Schein, J.E.; Jones, S.J.; Birol, I. ABySS: A parallel assembler for short read sequence data.
Genome Res. 2009, 19, 1117–1123. [CrossRef] [PubMed]

40. Dai, G.; Huang, T.; Chi, Y.; Zhao, J.; Sun, G.; Liu, Y.; Wang, Y.; Xie, Y.; Yang, H. Graphh: A processing-in-memory architecture for
large-scale graph processing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 38, 640–653. [CrossRef]

41. Jain, S.; Ranjan, A.; Roy, K.; Raghunathan, A. Computing in memory with spin-transfer torque magnetic RAM. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2017, 26, 470–483. [CrossRef]

42. Imani, M.; Kim, Y.; Rosing, T. Mpim: Multi-purpose in-memory processing using configurable resistive memory. In Proceedings of
the 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 16–19 January 2017; pp. 757–763.

43. Synopsys Inc. Synopsys Design Compiler, Product Version 14.9.2014; Synopsys Inc.: Sunnyvale, CA, USA, 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCAD.2015.2481793
http://dx.doi.org/10.1063/1.4753947
http://dx.doi.org/10.1109/MSSC.2015.2418155
http://dx.doi.org/10.1038/nmat1257
http://dx.doi.org/10.1101/gr.097261.109
http://dx.doi.org/10.1101/gr.089532.108
http://www.ncbi.nlm.nih.gov/pubmed/19251739
http://dx.doi.org/10.1109/TCAD.2018.2821565
http://dx.doi.org/10.1109/TVLSI.2017.2776954

	Introduction
	PANDA Platform
	SOT-MRAM
	Architecture Design
	PIM Operations
	Performance Analysis
	Software Support

	PANDA Algorithm and Mapping
	Stage One: Hash Table
	Stage Two: Graph Construction
	Stage Three: Traversal for Euler Path

	Performance Estimation
	Setup
	Run Time
	Power Consumption
	Speed-Up/Power Efficiency Trade-Off
	Memory Wall Challenge
	Area Overhead

	Conclusions
	References

