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Abstract. A new numerical domain decomposition method is proposed for solving elliptic
equations on compact Riemannian manifolds. The advantage of this method is to avoid global
triangulations or grids on manifolds. Our method is numerically tested on some four-dimensional
manifolds such as the unit sphere S4, the complex projective space CP2, and the product manifold
S2 × S2.
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1. Introduction. Elliptic partial differential equations on Riemannian mani-
folds are of fundamental importance in both analysis and geometry (see, e.g., [50, 32]).
A simple and important example is

−∆u+ bu= f.(1.1)

Here ∆ is the Laplace–Beltrami operator, or Laplacian for brevity, defined on a d-
dimensional Riemannian manifold M . Many manifolds are naturally submanifolds
of Euclidean spaces; here the “dimension” of a submanifold is referred to as the
topological dimension of the manifold, not the dimension of its ambient Euclidean
space. For example, the n-dimensional unit sphere Sn is embedded in R

n+1.
When the manifold M is a two-dimensional Riemannian submanifold of R3, i.e.,

a surface, the numerical methods to solve PDEs, particularly (1.1), on M have been
extensively studied for a long history (see, e.g., [42, 41, 6, 19, 20, 22, 44]). Over sev-
eral decades, among many others, the surface finite element method and its variant
have had far-reaching developments (see, e.g., [2, 4, 15, 16, 27, 30, 43, 47]) and appli-
cations to various PDEs (see, e.g., [3, 7, 10, 21, 23, 31]); see also, e.g., [14, 22, 8] for
surveys and bibliographies and, e.g., [1, 5, 26] for software developments. They have
also been widely applied to various areas such as computer graphics (e.g., [25]), surface
fitting (e.g., [18]), shape analysis (e.g., [17, 48, 49]), isogeometric topology optimiza-
tion (e.g., [33, 34]), and medical imaging (e.g., [38]). A basic and common feature
of these finite element methods is to construct a global triangulation of M , which
provides a necessary grid structure for a global finite element space. This triangula-
tion, following [39, Definition 8.3] in the sense of differential topology, is a bijection
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DDM ON MANIFOLDS A377

between a simplicial complex and the manifold M , which satisfies certain regularity.
In computation, a concrete representation of this triangulation is to approximate M
by a polyhedron in R

3. Alternatively, M is represented implicitly as a level set of a
function φ, say, M = φ−1(0), and an equation on M can be solved by the methods of
trace elements or implicit surfaces elements (e.g., [43, 47, 22]).

However, there are several essential difficulties to applying the methods above
to general higher dimensional manifolds. First, many important and interesting ex-
amples of higher dimensional manifolds are not submanifolds of Euclidean spaces by
definition. A notable example is the complex projective spaces CP

n, which serve as
the foundation for algebraic geometry. Though the Whitney embedding theorem [54]
(see also [29, pp. 24–27]) and the Nash embedding theorem [40] do reveal that every
smooth manifold can be embedded into a Euclidean space Rk differential-topologically
or even geometrically for some large k, to the best of our knowledge, there is no lit-
erature on a universal algorithm to efficiently construct such an explicit embedding
for computation on general higher dimensional manifolds. Second, assuming M is a
submanifold of Rk, if the codimension of the submanifold M in R

k is greater than
1, which is often the case, it will be horribly difficult to find an effective polytopal
approximation to M in general due to topological and geometrical complexity; mean-
while, M also cannot be represented as a level set of a function.

A global triangulation of a manifold is helpful in numerical computation, since
it can provide a global discretization of the target problem. We do acknowledge
that J. H. C. Whitehead proved [53] (see also [39, Theorem 10.6]) that every smooth
manifold can be globally triangulated in an abstract way. However, to the best of
our knowledge, in practice, there has been no algorithm to build such a concrete
triangulation or a grid over a high-dimensional manifold in general. To circumvent
this difficulty, in [46], which serves as our major inspiration, Qin, Zhang, and Zhang
proposed a new idea to numerically solve elliptic PDEs on manifolds by avoiding global
triangulations completely. Since a d-dimensional manifold M has local coordinate
charts by definition, M can be decomposed into finitely many subdomains that carry
local Cartesian coordinates. Consequently, an elliptic equation on each subdomain
can be transformed to one on a domain in R

d. Thus an elliptic problem on M either
can be assembled to coupled problems on Euclidean domains or can be solved directly
by domain decomposition methods (DDMs). This idea had been numerically verified
on the three-dimensional unit sphere S3 in [46], where S3 is decomposed into two
subdomains. However, a major drawback of [46] is its lack of flexibility to deal with
more general manifolds, whose charts may involve more than two subdomains.

In this paper, we shall develop the idea in [46] further to solve problems on general
manifolds. Similar to [46], global triangulations or grids shall be completely avoided.
In fact, we shall solve such problems by an overlapping DDM. The development of the
DDM has a long history. It was first invented by H. A. Schwarz [51]. The version of
DDM we mainly follow was originally proposed by P. L. Lions in [36, section I.4] for
solving continuous problems in Euclidean spaces. It was well-developed and was later
called the multiplicative Schwarz method (cf. [52]). The later development usually
takes this DDM as a preconditioner for a globally discretized problem (see, e.g., [9, 24]
and pure algebraic versions in, e.g., [11, 35]). However, a globally discretized problem
should be based on a global grid on a manifold M , which is not accessible in our case.
Therefore, we shall more closely follow Lions’ original approach rather than the later
development. This original approach is a very simple iteration scheme such that a local
problem in a subdomain is solved in each step. We found that this DDM can be well-
adapted to solve problems on manifolds. As in [46], a problem in each subdomain can
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DDM ON MANIFOLDS A379

DDM generalized from [36, section I.4] to solve the model problem (see Algorithm 2.1
below). We shall formulate and prove Theorem 2.1 below on the convergence of this
iterative procedure. This procedure also motivates us to propose Algorithm 3.1 in next
section, which gives numerical approximations to the solution to the model problem.

Let M be a d-dimensional compact smooth manifold without or with boundary
∂M . Equipping M with a Riemannian metric g, the Laplacian ∆ can be defined on
M . In general, neither g nor ∆ can be expressed by coordinates globally because M
does not necessarily have a global coordinate chart. In a local chart with coordinates
(x1, . . . , xd), the Riemannian metric tensor g is expressed as

g=
d

∑

α,β=1

gαβdxα ⊗ dxβ ,(2.1)

where the matrix (gαβ)d×d is symmetric and positive definite. The Laplacian ∆ can
then be expressed in this chart as

∆u=
1√
G

d
∑

α=1

∂

∂xα





d
∑

β=1

gαβ
√
G

∂u

∂xβ



 ,

where G= det ((gαβ)d×d) is the determinant of the matrix (gαβ)d×d and (gαβ)d×d is
the inverse of (gαβ)d×d. It is well-known that ∆ is an elliptic differential operator of
second order.

We consider the following model problem on M :
{

−∆u+ bu= f,

u|∂M = 0,
(2.2)

where b ≥ 0 is a constant and f ∈ L2(M). A weak solution to (2.2) is a solution to
the following problem: Find a u∈H1

0 (M) such that ∀v ∈H1
0 (M),

∫

M

(〈∇u,∇v〉+ buv)dvol =

∫

M

fv dvol.(2.3)

Here ∇u and ∇v are the gradients of u and v with respect to g, 〈∇u,∇v〉 is the inner
product of ∇u and ∇v, and dvol is the volume form. In terms of local coordinates,

〈∇u,∇v〉=
d

∑

α,β=1

gαβ
∂u

∂xα

∂v

∂xβ

(2.4)

and

dvol =
√
Gdx1 · · ·dxd.(2.5)

For brevity, we shall omit the symbol dvol in integrals on M throughout this paper.
Note that it suffices to solve (2.3) on each component of M . Therefore, without

loss of generality, M is assumed to be connected. In addition, if ∂M = ∅, the condition
above u|∂M = 0 is vacuously satisfied in regard to H1

0 (M) = H1(M). To guarantee
(2.3) is well-posed, we further assume b > 0 if ∂M = ∅. (Actually, if b= 0, one may im-
pose additional conditions such as

∫

M
udvol = 0 to guarantee the well-posedness. On

the other hand, the numerical algorithm would be more complicated in this situation.
We shall study the case later.)
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A380 S. CAO AND L. QIN

Algorithm 2.1. A DDM for the continuous problem.

1: Choose an arbitrary initial guess u0 ∈H1
0 (M) for (2.3).

2: For each n> 0, assuming un−1 has been obtained, define un,0 = un−1. For
1≤ i≤m, assuming un,j has been obtained ∀ j < i, find a un,i ∈H1

0 (M) such that

{

(∀v ∈H1
0 (Mi))

∫

Mi
〈∇un,i,∇v〉+ bun,iv =

∫

Mi
fv,

un,i|M\IntMi
= un,i−1|M\IntMi

.
(2.6)

3: Let un = un,m.

Now we describe a domain decomposition iterative procedure to solve (2.3). This
method was originally proposed by P. L. Lions in [36, section I.4], in which the classical
Schwarz alternating method is extended to an iterative procedure with many subdo-
mains. The manifold nature of this method is intrinsically adapted to solve PDEs on
manifolds. More precisely, suppose M is decomposed into m subdomains, i.e.,

M =

m
⋃

i=1

IntMi.

Here Mi is a closed subdomain (submanifold with codimension 0) of M with Lipschitz
boundary, and IntMi is the interior of Mi in the sense of point-set topology of M .
Clearly, an element in H1

0 (Mi) can be naturally considered as an element in H1
0 (M)

by zero extension. Thus, H1
0 (Mi)⊆H1

0 (M). The iterative procedure to solve (2.3) is
Algorithm 2.1.

To obtain the un,i in (2.6), one first solves an elliptic problem onMi with Dirichlet
boundary condition un,i|∂Mi

= un,i−1|∂Mi
, then extends the solution to a function un,i

on M by defining un,i|M\Mi
= un,i−1|M\Mi

. Thus the un,i is well-defined and hence
Algorithm 2.1 is well-posed.

We have the following theorem on the geometrical convergence of Algorithm 2.1.

Theorem 2.1. There exist constants C0 > 0 and L ∈ [0,1) such that ∀u0 ∈
H1

0 (M), ∀n> 0,

‖u− un‖H1
0 (M) ≤C0L

n‖u− u0‖H1
0 (M),

where u is the solution to (2.3) and un is the nth iterated approximation in Algo-
rithm 2.1 with initial guess u0.

Theorem 2.1 was originally proved by P. L. Lions [36, Theorem I.2] in the case
that M is a Euclidean domain. We shall adapt his proof to the case of manifolds.

An elementary proof of the following lemma can be found in [36, p. 17]. It is also
an immediate corollary of [56, (1.2)].

Lemma 2.2. Suppose V is a Hilbert space and Vi (1≤ i≤m) are closed subspaces
of V such that V =

∑m
i=1 Vi. Then

‖PV ⊥
m
PV ⊥

m−1
· · ·PV ⊥

1
‖< 1,

where each V ⊥
i is the orthogonal complement of Vi, and PV ⊥

i
is the orthogonal pro-

jection of V onto V ⊥
i .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DDM ON MANIFOLDS A381

Define the energy bilinear form on H1
0 (M) as

a(w,v) =

∫

M

〈∇w,∇v〉+ bwv.

Proof of Theorem 2.1. It’s easy to see that the energy norm a(·, ·) 1
2 is equivalent

to the original H1-norm on H1
0 (M). In other words, there are positive constants C1

and C2 such that C1a(·, ·)
1
2 ≤ ‖ · ‖H1

0 (M) ≤ C2a(·, ·)
1
2 . Thus it suffices to show that

there exists L∈ [0,1) such that ∀n> 0,

a(u− un, u− un)
1
2 ≤Lna(u− u0, u− u0)

1
2 .(2.7)

Actually, we will have ‖u− un‖H1
0 (M) ≤C0L

n‖u− u0‖H1
0 (M) with C0 =C−1

1 C2. (See

also [45, Lemma 4.4] and its proof.) Let Vi denoteH
1
0 (Mi). By adapting the argument

in [36, Theorem I.2], we obtain

u− un,i = PV ⊥

i
(u− un,i−1),

where PV ⊥

i
is the orthogonal projection onto V ⊥

i with respect to a(·, ·). Therefore

u− un = u− un,m = PV ⊥
m
(u− un,m−1) = · · ·= PV ⊥

m
· · ·PV ⊥

1
(u− un,0)

= PV ⊥
m
· · ·PV ⊥

1
(u− un−1) = (PV ⊥

m
· · ·PV ⊥

1
)n(u− u0).(2.8)

By Lemma 2.2, we have

‖PV ⊥
m
· · ·PV ⊥

1
‖< 1

with respect to a(·, ·). Define L = ‖PV ⊥
m
· · ·PV ⊥

1
‖; then L ∈ [0,1) and (2.8) implies

(2.7), which finishes the proof.

3. Numerical scheme. In this section, we propose a numerical DDM iterative
procedure (Algorithm 3.1 below) to obtain approximations to the solution of (2.3).
The procedure is as follow. First, M is decomposed into overlapping subdomains
Mi (1 ≤ i ≤ m), and each Mi is in a coordinate chart. Second, a DDM iterative
procedure, which serves as a discrete counterpart of Algorithm 2.1 is applied. Due to
Mi being a coordinate chart, an elliptic problem on Mi can be naturally converted to
one on a domain in a Euclidean space. Then, this problem on Mi can be solved ap-
proximately using conventional finite element methods. The transition of information
among subdomains is by interpolation.

For the purpose of presentation, only manifolds without boundary are considered
in the numerical examples. A forthcoming work will study in detail the numerical
implementation on manifolds with boundaries. In that more general case, we shall
have to apply some special technique to deal with the boundary.

3.1. Finite element spaces over a d-rectangle. Suppose a manifold M has
dimension d. As indicated above, each subdomain Mi of M shall be converted to a
domain Di ⊂ R

d. This conversion substantially reduces the difficulty of the numeri-
cal scheme in consideration. However, when d > 3, the construction of a discretized
problem on Di still remains a difficult task. The main reason is that the geometric
intuition used in implementing finite element spaces in R

2 or R
3 cannot be simply

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A382 S. CAO AND L. QIN

ported to higher dimensions. To minimize the difficulty of tessellation in higher di-
mensions, we shall choose Di as a d-rectangle and use the tensor product–type finite
element space of d-rectangles (see, e.g., [12, pp. 56–64]).

Recall that a d-rectangle D is

D=

d
∏

i=1

[ai, bi] = {(x1, . . . , xd) | ∀i, xi ∈ [ai, bi]}.

We refine each coordinate factor interval [ai, bi] by adding points of partition:

ai = ci,0 < ci,1 < · · ·< ci,Ni
= bi.

Then [ai, bi] is divided into Ni subintervals. Define a function ϕi,j on [ai, bi] for
0≤ j ≤Ni as

ϕi,j(xi) =











xi−ci,j−1

ci,j−ci,j−1
, xi ∈ [ci,j−1, ci,j ];

xi−ci,j+1

ci,j−ci,j+1
, xi ∈ [ci,j , ci,j+1];

0 otherwise.

(3.1)

Here ϕi,j(xi) is undefined for xi < cj (resp., xi > cj) when j = 0 (resp., j = Ni).
Clearly, ϕi,j is piecewise linear such that ϕi,j(ci,j) = 1 and ϕi,j(ci,t) = 0 for t 6= j.

The refinement of all such [ai, bi] provides a grid on D. This divides D into
∏d

i=1Ni many small d-rectangles,

d
∏

i=1

[ci,ti−1, ci,ti ],(3.2)

where 1≤ ti ≤Ni ∀ i. Each small d-rectangle (3.2) is an element of the grid. A vertex
of (3.2) is a node of the grid which is of the form

ξ = (c1,j1 , c2,j2 , . . . , cd,jd),

where 0≤ ji ≤Ni ∀ i. Let Wh be the finite element space of d-rectangles of type (1)
(see [12, p. 57]). A base function in Wh associated with the node ξ is

ϕξ(x1, . . . , xd) =

d
∏

i=1

ϕi,ji(xi),

where ϕi,ji is the one in (3.1).
Since D is a d-rectangle, it is relatively easy to handle the finite element space of

d-rectangles. This advantage had been indicated in [12, p. 62]

3.2. Discrete iterative procedure. Let M be a d-dimensional compact Rie-
mannian manifold without boundary. We try to find numerical approximations to the
solution to the problem (2.3) on M .

Suppose M =
⋃m

i=1 IntMi, and there is a smooth diffeomorphism φi :Di →Mi for
each i, where Di is a d-rectangle in R

d. Theoretically, we can always get such triples
(Mi,Di, φi). Actually, for each ζ ∈M , there is an open chart neighborhood Uζ of ζ,
i.e., there is a diffeomorphism φζ : Ωζ →Uζ , where Ωζ is an open subset of Rd. Since
φ−1
ζ (ζ) is an interior point of Ωζ , we can choose a rectangular neighborhood Dζ of

φ−1
ζ (ζ) such that Dζ ⊆ Ωζ . This yields a diffeomorphism φζ :Dζ →Mζ ⊂ Uζ , where

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DDM ON MANIFOLDS A383

Mζ is a neighborhood of ζ. The interiors of all such Mζ provide an open covering of
M . Since it is compact, M can be covered by the interiors of finitely many such Mζ .
These finitely many (Mζ ,Dζ , φζ) yield a desired decomposition of M .

Let (x1, . . . , xd) denote the coordinates on Di. Then the Riemannian metric g on
Mi can be expressed as (2.1). Define an energy bilinear form on H1(Di) as

ai(w,v) =

∫

Di





d
∑

α,β=1

gαβ
∂w

∂xα

∂v

∂xβ

+ bwv





√
Gdx1 · · ·dxd.(3.3)

Define a bilinear form (·, ·)i on L2(Di) as

(w,v)i =

∫

Di

wv
√
Gdx1 · · ·dxd.

By (2.4) and (2.5), the first line of (2.6) is converted to the following equation: ∀v ∈
H1

0 (Di),

ai(u
n,i ◦ φi, v) = (f ◦ φi, v)i.

Create a grid of d-rectangles overDi. Let V
i
h be the finite element space of d-rectangles

of type (1) over Di. A discrete imitation of the first line of (2.6) would be to find a
un,i
h ∈ V i

h such that, ∀vh ∈ V i
h ∩H1

0 (Di),

ai(u
n,i
h , vh) = (f ◦ φi, vh)i.

However, this discrete problem is not well-posed because the degrees of freedom of
un,i
h on ∂Di are undetermined. As an imitation of the second line of (2.6), we should

evaluate these degrees of freedom by the data in d-rectangles Dj for j 6= i. So we have
to investigate the transitions of coordinates.

For i 6= j, let Dij = φ−1
i (Mi ∩ Mj) ⊆ Di and Dji = φ−1

j (Mi ∩ Mj) ⊆ Dj (see
Figure 1 for an illustration). Then

φ−1
j ◦ φi : Dij →Dji

is a diffeomorphism which is the transition of coordinates on the overlapping between
Mi and Mj . As pointed out in section 1, φ−1

j ◦ φi preserves neither nodes nor grid

necessarily. In other words, φ−1
j ◦φi may neither map a node in Dij to a node in Dji,

nor map the grid over Dij to the one over Dji. Since φi and φj can be quite arbitrary,
φ−1
j ◦ φi may map the grid over Dij to intractable curves in Dji.

However, this incompatibility among the grids over different Di is not a bad sign
of our method. We wish to emphasize that this actually shows the high flexibility
of our approach. In fact, if all the φ−1

j ◦ φi preserved the grids, one would obtain
a global grid on M . As mentioned in section 1, it is too difficult to obtain such a
grid in practice. In [46, section 4], the transitions of coordinates do not preserve the
grid but do preserve boundary nodes, i.e., the transitions map nodes on Dij ∩ ∂Di to
nodes of Dji. As a result, the method in [46] has some flexibility. The problem (2.3)
on S3 was solved numerically by three ways in [46]. However, those methods are not
flexible enough to solve problems on more complicated manifolds in practice. The
method in this paper improves the work in [46]. Since our transitions of coordinates
do not necessarily preserve nodes, we shall evaluate the degrees of freedom on ∂Di by
interpolation.
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A384 S. CAO AND L. QIN

Algorithm 3.1. A numerical DDM with a known chart decomposition.

1: Choose an arbitrary initial guess u0
h = (u0,1

h , . . . , u0,m
h )∈ Vh.

2: For each n> 0 and 1≤ i≤m, assuming un−1
h and un,j

h have been obtained ∀ j<i,

find a un,i
h ∈V i

h as follows. Suppose ξ ∈ ∂Di is a node. If {j | j < i,φi(ξ)∈Mj} 6= ∅,
then let j0 be the maximum of this set and define

un,i
h (ξ) = un,j0

h (φ−1
j0

◦ φi(ξ)).

Otherwise, let j0 =max{j | j 6= i, φi(ξ)∈Mj} and define

un,i
h (ξ) = un−1,j0

h (φ−1
j0

◦ φi(ξ)).

The interior degrees of freedom of un,i
h are determined by ∀vh ∈ V i

h ∩H1
0 (Di),

ai(u
n,i
h , vh) = (f ◦ φi, vh)i.

3: Define un
h = (un,1

h , . . . , un,m
h )∈ Vh.

Now we are in a position to propose our discrete Algorithm 3.1. Define

Vh =

m
⊕

i=1

V i
h .

Note that, in the second step of Algorithm 3.1, it is possible that

{j | j < i,φi(ξ)∈Mj}= ∅,

for instance, i= 1. However,

{j | j 6= i, φi(ξ)∈Mj} 6= ∅

always holds because M =
⋃m

j=1 IntMj and φi(ξ) /∈ IntMi. The choice of un,j0
h or

un−1,j0
h follows the principle that we use the latest iterate in other subdomains to

evaluate the boundary value of un,i
h . Also note that φ−1

j0
◦ φi(ξ) is not necessarily a

node. However, we can calculate un,j0
h (φ−1

j0
◦ φi(ξ)) or un−1,j0

h (φ−1
j0

◦ φi(ξ)) by virtue

of the coordinates of φ−1
j0

◦φi(ξ) in Dj0 . This is essentially by an interpolation of the

degrees of freedom of un,j0
h or un−1,j0

h .
Now the un

h in Algorithm 3.1 is the nth iterated discrete approximation to the
solution to (2.3). Unlike the un,i in Algorithm 2.1 which is globally defined on M , the
un,i
h is a component of un

h and is only defined on Di. Furthermore, un,i
h ◦φ−1

i and un,j
h ◦

φ−1
j usually disagree on the overlapping Mi ∩Mj . However, this disagreement is of no

importance at all from the viewpoint of approximation. As far as un,i
h approximates

u ◦ φi well on Di for each i, we know un,i
h ◦ φ−1

i approximates u well on Mi. Since M
is covered by these Mi, good numerical data would be obtained everywhere on M .

Remark 3.1. Algorithm 3.1 implicitly defines a discretization. Actually, we “dis-
cretize” the iteration in Algorithm 2.1 rather than the global problem (2.3). On the
other hand, this makes a rigorous theoretical analysis more difficult.

4. Product manifolds. SupposeM andM ′ are compact manifolds with dimen-
sions d and d′, respectively. The Cartesian productM×M ′ is a compact manifold with
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DDM ON MANIFOLDS A385

dimension d+d′. A decomposition of M and another one of M ′ canonically result in a

decomposition of M×M ′. Actually, suppose M =
⋃m

i=1 IntMi and M ′ =
⋃m′

i′=1 IntM
′
i′ ,

where Mi (resp., M
′
i′) are subdomains of M (resp., M ′). Then

M ×M ′ =

m
⋃

i=1

m′

⋃

i′=1

Int(Mi ×M ′
i′),

where M × M ′ is decomposed into mm′ subdomains Mi × M ′
i′ for 1 ≤ i ≤ m and

1≤ i′ ≤m′.
This canonical decomposition of M ×M ′ reflects another advantage of the spaces

of rectangular finite elements. More precisely, suppose there are diffeomorphisms
φi : Di → Mi and φ′

i′ : D′
i′ → M ′

i′ , where each Di ⊂ R
d (resp., D′

i′ ⊂ R
d′

) is a
d-rectangle (resp., d′-rectangle). Then we have the diffeomorphisms

φi × φ′
i′ : Di ×D′

i′ →Mi ×M ′
i′ ,

where each Di ×D′
i′ ⊂ R

d+d′

is a (d + d′)-rectangle. The transition of coordinates
between Di ×D′

i′ and Dj ×D′
j′ is

(φj × φ′
j′)

−1 ◦ (φi × φ′
i′) = (φ−1

j ◦ φi)× (φ′−1
j′ ◦ φ′

i′).

If rectangular grids are created over both Di and D′
i′ , a rectangular grid over Di×D′

i′

follows automatically.
In summary, the procedures of the decomposition and discretization of factor

manifolds are helpful for those of product manifolds.

5. Numerical experiments. We perform several numerical tests of the pro-
posed method on manifolds S4, CP2, and S2 × S2. They are four-dimensional com-
pact manifolds without boundary. While the proposed method applies to problems in
all dimensions, the sizes of the linear systems derived from subdomains will increase
exponentially with respect to the dimension. On one hand, we would have trouble
in the storage of data. On the other hand, we would struggle to find solutions to
these linear systems with desired accuracy. This difficulty is the so-called curse of di-
mensionality. It is actually a typical phenomenon of Euclidean spaces rather than of
general manifolds. For the sake of presentation and due to the constraint of computing
resources, the numerical examples in this paper consider manifolds with dimension
no more than 4. The numerical challenge in higher dimensions will be tackled in a
forthcoming future work.

5.1. Two problems on S
4. Let M = S4 be the unit sphere in R

5, i.e.,

M = S4 =

{

(y1, y2, y3, y4, y5)∈R
5

∣

∣

∣

∣

∣

5
∑

i=1

y2i = 1

}

.

We decompose S4 into two subdomains as follows. By stereographic projections from
the south pole (0,0,0,0,−1) and north pole (0,0,0,0,1), we obtain two subdomains
M1 and M2 with coordinates whose interiors cover S4. For an illustration please refer
to Figure 2, where the vertical direction stands for the direction of the fifth coordinate
axis, the rectangle [−r, r]4 is a domain in R

4 ∼=R
4 ×{0} ⊂R

5, and the intersection of
R

4 × {0} and S4 is the equator of S4. For each point P = (x1, . . . , x4) ∈ [−r, r]4, the
line segment between P and the north pole (0,0,0,0,1) intersects S4 at a single point
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DDM ON MANIFOLDS A387

and

∆v= 4−1(1 + ‖x‖2)4
4

∑

α=1

∂

∂xα

(

(1 + ‖x‖2)−2 ∂v

∂xα

)

= 4−1(1 + ‖x‖2)2
4

∑

α=1

∂2v

∂x2
α

− (1 + ‖x‖2)
4

∑

α=1

xα

∂v

∂xα

.

Consider the model problem (2.2) on S4 with b > 0. Choose the true solution to
(2.2) as

u= y5,

where y5 is the fifth coordinate of R5. Then

f = (4+ b)u

in (2.2). On Di, u has the expression

u ◦ φ1(x) =
1− ‖x‖2
1 + ‖x‖2 , u ◦ φ2(x) =

−1 + ‖x‖2
1 + ‖x‖2 .

The weak form of (2.2) on Di is formulated as, ∀v ∈H1
0 (Di),

∫

Di

4(1 + ‖x‖2)−2
4

∑

α=1

∂u ◦ φi

∂xα

∂v

∂xα

dx1dx2dx3dx4

+

∫

Di

16(1 + ‖x‖2)−4b · u ◦ φi · vdx1dx2dx3dx4

=

∫

Di

16(1 + ‖x‖2)−4 · f ◦ φi · vdx1dx2dx3dx4.

Now we choose b in (2.2) as 1. For the discretization, we divide each coordinate
interval [−r, r] into N equal parts. The scale of the grid is thus h= 2r/N . There are
(N +1)4 nodes on Di; most rows of the stiffness matrix have 34 = 81 nonzero entries.
We keep N ≤ 80 due to the memory limitation of the hardware.

To get the nth discrete approximation un
h = (un,1

h , un,2
h ), we need to solve a linear

system AiX
n,i = bn,i for i= 1,2, where Xn,i provides the interior degrees of freedom

of un,i
h . We use the conjugate gradient method (CG) to find Xn,i. As a result, the

process to generate the sequence {un
h} is a nested iteration. The outer iteration is the

DDM procedure, Algorithm 3.1. The initial guess is chosen as u0
h = 0. For each n,

the inner iteration is the CG iteration to solve AiX
n,i = bn,i for i = 1,2. Note that

Ai remains the same when n changes, whereas bn,i varies because of the evaluation of
un,i
h |∂Di

. If {un
h} does converge, Xn−1,i will be close to Xn,i when n is large enough.

Thus, we choose the initial guess of Xn,i as Xn−1,i. The tolerance for CG is set as

‖AiX
n,i − bn,i‖2/‖bn,i‖2 ≤ 10−8.

Our numerical results show that un
h becomes stable when n = n0 for some n0, i.e.,

un
h = un0

h up to machine precision ∀ n≥ n0. Actually, if

‖AiX
n,i − bn+1,i‖2/‖bn+1,i‖2 ≤ 10−8
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A388 S. CAO AND L. QIN

∀ i, then the inner iteration terminates for n+ 1 and Xn+1,i =Xn,i. We found that
inner iteration terminates ∀ n > n0. In other words, practically, the sequence {un

h}
reaches its limit

u∞
h = un0

h

at step n0.
In the following tables,

Ihu= (Ihu
1, Ihu

2)∈ Vh,

where Ihu
i ∈ V i

h is the interpolation of u ◦ φi on Di. We define the energy norm of
the error as

‖Ihu− u∞
h ‖a =max{ai(Ihui − u∞,i

h , Ihu
i − u∞,i

h )
1
2 | i= 1,2}.

The L2-norm ‖Ihu−u∞
h ‖L2 , L∞-norm ‖Ihu−u∞

h ‖L∞ , and H1-seminorm |Ihu−u∞
h |H1

are defined in similar ways. The numerical results are as in Tables 1 and 2, where, for
each norm, the data on the left side of each cell are errors and orders of convergence
are appended to the right.

We see that the error Ihu − u∞
h decays in the optimal order when h decreases.

Furthermore, n0 decreases when r becomes larger, i.e., un
h reaches its limit u∞

h fast
provides that the overlapping between subdomains is large.

Remark 5.1. As shown in Tables 1 and 2 and other tables below, the convergences
under H1- and the energy norms are significantly better than the optimal first order
in h. The reason is yet to be explored. On the other hand, since the true solution
to our example is C∞, the finite element spaces are defined on highly symmetric
grids (rectangular), and the transition maps are smooth, thus any (or all) from these
factors may contribute to superconvergence. But we cannot prove this hypothesis at
this stage.

Note that Tables 1 and 2 actually show u∞,i
h ◦φ−1

i approximates u|Mi
well. Hence

we obtain good numerical approximation to u everywhere onM becauseM =
⋃m

i=1Mi.
More precisely, there is a 1−1 and onto correspondence between functions on Mi and
those on Di, i.e., a function v on Mi correspondence to v◦φi on Di. Via this bijection,

Table 1

Convergence result on S4 for (u, r) = (y5,1.2).

h ‖Ihu− u∞
h
‖L∞ ‖Ihu− u∞

h
‖
L2 |Ihu− u∞

h
|
H1 ‖Ihu− u∞

h
‖a n0

0.24 0.0302 0.0690 0.2348 0.1830 22
0.12 0.0095 1.7 0.0180 1.9 0.0717 1.7 0.0501 1.9 23
0.06 0.0032 1.6 0.0046 2.0 0.0239 1.6 0.0150 1.7 22

0.03 7.2393e− 4 2.2 0.0011 2.0 0.0082 1.5 0.0048 1.6 22

Table 2

Convergence result on S4 for (u, r) = (y5,2).

h ‖Ihu− u∞
h
‖L∞ ‖Ihu− u∞

h
‖
L2 |Ihu− u∞

h
|
H1 ‖Ihu− u∞

h
‖a n0

0.4 0.1459 1.2578 0.9782 0.5725 10
0.2 0.0458 1.7 0.2546 2.3 0.2927 1.7 0.1416 2.0 10
0.1 0.0110 2.1 0.0665 1.9 0.1199 1.3 0.0427 1.7 10
0.05 0.0031 1.8 0.0165 2.0 0.0432 1.5 0.0131 1.7 10
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DDM ON MANIFOLDS A389

L∞(Mi) (resp., L2(Mi) and H1(Mi)) is isometrically isomorphic to L∞(Di) (resp.,
L2(Di;g) and H1(Di;g)). Here the notation “g” stands for the metric tensor in (2.1),
and L2(Di;g) and H1(Di;g) are the L

2-space and H1-space, respectively, on Di with
norms

‖w‖L2(Di;g) =

(∫

Di

|w|2
√
Gdx1 · · ·dxd

)
1
2

,

|w|H1(Di;g) =





∫

Di

d
∑

α,β=1

gαβ
∂w

∂xα

∂w

∂xβ

√
Gdx1 · · ·dxd





1
2

,

and

‖w‖H1(Di;g) =
(

‖w‖2L2(Di;g)
+ |w|2H1(Di;g)

)
1
2

.

The above “isometrically isomorphic” means the bijection is a linear isomorphism pre-
serving norms (see Definition 1.13 in [13, p. 66]), i.e., ‖v‖L2(Mi) = ‖v ◦φi‖L2(Di;g) and
so on. Meanwhile, by (3.3), we also have a(v, v)Mi

= a(v ◦ φi, v ◦ φi)Di
. Furthermore,

(gαβ)d×d is bounded and uniformly elliptic on Di because (gαβ)d×d is C∞ and Di is
compact. Thus the ‖ · ‖L2(Di;g) and | · |H1(Di;g) are equivalent to the usual ‖ · ‖L2(Di)

and | · |H1(Di), respectively. Therefore, u∞,i
h ◦ φ−1

i approximates Ihu
i ◦ φ−1

i well in

‖ · ‖L∞(Mi), ‖ · ‖L2(Mi), | · |H1(Mi) and a(·, ·)Mi
as far as u∞,i

h approximates Ihu
i well

in ‖ · ‖L∞(Di), ‖ · ‖L2(Di), | · |H1(Di) and a(·, ·)Di
. Since Ihu

i ◦ φ−1
i is an interpolation

of u|Mi
, we infer u∞,i

h ◦ φ−1
i is a good approximation of u|Mi

.
We also investigated the number of iterations required to achieve an approxima-

tion of the same order of accuracy as Ihu− u∞
h . So we set a tolerance for the outer

iteration as

‖Ihu− un
h‖L∞ ≤ 2‖Ihu− u∞

h ‖L∞ .

The numerical results are as in Tables 3 and 4. We see that n are much less than n0.

Table 3

Convergence result on S4 for (u, r) = (y5,1.2).

h ‖Ihu− un

h
‖L∞ ‖Ihu− un

h
‖
L2 |Ihu− un

h
|
H1 ‖Ihu− un

h
‖a n

0.24 0.0569 0.2066 0.2604 0.2193 4
0.12 0.0142 0.0436 0.0756 0.0554 6
0.06 0.0052 0.0158 0.0253 0.0179 7

0.03 0.0011 0.0033 0.0084 0.0051 9

Table 4

Convergence result on S4 for (u, r) = (y5,2).

h ‖Ihu− un

h
‖L∞ ‖Ihu− un

h
‖
L2 |Ihu− un

h
|
H1 ‖Ihu− un

h
‖a n

0.4 0.2231 2.3141 1.0592 0.7099 2
0.2 0.0550 0.3806 0.2953 0.1551 3
0.1 0.0203 0.1945 0.1281 0.0608 3
0.05 0.0042 0.0315 0.0434 0.0144 4
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A390 S. CAO AND L. QIN

Now we consider a second problem on S4 with true solution u = y1y5 in (2.2).
Then f = (10 + b)u. On Di, u has the expression

u ◦ φ1(x) =
2x1(1− ‖x‖2)
(1 + ‖x‖2)2 , u ◦ φ2(x) =

2x1(−1 + ‖x‖2)
(1 + ‖x‖2)2 .

We choose the b in (2.2) as 1. The numerical results are in Tables 5, 6, 7, and 8. The
performance of our algorithm on this problem is similar to that of the first one.

5.2. A problem on CP
2. Let M =CP

2 be the complex projective plane. It is a
compact complex manifold with complex dimension 2. Certainly, it can be considered
as a real manifold with dimension 4.

Unlike S4, the CP
2 is not a submanifold of any Euclidean space by definition.

Furthermore, CP2 cannot be embedded differential-topologically into R
k with k < 7

by the theory of characteristic classes [37, Corollary 11.4]. Whitney constructed an
explicit embedding of CP2 into R

7 in an ingenious way [55, Appendix]. Since the
codimension of CP2 in R

7 is 3, it is incredibly difficult to build effective polytopal
approximations to CP

2 in R
7. On the other hand, by definition, CP2 can be con-

structed by patching together three coordinate charts, where the transitions of coor-

Table 5

Convergence result on S4 for (u, r) = (y1y5,1.2).

h ‖Ihu− u∞
h
‖L∞ ‖Ihu− u∞

h
‖
L2 |Ihu− u∞

h
|
H1 ‖Ihu− u∞

h
‖a n0

0.24 0.0445 0.0782 0.2142 0.1633 9
0.12 0.0121 1.9 0.0200 2.0 0.0666 1.7 0.0450 1.9 9
0.06 0.0031 2.0 0.0051 2.0 0.0223 1.6 0.0136 1.7 9
0.03 7.8553e− 4 2.0 0.0013 2.0 0.0077 1.5 0.0043 1.7 9

Table 6

Convergence result on S4 for (u, r) = (y1y5,2).

h ‖Ihu− u∞
h
‖L∞ ‖Ihu− u∞

h
‖
L2 |Ihu− u∞

h
|
H1 ‖Ihu− u∞

h
‖a n0

0.4 0.1389 1.0971 1.1316 0.5017 4

0.2 0.0478 1.5 0.2658 2.0 0.3540 1.7 0.1423 1.8 4
0.1 0.0135 1.8 0.0701 1.9 0.1141 1.6 0.0401 1.8 5

0.05 0.0034 2.0 0.0176 2.0 0.0375 1.6 0.0117 1.8 5

Table 7

Convergence result on S4 for (u, r) = (y1y5,1.2).

h ‖Ihu− un

h
‖L∞ ‖Ihu− un

h
‖
L2 |Ihu− un

h
|
H1 ‖Ihu− un

h
‖a n

0.24 0.0551 0.1201 0.2379 0.1933 2

0.12 0.0128 0.0235 0.0676 0.0468 3
0.06 0.0040 0.0087 0.0240 0.0161 3
0.03 8.3731e− 4 0.0016 0.0077 0.0044 4

Table 8

Convergence result on S4 for (u, r) = (y1y5,2).

h ‖Ihu− un

h
‖L∞ ‖Ihu− un

h
‖
L2 |Ihu− un

h
|
H1 ‖Ihu− un

h
‖a n

0.4 0.1393 1.1006 1.1349 0.5028 2
0.2 0.0484 0.2701 0.3580 0.1438 2
0.1 0.0142 0.0747 0.1174 0.0416 2
0.05 0.0043 0.0222 0.0403 0.0131 2
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dinates have explicit and neat formulas. Thus, it is very suitable to apply our method
to CP

2.
The CP

2 can be easily defined as a quotient space. Let

C
3 \ {0}= {(w0,w1,w2) | 0 6= (w0,w1,w2)∈C

3}.

Here 0 ∈ C
3 is the origin, each wj is a complex number for 0≤ j ≤ 2, and, following

the convention of algebraic geometry, the index j starts from 0 rather than 1. Define
a relation of equivalence on C

3 \ {0} as

(w0,w1,w2)∼ (w′
0,w

′
1,w

′
2)

if and only if

(w0,w1,w2) = λ(w′
0,w

′
1,w

′
2)

for some 0 6= λ∈C. Define

CP
2 =C

3 \ {0}/∼ .

Thus, every P ∈CP
2 can be represented by a vector (w0,w1,w2)∈C

3 \ {0}. Conven-
tionally, we write

P = [w0,w1,w2],

where [w0,w1,w2] are called the homogeneous coordinates of P . Note that, for λ 6= 0,

[w0,w1,w2] = [λw0, λw1, λw2].

For more details of general CPk, see [28, p. 15].
Now we decompose CP

2 into three subdomains Mj for 0 ≤ j ≤ 2 (note that the
index j is chosen to start from 0 for the convenience of presentation). In the following,
zj = xj +

√
−1yj ∈ C, xj ∈ R, and yj ∈ R. We shall identify the complex number

zj with the two-dimensional real vector (xj , yj). Let Dj = [−r, r]4 ⊂ R
4 ≃ C

2. For
0≤ j ≤ 2, we have the following diffeomorphisms:

φ0 : D0 →M0 ⊂CP
2,

(z1, z2) 7→ [1, z1, z2],

φ1 : D1 →M1 ⊂CP
2,

(z0, z2) 7→ [z0,1, z2],

and

φ2 : D2 →M2 ⊂CP
2,

(z0, z1) 7→ [z0, z1,1].

To guarantee CP
2 =

⋃2
j=0 IntMj , we have to let r > 1. The larger r is, the more

overlapping there will be. The transitions of coordinates are given by

φ−1
1 ◦ φ0(z1, z2) =

(

1

z1
,
z2
z1

)

, φ−1
0 ◦ φ1(z0, z2) =

(

1

z0
,
z2
z0

)

,
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A392 S. CAO AND L. QIN

φ−1
2 ◦ φ0(z1, z2) =

(

1

z2
,
z1
z2

)

, φ−1
0 ◦ φ2(z0, z1) =

(

z1
z0

,
1

z0

)

,

φ−1
2 ◦ φ1(z0, z2) =

(

z0
z2

,
1

z2

)

, φ−1
1 ◦ φ2(z0, z1) =

(

z0
z1

,
1

z1

)

.

Equipping it with the classical Fubini–Study metric (cf. [28, p. 30]), CP2 becomes
a Kähler manifold with Kähler form

√
−1

2
∂∂̄ log

2
∑

j=0

|wj |2,

where [w0,w1,w2] are the homogeneous coordinates of CP2. The Fubini–Study metric,
denoted by H, is a Hermitian metric. On each Dj , it is expressed as

H= (1+ ‖z‖2)−1
2

∑

α=0,α 6=j

dzα ⊗ dz̄α − (1 + ‖z‖2)−2
2

∑

α=0,α 6=j

2
∑

β=0,β 6=j

z̄αzβdzα ⊗ dz̄β ,

where

‖z‖2 =
2

∑

α=0,α 6=j

|zα|2 =
2

∑

α=0,α 6=j

(x2
α + y2α).(5.3)

We choose the Riemannian metric g on CP
2 as the real part of H. This g provides

the underlying Riemannian structure of the above Kähler structure. The Laplacian
is expressed as

∆v= 2∆∂v= 2∆∂̄v

= 4(1 + ‖z‖2)3
2

∑

α=0,α 6=j

∂

∂zα



(1 + ‖z‖2)−2 ∂v

∂z̄α
+ (1+ ‖z‖2)−2zα

2
∑

β=0,β 6=j

z̄β
∂v

∂z̄β





= 4(1 + ‖z‖2)





2
∑

α=0,α 6=j

∂2v

∂zα∂z̄α
+

2
∑

α=0,α 6=j

2
∑

β=0,β 6=j

zαz̄β
∂2v

∂zα∂z̄β



 .

We consider the model problem (2.2) with b > 0. Choose constants aj ∈ R,
0≤ j ≤ 2. Choose the true solution to (2.2) as

u([w0,w1,w2]) =

2
∑

j=0

aj |wj |2,(5.4)

where [w0,w1,w2] are homogeneous coordinates with normalization
∑2

j=0 |wj |2 = 1.
It is easy to see that u is well-defined. The f in (2.2) is then

f = (12 + b)u− 4
2

∑

j=0

aj .

On Dj , the true solution u has the expression

u ◦ φj =
aj +

∑2
β=0,β 6=j aβ |zβ |2

1 +
∑2

β=0,β 6=j |zβ |2
=

aj +
∑2

β=0,β 6=j aβ(x
2
β + y2β)

1 +
∑2

β=0,β 6=j(x
2
β + y2β)

.
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Table 9

Convergence result on CP2 for r= 1.2.

h ‖Ihu− u∞
h
‖L∞ ‖Ihu− u∞

h
‖
L2 |Ihu− u∞

h
|
H1 ‖Ihu− u∞

h
‖a n0

0.24 0.0376 0.0454 0.1559 0.0718 38
0.12 0.0103 1.9 0.0116 2.0 0.0441 1.8 0.0204 1.8 36
0.06 0.0024 2.1 0.0029 2.0 0.0127 1.8 0.0057 1.8 35
0.03 6.1832e− 4 2.0 7.3810e− 4 2.0 0.0039 1.7 0.0017 1.7 34

Table 10

Convergence result on CP2 for r= 2.

h ‖Ihu− u∞
h
‖L∞ ‖Ihu− u∞

h
‖
L2 |Ihu− u∞

h
|
H1 ‖Ihu− u∞

h
‖a n0

0.4 0.1026 0.3787 0.8338 0.2268 14
0.2 0.0312 1.7 0.1050 1.9 0.2483 1.7 0.0674 1.8 14
0.1 0.0094 1.7 0.0273 1.9 0.0771 1.7 0.0198 1.8 14
0.05 0.0020 2.2 0.0067 2.0 0.0245 1.7 0.0061 1.7 13

The weak form of (2.2) on Dj is formulated as, ∀v ∈H1
0 (Dj),

∫

Dj

(1 + ‖z‖2)−2
2

∑

α=0,α 6=j

(

∂u ◦ φj

∂xα

∂v

∂xα

+
∂u ◦ φj

∂yα

∂v

∂yα

)

+

∫

Dj

(1+‖z‖2)−2





2
∑

α=0,α 6=j

(

xα

∂u ◦ φj

∂xα

+yα
∂u ◦ φj

∂yα

)



 ·





2
∑

α=0,α 6=j

(

xα

∂v

∂xα

+yα
∂v

∂yα

)





+

∫

Dj

(1+‖z‖2)−2





2
∑

α=0,α 6=j

(

yα
∂u ◦ φj

∂xα

−xα

∂u ◦ φj

∂yα

)



 ·





2
∑

α=0,α 6=j

(

yα
∂v

∂xα

−xα

∂v

∂yα

)





+

∫

Dj

(1 + ‖z‖2)−3b · u ◦ φj · v

=

∫

Dj

(1 + ‖z‖2)−3f ◦ φj · v,

where ‖z‖2 is defined in (5.3), and the symbols dxα and dyα in the integrals are also
omitted.

Now we choose b in (2.2) as 4 and choose (a0, a1, a2) in (5.4) as (0,1,−1). The
numerical results are as in Tables 9, 10, 11, and 12. Tables 9 and 10 indicate that
the sequence {un

h} practically reaches its limit u∞
h at step n0. The convergence rate

improves as the overlapping between subdomains increases. By referring to Tables 11
and 12, it is possible to achieve an approximation with the same order of accuracy as
Ihu− u∞

h with many fewer iterative steps.

5.3. A problem on S
2
× S

2. Let S2 be the unit sphere in R
3, i.e.,

S2 =

{

(y1, y2, y3)∈R
3

∣

∣

∣

∣

∣

3
∑

i=1

y2i = 1

}

.

Let M = S2 × S2. Similar to S4, we can decompose S2 into two subdomains via
stereographic projections. This decomposition results in a product decomposition of
S2 × S2 with 2× 2 = 4 subdomains.
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Table 11

Convergence result on CP2 for r= 1.2.

h ‖Ihu− un

h
‖L∞ ‖Ihu− un

h
‖
L2 |Ihu− un

h
|
H1 ‖Ihu− un

h
‖a n

0.24 0.0691 0.1832 0.2147 0.1332 3
0.12 0.0175 0.0480 0.0462 0.0321 6
0.06 0.0043 0.0127 0.0132 0.0087 9
0.03 0.0012 0.0034 0.0040 0.0025 12

Table 12

Convergence result on CP2 for r= 2.

h ‖Ihu− un

h
‖L∞ ‖Ihu− un

h
‖
L2 |Ihu− un

h
|
H1 ‖Ihu− un

h
‖a n

0.4 0.1382 0.9193 0.8896 0.2793 2
0.2 0.0432 0.2361 0.2516 0.0806 3
0.1 0.0123 0.0601 0.0777 0.0227 4
0.05 0.0027 0.0148 0.0246 0.0067 5

In the following, let x = (x1, x2) and x′ = (x′
1, x

′
2) denote the coordinates of R2.

Let ‖x‖=
√

∑2
i=1 x

2
i and ‖x′‖=

√

∑2
i=1 x

′2
i . For 1≤ i≤ 4, let

Di = [−r, r]4 = {(x,x′) | x∈ [−r, r]2, x′ ∈ [−r, r]2}.

The product decomposition of S2 × S2 is given by diffeomorphisms

φ1 : D1 →M1 ⊂ S2 × S2 ⊂R
3 ×R

3,

(x,x′) 7→
(

2x

1 + ‖x‖2 ,
1− ‖x‖2
1 + ‖x‖2 ,

2x′

1 + ‖x′‖2 ,
1− ‖x′‖2
1 + ‖x′‖2

)

,

φ2 : D2 →M2 ⊂ S2 × S2 ⊂R
3 ×R

3,

(x,x′) 7→
(

2x

1 + ‖x‖2 ,
1− ‖x‖2
1 + ‖x‖2 ,

2x′

1 + ‖x′‖2 ,
−1 + ‖x′‖2
1 + ‖x′‖2

)

,

φ3 : D3 →M3 ⊂ S2 × S2 ⊂R
3 ×R

3,

(x,x′) 7→
(

2x

1 + ‖x‖2 ,
−1 + ‖x‖2
1 + ‖x‖2 ,

2x′

1 + ‖x′‖2 ,
1− ‖x′‖2
1 + ‖x′‖2

)

,

and

φ4 : D4 →M4 ⊂ S2 × S2 ⊂R
3 ×R

3,

(x,x′) 7→
(

2x

1 + ‖x‖2 ,
−1 + ‖x‖2
1 + ‖x‖2 ,

2x′

1 + ‖x′‖2 ,
−1 + ‖x′‖2
1 + ‖x′‖2

)

.

To guarantee S2 × S2 =
⋃4

i=1 IntMi, we have to let r > 1. The larger r is, the more
overlapping there will be. The transitions of coordinates are given by

φ−1
2 ◦ φ1(x,x

′) =

(

x,
x′

‖x′‖2
)

, φ−1
3 ◦ φ1(x,x

′) =

(

x

‖x‖2 , x
′

)

,

φ−1
4 ◦ φ1(x,x

′) =

(

x

‖x‖2 ,
x′

‖x′‖2
)

, φ−1
3 ◦ φ2(x,x

′) =

(

x

‖x‖2 ,
x′

‖x′‖2
)

,
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φ−1
4 ◦ φ2(x,x

′) =

(

x

‖x‖2 , x
′

)

, φ−1
4 ◦ φ3(x,x

′) =

(

x,
x′

‖x′‖2
)

,

and φ−1
i ◦ φj = φ−1

j ◦ φi for all i and j.
Equip S2 with the Riemannian metric g inherited from the standard one on R

3.
Equip S2 × S2 with the product metric. On each Di, the metric has the form

g= 4(1 + ‖x‖2)−2
2

∑

α=1

dxα ⊗ dxα + 4(1 + ‖x′‖2)−2
2

∑

α′=1

dx′
α′ ⊗ dx′

α′ ,

and

∆v= 4−1(1 + ‖x‖2)2
2

∑

α=1

∂2v

∂x2
α

+ 4−1(1 + ‖x′‖2)2
2

∑

α′=1

∂2v

∂x′2
α′

.

Consider the model problem (2.2) on S2×S2 with b > 0. Choose the true solution
u to (2.2) as

u= y3 + y′3,

where S2 ×S2 ⊂R
3 ×R

3, and y3 (resp., y′3) is the third coordinate of the first (resp.,
second) factor R3. Then

f = (2+ b)u

in (2.2). On Di, the true solution u has the expression

u ◦ φ1 =
1− ‖x‖2
1 + ‖x‖2 +

1− ‖x′‖2
1 + ‖x′‖2 , u ◦ φ2 =

1− ‖x‖2
1 + ‖x‖2 +

−1 + ‖x′‖2
1 + ‖x′‖2 ,

u ◦ φ3 =
−1 + ‖x‖2
1 + ‖x‖2 +

1− ‖x′‖2
1 + ‖x′‖2 , u ◦ φ4 =

−1 + ‖x‖2
1 + ‖x‖2 +

−1 + ‖x′‖2
1 + ‖x′‖2 .

Table 13

Convergence result on S2 × S2 for r= 1.2.

h ‖Ihu− u∞
h
‖L∞ ‖Ihu− u∞

h
‖
L2 |Ihu− u∞

h
|
H1 ‖Ihu− u∞

h
‖a n0

0.24 0.0207 0.0588 0.1671 0.2175 22
0.12 0.0045 2.2 0.0144 2.0 0.0479 1.8 0.0606 1.8 22
0.06 0.0012 1.9 0.0036 2.0 0.0135 1.8 0.0164 1.9 22

0.03 3.1235e− 4 1.9 8.6478e− 4 2.1 0.0045 1.6 0.0053 1.6 21

Table 14

Convergence result on S2 × S2 for r= 2.

h ‖Ihu− u∞
h
‖L∞ ‖Ihu− u∞

h
‖
L2 |Ihu− u∞

h
|
H1 ‖Ihu− u∞

h
‖a n0

0.4 0.1452 0.9763 1.1952 1.0766 9
0.2 0.0234 2.6 0.1985 2.3 0.3646 1.7 0.3014 1.8 9
0.1 0.0090 1.4 0.0558 1.8 0.1176 1.6 0.0884 1.8 9
0.05 0.0016 2.5 0.0132 2.1 0.0374 1.7 0.0268 1.7 9
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Table 15

Convergence result on S2 × S2 for r= 1.2.

h ‖Ihu− un

h
‖L∞ ‖Ihu− un

h
‖
L2 |Ihu− un

h
|
H1 ‖Ihu− un

h
‖a n

0.24 0.0334 0.0975 0.1543 0.2640 5
0.12 0.0063 0.0215 0.0448 0.0687 7
0.06 0.0022 0.0079 0.0128 0.0214 8
0.03 4.8270e− 4 0.0017 0.0044 0.0059 10

Table 16

Convergence result on S2 × S2 for r= 2.

h ‖Ihu− un

h
‖L∞ ‖Ihu− un

h
‖
L2 |Ihu− un

h
|
H1 ‖Ihu− un

h
‖a n

0.4 0.2436 1.1576 1.3937 1.4708 2
0.2 0.0296 0.1829 0.3708 0.3186 3
0.1 0.0088 0.0546 0.1175 0.0893 4
0.05 0.0021 0.0120 0.0375 0.0281 4

The weak form of (2.2) on Di is formulated as, ∀v ∈H1
0 (Di),

∫

Di

[

4(1 + ‖x′‖2)−2
2

∑

α=1

∂u ◦ φi

∂xα

∂v

∂xα

+ 4(1 + ‖x‖2)−2
2

∑

α′=1

∂u ◦ φi

∂x′
α′

∂v

∂x′
α′

+16(1 + ‖x‖2)−2(1 + ‖x′‖2)−2b · u ◦ φi · v
]

dx1dx2dx
′
1dx

′
2

=

∫

Di

16(1 + ‖x‖2)−2(1 + ‖x′‖2)−2f ◦ φi · vdx1dx2dx
′
1dx

′
2.

Now we choose b in (2.2) as 2. The numerical results are as in Tables 13, 14, 15,
and 16. The performance of our algorithm on S2 × S2 is similar to that on S4 and
CP

2.
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