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Abstract 

We report a method to predict equilibrium concentration profiles of hard ellipses in 
nonuniform fields including multiphase equilibria of fluid, nematic, and crystal phases. Our model 
is based on a balance of osmotic pressure and field mediated forces by employing the local density 
approximation. Implementation of this model requires development of accurate equations of state 
for each phase as a function of hard ellipse aspect ratio in the range k=1-9. Predicted density 
profiles display overall good agreement with Monte Carlo simulations for hard ellipse aspect ratios 
k=2,4,6 in gravitational and electric fields with fluid-nematic, fluid-crystal, and fluid-nematic-
crystal multiphase equilibria. Profiles of local order parameters for positional and orientational 
order display good agreement with values expected for bulk homogeneous hard ellipses in the 
same density ranges. Small discrepancies between predictions and simulations are observed at 
crystal-nematic and crystal-fluid interfaces due to limitations of the local density approximation, 
finite system sizes, and uniform periodic boundary conditions. The ability of the model to capture 
multiphase equilibria of hard ellipses in nonuniform fields as a function of particle aspect ratio 
provides a basis to control anisotropic particle microstructure on interfacial energy landscapes in 
diverse materials and applications. 

Introduction 

The ability to manipulate anisotropic colloidal particle microstructures in external fields 
provides a basis to design, control, and optimize particle-based materials and devices. The ability 
to control two-dimensional microstructures of anisotropic particles on surfaces can be used to 
define a number of interfacial properties (e.g., optical, electromagnetic, adhesive, wetting, etc.) in 
synthetic1 and natural materials.2-3 Because kinetic factors often limit the degree of order obtained 
in the assembly of anisotropic particles on surfaces,4-5 external fields are often employed to 
mediate interactions and influence kinetic pathways.6-10 As such, understanding equilibrium 
phases of anisotropic particles in nonuniform fields on surfaces is essential to understand 
achievable target free energy minimum microstructures. Understanding how multiple phases (e.g., 
liquid, liquid crystal, crystal) can occur in spatially varying nonuniform fields could enable 
patterning of hierarchical surface materials (e.g., analogous to multifunctional insect exoskeleton 
surfaces11) and reconfigure microstructured surfaces in devices (e.g., colloidal displays analogous 
to liquid crystal displays,12 microchip assembly13).  

The two-dimensional phase behavior of a number of particle shapes has been well-studied 
in bulk homogeneous systems in the absence of fields. In particular, disks, ellipses, squares, 
rectangles, and other rounded variants have been the subject of many modeling studies, which are 
all hard superellipse shapes.14 Other than hard disks, perhaps the simplest of these shapes is the 
hard ellipse, for which phase behavior and equations of state have been characterized.15-18 Bulk 
homogeneous phase behavior of hard ellipses as a function of concentration and aspect ratio 
includes isotropic fluid, nematic, plastic crystal, and crystal phases. Although spherical particles 
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have been studied in nonuniform two-dimensional electric fields,19-20 we are unaware of any 
studies quantifying two-dimensional phase behavior of different particle shapes in such fields. 

Multiphase equilibria of different particle shapes in external fields have primarily been 
investigated in three dimensional systems within gravitational fields (i.e., sedimentation 
equilibrium). Sedimentation equilibrium studies of spherical colloids have been studied since the 
early pioneering work of Perrin,21 and are now sufficiently well understood to routinely invert 
density profiles as a measure of colloidal phase behavior and equations of state.22-23 Experimental 
sedimentation equilibrium studies of clay platelets,24 silica rods,25 and mineral rod-plate mixtures26 
have shown good agreement with bulk phase diagrams, which have been supported by careful 
modeling studies.27-28 Practically, the majority of experimental studies to date have probed 
multiphase equilibria in uniform gravitational fields on macroscopic scales much greater than 
particle dimensions (with some exceptions29-30). Although it is well established that anisotropic 
colloidal particles (e.g., minerals, viruses, etc.) form liquid crystals in uniform external electric 
and magnetic fields,31 there has been little characterization of anisotropic particles within local 
nonuniform external fields.32 

Here, we model the position dependent phase behavior of hard ellipses on spatially varying 
energy landscapes due to nonuniform fields (Fig. 1, e.g., gravity, electric fields as in recent 
experiments9-10). We develop a general model to determine concentration profiles within 
coexisting liquid, liquid crystal, and crystal phases for nonuniform fields based on the balance of 
local osmotic pressure and field mediated particle compression. To implement this model for hard 
ellipses, we develop simple and accurate equations of state for hard ellipse fluid, nematic, and 
crystal phases as a function of aspect ratio, based on prior theories and simulation results. We 
compare model predictions with Monte Carlo (MC) simulations for a number of illustrative cases 
involving multiphase equilibria of fluid, nematic, and crystal states for different hard ellipse aspect 
ratios, field types/shapes, and particle orientations. We further characterize spatially varying 
microstructure within inhomogeneous phases using local order parameters to color renderings and 
produce order parameter profiles. By developing the ability to predict local phase behavior in 
spatially varying nonuniform fields, our findings provide a basis to design, control, and optimize 
field properties to achieve desirable spatially varying surface microstructures and associated 
emergent material properties.  

Theory 

System Overview 

This work investigates hard ellipses in external fields (e.g., gravitational, electric fields). 
The semi- major and minor axis lengths of each ellipse are a and b, and the aspect ratio is k = a/b. 
In lab coordinates, each ellipse has two translational degrees of freedom with position coordinates 
(xi, yi) and one rotational degree of freedom with angle coordinate (θi) as shown in (Fig. 1). In 
particle coordinates, the center-to-center distance between particle i and particle j is rij, and their 
relative angle is θij. External fields in this work depend only on the lab x-coordinate. 

In the following, predictions of hard ellipse concentration profiles in nonuniform fields are 
based on the Local Density Approximation (LDA),33 where the local concentration corresponds to 
an equilibrium condition equivalent to a bulk system at the same concentration. The LDA is 
generally valid for concentration profiles where the dimensions of spatial gradients are large 
compared to particle dimensions. Despite this constraint, the LDA is often accurate on smaller 
scales than expected, as demonstrated in studies of sedimentation equilibria27, 29, 34 and spherical 
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colloids on spatially varying landscapes.20 Although a more general form, derived from Density 
Functional Theory, can be simplified using the LDA to arrive at the following expressions,33-34 we 
start with a less general but simpler osmotic force balance based on the LDA. An alternative and 
equivalent impementation of the LDA based on local chemical potential may offer a convenient 
formulation for ease of implementation in uniform fields (e.g., gravitational fields),28 but such an 
approach has not been applied to multiphase equilibria in nonuniform fields.  

Force Balance 

We consider concentration profiles of hard ellipses in external fields where the profile and 
field depend only on the x-coordinate (Fig. 1). Under the conditions of the LDA, the equilibrium 
condition is given by a balance of the local osmotic pressure difference and the local force (i.e., 
gradient of a scalar potential energy landscape) acting on the particles as,19-20, 29, 35 

  
( )

( ) ( ) ( )
pfdu x

x x x x x
dx

       (1) 

where Π is osmotic pressure, upf(x) is the particle-field potential (a one-dimensional, position-
dependent energy landscape), and ρ is particle number density. For an infinitesimally small slice 
(Δx → 0), Eq. (1) is,  
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and by inserting an appropriate equation of state to relate and  as, 

  ( ) ( )Bk T Z     (3) 

where kB is Boltzmann’s constant, T is absolute temperature, and Z is the compressibility factor,  
Eq. (2) becomes, 
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which can be integrated to give, 
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Fig. 1. Schematic of hard ellipses in gravitational and electric field mediated energy landscapes.
(left) Laboratory coordinates for gravitational energy landscape on titled slide for sedimentation equilibrium.
(middle) Particle dimensions and coordinates for both cases. (right) Laboratory coordinates for induced
dipole in nonuniform electric field between parallel electrodes (yellow). 
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where ρ0 is a reference density, and u0
pf is the potential energy at that density. Eq. (5) can be written 

in terms of area fraction, η=ρAp, where Ap represents the single particle area, as, 
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
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       (6)  

which can be evaluated to determine (x) for a given upf(x). Once η(x) is obtained, the number of 
particles implied by the concentration profile by conservation of mass is given as, 

    0.5

0.5
( )
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d

p d
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
     (7) 

where h is the width (in the y-direction), and dg is the range in the x-direction for the two-
dimensional configuration in Fig. 1. Eq. (6) can be rearranged to obtain Z() from η(x) as, 
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where x0 is a reference location with an associated density η0. In the present work we consider 
systems where density vanishes away from the origin, and taking x0 → ∞, we get η0 → 0 and Z(η0) 
→ 1, which gives, 
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which provides a convenient method to approximate equations of state from particle distributions.  

Hard Ellipse Phase Behavior & Equations of State 

To calculate hard ellipse concentration profiles in  fields, it is necessary to know hard 
ellipse phase behavior and equations of state. Hard ellipses exhibit different phases vs. aspect ratio, 
including: (a) isotropic, plastic crystal, and crystal phases for 1.0 <k ≤ 1.6, (b) isotropic and crystal 
phases for 1.6 ≤ k ≤ 2.4, and (c) isotropic, nematic, and crystal phases for k ≥ 2.4.18 The isotropic-
nematic transition (for k ≥ 2.4) area fraction, N, vs. aspect ratio is given by,17 

    1
6.37 5.14N k      (10) 

and for isotropic-solid coexistence (1.6 ≤ k ≤ 2.4) and nematic-solid coexistence (2.4 ≤ k ≤ 9.0), 
the highest area fraction fluid or nematic at freezing, F, and the solid area fraction at melting, M, 
vs. aspect ratio are well represented by,18 

  6.570.5 0.818F k      (11) 

  3.50.1 0.833M k    (12) 

A number of studies have investigated equations of state for hard ellipse phases,15-17, 36 but 
none of them capture simulation results for all aspect ratios, phases, and concentrations. These 
prior studies have suggested a form for the isotropic fluid compressibility factor, ZI,HE,  as,16 

      , 2 ,, 1 ( ) 2 1I HE m F HDZ k B k v Z       (13) 

where B2(k) is the aspect ratio dependent second virial coefficient, m is particle volume, and ZF,HD 
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is the hard disk fluid compressibility factor. 37 Based on this form, we developed an empirical 
correction to accurately capture reported compressibility factor data17 (Fig. 2), 

    2.5 2
, ,, 1 0.12 ( 1) 0.21( 1) 1 1I HE F HDZ k k k Z                (14) 

which is applicable for aspect ratios 1.6 ≤ k ≤ 2.4 for concentrations 0 ≤ η < ηF, and for aspect 
ratios 2.4 ≤ k ≤ 9.0 for concentrations 0 ≤ η < ηN. This form is more accurate than the cited prior 
equations of state for ellipses that do not form a plastic phase (1.6 ≤ k ≤ 9.0), and it performs less 
well than recent scaled-particle theory results for slightly anisotropic ellipses (1.0 ≤ k ≤ 1.6).17  

A density functional theory study of the hard ellipse nematic equation of state reports an 
additive correction to the hard ellipse isotropic fluid equation of state as,15 
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     


    
  

  (15) 

where I is a function of the hard disk equation of state, H is the nematic phase excluded volume, γ 
is a critical nematic order parameter, and H0 is the isotropic fluid excluded volume. Based on this 
form, we developed a semi-empirical nematic equation of state for hard ellipses to accurately 
capture reported compressibility factor data17 (Fig. 2) as, 

         1.6

, , ,, , 2.27(k 2.4) ( ) 1N HE I HE N F HDZ k Z k k Z               (16) 

which is valid for ellipses with aspect ratios k ≥ 2.4 that exhibit a nematic phase for concentrations 
ηN ≤ η < ηF (given by Eqs. (10) and (11)). 

 
Fig. 2. Hard ellipse compressibility factor vs. aspect ratio for isotropic, nematic, and solid phases.
Compressibility factor, Z, data for k = 1, 2, 3, 4, 5, 6, 9 (bottom-to-top) vs. area fraction, . Z data for isotropic 
and nematic phases are from literature simulations.17 Z data for solid phases are estimated from inversion 
of our MC simulated density profiles in Figs. 3-5 using Eq. (9). Black squares indicate isotropic-nematic 
transition for k > 2.4 given by Eq. (10). Freezing and melting concentrations (bounding dashed coexistence
line) for all aspect ratios given by Eqs. (11) and (12). Solid lines show equations of state for isotropic (Eq.
(14)), nematic (Eq. (16)), and solid (Eq. (18)) phases.  
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To estimate a solid crystal phase equation of state, we consider a form from free volume 
theory applied to anisotropic particles given as,38-39 

   1
( ) 3 1S CPZ   


     (17) 

where ηcp is the close packed solid volume fraction. We modify this form to maintain the functional 
divergence at close packing and include coefficients necessary for coexistence to give, 
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Z k Z k k

 
 

 
 

  
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 (18) 

where X=I for aspect ratios 1.6 ≤ k ≤ 2.4, and X=N for aspect ratios 2.4 ≤ k ≤ 9.0. This form captures 
results from inverting (Eq. (9)) simulated density profile data (Fig. 2) as discussed in more detail 
in the following results and discussion section. 

Interaction Potentials & Fields 

For each particle in an nonuniform field, the potential energy is the sum of particle-field,  
upf

i, and particle-particle, upp
ij, potentials,40 

  pf pp
i i ij

j i

u u u


     (19) 

where upp
ij, is a hard ellipse interaction (infinite for overlap and zero otherwise), and upf is a scalar 

field potential. In one case, we consider upf as a tangential component of gravity along a surface 
(e.g., a tilted microscope slide surface, Fig. 1), which is linear in the coordinate, x, as, 

 ( ) sinpf
g Tu x Gz Gx     (20) 

where G is the buoyant colloid weight, and θT is a tilt angle. In a second case, we consider upf as a 
dipole-field interaction (induced dipole in non-uniform AC electric field, Fig. 1) as,41-42 

   2
( ) 3 ( )pf

i p m cmu x V f E x   (21) 

where x is particle position (Fig. 1), E(x) is the position dependent electric field magnitude, εm is 
the medium dielectric constant, and fcm is the Clausius-Mossotti factor.43-45 The functional form 
for E(x) was chosen based on exact models in our prior work,44, 46-47 along with a modification 
based on an inverse analysis (using Eq. (6)) to modify the spatial distribution and boundaries of 
the inhomogeneous fluid, as given by,  
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 (22) 

where Vpp is the peak-to-peak voltage of a sinusoidal AC electric field, and dg is the electrode gap 
dimension (Fig. 1). 

Order Parameters 

To monitor local orientational order, we quantified each particle’s nematic order as,16, 48 

     2,
2, 2,i

6
max cos 2

i ij
i j

j r a
S


 
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where rij, is center-to-center distance between particle i and neighboring particles j within six long 
axis radii, 6a, and the local director direction, θ2,i, is calculated by maximizing the function. The 
value of S2,i varies from 0-1, where S2,i =1 indicates perfectly aligned orientation of all neighboring 
particles, and S2,i >0.5 is characteristic of local nematic structure. To monitor local positional order, 
we quantified each particle’s stretched six-fold connectivity as,49 
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*
6, 6,6

6, 6 *
1 6 6, 6,

Re1 0.321
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where the local stretched bond orientational order parameter, 6,i (and its complex conjugate, 
*6,i), are defined for anisotropic particles as,14 

      
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6,
1 1, ,

1 1
exp 6 cos 6 sin 6

b j b jN N

j jk jk jk
k kb j b j
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N N

   
 

     (25) 

where Nb,j is the number of neighbors with bonds to particle j, and θjk is the angle of bonds between 
particle centers relative to an arbitrary axis. Neighboring particles are considered “bonded” if they 
are nearest neighbors in a Voronoi tessellation and fall within a threshold separation (halfway point 
between the first and second coordination shells in crystal state radial distribution function). The 
value of C6,i is normalized to vary from 0-1, where C6,i=1 indicates 6 neighbors with perfect 
hexagonal bond orientational order. 

Methods 

Monte Carlo Simulations 

 Theoretical density profiles (Eqs. (6), (14), (16), (18), (20), (21)) were compared to 
canonical ensemble Monte Carlo (MC) simulations of hard ellipses. Particles were simulated in 
two dimensions (x, y) using the potentials in Eqs. (19)-(21), where the particle field potential 
depends on the x-coordinate, and the simulations have periodic boundary conditions in the y-
coordinate. The particle, potential, field, and system parameters used in the MC simulations are 
reported in Table 2.  

Table 2. MC simulation parameters for hard ellipses in AC electric fields based on prior experiments.9, 44 

Parameter Value Parameter Value 
a, b, c (μm) k, 1.0, 1.0 z (μm) 1.27 
ρp (kg/m3) 1960 εp/ε0 3.8 
ρm (kg/m3) 1000 εm/ε0 78 

dg (μm) 250-350  fcm (k = 2) -0.4190 
fcm (k = 4) -0.4354 fcm (k = 6) -0.4422 

Theoretical density profiles depend on three parameters: (1) the maximum packing fraction 
(ηmax) at the particle-field potential energy minimum, (2) the total number of particles (N), and (3) 
the field magnitude determined for a gravitational field by θT in Eq. (20) and for electric fields by 
Vpp in Eq.  (22). In particular, the density profile calculation in Eq. (6) requires defining ηmax and 
Vpp, and then N is obtained from the mass balance equation in Eq. (7). Simulations were started 
from a stretched hexagonal lattice (η = 0.9069) in the system center. Equilibrium was achieved 
after ~500,000 steps. Simulated density profiles were averaged over 10 sets of ~103 independent 
configurations with each set sampled from an independent simulation.  
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 To ensure no particle overlap, a three-step approximation was used as in previous studies.14 
The first approximation checks if the centers of the two particles being considered are more than 
twice the length of the particle semi-major axis away. If this condition is satisfied it ensures no 
overlap. If this condition fails, each ellipse is circumscribed in a rectangle and minimum distances 
between the particles are calculated. If these distances are positive, no overlap occurs, however, if 
they are nonpositive, a third approximation is used with checks points along a fine ellipse mesh. 
The ellipses are rotated and translated such that one ellipse is parallel to the laboratory x-axis and 
centered at the origin, then the following function is applied,  

 
2 2

( , ) 1
x y

f x y
a b
           

  (26) 

where (x, y) are points along the mesh of the non-centered ellipse. If this function returns any 
nonpositive value, then overlap occurs.  

Results & Discussion 

Hard Ellipse Sedimentation Equilibrium (k=4) 

We first investigate the relatively simple case of hard ellipses (k=4) equilibrated in a 
gravitational field that is linear in the laboratory coordinate (e.g., along a microscope slide surface, 
Eq. (20)). This example is relevant to laboratory experiments with anisotropic colloidal particles 
and provides a straightforward comparison of the MC simulations and the model predictions (Fig. 
3). We choose k=4 hard ellipses since they have isotropic, nematic, and crystalline phases for 
homogeneous infinite sized systems,16-18 which provides a clear comparison for behavior of the 
same aspect ratio ellipses in inhomogeneous finite systems in the present work. The predicted 
density profile is given by the solid line in Fig. 3 from Eq. (6) for the energy landscape in Eq. (20) 
using the equations of state for isotropic (Eq. (14)), nematic (Eq. (16)), and solid (Eq. (18)) phases. 
Transition concentrations are given by Eqs. (10)-(12), which correspond to bulk phase transition 
densities from published hard ellipse phase behavior.17-18 We do not obtain estimates of phase 
boundaries directly from MC simulations (e.g., by calculating free energies) but only compare MC 
simulated density profiles with predicted bulk homogeneous system transtion densities when 
constructing the density profiles. The particle number in the MC simulation was determined to be 
N=424 using Eq. (7), and the resulting simulated density profile is given by the points in Fig. 3. 

The hard ellipse concentration profile predicted from Eq. (6) shows overall excellent 
agreement with the simulated concentration profile. The greatest systematic discrepancies are 
observed by a slight over prediction of the density at the isotropic-nematic transition and a slight 
under prediction of the density at the nematic-solid transition. These two systematic errors appear 
to preserve the area under the curve as required by the mass balance in Eq. (7). The density profile 
reaches the correct concentration in the solid phase at the potential energy minimum and vanishes 
as expected in the fluid phase. The overall good agreement demonstrates the accuracy of theory 
and its assumptions, as well as the suitability of the equations of state to capture the hard ellipse 
density in each phase including boundaries. 

As a measure of spatially varying microstructure in MC simulated equilibrium 
configurations, we report position dependent local nematic order, S2, and six-fold connectivity, C6. 
These order parameter profiles capture local orientational and positional order of ellipses within 
inhomogeneous phases and across boundaries. In the crystalline phase, C6 ≈ 1.0 and S2 ≈ 1.0 exhibit 



 

Baron et. al.  Page 9 of 18 

the expected high positional and orientational order, whereas both parameters drop rapidly in the 
fluid phase, particularly as density vanishes. Within the nematic phase, the nematic order is 
relatively high with 0.6 < S2 < 1.0 and six-fold connectivity is relatively lower with 0.5 < C6 < 0.9. 
Order parameter values at phase boundaries (vertical lines according to local density), including 
S2 ≈ 0.6 at the isotropic-nematic boundary and C6 ≈ 0.9 at the nematic-crystal boundary, are close 
to local and global values of these order parameters in homogeneous systems.10, 14 Order parameter 
profiles display expected limiting and transition values corresponding to concentration dependent 
phase behavior, which provides additional validation of the observed behavior, and useful metrics 
for local microstructure.  

Although local order parameter profiles in Fig. 3 were implemented only to validate local 
phase behavior determined from density profiles, phenomenological or theoretical models relating 
local density and average local order parameters could enable predictions of order parameter 
profiles in nonuniform fields. Based on successful modeling of spatially varying hard ellipse phase 
behavior in a simple linear gravitational field, we next explore additional aspect ratios on more 
complex potential energy landscapes due to electric fields. 

 

 
Fig. 3. Equilibrium concentration profile of k=4 hard ellipses in a gravitational field along a planar 
surface (e.g., colloids on tilted microscope slide). (Top) Predicted (Eq. (6), solid line) and MC simulated
(points) (N=424 ellipses) density profile showing inhomogeneous solid phase transitioning to (vertical small 
dashed line, Eqs. (11),(12)) inhomogeneous nematic phase transitioning to (vertical large dashed line, Eq. 
(10)) inhomogeneous isotropic fluid with vanishing density at its periphery. (middle) MC simulation 
renderings colored by local S2 (Eq. (23), red) and local C6 (Eq. (24), blue). (bottom) Spatially varying order 
parameter profiles S2(x) (red) and C6(x) (blue) with phase transition locations indicated by same lines as
top panel.   
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Low Aspect Ratio Hard Ellipses in Nonuniform Fields (k=2) 

We next investigate phase behavior of low aspect ratio hard ellipses (k=2) on an energy 
landscape defined by a dipole-field potential (Eq. (21)) based on a nonuniform electric field 
between parallel electrodes (Eq. (22)). This energy landscape and field are typical of microscopy 
experiments involving induced dipolar interactions for anisotropic colloids in AC electric fields.6-

10 The potential energy minimum is at the electrode gap midpoint (Fig. 1, x=0), and the potential 
energy landscape is symmetric in the x-coordinate about the minimum. As a result, hard ellipses 
on this landscape have their highest concentration at the potential energy minimum, and the 
concentration decays symmetrically on either side of the minimum. The energy landscape in Eq. 
(21) depends on the electric field shape in Eq. (22), which can be adjusted by either changing the 
electrode gap dimensions, dg, or the peak-to-peak voltage, Vpp. 

We show concentration profiles for k=2 hard ellipses in a single electrode gap dimension 
with different numbers of particles and field amplitudes (Fig. 4). Hard ellipses of this aspect ratio 
do not form a stable nematic phase,14-15, 18 so we explore this case first for a single phase 
inhomogeneous fluid and an inhomogeneous fluid coexisting with an inhomogeneous solid. The 
theory better captures the simulated non-uniform fluid phase alone but shows minor quantitative 
discrepancies near the fluid-solid transition in the case with coexisting phases. The order parameter 
profiles indicate minimal orientational or positional order everywhere in the inhomogeneous fluid 
case (S2 < 0.1, C6 < 0.7). In contrast, at the solid-fluid boundary in the case of coexisting phases, 
positional and orientational order in the simulation results persist at higher-than-expected values 
into the expected fluid region (S2 > 0.8, C6 ≈ 1), which occurs spatially to about the same extent 

 
 

Fig. 4. Equilibrium concentration profiles for k=2 hard ellipses in a nonuniform electric field on a
planar surface (e.g., colloids between parallel electrodes, Fig. 1). (left) N=357 hard ellipses with Vpp = 
1.035 in Eq. (22), and (right) N=402 hard ellipses with Vpp=1.4500 in Eq. (22). Both systems were simulated
with dg = 250 μm in Eq. (22). (Top to bottom) Same information and formatting as Fig. 3 panels.  
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where the simulated density is higher than the theoretical density. 

To understand the discrepancy at the boundary for coexisting phases, we first note several 
features in the successful single phase inhomogeneous fluid case. In the single-phase, the 
maximum density of ηmax = 0.78 at the potential energy minimum is just below the fluid-solid 
transition density for k=2 hard ellipses (ηF ≈ 0.81, Eq. (11)). Despite the proximity to the transition 
density, the theory and simulation show exceptionally good agreement, and the simulated 
configurations show no evidence of local positional or orientational order associated with either a 
nematic or solid phase, even at the highest density.  

In the fluid-solid coexistence case, the maximum density is ηmax = 0.864 in the central 
region as expected for a solid phase. Near the fluid-solid interface, the simulated density is slightly 
lower than predicted on the solid side and slightly higher than predicted on the fluid side. The 
deviations on either side of the interface compensate each other as expected as part of satisfying 
the mass balance in Eq. (7). Because the fluid-solid interfacial width is finite, and the density 
changes on dimensions smaller than particle dimension, the LDA underlying the osmotic force 
balance in Eq. (6) is not obviously valid. Practically, the steep density gradient associated with 
positional and orientational correlations across the interfacial region is not expected to be well 
captured by the LDA, which likely accounts for all of the discrepancy in Fig. 4. However, despite 
this deficiency, the overall close proximity of the prediction in Eq. (6) to the simulated density 
profile is useful for nearly-quantitative predictions based on a relatively simple model (and 
compares well with similar approaches to sedimentation equilibrium of disks and anisotropic 
particles27, 34). We next explore how the LDA-based model performs for external field confinement 
of higher aspect ratio hard ellipses that form nematic phases and solid-nematic and nematic-fluid 
interfaces. 

Moderate Aspect Ratio Hard Ellipses in Nonuniform Fields (k=4) 

We next investigate k=4 hard ellipses in nonuniform electric fields. This particle geometry 
has sufficient anisotropy to form bulk homogeneous nematic phases. Results are reported at 
different field strengths and particle numbers for two-phase coexistence of fluid and nematic 
phases and three-phase coexistence of fluid, nematic, and crystal phases (Fig. 5). The left panels 
of Fig. 5 show a nematic phase at the electrode center, with ηmax = 0.78, coexisting with fluid 
phases on either side. The simulated and predicted (Eq. (6)) density profiles show excellent 
agreement at all positions including both phases and the interfacial region. In the nematic phase, 
0.6<S2<0.9 and 0.5<C6<0.6 similar to the nematic phase values in the more gradual sedimentation 
equilibrium profile (Fig. 3), except the upper bounds are lower probably because the nematic phase 
does not share an interface with a solid phase in this case. The density and order parameters profiles 
and simulation renderings are all consistent with a central inhomogeneous nematic phase well 
described by the osmotic force balance (Eq. (6)) and nematic equation of state (Eq. (16)). 

The right panels of Fig. 5 show three-phase coexistence with a central ηmax = 0.86 
corresponding to a crystal phase. Overall, the simulated and predicted density profiles are in close 
correspondence at all positions within each phase. In the crystal region, C6≈1 and S2 ≈1, whereas 
in the nematic region, 0.7<S2<1 and 0.5<C6<0.9. The local order parameter profiles in the nematic 
phase on the left of Fig. 5 more closely track the k=4 sedimentation equilibrium profile in Fig. 3 
that also has a crystal phase interface with the nematic phase, which appears to influence the upper 
limits in the nematic phase. On the nematic region periphery, the rapidly decaying density profile 
corresponds to an inhomogeneous fluid phase with low positional and orientational order. 
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A notable aspect of the predicted density profiles in Fig. 5 is the better quantitative and 
qualitative agreement with simulation results when the solid phase is not present, which is 
analogous to the k=2 hard ellipse results in Fig. 4. In both cases, the narrow crystal-nematic 
interface likely does not satisfy the conditions of the LDA as discussed in Fig. 4. This effect is 
seen in the slight underestimation of the density in the nematic phase near the nematic-crystal 
transition, as well as the gradual (rather than abrupt) order parameter changes across the crystal-
nematic interface. Regardless, the prediction and simulation are in good agreement at nearly all 
concentrations, with only minor discrepancies at the crystal-nematic interfacial regions. 

 Close examination of the order parameter profiles and renderings in Fig. 5 provides 
additional insights into the nature of the interfacial regions with some contrasts to the k=2 ellipses 
without a nematic phase. In particular, particles in the nematic region beyond the nematic-crystal 
interface (Fig. 5, right) should only have orientational order, but the C6 order parameter profile 
indicates significant positional order. Because the nematic has high orientational order as well as 
high positional order, the effect of the finite width of the solid-nematic interface in the present case 
is a little harder to see than the width of the solid-fluid interface in the k=2 case (Fig. 4). Because 
the predicted density profile by itself appears quite accurate compared to the simulation, the 
additional local microstructural characterization is important to see the limit of the LDA in 
capturing interfacial microstructure in small inhomogeneous multi-phase systems with high 
density gradients on the order of particle dimensions. 

 
 

Fig. 5. Equilibrium concentration profiles for k=4 hard ellipses in a nonuniform electric field on a
planar surface (e.g., colloids between parallel electrodes, Fig. 1). (left) N=340 hard ellipses with Vpp = 
0.6845 in Eq. (22), and (right) N=410 hard ellipses with Vpp=0.967 in Eq. (22). Both systems were simulated
with dg =300 μm in Eq. (22). (Top to bottom) Same information and formatting as Fig. 3 panels.  
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High Aspect Ratio Hard Ellipses in Nonuniform Fields (k=6) 

To further explore the predictive capability of Eq. (6),, we explore one additional higher 
aspect ratio (k=6) hard ellipse with the highest confinement relative the particle long axis 
dimension. Like k=4 ellipses, k=6 ellipses form up to three stable phases with two interfaces. Fig. 
6 shows results for (left) fluid-nematic coexistence and (right) fluid-nematic-crystal coexistence. 
Once again, the predicted and simulated density profiles show good agreement in both cases. The 
order parameter profiles show similar trends, features, and limiting values within each phase as in 
Figs. 2-5. The overall good agreement between the predicted and simulated density and 
microstructure profiles again shows the success of the simple osmotic force balance in small 
inhomogeneous multiphase systems of high aspect ratio hard ellipses. 

One unique aspect of the k=6 hard ellipse results is the exceptionally small central crystal 
phase. The crystal phase is around 3-4 particle diameters across and is thus pushing the limits of 
the applicability of the LDA. This very small solid phase could explain the slightly lower values 
of C6 observed for the crystal phase in this case compared to larger domains observed in all other 
cases tested thus far. Because C6 is a measure of local crystallinity determined by ψ6 values of 
nearest neighbors (Eqs. (24), (25)), the slightly lower values may just arise from the exceptionally 
small size of the crystal domain. However, somewhat related to this point, the crystal phase does 
not appear to persist into the nematic phase as much as other cases with crystal-nematic 
coexistence. Despite the slightly different quantitative and qualitative aspects of the crystal-
nematic interface for the k=6 case, the small discrepancies can again be considered to result from 

 
 

Fig. 6. Equilibrium concentration profiles for k=6 hard ellipses in a nonuniform electric field on a
planar surface (e.g., colloids between parallel electrodes, Fig. 1). (left) N=306 hard ellipses with Vpp = 
0.6845 in Eq. (22), and (right) N=377 hard ellipses with Vpp=0.7550 in Eq. (22). Both systems were 
simulated with dg =350 μm in Eq. (22). (Top to bottom) Same information and formatting as Fig. 3 panels. 
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limitations of the LDA underlying Eq. (6). 

Orientation Effects for Hard Ellipses in Nonuniform Fields (k=4) 

Results in Figs. 2-6 show the crystal-nematic interface is sensitive to spatial density 
changes across the interface relative to particle dimensions. In addition, the crystal interface 
appears to propagate positional order into the nematic phase through a sort of epitaxy, where 
particle long axes protruding from the crystal interface interdigitate with oriented particles in the 
nematic phase to produce extended positional correlations. Based on these observations, we 
investigate an additional case where the simulation is initialized with a central crystal region 
oriented with the particle minor axis parallel to the underlying energy landscape and direction of 
the density profile gradient. We use this different starting configuration to investigate two and 
three phase coexistence of k = 4 ellipses (Fig. 7). Practically, we aim to explore how orientation 
of the relatively shorter particle minor axis affects interfaces between phases. This case also 
provides a check on any orientation dependence of the osmotic force balance modeling approach. 

The two-phase fluid-nematic case shows excellent agreement between predicted and 
simulated density profiles at all positions including the interfacial region (Fig. 7). Order parameter 
profiles also show typical values for each phase without any obvious issues at the nematic-fluid 
interface. The three-phase coexistence of fluid, nematic, and crystal phases in Fig. 7, also shows 
overall good agreement between predictions and simulations, although a discrepancy in density at 
the crystal-nematic interface shows greater disagreement than the same k=4 ellipses in the 

 
 

Fig. 7. Equilibrium concentration profiles for k=4 hard ellipses a nonuniform electric field on a planar
surface (e.g., colloids between parallel electrodes, Fig. 1) (different alignment from Fig. 5). (left)
N=357 hard ellipses with Vpp = 0.9170 in Eq. (22), and (right) N=425 hard ellipses with Vpp=1.033 in Eq. 
(22). Both systems were simulated with dg =300 μm in Eq. (22). (Top to bottom) Same information and 
formatting as Fig. 3 panels.  
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orthogonal orientation in Fig. 5. The order parameter profiles in this case are similar to the other 
case investigated with expected values in each phase except for higher-than-expected values in the 
nematic phase adjacent to the crystal-nematic interface. 

The small disagreement in the predicted and simulated density profiles at the crystal-
nematic interface is still likely a result of the validity of the LDA, but comparison of orientation 
effects with the same k=4 hard ellipses in Fig. 5, 7 may suggest another contribution. Another 
potential issue to consider is finite system size effects in the y-direction (Fig. 1). Although the y-
direction is orthogonal to the energy landscape and density variations in the x-direction, finite size 
effects could affect simulation results in a number of ways. Prior simulations of homogeneous 
anisotropic particles have shown greater nematic ordering for smaller system sizes (via the 
effective nematic phase elasticity).50 Similar effects could influence nematic phases in either 
orientation in our simulated results as the result of finite size effects in the direction where the 
density is homogeneous. However, we note the inhomogeneous nematic phases in the absence of 
a crystal interface show good agreement between Eq. (6) and the simulations. Another potential 
issue is that the inhomogeneous crystal lattice cannot exactly match the periodic boundary in the 
y-direction for all densities in the x-direction. As such, the finite and incommensurate nature of the 
simulation box can be expected to also influence the crystal phase (as in our prior studies of 
sedimentation equilibria29). Taking these potential effects together, of the finite size and fixed 
periodic boundary condition, on both the nematic and crystal phases, it is possible these also 
contribute to the small discrepancies near the crystal-nematic boundary in all cases, in addition to 
limitations of the LDA. Ultimately, despite the small quantitative discrepancies between the model 
and simulations near the crystal-nematic interface, the model presented in this work provides 
overall excellent predictions of multi-phase coexistence of varying aspect ratio hard ellipses in 
highly non-uniform external fields. 

Conclusions 

We developed a model to predict density profiles of different aspect ratio hard ellipses in 
nonuniform external fields for coexisting fluid, nematic, and crystal phases. The model balances 
forces on particle due to external fields with the hard ellipse osmotic pressure based on the local 
density approximation (LDA). The model includes new simple accurate equations of state for hard 
ellipse fluid, nematic, and crystal phases as a function of aspect ratio (k =1-9), which fit our 
simulation results as well as established literature benchmarks. Predicted density profiles are in 
good agreement with MC simulation results for different aspect ratio particles in uniform 
gravitational fields and dipolar particles in nonuniform electric fields for cases with fluid-crystal, 
fluid-nematic, and fluid-nematic-crystal coexistence. Simulation renderings along with 
microstructural characterization via position dependent local order parameter profiles agree with 
expected values for homogeneous bulk phases. Minor discrepancies in density profiles are 
observed at phase boundaries with the greatest deviations at the crystal-nematic interfaces, where 
the LDA is expected to have the least validity based on the spatial density variations comparable 
to particle dimensions. Order parameter profiles show positional order propagates from the crystal-
nematic interface into the region where a purely nematic phase is expected. Comparison of co-
existing crystal and nematic phases with different orientations may also suggest finite size effects 
and uniform periodic boundary conditions could contribute the minor discrepancies between the 
model and simulation results. Our results show the overall success of the simple model for different 
hard ellipse aspect ratios, concentrations, multi-phase coexistence, and nonuniform fields, which 
demonstrates its utility for problems involving anisotropic colloidal-based materials and devices. 
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