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Abstract. A new numerical domain decomposition method is proposed for solving elliptic
equations on compact Riemannian manifolds. The advantage of this method is to avoid global
triangulations or grids on manifolds. Our method is numerically tested on some four-dimensional
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1. Introduction. Elliptic partial differential equations on Riemannian mani-
folds are of fundamental importance in both analysis and geometry (see, e.g., [50, 32]).
A simple and important example is

(1.1) —Au+bu=f.

Here A is the Laplace—Beltrami operator, or Laplacian for brevity, defined on a d-
dimensional Riemannian manifold M. Many manifolds are naturally submanifolds
of Euclidean spaces; here the “dimension” of a submanifold is referred to as the
topological dimension of the manifold, not the dimension of its ambient Euclidean
space. For example, the n-dimensional unit sphere S™ is embedded in R™*1.

When the manifold M is a two-dimensional Riemannian submanifold of R?, i.e.,
a surface, the numerical methods to solve PDEs, particularly (1.1), on M have been
extensively studied for a long history (see, e.g., [42, 41, 6, 19, 20, 22, 44]). Over sev-
eral decades, among many others, the surface finite element method and its variant
have had far-reaching developments (see, e.g., [2, 4, 15, 16, 27, 30, 43, 47]) and appli-
cations to various PDEs (see, e.g., [3, 7, 10, 21, 23, 31]); see also, e.g., [14, 22, 8] for
surveys and bibliographies and, e.g., [1, 5, 26] for software developments. They have
also been widely applied to various areas such as computer graphics (e.g., [25]), surface
fitting (e.g., [18]), shape analysis (e.g., [17, 48, 49]), isogeometric topology optimiza-
tion (e.g., [33, 34]), and medical imaging (e.g., [38]). A basic and common feature
of these finite element methods is to construct a global triangulation of M, which
provides a necessary grid structure for a global finite element space. This triangula-
tion, following [39, Definition 8.3] in the sense of differential topology, is a bijection
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between a simplicial complex and the manifold M, which satisfies certain regularity.
In computation, a concrete representation of this triangulation is to approximate M
by a polyhedron in R3. Alternatively, M is represented implicitly as a level set of a
function ¢, say, M = ¢~1(0), and an equation on M can be solved by the methods of
trace elements or implicit surfaces elements (e.g., [43, 47, 22]).

However, there are several essential difficulties to applying the methods above
to general higher dimensional manifolds. First, many important and interesting ex-
amples of higher dimensional manifolds are not submanifolds of Euclidean spaces by
definition. A notable example is the complex projective spaces CP", which serve as
the foundation for algebraic geometry. Though the Whitney embedding theorem [54]
(see also [29, pp. 24-27]) and the Nash embedding theorem [40] do reveal that every
smooth manifold can be embedded into a Euclidean space R* differential-topologically
or even geometrically for some large k, to the best of our knowledge, there is no lit-
erature on a universal algorithm to efficiently construct such an explicit embedding
for computation on general higher dimensional manifolds. Second, assuming M is a
submanifold of R¥, if the codimension of the submanifold M in RF is greater than
1, which is often the case, it will be horribly difficult to find an effective polytopal
approximation to M in general due to topological and geometrical complexity; mean-
while, M also cannot be represented as a level set of a function.

A global triangulation of a manifold is helpful in numerical computation, since
it can provide a global discretization of the target problem. We do acknowledge
that J. H. C. Whitehead proved [53] (see also [39, Theorem 10.6]) that every smooth
manifold can be globally triangulated in an abstract way. However, to the best of
our knowledge, in practice, there has been no algorithm to build such a concrete
triangulation or a grid over a high-dimensional manifold in general. To circumvent
this difficulty, in [46], which serves as our major inspiration, Qin, Zhang, and Zhang
proposed a new idea to numerically solve elliptic PDEs on manifolds by avoiding global
triangulations completely. Since a d-dimensional manifold M has local coordinate
charts by definition, M can be decomposed into finitely many subdomains that carry
local Cartesian coordinates. Consequently, an elliptic equation on each subdomain
can be transformed to one on a domain in R%. Thus an elliptic problem on M either
can be assembled to coupled problems on Euclidean domains or can be solved directly
by domain decomposition methods (DDMs). This idea had been numerically verified
on the three-dimensional unit sphere S® in [46], where S® is decomposed into two
subdomains. However, a major drawback of [46] is its lack of flexibility to deal with
more general manifolds, whose charts may involve more than two subdomains.

In this paper, we shall develop the idea in [46] further to solve problems on general
manifolds. Similar to [46], global triangulations or grids shall be completely avoided.
In fact, we shall solve such problems by an overlapping DDM. The development of the
DDM has a long history. It was first invented by H. A. Schwarz [51]. The version of
DDM we mainly follow was originally proposed by P. L. Lions in [36, section 1.4] for
solving continuous problems in Euclidean spaces. It was well-developed and was later
called the multiplicative Schwarz method (cf. [52]). The later development usually
takes this DDM as a preconditioner for a globally discretized problem (see, e.g., [9, 24]
and pure algebraic versions in, e.g., [11, 35]). However, a globally discretized problem
should be based on a global grid on a manifold M, which is not accessible in our case.
Therefore, we shall more closely follow Lions’ original approach rather than the later
development. This original approach is a very simple iteration scheme such that a local
problem in a subdomain is solved in each step. We found that this DDM can be well-
adapted to solve problems on manifolds. As in [46], a problem in each subdomain can
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Fia. 1. An dlustration of a transition of coordinates on S™.

be converted to one in a Euclidean domain. It is simpler to obtain a grid and hence
a discretization over each Fuclidean domain. To minimize the difficulty of coding,
these Euclidean domains can be even chosen as (high-dimensional) rectangles. The
transition of information among these Euclidean domains is by virtue of the transition
maps of coordinates.

Overall, our approach is a discrete imitation of Lions’ method with additional
transition maps of coordinates. It is necessary to point out that the transition maps
in the proposed method are not required to preserve nodes or grids. More precisely, in
computations, suppose there are two Euclidean domains D; and D;. Both D; and D;
carry a grid, respectively. If ¢;; : D; — D; is such a transition map between D; and Dy,
the image of the grid on I); under ¢;; may not match the grid on D;. Furthermore, for
anode £ € D;, ¢;;(£) may not be a node anymore on D; (see Figure 1 for an example).
Nevertheless, this incompatibility shows the high flexibility of our approach. In fact,
if all transition maps preserved grids, we would obtain a global grid on M, which is
practically almost impossible. The transition maps in [46, section 4] do not preserve
grids but do preserve boundary nodes on each subdomain, i.e., the ¢;; above maps
nodes on 9D; to nodes of D;. As a result, the methods therein have some flexibility
to solve PDEs on S®. In order to handle more general high-dimensional manifolds,
this paper improves the flexibility further. Particularly, interpolation techniques are
employed now to handle nonmatching grids.

The proposed approach is numerically verified on closed manifolds of dimension
4. They are four-dimensional unit sphere S*, the complex projective space CIP?, and
the product manifold S% x S2. The numerical results show that our method solves
(1.1) on these manifolds in a natural manner.

The outline of this paper is as follows. In section 2, we shall extend P. L. Lions’
method in [36] to a DDM for continuous problems on manifolds and prove its conver-
gence. In section 3, we shall propose our discrete imitation of Lions’ method. Some
specialty of product manifolds will be explained in section 4. Finally, some numerical
results will be presented in section 5.

2. Theory on continuous problems. In this section, we shall first formulate
a second order elliptic model problem on general manifolds. Then we introduce a
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DDM generalized from [36, section I.4] to solve the model problem (see Algorithm 2.1
below). We shall formulate and prove Theorem 2.1 below on the convergence of this
iterative procedure. This procedure also motivates us to propose Algorithm 3.1 in next
section, which gives numerical approximations to the solution to the model problem.

Let M be a d-dimensional compact smooth manifold without or with boundary
OM. Equipping M with a Riemannian metric g, the Laplacian A can be defined on
M. In general, neither g nor A can be expressed by coordinates globally because M
does not necessarily have a global coordinate chart. In a local chart with coordinates

(z1,...,24), the Riemannian metric tensor ¢ is expressed as
d
(2.1) 9= apdra ®dzg,
a,B=1

where the matrix (gog)dxq is symmetric and positive definite. The Laplacian A can
then be expressed in this chart as

1 X o d ou
s= =3 (e ).
VG — 0Ty = Ozg
where G = det ((gag)dxa) is the determinant of the matrix (gag)axa and (g“®) gxq is
the inverse of (gag)dxd- It is well-known that A is an elliptic differential operator of

second order.
We consider the following model problem on M:

{Au+buf,

2.2
22) ulom =0,

where b > 0 is a constant and f € L%(M). A weak solution to (2.2) is a solution to
the following problem: Find a u € H} (M) such that Yo € H} (M),

(2.3) /M(<Vu, V) 4 buv) dvol = /M fvdvol.

Here Vu and Vv are the gradients of u and v with respect to g, (Vu, Vv) is the inner
product of Vu and Vv, and dvol is the volume form. In terms of local coordinates,

(2.4) (Vu, Vo) = i ap Ou v
' ’ o a,B:lg 0z4 Oxg

and

(2.5) dvol = VGdz; - - - dzg.

For brevity, we shall omit the symbol dvol in integrals on M throughout this paper.

Note that it suffices to solve (2.3) on each component of M. Therefore, without
loss of generality, M is assumed to be connected. In addition, if M = (), the condition
above u|gpys = 0 is vacuously satisfied in regard to H}(M) = H'(M). To guarantee
(2.3) is well-posed, we further assume b > 0 if OM = . (Actually, if b=0, one may im-
pose additional conditions such as |’ 2 udvol =0 to guarantee the well-posedness. On
the other hand, the numerical algorithm would be more complicated in this situation.
We shall study the case later.)
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Algorithm 2.1. A DDM for the continuous problem.

1: Choose an arbitrary initial guess u® € H} (M) for (2.3).
2: For each n >0, assuming «"~! has been obtained, define u™°® =4"""'. For
1 <i<m, assuming u™7 has been obtained V j <1, find a u™% € H(M) such that

{(VUEH&(ML‘)) fMi<Vu"’i,Vv>_+bu"’iv = fMif’U,
u anmen, = U a e, -

(2.6)

3: Let u™ =u™™.

Now we describe a domain decomposition iterative procedure to solve (2.3). This
method was originally proposed by P. L. Lions in [36, section I.4], in which the classical
Schwarz alternating method is extended to an iterative procedure with many subdo-
mains. The manifold nature of this method is intrinsically adapted to solve PDEs on
manifolds. More precisely, suppose M is decomposed into m subdomains, i.e.,

M= G IntM;.

i=1

Here M; is a closed subdomain (submanifold with codimension 0) of M with Lipschitz
boundary, and IntM; is the interior of M; in the sense of point-set topology of M.
Clearly, an element in H{(M;) can be naturally considered as an element in Hg (M)
by zero extension. Thus, H}(M;) C H}(M). The iterative procedure to solve (2.3) is
Algorithm 2.1.

To obtain the ™ in (2.6), one first solves an elliptic problem on M; with Dirichlet
boundary condition u™|gar, = u™ |9, then extends the solution to a function u™*
on M by defining u”’i|M\M1. = u”’i_1|M\Mz.. Thus the u™* is well-defined and hence
Algorithm 2.1 is well-posed.

We have the following theorem on the geometrical convergence of Algorithm 2.1.

THEOREM 2.1. There exist constants Cy > 0 and L € [0,1) such that Yu® €
HY(M), Vn >0,

lu—u"[| g2 (ary < CoL™ ||u — “OHHg(M),

where u is the solution to (2.3) and u™ is the nth iterated approzimation in Algo-

rithm 2.1 with initial guess u°.

Theorem 2.1 was originally proved by P. L. Lions [36, Theorem 1.2] in the case
that M is a Euclidean domain. We shall adapt his proof to the case of manifolds.

An elementary proof of the following lemma can be found in [36, p. 17]. It is also
an immediate corollary of [56, (1.2)].

LEMMA 2.2. Suppose V is a Hilbert space and V; (1 <i<m) are closed subspaces
of V such that V.=3"1", V;. Then

[PvsPys - Pyol <1,

m

where each Vi* is the orthogonal complement of V;, and Py 1 is the orthogonal pro-
jection of V' onto V:t.
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Define the energy bilinear form on Hg (M) as
a(w,v) :/ (Vw, Vv) + bww.
M

Proof of Theorem 2.1. Tt’s easy to see that the energy norm af(-, ~)% is equivalent
to the original H;-norm on H&(M ). In other words, there are positive constants Cy
and Cy such that Cya(-,-)2 < |- | 2oy < Csa(-,-)2. Thus it suffices to show that
there exists L € [0,1) such that ¥n >0,

Nl

(2.7) a(u—u",u—u")% <L"a(u—u’,u—u®)z.

Actually, we will have [[u — ™| g3 (ary < CoL™|lu — u®| g1 (ar) With Co = Cy ' Ca. (See
also [45, Lemma 4.4] and its proof.) Let V; denote H{ (M;). By adapting the argument
in [36, Theorem 1.2], we obtain

n,ifl)

b

u—u"=Pyo(u—u
where Py, 1 is the orthogonal projection onto V;* with respect to a(-,-). Therefore

u—u"=u—u"" :Pvﬁ(u—u”’m_l) = =Py "'PVIL(U—'U,TL’O)
(2.8) =Py Pyo(u—u""t) = (Pyy - Pya)™(u—u’).

m

By Lemma 2.2, we have
[Py - Pya| <1

with respect to a(-,-). Define L = [|[Py+ -+ Py||; then L € [0,1) and (2.8) implies
(2.7), which finishes the proof. O

3. Numerical scheme. In this section, we propose a numerical DDM iterative
procedure (Algorithm 3.1 below) to obtain approximations to the solution of (2.3).
The procedure is as follow. First, M is decomposed into overlapping subdomains
M; (1 <i¢ < m), and each M; is in a coordinate chart. Second, a DDM iterative
procedure, which serves as a discrete counterpart of Algorithm 2.1 is applied. Due to
M; being a coordinate chart, an elliptic problem on M; can be naturally converted to
one on a domain in a Euclidean space. Then, this problem on M; can be solved ap-
proximately using conventional finite element methods. The transition of information
among subdomains is by interpolation.

For the purpose of presentation, only manifolds without boundary are considered
in the numerical examples. A forthcoming work will study in detail the numerical
implementation on manifolds with boundaries. In that more general case, we shall
have to apply some special technique to deal with the boundary.

3.1. Finite element spaces over a d-rectangle. Suppose a manifold M has
dimension d. As indicated above, each subdomain M; of M shall be converted to a
domain D; C R%. This conversion substantially reduces the difficulty of the numeri-
cal scheme in consideration. However, when d > 3, the construction of a discretized
problem on D; still remains a difficult task. The main reason is that the geometric
intuition used in implementing finite element spaces in R? or R? cannot be simply
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ported to higher dimensions. To minimize the difficulty of tessellation in higher di-
mensions, we shall choose D; as a d-rectangle and use the tensor product—type finite
element space of d-rectangles (see, e.g., [12, pp. 56-64]).

Recall that a d-rectangle D is

_D:

%

[(Li,bi} = {(1’1, . ,CCd) ‘VZ,(L‘Z S [a“bl]}

d
=1

We refine each coordinate factor interval [a;,b;] by adding points of partition:

a; =Cj0<C1<-<CN; th

Then [a;,b;] is divided into N; subintervals. Define a function ¢;; on [a;,b;] for
0<j<N; as
Ti—Cij—1

Ci,j—Cij—1’ Ti € [C'L’j_l’ci’j];

(3.1) gDi’j(l'i) = ;jljiciéf;:l, T; € [Ci’j,CiJ‘Jrl];
0 otherwise.

Here ¢; j(x;) is undefined for z; < ¢; (resp., x; > ¢;) when j = 0 (resp., j = N;).
Clearly, ¢; ; is piecewise linear such that ¢; j(c; ;) =1 and ¢; j(c; ) =0 for t # j.
The refinement of all such [a;,b;] provides a grid on D. This divides D into
d
[I;—; N; many small d-rectangles,

d

(3.2) H[Ci,ti—laci,ti],

i=1

where 1 <t; < N; V i. Each small d-rectangle (3.2) is an element of the grid. A vertex
of (3.2) is a node of the grid which is of the form

§=1(C1,j1:C2,4ar -+ Cd,ja)s

where 0 < j; < N; V i. Let W}, be the finite element space of d-rectangles of type (1)
(see [12, p. 57]). A base function in W}, associated with the node ¢ is

d
ez, ..., 2q) = H%,ji (z4),
i=1

where (; ;, is the one in (3.1).
Since D is a d-rectangle, it is relatively easy to handle the finite element space of
d-rectangles. This advantage had been indicated in [12, p. 62]

3.2. Discrete iterative procedure. Let M be a d-dimensional compact Rie-
mannian manifold without boundary. We try to find numerical approximations to the
solution to the problem (2.3) on M.

Suppose M =J!"; IntM;, and there is a smooth diffeomorphism ¢; : D; — M; for
each i, where D; is a d-rectangle in R%. Theoretically, we can always get such triples
(M;,D;, ¢;). Actually, for each ( € M, there is an open chart neighborhood U of ¢,
i.e., there is a diffeomorphism ¢ : Q¢ — Ue, where ()¢ is an open subset of R?. Since
qbgl(() is an interior point of )¢, we can choose a rectangular neighborhood D¢ of
¢C_1(§) such that D, C Q.. This yields a diffeomorphism ¢ : Do — M C Ue, where
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M¢ is a neighborhood of ¢. The interiors of all such M. provide an open covering of
M. Since it is compact, M can be covered by the interiors of finitely many such M.
These finitely many (Mc¢, D¢, ¢¢) yield a desired decomposition of M.

Let (x1,...,24) denote the coordinates on D;. Then the Riemannian metric g on
M; can be expressed as (2.1). Define an energy bilinear form on H'(D;) as

d

ow 0Ov
(3.3) ai(w,v)/Di aﬂzzﬂaﬁa—%%qtbwv VGdzy - day.

Define a bilinear form (-,-); on L?(D;) as

(w,v); :/ wovVGdzy - - dag.
D;
By (2.4) and (2.5), the first line of (2.6) is converted to the following equation: Vv €

a;(u™" 0 ¢y, v) = (f 0 ¢, v);.

Create a grid of d-rectangles over D;. Let V¥ be the finite element space of d-rectangles
of type (1) over D;. A discrete imitation of the first line of (2.6) would be to find a
uy™ € Vil such that, Y, € VN Hg(D;),

ai(uj*,vn) = (f © ¢i,vn)s.

However, this discrete problem is not well-posed because the degrees of freedom of
uy" on 9D; are undetermined. As an imitation of the second line of (2.6), we should
evaluate these degrees of freedom by the data in d-rectangles D; for j # 4. So we have
to investigate the transitions of coordinates.

For i # j, let Dij = ¢;'(M; N M;) C D; and Dj; = ¢; ' (M; N M;) C Dj (see
Figure 1 for an illustration). Then

¢; o Dij— Dy

is a diffeomorphism which is the transition of coordinates on the overlapping between
M; and M;. As pointed out in section 1, ngj_l o ¢; preserves neither nodes nor grid
necessarily. In other words, z;bj_l o ¢; may neither map a node in D;; to a node in D,
nor map the grid over D;; to the one over Dj;. Since ¢; and ¢; can be quite arbitrary,
qb;l o ¢; may map the grid over D;; to intractable curves in Dj;.

However, this incompatibility among the grids over different D; is not a bad sign
of our method. We wish to emphasize that this actually shows the high flexibility
of our approach. In fact, if all the qﬁj_l o ¢; preserved the grids, one would obtain
a global grid on M. As mentioned in section 1, it is too difficult to obtain such a
grid in practice. In [46, section 4], the transitions of coordinates do not preserve the
grid but do preserve boundary nodes, i.e., the transitions map nodes on D;; N9dD; to
nodes of Dj;. As a result, the method in [46] has some flexibility. The problem (2.3)
on S was solved numerically by three ways in [46]. However, those methods are not
flexible enough to solve problems on more complicated manifolds in practice. The
method in this paper improves the work in [46]. Since our transitions of coordinates
do not necessarily preserve nodes, we shall evaluate the degrees of freedom on dD; by
interpolation.
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Algorithm 3.1. A numerical DDM with a known chart decomposition.

1: Choose an arbitrary initial guess u = (ug’l, e 7u%m) € V.

2: For each n >0 and 1 <7 <m, assuming uzfl and uZ’j have been obtained V j <1,
find a uZ’iEV,f as follows. Suppose £ € 9D; is a node. If {j | j <1,¢;(§) € M;} #0,

then let jo be the maximum of this set and define
uy () =1y ™ (@5, 0 6i(€))-
Otherwise, let jo =max{j|j #1,¢:(§) € M;} and define
up " (€) = up (95, 0 4i(€))-

The interior degrees of freedom of uZ’i are determined by Vv, € Vi N Hg(D;),

ai(uj*,vn) = (f © ¢i,vn)i.

3: Define u}} = (uZ’l, conup™) eV,

Now we are in a position to propose our discrete Algorithm 3.1. Define
m
Vi =PV
i=1

Note that, in the second step of Algorithm 3.1, it is possible that
{717 <i,0i(§) € M;} =0,
for instance, ¢ = 1. However,
{317 #4,0i(§) € M;} #0

always holds because M = U;nzl IntM; and ¢;(¢) ¢ IntM;. The choice of u;"j" or
uz_l’” follows the principle that we use the latest iterate in other subdomains to
evaluate the boundary value of u;*. Also note that (;S;Ol o ¢;(§) is not necessarily a

node. However, we can calculate u}"’° ( j_ol 0 ¢i(€)) or uj M (¢j_01 o ¢;(£€)) by virtue
of the coordinates of ¢j_01 o ¢;(§) in Dj,. This is essentially by an interpolation of the
n,jo n—1,50

degrees of freedom of u;"’® or u,,

Now the uj in Algorithm 3.1 is the nth iterated discrete approximation to the
solution to (2.3). Unlike the u™* in Algorithm 2.1 which is globally defined on M, the
uj* is a component of uf and is only defined on D;. Furthermore, u}"*o¢; ' and u}*’ o
qb;l usually disagree on the overlapping M; N M;. However, this disagreement is of no
importance at all from the viewpoint of approximation. As far as u;L” approximates
uwo ¢; well on D; for each ¢, we know uj " o ¢;1 approximates u well on M;. Since M
is covered by these M;, good numerical data would be obtained everywhere on M.

Remark 3.1. Algorithm 3.1 implicitly defines a discretization. Actually, we “dis-
cretize” the iteration in Algorithm 2.1 rather than the global problem (2.3). On the
other hand, this makes a rigorous theoretical analysis more difficult.

4. Product manifolds. Suppose M and M’ are compact manifolds with dimen-
sions d and d’, respectively. The Cartesian product M x M’ is a compact manifold with
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dimension d+d’. A decomposition of M and another one of M’ canonically result in a
decomposition of M x M’. Actually, suppose M = J;~, IntM; and M’ =J;;_, Int M},
where M; (resp., M/,) are subdomains of M (resp., M’). Then

M x M' = G O Int(M; x M},),

i=1¢=1

where M x M’ is decomposed into mm’ subdomains M; x M), for 1 <i <m and
1< <m'.

This canonical decomposition of M x M’ reflects another advantage of the spaces
of rectangular finite elements. More precisely, suppose there are diffeomorphisms
¢i : D; — M; and ¢!, : D!, — M/,, where each D; C R? (resp., D!, C RY) is a
d-rectangle (resp., d’-rectangle). Then we have the diffeomorphisms

¢i X ¢l Dy x Dl — M; x M,

where each D; x D), ¢ R¥? is a (d + d')-rectangle. The transition of coordinates
between D; x Dj, and D; x Dj, is

(65 % &) Lo (¢ % ¢ly) = (65 0 ) X (¢/7: 0 ¢h).

If rectangular grids are created over both D; and D), , a rectangular grid over D; x D/,
follows automatically.

In summary, the procedures of the decomposition and discretization of factor
manifolds are helpful for those of product manifolds.

5. Numerical experiments. We perform several numerical tests of the pro-
posed method on manifolds S$*, CP2, and S? x S2. They are four-dimensional com-
pact manifolds without boundary. While the proposed method applies to problems in
all dimensions, the sizes of the linear systems derived from subdomains will increase
exponentially with respect to the dimension. On one hand, we would have trouble
in the storage of data. On the other hand, we would struggle to find solutions to
these linear systems with desired accuracy. This difficulty is the so-called curse of di-
mensionality. It is actually a typical phenomenon of Euclidean spaces rather than of
general manifolds. For the sake of presentation and due to the constraint of computing
resources, the numerical examples in this paper consider manifolds with dimension
no more than 4. The numerical challenge in higher dimensions will be tackled in a
forthcoming future work.

5.1. Two problems on S%. Let M = 5% be the unit sphere in R5, i.e.,

2523321}.

i=1

M:S4: {(ylay25y37y47y5) ER5

We decompose S* into two subdomains as follows. By stereographic projections from
the south pole (0,0,0,0,—1) and north pole (0,0,0,0,1), we obtain two subdomains
M, and M, with coordinates whose interiors cover S*. For an illustration please refer
to Figure 2, where the vertical direction stands for the direction of the fifth coordinate
axis, the rectangle [—r,7]* is a domain in R* 2 R* x {0} C R®, and the intersection of
R* x {0} and S* is the equator of S*. For each point P = (x1,...,24) € [—r,7]%, the
line segment between P and the north pole (0,0,0,0,1) intersects S* at a single point
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(0,0,0,0,1)

(0,0,0,0,-1)
F1G. 2. An illustration of the stereographic projections used in the case of S*.
@ = (y1,.-.,ys5) other than (0,0,0,0,1). The map P + @ provides an embedding

¢1: [-r,7]* — S*. We obtain another embedding ¢, if the north pole is replaced with
the south pole. More precisely, we have

(5.1) Dy =Dy =[-rr]' CR,

Let x = (x1,%2,73,24) denote the coordinates of R*. Let |z| = Z?lelz. The
stereographic projections provide diffeomorphisms ¢, : D; — M, as

d1: D1 — M; CS*CR5,
2 1— |z
(5.2) :CH( - ] )

L ]2 1+ |||

do: Doy — Mo C S*CR?,
2T —14 |||
T , .
L flzf* 14 [l=]?
To guarantee S$* = U?:llntMi, we have to let r > 1. The larger r is, the more
overlapping there will be. The transitions of coordinates are given by

xT

¢3 ' o p1(z) =1 ' 0 ga(x) = Tzl

Equip §* with the Riemannian metric ¢ inherited from the standard one on R®.
On each D;,

4
g=4(1+ 2] dea © de,

a=1
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and

4
Ov

0%v
— 47 (14 [2?) Za — (14 [la?) Zxa

Consider the model problem (2.2) on S* with b> 0. Choose the true solution to
(2.2) as

U=1Ys,
where ys is the fifth coordinate of R®. Then
f=(A+bu
n (2.2). On D;, u has the expression

1—|z|?
L[|

—1+ ||

uo¢i(z) = T2

wo po(x) =

The weak form of (2.2) on D; is formulated as, Vo € Hg (D;),

duo¢; 0
/ (1+ [|=)?) Z uoq& Tvdxldxgdxgdu

i

+/ 16(1+ [|z]|*) %0 - wo ¢; - vdwdrodrsdry

i

:/ 16(1 + Hx||2)_4 - fo@;-vdridredrsdry.

i

Now we choose b in (2.2) as 1. For the discretization, we divide each coordinate
interval [—r,r] into N equal parts. The scale of the grid is thus h =2r/N. There are
(N +1)* nodes on D;; most rows of the stiffness matrix have 3* = 81 nonzero entries.
We keep N < 80 due to the memory limitation of the hardware.

To get the nth discrete approximation u}' = (u;’ ' uy, 2), we need to solve a linear
system A; X" =b,, ; for i = 1,2, where X™* provides the interior degrees of freedom
of u;”". We use the conjugate gradient method (CG) to find X™*. As a result, the
process to generate the sequence {uj} is a nested iteration. The outer iteration is the
DDM procedure, Algorithm 3.1. The initial guess is chosen as u?L = 0. For each n,
the inner iteration is the CG iteration to solve A;X™* = by, for ¢ =1,2. Note that
A; remains the same when n changes, whereas b, ; varies because of the evaluation of
uy"op,. If {ul} does converge, X" 1 will be close to X™* when n is large enough.
Thus, we choose the initial guess of X™% as X"~ 1. The tolerance for CG is set as

A X" = by ill2/[|bnill2 < 1075,

Our numerical results show that uj becomes stable when n = ng for some ny, i.e.,
uj =wu,° up to machine precision V n >ng. Actually, if

[ A X™ = bryill2/|[brill2 <1073
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V i, then the inner iteration terminates for n + 1 and X"t%% = X" We found that
inner iteration terminates ¥ n > ng. In other words, practically, the sequence {u}
reaches its limit

up =up°
at step ng.
In the following tables,

Ihyu= (Ihul,Ihuz) € Vi,

where Iu’ € V! is the interpolation of uo ¢; on D;. We define the energy norm of
the error as

| Thu — u5®|| o = max{a;(Iu® — uzo’i,fhui - ufj”)% li=1,2}.

The L% -norm || Iu—uf® | r2, L®-norm ||Iyu—uf®||p, and H'-seminorm |I,u—u§®| g
are defined in similar ways. The numerical results are as in Tables 1 and 2, where, for
each norm, the data on the left side of each cell are errors and orders of convergence
are appended to the right.

We see that the error Ipu — uy® decays in the optimal order when h decreases.
Furthermore, ng decreases when r becomes larger, i.e., uj reaches its limit up° fast
provides that the overlapping between subdomains is large.

Remark 5.1. As shown in Tables 1 and 2 and other tables below, the convergences
under H'- and the energy norms are significantly better than the optimal first order
in h. The reason is yet to be explored. On the other hand, since the true solution
to our example is C°°, the finite element spaces are defined on highly symmetric
grids (rectangular), and the transition maps are smooth, thus any (or all) from these
factors may contribute to superconvergence. But we cannot prove this hypothesis at
this stage.

Note that Tables 1 and 2 actually show u;*" 0, approximates u|ys, well. Hence
we obtain good numerical approximation to u everywhere on M because M = U:’il M;.
More precisely, there is a 1 —1 and onto correspondence between functions on M; and
those on D;, i.e., a function v on M; correspondence to vo¢; on D;. Via this bijection,

TABLE 1
Convergence result on S* for (u,r) = (ys,1.2).

h I Thu — u®|| Lo (Thu —ui®|| 2 [Thu — u®| g1 Thu —u®|la no
0.24 0.0302 0.0690 0.2348 0.1830 22
0.12 0.0095 1.7 0.0180 1.9 0.0717 1.7 0.0501 1.9 23
0.06 0.0032 1.6 0.0046 2.0 0.0239 1.6 0.0150 1.7 22
0.03 7.2393e — 4 2.2 0.0011 2.0 0.0082 1.5 0.0048 1.6 22

TABLE 2

Convergence result on S* for (u,r) = (ys,2).

h 1Thu —uf®|| Loo 1Thu —uf®|| g2 [Thu — u®| g1 1Thu — ui®lla no
0.4 0.1459 1.2578 0.9782 0.5725 10
0.2 0.0458 1.7 0.2546 2.3 0.2927 1.7 0.1416 2.0 10
0.1 0.0110 2.1 0.0665 1.9 0.1199 1.3 0.0427 1.7 10
0.05 0.0031 1.8 0.0165 2.0 0.0432 1.5 0.0131 1.7 10
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L% (M;) (resp., L?>(M;) and H'(M;)) is isometrically isomorphic to L>(D;) (resp.,
L?(D;;g) and HY(D;; g)). Here the notation “g” stands for the metric tensor in (2.1),
and L?(D;;g) and H(D;;g) are the L?-space and H !-space, respectively, on D; with
norms

1
2
||’IUHL2(D1,;9) = (/ |w|2dex1 dZL’d> s
D;

N

ow Bw
|w‘H1(D,,g / Z ’6 \/7d$1 s

la,B 1

and

Nl

el sy = (el + 0B 1)

The above “isometrically isomorphic” means the bijection is a linear isomorphism pre-
serving norms (see Definition 1.13 in [13, p. 66]), i.e., |[v||2(as) = |[v 0 @il L2(D,;q) and
so on. Meanwhile, by (3.3), we also have a(v,v)y, = a(v o ¢;,v 0 ¢;)p,. Furthermore,
(gap)dxd is bounded and uniformly elliptic on D; because (gag)ixd is C* and D; is
compact. Thus the || - [|12(p,;q) and | - [g1(p,;q) are equivalent to the usual || - || z2(p,)
and | - |g1(p,), respectively. Therefore, uzoz o ¢; ' approximates Inu' o ¢; ' well in
I Noo(arys | le2arys |- Loy and a(-,-)ar, as far as u;o" approximates Inu® well
in || - HLOO(D) Il - HLz(D ) | |11 (pyy and a(-,+)p,. Since Iyu' o ¢; ! is an interpolation
of u|pr,, we infer u;" o ;! is a good approximation of u/ay, .

We also investigated the number of iterations required to achieve an approxima-
tion of the same order of accuracy as Ipu —u}°. So we set a tolerance for the outer
iteration as

Hpu — up || Loe < 2| Ipu — upl|| Lo

The numerical results are as in Tables 3 and 4. We see that n are much less than ny.

TABLE 3
Convergence result on S* for (u,r) = (ys,1.2).

h [1nu = up [l oo [Tnu = upllr2 [Inu — up| g Tnu — ujlla n
0.24 0.0569 0.2066 0.2604 0.2193 4
0.12 0.0142 0.0436 0.0756 0.0554 6
0.06 0.0052 0.0158 0.0253 0.0179 7
0.03 0.0011 0.0033 0.0084 0.0051 9

TABLE 4
Convergence result on S* for (u,r) = (ys,2).

h 1w — ul| poo 1Tnu —up|lp2 [Thu — ujl| g2 Thu —u}la n
0.4 0.2231 2.3141 1.0592 0.7099 2
0.2 0.0550 0.3806 0.2953 0.1551 3
0.1 0.0203 0.1945 0.1281 0.0608 3
0.05 0.0042 0.0315 0.0434 0.0144 4
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Now we consider a second problem on S$* with true solution u = y1y5 in (2.2).
Then f=(10+b)u. On D;, u has the expression

221 (1 — ||=]|*) 221 (=1 ||=|?)
uo(r)=————55",  uoge(r)=————
(14 [l=[*)? (14 [J[*)?
We choose the b in (2.2) as 1. The numerical results are in Tables 5, 6, 7, and 8. The
performance of our algorithm on this problem is similar to that of the first one.

5.2. A problem on CP2. Let M = CP? be the complex projective plane. It is a
compact complex manifold with complex dimension 2. Certainly, it can be considered
as a real manifold with dimension 4.

Unlike S4, the CP? is not a submanifold of any Euclidean space by definition.
Furthermore, CP? cannot be embedded differential-topologically into R* with k < 7
by the theory of characteristic classes [37, Corollary 11.4]. Whitney constructed an
explicit embedding of CP? into R” in an ingenious way [55, Appendix]. Since the
codimension of CP2 in R” is 3, it is incredibly difficult to build effective polytopal
approximations to CP? in R”. On the other hand, by definition, CP? can be con-
structed by patching together three coordinate charts, where the transitions of coor-

TABLE 5
Convergence result on S* for (u,r) = (y1ys,1.2).

h 1 Thu — ui®|| Lo (1Thu —ui®|| 2 [Thu — u®| g1 Thu —ui|la no
0.24 0.0445 0.0782 0.2142 0.1633 9
0.12 0.0121 1.9 0.0200 2.0 0.0666 1.7 0.0450 1.9 9
0.06 0.0031 2.0 0.0051 2.0 0.0223 1.6 0.0136 1.7 9
0.03 7.8553e — 4 2.0 0.0013 2.0 0.0077 1.5 0.0043 1.7 9

TABLE 6
Convergence result on S* for (u,r) = (y1ys5,2).

h 11y — uf® |l Lo 1y — uf®|l L2 [Thu — up®| g 1w — uiPlla no
0.4 0.1389 1.0971 1.1316 0.5017 4
0.2 0.0478 1.5 0.2658 2.0 0.3540 1.7 0.1423 1.8 4
0.1 0.0135 1.8 0.0701 1.9 0.1141 1.6 0.0401 1.8 5
0.05 0.0034 2.0 0.0176 2.0 0.0375 1.6 0.0117 1.8 5

TABLE 7

Conwvergence result on S* for (u,r) = (y1ys5,1.2).

h [1nw = up Lo [Tnu — upllr2 [Tnu — up g 17y — ujlla n
0.24 0.0551 0.1201 0.2379 0.1933 2
0.12 0.0128 0.0235 0.0676 0.0468 3
0.06 0.0040 0.0087 0.0240 0.0161 3
0.03 8.3731le — 4 0.0016 0.0077 0.0044 4

TABLE 8
Convergence result on S* for (u,r) = (y1ys,2).

h 1w — ul| poo 1Tnu —up|lp2 [Thu — ujl| g2 Thu —u}la n
0.4 0.1393 1.1006 1.1349 0.5028 2
0.2 0.0484 0.2701 0.3580 0.1438 2
0.1 0.0142 0.0747 0.1174 0.0416 2
0.05 0.0043 0.0222 0.0403 0.0131 2
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dinates have explicit and neat formulas. Thus, it is very suitable to apply our method
to CP2.
The CP? can be easily defined as a quotient space. Let

€3\ {0} = {(wo, w1, w2) | 0 # (wo, w1, ws) € C3}.

Here 0 € C? is the origin, each w; is a complex number for 0 < j <2, and, following
the convention of algebraic geometry, the index j starts from 0 rather than 1. Define
a relation of equivalence on C?\ {0} as

(’(Uo,’ll)l,'lUQ) ~ (w(/Juwllvw/Q)
if and only if
(wvalan) :)‘(wéawi’wé)
for some 0 # X € C. Define
CP>=C3\ {0}/ ~.

Thus, every P € CP? can be represented by a vector (wg,ws,ws) € C?\ {0}. Conven-
tionally, we write

P = [w07w17 w2]7
where [wo, w1, ws] are called the homogeneous coordinates of P. Note that, for A # 0,
[wo, w1, wa] = [Awp, AMwy, Aws].

For more details of general CP*, see [28, p. 15].

Now we decompose CP? into three subdomains M;for0<j<2 (note that the
index j is chosen to start from 0 for the convenience of presentation). In the following,
zj =x; ++/—1y; € C, z; € R, and y; € R. We shall identify the complex number
z; with the two-dimensional real vector (z;,y;). Let D; = [—r,r]* C R* ~ C%. For
0 <j <2, we have the following diffeomorphisms:

¢o: Do — My C CP?,

(21,22) = [1, 21, 22],

é1: Dy — M, C CP?,

(20, 22) = [20,1, 22],
and

¢ : Dy — My C CP?,

(20721)H[Z()721,1].

To guarantee CP? = U?:o IntM;, we have to let r > 1. The larger r is, the more
overlapping there will be. The transitions of coordinates are given by

1 2 1 2

$1" 0 po(21, 22) = < ) ; b ' 0 d1(20,22) = ( ) )

2’172:1 20720
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¢2_10¢0(Zl722):<1a2:1>, ¢610¢2(ZQ,21): (2171)7

22 Z2 20 <0
-1 20 1 1 20 1
¢q °¢1(20722):<7>» 1 0 d2(20,21) = (7)

29 Z9 21 21

Equipping it with the classical Fubini—Study metric (cf. [28, p. 30]), CP? becomes
a Kahler manifold with Kahler form
=1 - 2 )
Taalogz lw,|?,
7=0
where [wp, wy, ws] are the homogeneous coordinates of CP2. The Fubini—Study metric,
denoted by H, is a Hermitian metric. On each Dy, it is expressed as

H=(1+]z2]? Z dze ® dze — (14 ||2]|?) Z Z Zazpdza ® dZa,
a=0,a#j a=0,a#j =0,8#j
where
2 2
(5.3) z17="D>_ [zl = Y @2+
a=0,a#j a=0,a#j

We choose the Riemannian metric ¢ on CP? as the real part of H. This g provides
the underlying Riemannian structure of the above Kéahler structure. The Laplacian
is expressed as

Av=2Apv=2Azv

2 2

— 41 2] O 11P) 22 4 2?2z o
0z 0z

a=00%j " s=0pz; 0P
2
=4(1+ |z + 202
( I1=01%) Z 8za82a Z Z * ﬁazaaz
B
a=0,a#j a=0,a#j f=0,8#j

We consider the model problem (2.2) with b > 0. Choose constants a; € R,
0 <j <2. Choose the true solution to (2.2) as

(5.4) u(wo, wy, wa]) =Y a;lw;],
=0

where [wp, w1, ws] are homogeneous coordinates with normalization Z?:o |w;|*> = 1.
It is easy to see that u is well-defined. The f in (2.2) is then

2

f=02+bu—4> a;.

=0

On Dj, the true solution v has the expression

2 2
a5+ X p0pzy 98l78l” _ 45+ Fpo0,52 9805 +Y5)

T N W R
B=0,6+5 178 $=0,6#5\Tp T Yp
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TABLE 9
Convergence result on CP? for r=1.2.

h 1 Thu — up®|| Lo I Thu —uf®|| g2 [Thu — up®| g1 1Thu —ui®|la no
0.24 0.0376 0.0454 0.1559 0.0718 38
0.12 0.0103 1.9 0.0116 2.0 0.0441 1.8 0.0204 1.8 36
0.06 0.0024 2.1 0.0029 2.0 0.0127 1.8 0.0057 1.8 35
0.03 6.1832e — 4 2.0 7.3810e — 4 2.0 0.0039 1.7 0.0017 1.7 34

TABLE 10
Convergence result on CP? for r=2.

h [ Hpu — upe||poe pu — upelpe Hhu — up| g1 [Tpu — uila no
0.4 0.1026 0.3787 0.8338 0.2268 14
0.2 0.0312 1.7 0.1050 1.9 0.2483 1.7 0.0674 1.8 14
0.1 0.0094 1.7 0.0273 1.9 0.0771 1.7 0.0198 1.8 14
0.05 0.0020 2.2 0.0067 2.0 0.0245 1.7 0.0061 1.7 13
The weak form of (2.2) on D; is formulated as, Vv € H} (D;),

2
1t 112)-2 uog; du | Buod; du
L+ 1=17) Ot Oa | Oya O
Dj a:O,cx;ﬁj a e} ya ya
’ T, _
Ouo ¢; Ouoo; ov ov
2\—2 J j
t | X (w2 > (i,
D; | a=0,a%] ey Ya | |a=0ai @ Ya |
F T, -
[ as)? Quog;  duog; ov ov
D | a=0,0+#] @ * | [e=0,a#j « /]
2\-3 )
+ (I+|1z]") b uo ;- v
D

= [ @+l roo;

J

where ||2]|? is defined in (5.3), and the symbols dz, and dy, in the integrals are also

omitted.

Now we choose b in (2.2) as 4 and choose (ag,a1,a2) in (5.4) as (0,1, —1).

The

numerical results are as in Tables 9, 10, 11, and 12. Tables 9 and 10 indicate that
the sequence {u}'} practically reaches its limit u$® at step ng. The convergence rate
improves as the overlapping between subdomains increases. By referring to Tables 11
and 12, it is possible to achieve an approximation with the same order of accuracy as
Inu — up® with many fewer iterative steps.

5.3. A problem on S2 x S2%. Let S? be the unit sphere in R?, i.e.,

5% = {(yuyz,ys) eR?

>ii-1)

i=1

Let M = S? x S2. Similar to S*, we can decompose S? into two subdomains via
stereographic projections. This decomposition results in a product decomposition of

S2 x 82 with 2 x 2 =4 subdomains.
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TABLE 11
Convergence result on CP? for r=1.2.

h [ Thu —up || Lo I Thw —up|| g2 [Thu —up| g1 1 Thu —up|la n
0.24 0.0691 0.1832 0.2147 0.1332 3
0.12 0.0175 0.0480 0.0462 0.0321 6
0.06 0.0043 0.0127 0.0132 0.0087 9
0.03 0.0012 0.0034 0.0040 0.0025 12

TABLE 12
Convergence result on CP? for r = 2.

h [ pu — up|lpe pu — up L2 Hnu — up| g [ ru —uplla n
0.4 0.1382 0.9193 0.8896 0.2793 2
0.2 0.0432 0.2361 0.2516 0.0806 3
0.1 0.0123 0.0601 0.0777 0.0227 4
0.05 0.0027 0.0148 0.0246 0.0067 5

In the following, let 2 = (z1,73) and 2’ = (2}, 2%) denote the coordinates of R?.

Let [lo = /Y2, a2 and o/ = /Y22, /2. For 1< <4, let
_ 4 / 2 / 2
Di_[_T7T] —{(55755”336[_7“’7”] s L 6[_T7T] }

The product decomposition of S2 x S? is given by diffeomorphisms

¢1: Dy — M; C S? x S? CR3 x R?,

/ 20 1-|=|® 22" 1-[l'|?
(.’E,LL’ )’_> 29 29 29 2 )
L[l 14 flef2 7 1 2127 1+ [l]]

¢o: Dy — My C §% x S? CR? x R3,

/ 20 1-|l=z|® 22" 14|
(:L.?:L. )’_> 27 27 27 2 )
L o o | O Ul 120 (L O o

¢3: D3 — M5 C 5% x S? CR? x R?,

/ 20 14|z 22" 1-|a|?
(x7x )+—> 27 2 27 2 )
Lol I Bl | O ol o i (B

and

¢4 Dy— M, CS?*x S? CR? x R?,

/ 20 —l4fz* 220 14|l
(:E7:L')|_> 27 2 27 2
Ll Tl 71 [l ]2 1 (]|

To guarantee $2 x §2 = J;_, IntM;, we have to let 7 > 1. The larger r is, the more
overlapping there will be. The transitions of coordinates are given by

/

¢510¢1(x7$/): (xv”;,”2> ) (bglo(bl(x,x/): («T|2’x/) s

]

x x’

-1 N 710 " = * m/
(;54 o¢1(x,x ) = (lxnz, ||$/||2) y ¢3 ¢2(x,x) <||a:2’ ||m’||2> )
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— / xz /
¢41 O¢2($,$): (”x”27$>7

and qbfl o0¢; = qbv o ¢; for all 4 and j.

_ , x!
¢41 O¢3(I‘,.T): <$7Hx/”2> )
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Equip S? Wlth the Riemannian metric ¢ inherited from the standard one on R3.
Equip S? x S? with the product metric. On each D;, the metric has the form

2
7Y dra @ daa +4(1+ [|2])

=4(1+ ||z 2 22: dzl, @ dzl,,
a=1 a’'=1
and
2 2 g2
Av=471(1+ ||z||?) Z LER R ax;,'
a=1 a’'=1 [e%

Consider the model problem (2.2) on S?
u to (2.2) as

u:y3+yéa

x 52 with b > 0. Choose the true solution

where S? x S?2 CR? x R3, and y3 (resp., y3) is the third coordinate of the first (resp.,

second) factor R®. Then
=24 b

n (2.2). On D;, the true solution u has the expression

wo by = L—z)® | 1—]l2"]? o g = Lzl | =1+ [l"]?
- ) - bl
L [lof|> 1+l L+ zl* 14|

B o o O B o B
e e P ER T ez " 1+ ]
TABLE 13
Convergence result on S? x S? forr=1.2.

h pu — up®||Loe Hpu —upllpe Hpu — upl| g [ pu — uilla no
0.24 0.0207 0.0588 0.1671 0.2175 22
0.12 0.0045 2.2 0.0144 2.0 0.0479 1.8 0.0606 1.8 22
0.06 0.0012 1.9 0.0036 2.0 0.0135 1.8 0.0164 1.9 22
0.03 3.1235e — 4 1.9 8.6478e — 4 2.1 0.0045 1.6 0.0053 1.6 21

TABLE 14
Convergence result on S? x 82 for r=2.

h [ 1pu — upe||poe [ pu — w2l g2 Hnu — w1 [ 1nu — upela no
0.4 0.1452 0.9763 1.1952 1.0766 9
0.2 0.0234 2.6 0.1985 2.3 0.3646 1.7 0.3014 1.8 9
0.1 0.0090 1.4 0.0558 1.8 0.1176 1.6 0.0884 1.8 9
0.05 0.0016 2.5 0.0132 2.1 0.0374 1.7 0.0268 1.7 9
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TABLE 15
Convergence result on S? x S? for r=1.2.

h [ Thu —up || Lo I Thw —up|| g2 [Thu —up| g1 1 Thu —up|la n
0.24 0.0334 0.0975 0.1543 0.2640 5
0.12 0.0063 0.0215 0.0448 0.0687 7
0.06 0.0022 0.0079 0.0128 0.0214 8
0.03 4.8270e — 4 0.0017 0.0044 0.0059 10

TABLE 16
Convergence result on S? x S? for r=2.

h [ hw — upllzee [hw — upllpe Hhu — up | [ hw — uplla n
0.4 0.2436 1.1576 1.3937 1.4708 2
0.2 0.0296 0.1829 0.3708 0.3186 3
0.1 0.0088 0.0546 0.1175 0.0893 4
0.05 0.0021 0.0120 0.0375 0.0281 4

The weak form of (2.2) on D; is formulated as, Vv € HE(D;),

3uo¢l 2 Juo¢; dv
4(1 ! —— 441
[ Jaas e Z A P 3D e
+16(1 + ||z||*)~ (1—|—||:l:’|| )~ 2b~uo¢i'v] dxldmgdxlde
:/ 16(1+ ||z]|?) 721 + ||2'||*) 2 f 0 ¢; - vdwydaada dah.

i

Now we choose b in (2.2) as 2. The numerical results are as in Tables 13, 14, 15,
and 16. The performance of our algorithm on S? x S2 is similar to that on S* and
CP2.
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