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Abstract
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solutions. These models have a new type of generalized graded algebra symmetry.
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1 Introduction

The study of integrable spin chains is by now a mature subject — many infinite families of
such models have already been identified and solved. Many of these models were derived from
quantum (super) algebras [1–4]. The best known examples are of course Yangians [5, 6] and
quantum affine algebras [7, 8]. In fact, there is even a close relation between the functional
form of the R-matrix and the symmetry algebra [9]. Rational R-matrices typically have a
symmetry of Yangian type, while trigonometric R-matrices typically have a symmetry of a
quantum affine type. Hence, it may come as a surprise that new rational solutions of the
Yang-Baxter equation, and corresponding integrable spin chains, can still be found.

Recently, a more direct approach to classifying solutions of the Yang-Baxter equation has
been put forward which employs the so-called boost operator [10–13]. One of the advantages
of this approach is that it does not rely on symmetry arguments and gives a complete
classification. Several new solutions of the Yang-Baxter equation have been found that are
rational, trigonometric and elliptic. The natural follow-up question is then whether there
are quantum algebras that underlie these models. For some of the new models, the algebras
seem closely related to centrally extended algebras [14]. However, in [11] very simple rational
solutions (Models 4 and 6) were found for which the symmetry algebra was still unclear. More
precisely, Models 4 and 6 from [11] have a 4-dimensional Hilbert space at each site, and have
16× 16 R-matrices that take the form

R ∼ u I(4,4) − P(4,4) + u
(
I(2,4) − P(2,4)

)
, (1.1)

where I(4,4) and P(4,4) are the usual identity and permutation matrix, but I(2,4) and P(2,4) are
the identity and permutation operator restricted to a two-dimensional subspace, see (2.1),
(2.2). These models look like combinations of simple XXX type models. Similar models were
found in work on so-called multiplicity A-models [15] (building on earlier work in [16, 17]),
which were further studied and generalized in [18] and in [19] .

Inspired by this, we consider here a generalization of these types of models where we take
the R-matrix to be a linear combination of the identity, permutation and trace operators,
see (2.1)-(2.3), that are restricted to subspaces Vkd−1

⊂ . . . ⊂ Vk1 ⊂ Vk0 see Figure 1. We
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Vk0

Vk1

Vk2

Vk3

ℙ(k0,n), �핀(k0,n),�핂(k0,n)

ℙ(k1,n), �핀(k1,n),�핂(k1,n)

ℙ(k2,n), �핀(k2,n),�핂(k2,n)

Figure 1: We consider a flag vector space with operators P, I,K acting on the tensor products
of various subspaces. In particular, I(ki,n) is the characteristic function of that subspace, i.e.
it is the identity for vectors in the subspace and 0 for the complement. The other operators
are similarly defined in the case of the permutation and the trace operator.

recall that, in linear algebra, a flag refers to such an increasing sequence of subspaces of a
vector space, and hence we name these solutions flag integrable models.

By using the boost operator method, we find three non-trivial infinite families of inte-
grable spin chains that have such a flag structure. We refer to these as models I, II and III.
These models are characterized by a set k⃗ of d decreasing positive integers

k⃗ = {k0, k1, . . . , kd−1} , n = k0 > k1 > . . . > kd−1 ≥ 1 , (1.2)

where n is the dimension of the Hilbert space at each site. A subset of model II can be
related to a subset of the model in [15]. Despite the simplicity of their Hamiltonians and
R-matrices, these models have nontrivial spectra, symmetries and degeneracies. We find a
fourth model, model IV, whose spectrum is purely combinatorial. For given values of n and
d, the number of possible models are

(
n−1
d−1

)
for model I and II, and

(
n−3
d−2

)
for models III and

IV, respectively, as we will see below.

We will show that our models exhibit a type of generalized graded Lie algebra symmetry,
which we will denote by gl(k0−k1| . . . |kd−2−kd−1|kd−1). When the flag has only two stripes
i.e. d = 2, then we return to the usual Lie superalgebra gl(n − k|k). We furthermore show
that Model I admits a Yangian extension of this algebra and is uniquely fixed by it.

We will also work out the nested algebraic Bethe ansatz for models I, II and III. Sur-
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prisingly, many of the transfer-matrix eigenvalues are described by infinite, singular and/or
continuous Bethe roots.

2 Derivation of the models

In this section we derive the form of the flag models. Motivated by our work on Hubbard-
type models and the Maassarani-Matthieu models, we will consider Hamiltonians built out
of restrictions of the identity, permutation and trace operators.

2.1 The Hamiltonians

We begin by studying the direct generalization of Models 4 and 6 from [11]. We will see
that these models have R-matrices that are rational and of difference form, and are similar
to XXX-type models.

Notation Let us first define the restricted operators that we will use to construct our
integrable models. We denote

P(m,n) =
m∑

i,j=1

ei,j ⊗ ej,i , (2.1)

I(m,n) =
m∑

i,j=1

ei,i ⊗ ej,j , (2.2)

K(m,n) =
m∑

i,j=1

ei,j ⊗ ei,j , (2.3)

where ei,j is an n × n matrix such that (ei,j)α,β = δi,αδj,β, and 1 ≤ m ≤ n. For m = n, the
operator P(m,n) becomes the usual permutation operator for a Hilbert space of dimension n,
and similarly, I(m,n) reduces to the identity matrix.

Hamiltonian Inspired by the simple form of Models 4 and 6 from [11], we consider a
similar nested structure where we combine general Hamiltonians that are built out of the
building blocks of SO(n) spin chains. Consider a set k⃗ of decreasing positive integers

k⃗ = {k0, k1, . . . , kd−1} , n = k0 > k1 > . . . > kd−1 ≥ 1 , (2.4)

where n = k0 is the dimension of the Hilbert space at each site. We take our Hamiltonian
to be of the form

Hk⃗ =
d−1∑
i=0

(
ai I(ki,n) + bi P(ki,n) + ci K(ki,n)

)
. (2.5)
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At this point we do not assume the R-matrix is of difference form and hence the coefficients
ai, bi, ci can depend on the inhomogeneities θ of the spin chain. We will suppress the explicit
θ-dependence in our notation. Nevertheless, when solving the integrability conditions, we
shall see that these coefficients are in fact constants and the corresponding R-matrix is of
difference form.

Boost operator formalism We now proceed to insert the Ansatz (2.5) in the general
boost operator formalism of [13] and classify all possible integrable Hamiltonians of this
form. In order for this system to be integrable, a criterion is derived in [13] that gives a set
of first-order differential equations for the coefficients of the Hamiltonian.

Recursion relations We can obtain recursion relations for the coefficients in the Hamil-
tonian by acting on subspaces of our total vector space Vk0 . For instance, if we take a tensor
product of vectors from the complement of Vk1 , then the only operators that act non-trivially
on it will be the operators P(0,n), I(0,n),K(0,n). In this paper, we are looking for solutions that
are compatible with the general flag structures. There exist special solutions when k⃗ takes
specific values; while these solutions are potentially interesting, we do not consider them in
this paper.

When imposing the integrability condition on the complement of Vk1 , we see that only
the terms with a0, b0, c0 will contribute to the integrability condition and, consequently, they
have to give an integrable Hamiltonian by themselves. We find the following equations

b0ċ0 = c0ḃ0 , b0c0

(
b0 +

k0 − 2

2
c0

)
= 0 , (2.6)

where the dot denotes differentiation with respect to θ. There are three possible solutions
to these integrability conditions, all of which are constant, namely

b0 = 0, c0 = 0, b0 = −k0 − 2

2
c0. (2.7)

We easily recognize the usual SU(n) when c0 = 0, and the SO(n) spin chain when b0 =
2−k0
2
c0. The last case b0 = 0 is a generalization of a spin chain with SO(n) symmetry that

was found for the case n = 4 in [11] (see formula (4.4) in that reference).

Next we take vectors from the complement of Vk2 and then P(1,n), I(1,n),K(1,n) will con-
tribute as well. We find equations that relate the coefficients a0, b0, c0 and a1, b1, c1. We
generate the corresponding set of equations in Mathematica. There are on the order of 50
(dependent) equations.

Nevertheless, it can be quickly seen that the case where c0 ̸= 0 implies that a1 = b1 =
c1 = 0. By induction this implies that there is only the contribution to our Hamiltonian
from the leading part, and we keep the spin chains that we identified in the first step. We
find that we need to take c0 = 0 to get a new and interesting solution. When c0 = 0, we can
normalize our Hamiltonian such that we find two possible cases b0 = 0, 1. Note that a0 can
be arbitrary, since it multiplies the identity operator, and a shift of the Hamiltonian that is
proportional to the identity operator is harmless.
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Let us first consider the case b0 = 1. The equations for a1, b1, c1 coupled to a0, b0, c0 can
then be solved to give three different non-trivial solutions

• a1 = 1, b1 = −1, c1 = 0

• a1 = −1, b1 = −1, c1 = 0

• a1 = 0, b1 = −2, c1 = 0

At the next level, we consider vectors from the complement of Vk2 and we see that the
first two solutions impose that ai, bi, ci all vanish for i > 1. Hence, for these solutions our
recursion terminates. The third solution, however, offers a continuation at the next level
and again gives rise to three cases

• a2 = 1, b2 = 1, c2 = 0

• a2 = −1, b2 = 1, c2 = 0

• a2 = 0, b2 = 2, c2 = 0

Also in this instance, the first two solutions terminate the recursion again. Repeating this
process, we see that we are left with two types of models. First, there is the model with the
third-type solution repeated to the end:

H I,⃗k = a0 I(n,n) + b0

[
P(n,n) + 2

d−1∑
j=1

(−1)jP(kj ,n)
]
. (2.8)

It is natural to introduce m ∈ [1, n], and to define m̄ by

m̄ =


1 k1 < m ≤ k0
2 k2 < m ≤ k1
...

...
d 0 < m < kd−1

. (2.9)

The barred index indicates in which subspace our vector takes values. We can then rewrite

H I,⃗k = a0 I(n,n) + b0 P k⃗, (2.10)

where

P k⃗(ei ⊗ ej) = (−1)min(̄i,j̄)ej ⊗ ei. (2.11)

is a generalization of the usual graded permutation operator1. For a flag with two stripes this
is just proportional to the usual graded permutation operator. To the best of our knowledge,
this simple rational model has not been found in the literature before.

1We thank the referee for pointing out this elegant form.
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Second is the case where in the last step one of the other solutions is used

H II± ,⃗k = a0 I(n,n) + b0

[
P(n,n) + 2

( d−2∑
j=1

(−1)jP(kj ,n)
)
− (−1)dP(kd−1,n) ± I(kd−1,n)

]
. (2.12)

Third, there is a special case when kd−1 = 2. In this case, we find that K(2) can appear.
Hence, we arrive at a third model given by

H III± ,⃗k = a0 I(n,n) + b0

[
P(n,n) + 2

( d−2∑
j=1

(−1)jP(kj ,n)
)
− (−1)dP(2,n) ±K(2,n) ∓ I(2,n)

]
. (2.13)

Notice that the only possible SO(N) type integrable Hamiltonian that is compatible with
the imposed flag structure is the usual SO(N) spin chain. The only other instance in which
the trace operator appears is in the case kd−1 = 2 as in Model III.

Let us finally consider the case with b0 = c0 = 0. Since we can set a0 = 0 without
loss of generality, we find at the next step that b1 = c1 = 0, and that a1 is constant. By
induction, this structure goes through to the other levels as well, and generically one arrives
at a diagonal Hamiltonian, which is trivially integrable. However, also here there is a special
case when kd−1 = 2. When this is the case, we find a non-trivial Hamiltonian. This is our
fourth model, which we denote by

H IV,⃗k = bd−1 (P(2,n) −K(2,n)) +
d−1∑
j=0

ajI(kj ,n) . (2.14)

This model, however, is different from the previous ones since its spectrum is purely com-
binatorial: all the eigenvalues are simply integer multiples of the coefficients ai and bd−1.
Hence we will not consider this model much further.

2.2 R-matrices

In order to prove that these models are integrable, we compute the R-matrices that generate
the Hamiltonians. We emphasize that we restrict throughout this paper to non-graded R-
matrices, which satisfy the non-graded (ordinary) Yang-Baxter equation. Unsurprisingly,
the R-matrices can be expressed in terms of the same operators as the Hamiltonians, and
are easily found from the Sutherland equation [10–13]

[R13R23, H12(u)] = Ṙ13R23 −R13Ṙ23 , (2.15)

where the dot indicates the derivative with respect to the first spectral parameter Ṙ(u, v) =
∂uR(u, v). The Sutherland equations can be derived from the Yang-Baxter equation and
give a set of non-linear first-order differential equations for the R-matrix in terms of the
Hamiltonian. Given that the R-matrix needs to satisfy the boundary conditions R(u, u) = P
and Ṙ(u, u) = PH, we find that a given Hamiltonian leads to a unique R-matrix which is a
solution of the Yang-Baxter equation.
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2.2.1 Model I

The R-matrix corresponding to the Hamiltonian (2.8) is given by

RI,⃗k(u) = (u+ 1)

(
η P(n,n) + u I(n,n) + 2 u

d−1∑
j=1

(−1)jI(kj ,n)
)
, (2.16)

where we hereby set
a0 = η , b0 = 1 , (2.17)

where η has the interpretation of a quantum parameter (Planck’s constant) rather than an
anisotropy parameter. We can do this since we are free to choose a normalization of the
R-matrix and also redefine our spectral parameter. The form of this R-matrix is evidently
very simple.

We can now decompose the R-matrix into the sum of the permutation matrix and a
simple diagonal matrix, namely

RI,⃗k(u) = (u+ 1)
[
η P(n,n) + 2 u I k⃗

]
, (2.18)

where I k⃗ is a diagonal matrix with the following ±1 entries

I k⃗(ei ⊗ ej) = (−1)min(̄i,j̄)ei ⊗ ej. (2.19)

To the best of our knowledge this is a new R-matrix.

2.2.2 Model II

The R-matrix corresponding to the Hamiltonian (2.12) is

RII±,⃗k(u) = (u+ 1)

(
uI(n,n) + η P(n,n) + 2u

d−2∑
j=1

(−1)jI(kj ,n) − u(−1)d I(kd−1,n) ± uP(kd−1,n)

)
.

(2.20)

The first three terms coincide with the R-matrix for Model I, but with vector {k0, . . . , kd−2}.
Hence, we can write it as

RII±,⃗k(u) = RI,⃗k−1(u)− u(u+ 1)
[
(−1)d I(kd−1,n) ± P(kd−1,n)

]
, (2.21)

where by RI,⃗k−1(u) we denote the R-matrix of Model I corresponding to k⃗ with the last
element dropped.

At this point, let us spell out more clearly that this R-matrix actually describes a family
of models indexed by k⃗ and the ± sign. For fixed values of n and d, there are

(
n−1
d−1

)
possible

sets of k⃗’s. For n = k0 = 5, for example, we have:
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• d = 1 : only one model, corresponds to XXX;

• d = 2 : {k1} can be equal to k1 = {{1}, {2}, {3}, {4}}, so there are four sets of k⃗’s;

• d = 3 : {k1, k2} can be equal to {k1, k2} = {{2, 1}, {3, 1}, {4, 1}, {3, 2}, {4, 2}, {4, 3}},
resulting in six different sets of k⃗’s;

• d = 4 : {k1, k2, k3} can be equal to {{3, 2, 1}, {4, 2, 1}, {4, 3, 1}, {4, 3, 2}}, which corre-

sponds to four sets of k⃗’s;

• d = 5 : {k1, k2, k3, k4} can be only equal to {4, 3, 2, 1}.

We note that a subset of Model II can be related to the models found in [15]. Setting in
the latter all xα,α′ = 1 and γ = 0, we find the following dictionary

Model II+ with d = 2 Maassarani’s model [15]
n n

k⃗ = {k0, k1} = {n, n−m+ 1} n⃗ = {n1, n2, . . . , nm} = {1, 1, . . . , 1, n−m+ 1}

The mapping between the R-matrices is as follows: removing from the R-matrix (2.20) the
overall factor (1 + u), setting d = 2 and η = i, we have

RII+,{k0,k1}(u) = u(I(n,n) − I(k1,n)) + iP(n,n) + uP(k1) . (2.22)

Then
R

{1,1,...,1,k1}
Maassarani (u) = (V ⊗ V )RII+,{k0,k1}(u)(V ⊗ V ) , (2.23)

where V is the n× n anti-diagonal unit matrix

V =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
0 1 . . . 0 0
1 0 . . . 0 0

 =
n∑

i=1

ei,n−i+1 . (2.24)

Inspired by the presentation of [15], we find that we can rewrite our R-matrix (2.20) as

RII±,⃗k(u) = (u+ 1)
(
ηP(n,n) + uF(±,⃗k)

)
, (2.25)

where F(±,⃗k) is defined by

F(±,⃗k) = I(n,n) − (−1)d I(kd−1,n) ± P(kd−1,n) + 2
d−2∑
j=1

(−1)jI(kj ,n) , (2.26)
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which satisfies

F(±,⃗k) F(±,⃗k) = I(n,n) , (2.27)

F(±,⃗k)
12 F(±,⃗k)

13 F(±,⃗k)
23 = F(±,⃗k)

23 F(±,⃗k)
13 F(±,⃗k)

12 . (2.28)

Moreover, F̌(±,⃗k) := P(n,n) F(±,⃗k) satisfies

F̌(±,⃗k)
12 F̌(±,⃗k)

23 F̌(±,⃗k)
12 = F̌(±,⃗k)

23 F̌(±,⃗k)
12 F̌(±,⃗k)

23 . (2.29)

In other words, F is a constant solution of the Yang-Baxter equation, and we can view the
total R-matrix of Model II as a Baxterization of F with the constant solution. The proof for
(2.27) for any n, d and ki for both Models II+ and II− is straightforward.

2.2.3 Model III

Model III is very similar to Model II, and only differs in a new two-dimensional term. The
R-matrix for Model III (2.13) is given by

RIII±,⃗k(u) = (u+ 1)

(
u I(n,n) + η P(n,n) + 2 u

d−2∑
j=1

(−1)j I(kj ,n)

+ (−1)d+1 u I(2,n) ± uK(2,n) ∓ uP(2,n)

)
, (2.30)

where kd−1 = 2.

2.2.4 Properties of R-matrices for models I, II and III

The R-matrices for models I, II, III satisfy some additional relations. First, we note that
they all are symmetric

Rt = R . (2.31)

Second, they are also trivially parity invariant

R21 = R12 . (2.32)

Third, the R-matrices satisfy braiding unitarity

R12(u)R21(−u) ∼ 1 . (2.33)

We found also some more general relations

R(u)P(m,n)R(−u)P(m,n) ∼ I(m,n) , (2.34)
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for m ∈ [1, n] for models I and II, and for m ̸= n − 1 for model III. For m = n, this
corresponds to braiding unitarity (2.33). Additionally, these R-matrices satisfy

R(u) I(m,n)R(−u) I(m,n) ∼ I(m,n) , (2.35)

where again m ∈ [1, n] for models I and II, and m ̸= n− 1 for model III.

In general, the R-matrices do not satisfy crossing symmetry, except for a few specific
values of ki.

2.2.5 Model IV

The R-matrix for Model IV (2.14) is given by

RIV,⃗k(u) =(η u+ 1)

[
P(n,n) −

(
d−2∏
j=1

eaj u

)
(1− ead−1 u cosh u)P(2,n)+

+

(
d−1∏
j=1

eaj u

)
sinhu

(
K(2,n) − I(2,n)

)
−

d−2∑
j=1

(1− eaj u)

(
j−1∏
i=1

eai u

)
P(kj ,n)

]
. (2.36)

We see that, despite the simple form of the Hamiltonian (2.14), the corresponding R-matrix
is more involved and is in fact of trigonometric type.

3 Generalized graded algebra

Usually, understanding the symmetries of the underlying models helps with explaining the
degeneracies of the spectrum and further properties of the model. Given the closeness of the
models to usual XXX-type models, we expect some sort of Yangian symmetry to be present.
In this section we will demonstrate that models I, II and III exhibit a new type symmetry.
We can fully fix model I by symmetry considerations, but for models II and III a symmetry
derivation seems to be out of reach. The new symmetry is particularly interesting because
it seems to describe a generalized type of Fermi statistics. For this reason we call them
generalized graded algebras.

3.1 Definition

Let us first look at Model I, since this will be the model with the most symmetry. Let
us define the stripes of the flag as the complements Vki\Vki+1

. Then we see that Model I
obviously has gl(k0 − k1)⊕ . . .⊕ gl(kd−2 − kd−1)⊕ gl(kd−1) symmetry. In particular, on each
stripe of the flag, we can transform the basis vectors into each other by the appropriate gl
transformation. For example the first stripe Vk0\Vk1 is a k0 − k1 dimensional subspace and
has the corresponding factor of gl(k0 − k1) in the symmetry algebra.
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However, the symmetry generators that map between the different stripes of the flag take
on a different form. This can be seen by considering the large u limit on RI (2.18), where
it becomes diagonal but not proportional to the identity operator. This is reminiscent of
the appearance of a braiding charge from the AdS/CFT correspondence [20]. So, let us try
to emulate the discussion in that paper and consider the RTT representation of a Yangian
algebra from the R-matrix (2.18).

In [20] the braiding charge appears at the lowest order in the expansion of the RTT
algebra. If we do a similar expansion here, however, we find that in contradistinction to
a braiding charge, the corresponding element here is not central. Hence, we are led to the
introduction of a set of elements Γk̄l̄ that generalize the notion of a braiding charge but can
have non-trivial commutation relations. Now, expanding our R-matrix further at large u,
we find the next order to be the standard matrix unities Eij.

Combining these observations, we introduce a new type of Hopf algebra Aγ which is a
general braided version of gl(n) and depends on some constants γ = ±1. This new algebra
will contain the symmetry for model I, graded models as well as braided coproducts.

Algebra Let us now define this new algebra. Consider generators Γk̄l̄ and Eij that satisfy
the following (anti-)commutation relations

EijEkl − γijklEklEij = δjkEil − γijklδilEkj , (3.1)

EijΓk̄l̄ − γijklΓk̄l̄Eij = 0 , (3.2)

[Γāb̄,Γc̄d̄] = 0 . (3.3)

Notice that from (3.1) it follows that γij,kl = γkl,ij.

Coalgebra We then introduce the following coproduct structure

∆Γāb̄ = Γāb̄ ⊗ Γāb̄ , (3.4)

∆Eij = Eij ⊗ 1 + Γīj̄ ⊗ Eij . (3.5)

This coproduct is easily seen to be coassociative but it only constitutes an algebra homo-
morphism for certain cases. It is straightforward to check that the coproduct is compatible
with (3.2) and (3.3). However, let us now apply the coproduct to (3.1). We find

∆(EijEkl − γijklEklEij) = (EijEkl − γijklEklEij)⊗ 1 + Γīj̄Γk̄l̄ ⊗ (EijEkl − γijklEklEij)

+
[
EijΓk̄l̄ − γijklΓk̄l̄Eij

]
⊗ Ekl +

[
Γīj̄Ekl − γijklEklΓīj̄

]
⊗ Eij,

= (δjkEil − γijklδilEkj)⊗ 1 + Γīj̄Γk̄l̄ ⊗ (δjkEil − γijklδilEkj),

= δjk

[
Eil ⊗ 1 + Γīj̄Γk̄l̄ ⊗ Eil

]
− γijklδil

[
Ekj ⊗ 1 + Γīj̄Γk̄l̄ ⊗ Ekj

]
,

(3.6)
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where we used that the second line vanishes because of (3.2). On the other hand,

∆(δjkEil − γijklδilEkj) = δjk(Eil ⊗ 1 + Γīl̄ ⊗ Eil)− γijklδil(Ekj ⊗ 1 + Γk̄j̄ ⊗ Ekj) . (3.7)

Hence we see that the coproduct defines an algebra homomorphism if and only if

δkjΓīj̄Γk̄l̄ = δkjΓīl̄ . (3.8)

This puts additional relations on our braiding functions Γ that need to be satisfied for this
to define a bialgebra.

Antipode The antipode Σ would satisfy

Σ(Γīj̄)Γīj̄ = 1 , Σ(Eij)Γīj̄ = −Eij . (3.9)

This means that for any coefficients i, j there should be some i′, j′ such that Γīj̄Γī′j̄′ = 1.
This imposes some further constraints on our generators in order to give a Hopf algebra.

3.2 Examples

Let us now give some examples of explicit realizations of our algebra.

Standard Lie algebra Setting Γ = 1 = γijkl simply gives us the usual gl(n) Lie algebra.

Grading Let us consider a flag with two stripes and let us choose Γ to be such that it does
not commute with all algebra elements, but is idempotent Γ2 = 1. Consider a representation
of the algebra elements Eij and introduce a matrix J that acts on the same space. We then
define

Γāb̄ =


ā < b̄ J
ā = b̄ 1
ā > b̄ J

, (3.10)

where the matrix J satisfies J2 = 1. Then the antipode maps Γ to itself and (3.8) is satisfied
as well. Let us now have a look on how to interpret this model. For conciseness, let us
restrict to two dimensions (n = 2). The coproduct takes the form

∆E11 = E11 ⊗ 1 + 1⊗ E11 , ∆E22 = E22 ⊗ 1 + 1⊗ E22 , (3.11)

∆E12 = E12 ⊗ 1 + J ⊗ E12 , ∆E21 = E21 ⊗ 1 + J ⊗ E21 . (3.12)

This exactly yields the well-known way to implement the graded tensor product using the
standard tensor product by interpreting J as the graded identity matrix. So, let us set

γ1212 = γ1221 = γ2112 = γ2121 = −1, (3.13)

and the other γ’s equal to 1. Then we precisely recover gl(1|1) where the coproduct is
realized by using the grading matrix J = diag(1,−1), and we see that all the Hopf algebra
relations are indeed satisfied. This straightforwardly generalizes to gl(m|n).
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AdS/CFT type braiding We can make Γ central and set γijkl = 1. This automatically
satisfies all the algebra relations (3.1)-(3.3). However, the additional constraints (3.8) and
(3.9) put restrictions on our choice of a braiding factor. Inspired by the braiding in AdS/CFT,
let us consider the flag with two stripes, so n = k0 > k1. Hence the indices on Γ only take
the values 1, 2. Now, let us define

Γāb̄ =


ā < b̄ eip

ā = b̄ 1
ā > b̄ e−ip

. (3.14)

Then it is easy to check that (3.8) and (3.9) are satisfied assuming that the antipode maps
p 7→ −p, i.e. we find that Σ(Γij) = Γji. We see that the algebra is undeformed, but that
the coproduct is deformed by a central element usually referred to as a braiding factor. This
algebra is simply gl(n) with a braided coproduct similar to the one found in the AdS/CFT
correspondence [21].

Flag models Our flag models I, II and III satisfy a generalization of the graded algebra
given above. The braiding elements Γ are again not commutative and idempotent Γ2 = 1.
However, they take different values between different stripes of the flag. We will work out
this algebra in detail in Section 3.3 and discuss its properties.

3.3 Algebra for flag model I

Let us focus here on flag model I, whose R-matrix has an extended symmetry that we denote
by gl(k0 − k1| . . . |kd−2 − kd−1|kd−1), which we will interpret as a generalized graded algebra.

We find that for Model I, we need to make the choice that if ī = j̄, then Γīj̄ = 1. If ī ̸= j̄,
then Γīj̄ is given by

Γīj̄ = Γj̄ī =

max(̄i,j̄)−1∏
l=min(̄i,j̄)

Γkl , (3.15)

where σl is the n× n diagonal matrix defined by

σl = diag(−1, . . . ,−1l, 1, . . . , 1n) . (3.16)

Hence we see that just like for the graded algebra, Γ takes the form of a diagonal matrix
with ±1.

It is easy to check that the R-matrix for model I (2.16) has gl(k0−k1| . . . |kd−2−kd−1|kd−1)
symmetry

∆opEij R(u) = R(u)∆Eij , i, j ∈ [1, n] , (3.17)

where ∆Eij is given by (3.5) and ∆opEij is similarly given by

∆opEij = Eij ⊗ Γīj̄ + 1⊗ Eij . (3.18)
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We can determine the constants γijkl from the Γ matrices: multiplying (3.2) on the right
by Eji, we obtain

EijΓk̄l̄Eji = γijklΓk̄l̄Eii , (3.19)

where there is no summation over repeated indices. Since the Γ matrices are diagonal, we
see that

(Γk̄l̄)jj Eii = γijkl (Γk̄l̄)iiEii , (3.20)

which implies
γijkl = (Γk̄l̄)jj / (Γk̄l̄)ii . (3.21)

Hence we also find that in this case γ = ±1, meaning that we are dealing with a mixture of
commutation relations and anti-commutation relations.

The easiest way to see that this model is not just a usual graded algebra in disguise is
the fact that Γ appearing in the coproducts will be different depending on the operator.
For usual superalgebras, all even and odd generators share the same braiding factor. As an
example, let us work out the case k⃗ = {3, 2, 1}. This is the first non-trivial example since it
corresponds to a flag with 3 stripes. The diagonal operators Eii have the standard coproduct

∆Eii = Eii ⊗ 1 + 1⊗ Eii. (3.22)

Then there are three other possibilities E12, E13, E23, which are the operators that relate
basis vectors belonging to the different stripes in the flag. This corresponds to the algebra
gl(1|1|1). The elements E21, E31, E32 are simply related by transposition, which also shows
that Γij = Γji.

The easiest way to represent this algebra is by taking Eij to be the standard matrix
unities; from (3.8) it is then easy to see that Γ12Γ13 = Γ23, and we find

Γ12 =

−1 0 0
0 1 0
0 0 1

 , Γ13 =

1 0 0
0 −1 0
0 0 1

 . (3.23)

From this we can compute γ from (3.21), and we can nicely package γ in a table

γ E11 E21 E31 E12 E22 E32 E13 E23 E33

E11 1 1 1 1 1 1 1 1 1
E21 1 −1 −1 −1 1 1 −1 1 1
E31 1 −1 1 −1 1 −1 1 −1 1
E12 1 −1 −1 −1 1 1 −1 1 1
E22 1 1 1 1 1 1 1 1 1
E32 1 1 −1 1 1 −1 −1 −1 1
E13 1 −1 1 −1 1 −1 1 −1 1
E23 1 1 −1 1 1 −1 −1 −1 1
E33 1 1 1 1 1 1 1 1 1

(3.24)

Let us now have a look at the commutation relations. We see that E12 and E23 satisfy
anti-commutations relation with itself since γ1212 = γ2323 = −1. Hence, these behave as odd
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generators. However, between each other they satisfy a usual commutation relation since
γ1223 = 1. On the other hand, E13 and E31 seem to be even generators (γ1331 = 1), but
satisfy anti -commutation relations with E12 and E23.

We conclude that we are left with a generalized graded algebra which is characterized by
the number of stripes in the flag. Given the fact that model I is unique, we see that this is
the unique extension of a graded-type algebra that includes multiple types of generators. A
generator will satisfy either commutation or anti-commutation relations depending on which
stripes it relates.

3.4 Generalized graded Yangians

There is a natural way to extend our algebra to a generalized graded Yangian. Consider the
level-1 Yangian generators Êij such that the following commutation relations hold

EijÊkl − γijklÊklEij = δjkÊil − γijklδilÊkj, (3.25)

ÊijEkl − γijklEklÊij = δjkÊil − γijklδilÊkj, (3.26)

ÊijΓk̄l̄ − γijklΓk̄l̄Êij = 0, (3.27)

Γīj̄Êkl − γijklÊklΓīj̄ = 0, . (3.28)

We then introduce the standard Yangian-type coproduct

∆Êij = Êij ⊗ 1 + Γīj̄ ⊗ Êij −
η

2

∑
k

[
Ekj ⊗ Γk̄j̄Eik − γikjkEik ⊗ Γīk̄Ekj

]
. (3.29)

For this to define a proper Hopf algebra, we must in principle impose additional restrictions
on Γ, γ. However, we can check that for our generalized graded algebra gl(k0−k1| . . . |kd−2−
kd−1|kd−1) for Model I everything is compatible. Hence, if we consider the evaluation repre-
sentation Ê = uE and the corresponding coproduct

∆Êij = u1Eij ⊗ 1 + Γīj̄ ⊗ u2Eij −
η

2

∑
k

[
Ekj ⊗ Γk̄j̄Eik − γikjkEik ⊗ Γīk̄Ekj

]
, (3.30)

we find that it is a symmetry of the R-matrix of Model I. In fact, we find that the R-matrix
of Model I is completely fixed by its generalized Yangian symmetry.

3.5 Symmetries for model II

Let us discuss the symmetries of the R-matrix for model II. As is clear from the form of the
Hamiltonian and R-matrix, there is a large overlap with model I. Because of this, there is
also a large overlap in symmetries. Let ei be the basis vectors of V , then the R-matrices of
models II and I have the same action on ei ⊗ ej where i, j > k1. Hence, we find that the
model exhibits a gl(k1−k2| . . . |kd−2−kd−1|kd−1) symmetry as well as the manifest gl(k0−k1)
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that acts on the first indices. Moreover, also the Yangian generators ∆Êij are a symmetry
for i, j > k1. However, this is clearly not enough to fully fix the R-matrix.

Model II exhibits some additional discrete symmetries. First, models I and II are both
invariant under parity. Second we have that

[RII−, E1̄2̄ ⊗ E1̄2̄] = 0, [RII+, E1̄3̄ ⊗ E1̄3̄] = 0. (3.31)

Unfortunately, this is still not enough symmetry to fix the R-matrix. We have not been able
to identify a remaining (discrete) symmetry that fully fixes the model.

4 Bethe ansatz for model II

We now analyze model II using nested algebraic Bethe ansatz (see e.g. [15, 16, 19, 22–28]
and references therein), restricting to kd−1 > 1.

4.1 First level of nesting

If we try to perform the nested Bethe ansatz procedure for model II with the R-matrix as
written in Eq. (2.20), we obtain exchange relations that are not useful. A very simple local
basis transformation solves this problem. We therefore use instead

R̃II±,⃗k(u) = (V ⊗ V )RII±,⃗k(u)
(
V −1 ⊗ V −1

)
, (4.1)

where the n × n matrix V is defined in (2.24). This is exactly the same model as before
because local basis transformations do not change the spectrum.

We can write the monodromy matrix for a chain of length L as

T0(u; {θj}) = R̃II±,⃗k
01 (u− θ1) R̃

II±,⃗k
02 (u− θ2) . . . R̃

II±,⃗k
0L (u− θL) (4.2)

=


T0,0(u; {θj}) B1(u; {θj}) B2(u; {θj}) · · · Bn−1(u; {θj})
C1(u; {θj}) T1,1(u; {θj}) T1,2(u; {θj}) · · · T1,n−1(u; {θj})
C2(u; {θj}) T2,1(u; {θj}) T2,2(u; {θj}) · · · T2,n−1(u; {θj})

...
...

...
. . .

...
Cn−1(u; {θj}) Tn−1,1(u; {θj}) Tn−1,2(u; {θj}) · · · Tn−1,n−1(u; {θj})

 ,

(4.3)

where {θj} are the inhomogeneities, and we suppress the superscripts II±, k⃗ on the mon-
odromy matrix to lighten the notation. The transfer matrix is therefore given by

t(u; {θj}) = tr0 T0(u; {θj}) = T0,0(u; {θj}) +
n−1∑
α=1

Tα,α(u; {θj}). (4.4)
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For a reference state such as

|0⟩ =


1
0
...
0


⊗L

, (4.5)

we can see that

Cα(u; {θj})|0⟩ = 0 ∀α = 1, . . . , n− 1 , (4.6)

T00(u; {θj})|0⟩ =
L∏

j=1

(η + u− θj) (1 + u− θj) |0⟩ , (4.7)

Tαβ(u; {θj})|0⟩ = δαβ

L∏
j=1

(u− θj)(1 + u− θj)|0⟩ ∀α , β = 1, . . . , n− 1 . (4.8)

The operators Bα(u; {θj}) act as creation operators. So, we can use them to define excited
states

|ψ⟩ =
∑

{a1,...,am}

m∏
i=1

Bai(ui; {θj})F a1,··· ,am |0⟩ (4.9)

where {ai} can assume values from 1 to n− 1, and {ui} are the Bethe roots. By continuing
the Bethe ansatz procedure we will obtain the conditions that the Bethe roots must satisfy
in order for |ψ⟩ to be an eigenvector of the transfer matrix t(u; {θj}).

We have seen that the transfer matrix is given by Eq. (4.4), and we know how Ti,j(u, {θj})
acts on the reference state. When acting with t(u; {θj}) on |ψ⟩, we need a way to pass through
all the Bai(u1; {θj}) operators. The exchange relations which allow us to do that are obtained
from the RTT relation

R̃II±,⃗k
ab (u− v)Ta(u; {θj})Tb(v; {θj}) = Tb(v; {θj})Ta(u; {θj}) R̃II±,⃗k

ab (u− v) . (4.10)

By substituting R̃II±,⃗k
ab (u) from (4.1) and T (u; {θj}) as in (4.3), we obtain several exchange

relations. The useful ones are

T0,0(v; {θj})Bα(u; {θj}) =
η + u− v

u− v
Bα(u; {θj}) T0,0(v; {θj})

− η

u− v
Bα(v; {θj}) T0,0(u; {θj}) , (4.11)

where α = 1, . . . , n− 1; and

Tα,β(v; {θj})Bγ(u; {θj}) =
∑
τ,η

f(u− v)Rτ,η
β,γ(u− v)Bη(u; {θj}) Tα,τ (v; {θj})

+ g(u− v)Bβ(v; {θj}) Tα,γ(u; {θj}) , (4.12)

where f(u), g(u) and Rτ,η
β,γ(u) depend on the model, see (4.26)-(4.31) below.
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Let us see how T0,0(u; {θj}) acts on |ψ⟩:

T0,0(u; {θj})|ψ⟩ =
∑
{a}

T0,0(u; {θj})
m1∏
i=1

Bai(ui; {θj})F a1,··· ,am1 |0⟩ (4.13)

=
∑
{a}

T0,0(u; {θj})Ba1(u1; {θj})
m1∏
i=2

Bai(ui; {θj})F a1,··· ,am1 |0⟩, (4.14)

=
∑
{a}

η + u1 − u

u1 − u
Ba1(u1; {θj})T0,0(u; {θj})

m1∏
i=2

Bai(ui; {θj})F a1,··· ,am1 |0⟩

− η

u1 − u

∑
{a}

Ba1(u; {θj})T0,0(u1; {θj})
m1∏
i=2

Bai(ui; {θj})F a1,··· ,am1 |0⟩

(4.15)

=
L∏

j=1

(η + u− θj) (1 + u− θj)

m1∏
i=1

η + ui − u

ui − u
|ψ⟩

+ unwanted terms. (4.16)

In passing from (4.14) to (4.15), we use once (4.11). We see that the second term depends
on Ba1(u; {θj}), so it cannot be written in terms of |ψ⟩. As we continue to use the exchange
relations to pass T0,0 through all the B’s, we will get more and more such terms, called
“unwanted terms,” which we ignore for now. In passing from (4.15) to (4.16), we just
continue to use the exchange relations; and when T0,0 hits |0⟩, we use (4.7).

Let us now see how Tα,α((u; {θj}) acts on |ψ⟩:

Tα,α(u; {θj})|ψ⟩ =
∑
{a}

Tα,α(u; {θj})
m1∏
i=1

Bai(ui; {θj})F a1,··· ,am1 |0⟩ , (4.17)

=
∑
{a}

Tα,α(u; {θj})Ba1(u1; {θj})
m1∏
i=2

Bai(ui; {θj})F a1,··· ,am1 |0⟩ , (4.18)

=
∑
{a}

∑
τ1,b1

f(u1 − u)Rτ1,b1
α,a1

(u1 − u)Bb1(u1; {θj})Tα,τ1(u; {θj})
m1∏
i=2

Bai(ui; {θj})F a1,··· ,am1 |0⟩

+
∑
{a}

g(u1 − u)Bb1(u; {θj})Tα,a1(u1; {θj})
m1∏
i=2

Bai(ui; {θj})F a1,··· ,am1 |0⟩ , (4.19)

= f(u1 − u)f(u2 − u)
∑
{a}

∑
τ1,τ2

∑
b1,b2

Rτ1,b1
α,a1

(u1 − u)Rτ2,b2
τ1,a2

(u2 − u)Bb1(u1; {θj})Bb2(u2; {θj})

× Tα,τ2(u; {θj})
m1∏
i=3

Bai(ui; {θj})F a1,··· ,am1 |0⟩+ unwanted terms , (4.20)
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=

m1∏
i=1

f(ui − u)
∑
{b}

m1∏
l=1

Bbl(ul; {θj})
∑

{a},{τ}

Rτ1,b1
α,a1

(u1 − u)Rτ2,b2
τ1,a2

(u2 − u) · · ·Rτm1 ,bm1
τm1−1,am1

(um1 − u)

× F a1,··· ,am1Tα,τm1
(u; {θj})|0⟩+ unwanted terms , (4.21)

=

m1∏
i=1

f(ui − u)
∑
{b}

m1∏
l=1

Bbl(ul; {θj})
∑

{a},{τ}

Rτ1,b1
α,a1

(u1 − u)Rτ2,b2
τ1,a2

(u2 − u) · · ·Rα,bm1
τm1−1,am1

(um1 − u)

× F a1,··· ,am1

L∏
j=1

(u− θj)(1 + u− θj)|0⟩+ unwanted terms . (4.22)

We conclude that the action of the transfer matrix (4.4) on |ψ⟩ (4.9) is given by

t(u, {θj})|ψ⟩ = T00(u, {θj})|ψ⟩+
n−1∑
α=1

Tαα(u, {θj})|ψ⟩

=
L∏

j=1

(η + u− θj) (1 + u− θj)

m1∏
i=1

η + ui − u

ui − u
|ψ⟩

+
n−1∑
α=1

m1∏
i=1

f(ui − u)
∑
{b}

m1∏
l=1

Bbl(ul; {θj})
∑

{a},{τ}

Rτ1,b1
α,a1

(u1 − u)Rτ2,b2
τ1,a2

(u2 − u) · · ·Rα,bm1
τm1−1,am1

(um1 − u)

×F a1 ··· am1

L∏
j=1

(u− θj)(1 + u− θj)

]
|0⟩+ unwanted terms . (4.23)

If |ψ⟩ is an eigenvector of t(u, {θj}) so that the unwanted terms vanish, then the correspond-
ing eigenvalue is given by

Λ(u, {θj}) =
L∏

j=1

(η + u− θj) (1 + u− θj)

m1∏
i=1

η + ui − u

ui − u

+

{
(n− 1)

∏L
j=1(u− θj)(1 + u− θj) m1 = 0

Λaux(u)
∏L

j=1(u− θj)(1 + u− θj)
∏m1

i=1 f(ui − u) m1 ≥ 1
, (4.24)

where Λaux(u) is an eigenvalue of the auxiliary transfer matrix defined by

taux(u) =
n−1∑
α=1

∑
{τ}

Rτ1,b1
α,a1

(u1 − u)Rτ2,b2
τ1,a2

(u2 − u) · · ·Rα,bm1
τm1−1,am1

(um1 − u)

=
[
tr0 R01(u1 − u)R02(u2 − u) . . .R0m1(um1 − u)

]b1b2...bm1

a1a2...am1

. (4.25)
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Starting with model II+ with a local Hilbert space of dimension n (the R-matrix is
n2 × n2), the corresponding R(u) in (4.25) is (n− 1)2 × (n− 1)2 and is given by

R(u) =


P(n−1,n−1) for initial model with k1 = k0 − 1 and d = 2
1

1−u
1

η−u
R̃(II+,k0−1,k1,..,kd−1)(−u) for initial model with k1 < k0 − 1 and d ≥ 2

1
1+u

1
η+u

R̃(II−,k1,..,kd−1)(u) for initial model with k1 = k0 − 1 and d > 2

.

(4.26)
Also,

f(u) =

{
−η−u

u
for all the cases with auxiliary problem given by R̃+(−u) or P(n−1,n−1)

−η+u
u

for all the cases with auxiliary problem given by R̃−(u)

(4.27)
while

g(u) =
η

u
, (4.28)

for all cases. In particular, starting with the R-matrix for model II+, we are led to an
auxiliary problem that can be either related to II+ or to II− depending on the values of d
and k⃗ according to Eq. (4.26).

Similarly, starting with model II−, the R(u) in (4.25) is given by

R(u) =


P(n−1,n−1) for initial model with k1 = k0 − 1 and d = 2
1

1−u
1

η−u
R̃(II−,k0−1,k1,..,kd−1)(−u) for initial model with k1 < k0 − 1 and d ≥ 2

1
1+u

1
η+u

R̃(II+,k1,..,kd−1)(u) for initial model with k1 = k0 − 1 and d > 2.

.

(4.29)
Also,

f(u) =

{
−η−u

u
for all the cases with auxiliary problem given by R̃−(−u)

−η+u
u

for all the cases with auxiliary problem given by R̃+(u) or P(n−1,n−1)

(4.30)
while

g(u) =
η

u
, (4.31)

for all cases.

4.2 Transfer-matrix eigenvalues

We now proceed to determine the transfer-matrix eigenvalues and Bethe equations of Model
II. To this end, it is useful to introduce some further notations. Starting from the R-matrix

R̃II±,⃗k(u) (4.1), where k⃗ is the vector k⃗ = {k0, k1, . . . , kd−1} with dimension |⃗k| := d, we
define a sequence of R-matrices

R̃(l)(u) ≡ R̃µl ,⃗k
(l)

(u) , l = 0, 1, . . . , (4.32)
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where R̃(0)(u) = R̃II±,⃗k(u), with µ0 = ±1 for II±, respectively; and k⃗(0) = k⃗. Moreover,

the vectors k⃗(l), as well as the parameters µl, γl and δl, are defined for l ≥ 1 recursively as
follows:

If k
(l−1)
1 < k

(l−1)
0 − 1 , then k⃗(l) = k⃗(l−1) − ϵ⃗ , µl = µl−1 , γl = δl = 1 ;

if k
(l−1)
1 = k

(l−1)
0 − 1 and |⃗k(l−1)| > 2 , then k⃗(l) =

ˆ⃗
k(l−1) , µl = −µl−1 , γl = δl = −1 ;

if k
(l−1)
1 = k

(l−1)
0 − 1 and |⃗k(l−1)| = 2 , then µl = −µl−1 , γl = −1 , δl = µl−1 , (4.33)

where l = 1, 2, . . ., and γ0 = δ0 = 1. In the first line of (4.33), ϵ⃗ is the vector ϵ⃗ = {1, 0, . . . , 0}
that has the same dimension as k⃗(l−1), i.e. |⃗ϵ | = |⃗k(l−1)|. In the second line, the hat denotes

dropping the first (left-most) component; hence, since k⃗(l−1) = {k(l−1)
0 , k

(l−1)
1 , . . .}, then

ˆ⃗
k(l−1) = {k(l−1)

1 , . . .}.

The sequence k⃗(0), k⃗(1), . . . terminates with

k⃗(l) = {kd−1 + 1 , kd−1} where l = k0 − kd−1 − 1 . (4.34)

Indeed, it follows from (4.33) that k⃗(k0−kj) = {kj , kj+1 , . . . , kd−1} with j = 0, 1, . . . , d − 2.

Hence, k⃗(k0−kd−2) = {kd−2 , kd−1}, and therefore

k⃗(k0−kd−1−1) = k⃗(k0−kd−2+(kd−2−kd−1−1)) = {kd−2 − (kd−2 − kd−1 − 1) , kd−1}

= {kd−1 + 1 , kd−1} . (4.35)

Examples of such sequences of k⃗(l) and µl are shown in Table 1.

Model II+ (n = 5)

d = 2 d = 3 d = 4

l = 0 {5, 4}+ {5, 3}+ {5, 2}+ {5, 4, 3}+ {5, 4, 2}+ {5, 3, 2}+ {5, 4, 3, 2}+y y y y y y y
l = 1 P(4) {4, 3}+ {4, 2}+ {4, 3}− {4, 2}− {4, 3, 2}+ {4, 3, 2}−y y y y y y
l = 2 P(3) {3, 2}+ P(3) {3, 2}− {3, 2}− {3, 2}+y y y y
l = 3 P(2) P(2) P(2) P(2)

Table 1: k⃗(l) and µl for l = 0, 1, . . . , k0 − kd−1 for model II with µ0 = +1 and n = 5.

Note that the γl’s satisfy

γl =

{
−1 if l ∈ {n− k1 , n− k2 , . . . , n− kd−1}
1 otherwise

. (4.36)
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Moreover, the δl’s satisfy

δl =

{
γl if l = 0, 1, . . . . . . , n− kd−1 − 1

µl−1 if l = n− kd−1

. (4.37)

We further define

R(l)(u) =


1

(1−γlu)(η−γlu)
R̃(l)(−γlu) l = 1, 2, . . . , k0 − kd−1 − 1

P(kd−1 ,kd−1) l = k0 − kd−1

,

f (l)(u) =
−η + δlu

u
, (4.38)

see (4.26),(4.29).

Let us define the sequence of transfer matrices t(l)(u; {u(l)j }) by

t(l)(u; {u(l)j }) = tr0 R̃
(l)
01(u− u

(l)
1 ) . . . R̃

(l)
0ml

(u− u(l)ml
) , l = 0, 1, . . . , k0 − kd−1 , (4.39)

and let us denote the corresponding eigenvalues by Λ(l)(u; {u(l)j }). Note that the original
transfer matrix t(u; {θj}) in (4.4) is equal (up to a similarity transformation, see (4.1)) to

t(0)(u; {θj}). We wish to determine Λ(u; {θj}) := Λ(0)(u; {u(0)j }), where

m0 := L , u
(0)
j := θj . (4.40)

It follows from the result (4.24) that

Λ(l)(u; {u(l)j }) =
ml∏
j=1

(η + u− u
(l)
j )(1 + u− u

(l)
j )

ml+1∏
i=1

η + u
(l+1)
i − u

u
(l+1)
i − u

+ Λ(l+1)
aux (u; {u(l+1)

j })
ml∏
j=1

(u− u
(l)
j )(1 + u− u

(l)
j )

ml+1∏
i=1

f (l+1)(u
(l+1)
i − u) , l = 0, 1, . . . ,

(4.41)

where Λ
(l)
aux(u; {u(l)j }) is an eigenvalue of the auxiliary transfer matrix t

(l)
aux(u; {u(l)j }), which is

given by2

t(l)aux(u; {u
(l)
j }) = tr0 R(l)

01(u
(l)
1 − u) . . . R(l)

0ml
(u(l)ml

− u) ,

=

(
ml∏
j=1

1

(1− γl(u
(l)
j − u))(η − γl(u

(l)
j − u))

)
t(l)(γlu; {γlu(l)j }) , (4.42)

where we have passed to the second equality using (4.38) and (4.39). Hence,

Λ(l)
aux(u; {u

(l)
j }) =

(
ml∏
j=1

1

(1− γl(u
(l)
j − u))(η − γl(u

(l)
j − u))

)
Λ(l)(γlu; {γlu(l)j }) . (4.43)

2For l = 1, t
(l)
aux coincides with taux (4.25).
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We see from (4.41) that

Λ(l)(γlu; {γlu(l)j }) =
ml∏
j=1

(η + γl(u− u
(l)
j ))(1 + γl(u− u

(l)
j ))

ml+1∏
i=1

η + u
(l+1)
i − γlu

u
(l+1)
i − γlu

+ Λ(l+1)
aux (γlu; {u(l+1)

j })
ml∏
j=1

γl(u− u
(l)
j )(1 + γl(u− u

(l)
j ))

ml+1∏
i=1

f (l+1)(u
(l+1)
i − γlu) . (4.44)

We conclude that the eigenvalue of the auxiliary transfer matrix t
(l)
aux(u; {u(l)j ) is given by

Λ(l)
aux(u; {u

(l)
j }) =

ml+1∏
i=1

η + u
(l+1)
i − γlu

u
(l+1)
i − γlu

+ Λ(l+1)
aux (γlu; {u(l+1)

j })
ml∏
j=1

γl(u− u
(l)
j )

η + γl(u− u
(l)
j )

ml+1∏
i=1

−η + δl+1(u
(l+1)
i − γlu)

u
(l+1)
i − γlu

,

l = 1, . . . , k0 − kd−1 − 1 , (4.45)

where we have used (4.38), (4.43) and (4.44). For l = k0 − kd−1, we see from (4.38) that
R(l) = P(kd−1 ,kd−1) is independent of the spectral parameter, and we find

Λ(k0−kd−1)
aux =

{
exp

(
2πip

mk0−kd−1

)
, p = 0, 1, . . . ,mk0−kd−1

− 1 , if mk0−kd−1
̸= 0

kd−1 if mk0−kd−1
= 0

. (4.46)

Let us define Λ
(0)
aux(u; {θj}) by (4.45) with l = 0, keeping in mind (4.40). That is,

Λ(0)
aux(u; {θj}) =

m1∏
i=1

η + u
(1)
i − u

u
(1)
i − u

+ Λ(1)
aux(u; {u

(1)
j })

L∏
j=1

u− θj
η + u− θj

m1∏
i=1

−η + δ1(u
(1)
i − u)

u
(1)
i − u

. (4.47)

It follows from (4.24) that

Λ(u; {θj}) =
L∏

j=1

(η + u− θj)(1 + u− θj)Λ
(0)
aux(u; {θj}) , (4.48)

where Λ
(0)
aux(u; {θj}) can be determined recursively using (4.47), (4.45) and (4.46).
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4.3 Bethe equations

The conditions that the expressions (4.45) for Λ
(l)
aux(u; {u(l)j }) have vanishing residues at the

poles u = γlu
(l+1)
i lead (after the shift l 7→ l − 1) to the following Bethe equations for {u(l)i }

ml−1∏
j=1

η − γl−1(u
(l−1)
j − γl−1u

(l)
i )

γl−1(γl−1u
(l)
i − u

(l−1)
j )

= Λ(l)
aux(u

(l)
i ; {u(l)j })

ml∏
j ̸=i;j=1

δl(u
(l)
j − u

(l)
i )− η

u
(l)
j − u

(l)
i + η

,

i = 1, 2, . . . ,ml , l = 1, 2, . . . , k0 − kd−1 , (4.49)

Λ(l)
aux(u

(l)
i ; {u(l)j }) =

ml+1∏
j=1

η + u
(l+1)
j − γlu

(l)
i

u
(l+1)
j − γlu

(l)
i

, l = 1, 2, . . . , k0 − kd−1 − 1 ,

(4.50)

and Λ
(k0−kd−1)
aux is given in (4.46).

In summary, the eigenvalues Λ(u; {θj}) of the transfer matrix t(u; {θj}) (4.4) are given

by (4.45)-(4.48), where {u(l)i } are solutions of the Bethe equations (4.49), (4.50).

Remarkably, these Bethe equations can be brought to a form similar to those of usual
gl(m|n−m) spin chains.3 Indeed, let us define the rescaled Bethe roots

ũ
(l)
j := χl u

(l)
j , χl :=

∏
l′<l

γl′ , (4.51)

in terms of which the Bethe equations (4.49), (4.50) can be rewritten as

(δl)
ml−1 =

ml−1∏
j=1

ũ
(l)
i − ũ

(l−1)
j

ũ
(l)
i − ũ

(l−1)
j + χlη

ml∏
j ̸=i

ũ
(l)
i − ũ

(l)
j + δlχlη

ũ
(l)
i − ũ

(l)
j − χlη

×
ml+1∏
j=1

ũ
(l)
i − ũ

(l+1)
j − χl+1η

ũ
(l)
i − ũ

(l+1)
j

, i = 1, . . . ,ml , l = 1, . . . , k0 − kd−1 − 1 ,

(δl)
ml−1

Λ
(k0−kd−1)
aux

=

ml−1∏
j=1

ũ
(l)
i − ũ

(l−1)
j

ũ
(l)
i − ũ

(l−1)
j + χlη

ml∏
j ̸=i

ũ
(l)
i − ũ

(l)
j + δlχlη

ũ
(l)
i − ũ

(l)
j − χlη

, i = 1, . . . ,ml , l = k0 − kd−1 .

(4.52)

Finally, in terms of the shifted Bethe roots

˜̃u
(l)
j := ũ

(l)
j +

η

2

l∑
i=1

χi , (4.53)

3We thank the referee for bringing this fact to our attention.
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the Bethe equations (4.52) take the more symmetric form

(δl)
ml−1 =

ml−1∏
j=1

˜̃u
(l)
i − ˜̃u

(l−1)
j − η

2
χl

˜̃u
(l)
i − ˜̃u

(l−1)
j + η

2
χl

ml∏
j ̸=i

˜̃u
(l)
i − ˜̃u

(l)
j + δlχlη

˜̃u
(l)
i − ˜̃u

(l)
j − χlη

ml+1∏
j=1

˜̃u
(l)
i − ˜̃u

(l+1)
j − η

2
χl+1

˜̃u
(l)
i − ˜̃u

(l+1)
j + η

2
χl+1

,

i = 1, . . . ,ml , l = 1, . . . , k0 − kd−1 − 1 ,

(δl)
ml−1

Λ
(k0−kd−1)
aux

=

ml−1∏
j=1

˜̃u
(l)
i − ˜̃u

(l−1)
j − η

2
χl

˜̃u
(l)
i − ˜̃u

(l−1)
j + η

2
χl

ml∏
j ̸=i

˜̃u
(l)
i − ˜̃u

(l)
j + δlχlη

˜̃u
(l)
i − ˜̃u

(l)
j − χlη

, i = 1, . . . ,ml , l = k0 − kd−1 ,

(4.54)

where Λ
(k0−kd−1)
aux is defined in equation (4.46).

The Bethe equations (4.54) are therefore simply given by

(δl)
ml−1z−1

l (p) =

k0−kd−1∏
l′=1

ml′∏
j=1

′
˜̃u
(l)
i − ˜̃u

(l′)
j + η

2
cl,l′

˜̃u
(l)
i − ˜̃u

(l′)
j − η

2
cl,l′

, i = 1, . . . ,ml , l = 1, . . . , k0 − kd−1 ,

(4.55)
where the primed product omits the j = i term if l′ = l, and cl,l′ is given by

diagonal: cl,l =

{
2χl if δl = +1

0 if δl = −1
,

off-diagonal: cl,l′ =


−χl if l′ = l − 1

−χl′ if l′ = l + 1

0 otherwise

, (4.56)

where χl (4.51) is ±1. The function zl(p) is given by

zl(p) =

{
1 if l = 1, . . . , k0 − kd−1 − 1

Λ
(k0−kd−1)
aux if l = k0 − kd−1

. (4.57)

Note that cl,l+1 = cl+1,l, and therefore cl,l′ is symmetric. Moreover, in view of (4.37),∑
l′

cl,l′ = −χl(1 + γl) + cl,l = 0 , l = 2, . . . , k0 − kd−1 − 1 . (4.58)

Hence, cl,l′ can be identified as the Cartan matrix for a (potentially non-distinguished)
gl(m|n − m) Kac-Dynkin diagram. For example, for the case {5, 4, 3, 2}+ (for which δ1 =
δ2 = −1 , δ3 = 1), the corresponding diagram is shown in Fig. 2; fermionic nodes (for which
cl,l = 0) are denoted by a cross. However, compared with usual gl(m|n − m) spin chains,
the LHS of the Bethe equations (4.54) has additional phases; moreover, the transfer-matrix

eigenvalues (4.48), which can be re-expressed in terms of the redefined Bethe roots ˜̃u
(l)
i , are

not the standard ones.
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✐ ✐ ✐× ×

Figure 2: Dynkin diagram for the model II case {5, 4, 3, 2}+

Since model II has rank k0 − 1, one would expect it to have an equal number of Bethe
equations; however, there are in fact only k0 − kd−1 such equations (4.55). The “missing”
Bethe equations are hidden in the condition (4.46). For example, the Kac-Dynkin diagram
in Fig. 2 for a model of rank four has one less node than expected. Therefore, despite the
similarities with gl(m|n−m), this model is significantly different.

We have checked the completeness of this Bethe ansatz solution numerically for small
values of L, d, k⃗ by using (4.45)-(4.50) to solve for the eigenvalues of the homogeneous trans-
fer matrix (all θj = 0), and comparing with the corresponding results obtained by exact
diagonalization, see e.g. Tables 6,7,8. We observe the presence of infinite Bethe roots, as
well as singular (exceptional) solutions of the Bethe equations.4 While we can account for all
distinct eigenvalues (although not their degeneracies), there is one caveat: we find instances
with repeated singular Bethe roots (such as the last line of Table 7), where the roots indeed
give the eigenvalue through the TQ equation (4.48), but the Bethe equations are not all
satisfied (at least naively), which we leave as a problem for future investigation. Based on
these studies, we conjecture that the values of {ml} can be restricted as follows

m0 ≥ m1 ≥ m2 ≥ . . . ≥ mk0−kd−1
, (4.59)

where m0 := L.

5 Bethe ansatz for model I

We now analyze model I using nested algebraic Bethe ansatz, again restricting to kd−1 > 1.

5.1 First level of nesting

Similarly to model II, for model I we perform the Bethe ansatz for the gauge-transformed
R-matrix

R̃I,⃗k(u) = (V ⊗ V )RI,⃗k(u)
(
V −1 ⊗ V −1

)
, (5.1)

where V is defined in (2.24), and RI,⃗k(u) is given in (2.16).

This model has much in common with model II, so for the parts of the analysis that
coincide, we refer to the previous section in order to avoid repeating formulas. The equations

4Singular solutions for the XXX chain are discussed in e.g. [29–32]. Infinite Bethe roots have been noted
in various models, see e.g. [33–36].
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from (4.3) to (4.9) remain the same. In particular, the action of the operators Cα, T00 and
Tαβ on the reference state |0⟩ do not change. The exchange relations are again given by
(4.11) and (4.12), except R(u) is now given by

R(u) =


1

η+u
R(gln−1)(u) for initial model with k1 = k0 − 1 and d = 2

1
1+u

1
η+u

R̃(I,k0−1,k1,..,kd−1)(u) for initial model with k1 = k0 − 1 and d > 2
1

1−u
1

η−u
R̃(I,k1,..,kd−1)(−u) for initial model with k1 < k0 − 1 and d ≥ 2

(5.2)

where Rglm(u) is the m2 ×m2 R-matrix given by

R(glm)(u) = ηP(m,n) + uI(m,n). (5.3)

The functions f(u) and g(u) are defined as

f(u) =

{
η−u
−u

for initial model with k1 < k0 − 1 and d ≥ 2
η+u
−u

for initial model with k1 = k0 − 1 and d ≥ 2
(5.4)

g(u) =
η

u
. (5.5)

Hence, except for the explicit forms of R(u) and f(u), Eqs. (4.17)-(4.22) remain the same.
We conclude that the eigenvalues of the transfer matrix are given by

Λ(u, {θj}) =
L∏

j=1

(η + u− θj) (1 + u− θj)

m1∏
j=1

η + uj − u

uj − u

+ Λaux(u)
L∏

j=1

(u− θj)(1 + u− θj)

m1∏
j=1

f(uj − u) , (5.6)

where Λaux(u) is an eigenvalue of the auxiliary transfer matrix (4.25).

5.2 Transfer-matrix eigenvalues

In the following we will recursively construct the TQ and Bethe equations for this model, in
a similar way as for model II. As we will show, the main difference is that in the “last” step
of the nesting procedure, for d = 2 and k1 = k0 − 1, we have R(u) ∼ Rglkd−1 (u) for model I,
instead of R(u) ∼ P(kd−1,kd−1) for model II. Consequently, an extra recursion procedure will
be needed for model I.

We define a sequence of R-matrices

R̃(l)(u) ≡ R̃k⃗(l)(u) , l = 0, 1, . . . , kd−1 (5.7)

where R̃(0)(u) = R̃k⃗(u) and k⃗(0) = k⃗. Moreover, the vectors k⃗(l), as well as the parameter γl,
similarly to section 4 are defined for l ≥ 1 recursively as follows:

If k
(l−1)
1 < k

(l−1)
0 − 1 , then k⃗(l) = k⃗(l−1) − ϵ⃗ , γl = 1 ;

if k
(l−1)
1 = k

(l−1)
0 − 1 and |⃗k(l−1)| > 2 , then k⃗(l) =

ˆ⃗
k(l−1) , γl = −1 ;

if k
(l−1)
1 = k

(l−1)
0 − 1 and |⃗k(l−1)| = 2 , then γl = −1 . (5.8)
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As before, ϵ⃗ is the vector ϵ⃗ = {1, 0, . . . , 0} that has the same dimension as k⃗(l−1), i.e. |⃗ϵ | =
|⃗k(l−1)|. Furthermore, the hat denotes dropping the first (left-most) component; hence, since

k⃗(l−1) = {k(l−1)
0 , k

(l−1)
1 , . . .}, then ˆ⃗

k(l−1) = {k(l−1)
1 , . . .}. Examples of such k⃗(l) sequences are

shown in Table 2.

The γl’s again satisfy (4.36), for l = 1, ..., k0 − kd−1.

We also define

R(l)(u) =


1

(1−γlu)(η−γlu)
R̃(l)(−γlu) l = 1, 2, . . . , k0 − kd−1 − 1

1
η+u

Rglkd−1 (u) l = k0 − kd−1

,

f (l)(u) =
−η + γlu

u
, (5.9)

where Rglkd−1 (u) is given by (5.3).

Model I (n = 5)

d = 2 d = 3 d = 4

l = 0 {5, 4} {5, 3} {5, 2} {5, 4, 3} {5, 4, 2} {5, 3, 2} {5, 4, 3, 2}y y y y y y y
l = 1 gl4 {4, 3} {4, 2} {4, 3} {4, 2} {4, 3, 2} {4, 3, 2}y y y y y y
l = 2 gl3 (3, 2) gl3 {3, 2} {3, 2} {3, 2}y y y y
l = 3 gl2 gl2 gl2 gl2

Table 2: k⃗(l) for l = 0, 1, . . . , k0 − kd−1 for model I with n = 5.

The first part of this calculation is very similar to the one for model II, with only a few
sign modifications. We again start by defining a sequence of transfer matrices t(l)(u; {u(l)j })
as in (4.39)

t(l)(u; {u(l)j }) = tr0 R̃
(l)
01(u− u

(l)
1 ) . . . R̃

(l)
0ml

(u− u(l)ml
) , l = 0, 1, . . . , k0 − kd−1 , (5.10)
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and denoting the corresponding eigenvalues by Λ(l)(u; {u(l)j }). We obtain as in (4.41)

Λ(l)(u; {u(l)j }) =
ml∏
j=1

(η + u− u
(l)
j )(1 + u− u

(l)
j )

ml+1∏
j=1

η + u
(l+1)
j − u

u
(l+1)
j − u

+ Λ(l+1)
aux (u; {u(l+1)

j })
ml∏
j=1

(u− u
(l)
j )(1 + u− u

(l)
j )

ml+1∏
j=1

f (l+1)(u
(l+1)
j − u) ,

l = 0, 1, . . . , k0 − kd−1 (5.11)

Eqs. (4.42)-(4.44) do not change, and from them and (5.11) we obtain (cf. (4.45))

Λ(l)
aux(u; {u

(l)
j }) =

ml+1∏
j=1

η + u
(l+1)
j − γlu

u
(l+1)
j − γlu

+ Λ(l+1)
aux (γlu; {u(l+1)

j })
ml∏
j=1

γl(u− u
(l)
j )

η + γl(u− u
(l)
j )

ml+1∏
j=1

−η + γl+1(u
(l+1)
j − γlu)

u
(l+1)
j − γlu

,

l = 1, . . . , k0 − kd−1 − 1 . (5.12)

The second part of the calculation is dedicated to computing Λ
(k0−kd−1)
aux , which appears in

(5.12) for the final value l = k0−kd−1−1. We shall see that this requires the diagonalization
of glm-type transfer matrices. We therefore first define a sequence of glm-type R-matrices

r(l)(u) = Rglk0−l(u) , l = k0 − kd−1, k0 − kd−1 + 1, . . . , k0 − 2 , (5.13)

where Rglm is defined in (5.3). Consider then a sequence of transfer matrices τ (l)(u; {u(l)j })

τ (l)(u; {u(l)j }) = tr0 r
(l)
01 (u− u

(l)
1 ) . . . r

(l)
0ml

(u− u(l)ml
) , l = k0 − kd−1, . . . , k0 − 2 . (5.14)

The corresponding eigenvalue λ(l)(u; {u(l)j }) is well known to be given by

λ(l)(u; {u(l)j }) =
ml∏
j=1

(η + u− u
(l)
j )

ml+1∏
j=1

η + u
(l+1)
j − u

u
(l+1)
j − u

+ λ(l+1)
aux (u; {u(l+1)

j })
ml∏
j=1

(u− u
(l)
j )

ml+1∏
j=1

ϕ(l+1)(u
(l+1)
j − u) ,

l = k0 − kd−1, . . . , k0 − 2, (5.15)

where ϕ(l)(u) is given by

ϕ(l)(u) =
−η + u

u
, (5.16)

and λ
(l)
aux(u; {u(l)j }) is an eigenvalue of the auxiliary transfer matrix

τ (l)aux(u; {u
(l)
j }) = tr0 R(l)

01(u
(l)
1 − u) . . . R(l)

0ml
(u(l)ml

− u) , (5.17)
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where R(l)(u) is given by

R(l)(u) =
1

η − u
r(l)(−u) , l = k0 − kd−1 + 1, . . . , k0 − 2 , (5.18)

and r(l)(u) was defined in (5.13). It follows from (5.18) that τ
(l)
aux (5.17) can be related to τ (l)

(5.14)

τ (l)aux(u; {u
(l)
j }) =

(
ml∏
j=1

1

(η − (u
(l)
j − u))

)
τ (l)(u; {u(l)j }) , (5.19)

and similarly for the corresponding eigenvalues

λ(l)aux(u; {u
(l)
j }) =

(
ml∏
j=1

1

(η − (u
(l)
j − u))

)
λ(l)(u; {u(l)j }) (5.20)

=

ml+1∏
j=1

η + u
(l+1)
j − u

u
(l+1)
j − u

+ λ(l+1)
aux (u; {u(l+1)

j })
ml∏
j=1

u− u
(l)
j

η + u− u
(l)
j

ml+1∏
j=1

η + u− u
(l+1)
j

u− u
(l+1)
j

,

l = k0 − kd−1 + 1, . . . , k0 − 2 , (5.21)

where we have passed to (5.21) using (5.15), and λ
(k0−1)
aux (u; {u(k0−1)

j }) ≡ 1.

We are finally ready to compute Λ
(k0−kd−1)
aux . Recalling from (5.9) that R(l) for l = k0−kd−1

is proportional to Rglkd−1 , and recalling the definitions of the transfer matrices t
(l)
aux (4.42)

and τ (l) (5.14), we see that

Λ(k0−kd−1)
aux (u; {u(k0−kd−1)

j }) =
λ(k0−kd−1)(−u; {−u(k0−kd−1)

j })∏mk0−kd−1

j=1 (η + u
(k0−kd−1)
j − u)

= λ(k0−kd−1)
aux (−u; {−u(k0−kd−1)

j }) . (5.22)

To pass to the second line, we have used (5.20) to define λ
(l)
aux for l = k0 − kd−1.

The full result for Λ(0)(u; {u(0)j }) is therefore obtained by starting from l = 0 in Eq.
(5.11), and then using Eqs. (5.12), (5.22) and (5.21).

5.3 Bethe equations

For this model, the Bethe equations for {u(l)j } have two sources, depending on whether l is
smaller or larger than k0 − kd−1. The first set of Bethe equations, as in model II, comes
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from shifting l 7→ l − 1 in Eq. (5.12) and requiring the vanishing of residues at the poles

u = γl−1u
(l)
i . This leads to

ml−1∏
j=1

η − γl−1(u
(l−1)
j − γl−1u

(l)
i )

γl−1(γl−1u
(l)
i − u

(l−1)
j )

=

ml∏
j ̸=i;j=1

γl(u
(l)
j − u

(l)
i )− η

u
(l)
j − u

(l)
i + η

ml+1∏
j=1

η + u
(l+1)
j − γlu

(l)
i

u
(l+1)
j − γlu

(l)
i

,

i = 1, 2, . . . ,ml , l = 1, 2, . . . , k0 − kd−1 . (5.23)

Let us now turn to the second set of Bethe equations. By requiring the vanishing of the

residues at the poles u = −u(k0−kd−1+1)
i in λ

(k0−kd−1)
aux (−u, {−u(k0−kd−1)

j }), we obtain the Bethe
equations for l = k0 − kd−1 + 1. Similarly, by requiring vanishing residues at the poles

u = −u(l)i in λ
(l−1)
aux (−u, {u(l−1)

j }), we obtain the Bethe equations for l = k0−kd−1+2, . . . , k0−1.
Explicitly, the second set of Bethe equations is given by

1 = λ(l)aux(u
(l)
i ; {u(l)j })

ml−1∏
j=1

u
(l)
i − γl−1u

(l−1)
j

u
(l)
i − γl−1u

(l−1)
j + η

ml∏
j ̸=i;j=1

u
(l)
j − u

(l)
i − η

u
(l)
j − u

(l)
i + η

,

i = 1, . . . ,ml, l = k0 − kd−1 + 1, . . . , k0 − 1 , (5.24)

λ(l)aux(u
(l)
i ; {u(l)j }) =


∏ml+1

j=1

η+u
(l+1)
j −u

(l)
i

u
(l+1)
j −u

(l)
i

l = k0 − kd−1 + 1, . . . , k0 − 2

1 l = k0 − 1
. (5.25)

Notice that γl had so far been defined only for l = 1, ..., k0 − kd−1, with γk0−kd−1
= −1

(4.36). In (5.24), we introduced kd−1 + 1 additional γl defined by

γl = 1, l = k0 − kd−1 + 1, ..., k0 − 1 . (5.26)

As we did for the Bethe equations of model II (4.55), here we can also simplify the Bethe
equations (5.23)-(5.25) using the transformations (4.51) and (4.53), resulting in simply

(γl)
ml−1 =

k0−1∏
l′=1

ml′∏
j=1

′
˜̃u
(l)
i − ˜̃u

(l′)
j + η

2
cl,l′

˜̃u
(l)
i − ˜̃u

(l′)
j − η

2
cl,l′

, i = 1, . . . ,ml , l = 1, . . . , k0 − 1 , (5.27)

where the primed product omits the j = i term if l′ = l, and cl,l′ is given by

diagonal: cl,l =

{
2χl if γl = +1

0 if γl = −1
,

off-diagonal: cl,l′ =


−χl if l′ = l − 1

−χl′ if l′ = l + 1

0 otherwise

, (5.28)

where χl (4.51) is ±1. As an example, the Dynkin diagram for the case {5, 4, 3, 2} (for which
γ1 = γ2 = γ3 = −1 , γ4 = 1), is shown in Fig. 3.
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✐ ✐ ✐ ✐× × ×

Figure 3: Dynkin diagram for the model I case {5, 4, 3, 2}

Contrary to model II, the number of Bethe equations for model I is equal to the rank.
However, the Bethe equations have extra factors of (−1)ml−1 in comparison with the usual
gl(m|n−m) model due to the LHS of (5.27); this point is discussed further in Appendix A
for the case n = 3.

We have checked the completeness of this Bethe ansatz solution numerically for small
values of L, d, k⃗ by using (5.11), (5.12), (5.21) - (5.25) to solve for the eigenvalues, and com-
paring with corresponding results obtained by direct diagonalization of the transfer matrix,
see Tables 9, 10, 11. As in the case of model II, we observe the existence of infinite Bethe
roots, as well as singular solutions of the Bethe equations. We also find some continuous so-
lutions (i.e., with arbitrary Bethe roots) 5, which here is presumably related to the presence
of infinite Bethe roots. The transfer-matrix eigenvalues do not depend on the values of the
arbitrary Bethe roots.

Before closing this section, we remark that there is significant overlap in the spectra of
transfer matrices for different values of d and k⃗. This is illustrated for model I in Fig. 4,
where an eigenvalue Λ(u) of the homogeneous transfer matrix (i.e. all θj = 0) with L = 2 is
denoted by q g(α1,α2,α3), where

Λ(u) = g(α1,α2,α3) ≡ (1 + u)2
(
α1η

2 + α2ηu+ α3u
2
)
, (5.29)

and q is its degeneracy (multiplicity).

6 Bethe ansatz for model III

6.1 Transfer-matrix eigenvalues

For model III, we recall (2.30) that not only k0 is fixed as k0 = n, but also kd−1 is fixed as

kd−1 = 2. The vector k⃗ is therefore given by

k⃗ = (n, k1, ..., kd−2, 2), with n = k0 > k1 > k2 > ... > kd−2 > kd−1 = 2. (6.1)

There are therefore
(
n−3
d−2

)
models of III+ type, and an equal number of III− type.

The nested algebraic Bethe ansatz for model III can be performed in a similar way as for
models I and II, the main difference appearing in the final step. As before, we perform the

5Continuous solutions of Bethe equations have been noted previously in the context of the XXZ chain at
roots of unity, see e.g. [37–43].
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Figure 4: Transfer-matrix eigenvalues for model I with L = 2 and different values of d and
k⃗, see Eq. (5.29). Note that some g(α1,α2,α3) (such as g(1,−2,4)) appear more than once.

Bethe ansatz for the gauge-transformed R-matrix

R̃III±,⃗k(u) = (V ⊗ V )RIII±,⃗k(u)
(
V −1 ⊗ V −1

)
, (6.2)

where V is given in (2.24), and RIII±,⃗k(u) is given by (2.30). The first level of nesting is
basically the same as for model I, also resulting in (5.6); what changes are the explicit forms
of R and f(u). For model III±, the nesting procedure results in the following rule

R(u) =


1

1−u
1

η−u
R̃(III±,k0−1,k1,...,kd−2,2)(−u) if k1 < k0 − 1 and k0 > 3

1
1+u

1
η+u

R̃(III∓,k1,...,kd−2,2)(u) if k1 = k0 − 1 and k0 > 3
1
η
r(u, δ0) if k0 = 3 and k1 = 2.

, (6.3)

with

f(u) =


−η+u

u
if k1 < k0 − 1 and k0 > 3

−η−u
u

if k1 = k0 − 1 and k0 > 3

− η
u

if k0 = 3 and k1 = 2

, (6.4)

while g(u) is again defined as

g(u) =
η

u
. (6.5)

The nesting procedure ends with k⃗ = (3, 2), for which (see Eq. (6.3))

R(u) =
1

η
r(u, δ0) , (6.6)

where

r(u, δ0) =


η 0 0 δ0u
0 0 η − δ0u 0
0 η − δ0u 0 0
δ0u 0 0 η

 , (6.7)
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and

δ0 =

{
−1 if k⃗ = {3, 2}+

+1 if k⃗ = {3, 2}−
. (6.8)

We bring this R-matrix to the usual six-vertex form by a basis transformation

r̃(u, δ0) = (U ⊗ U) r(u, δ0) (U
−1 ⊗ U−1) (6.9)

=


η − δ0u 0 0 0

0 δ0u η 0
0 η δ0u 0
0 0 0 η − δ0u

 , (6.10)

where

U =

(
1 i
i 1

)
. (6.11)

We henceforth use r̃(u, δ0) instead of r(u, δ0).

We again define a sequence of R-matrices

R̃(l)(u) ≡ R̃µl ,⃗k
(l)

(u) , l = 0, 1, . . . k0 − 2 , (6.12)

where µl and k⃗
(l) are constructed via the iterative procedure

if k
(l−1)
1 < k

(l−1)
0 − 1 , then k⃗(l) = k⃗(l−1) − ϵ⃗ , µl = µl−1 , γl = +1 ;

if k
(l−1)
1 = k

(l−1)
0 − 1 , then k⃗(l) =

ˆ⃗
k(l−1) , µl = −µl−1 , γl = −1 ; (6.13)

where ϵ⃗ and
ˆ⃗
k are defined as in models I and II. Examples of such sequences of k⃗(l) and µl

are shown in Table 3.

The γl’s again satisfy (4.36), but only for l = 1, . . . , k0 − 3. For the final two l-values, we
define

γl = −1 , l = k0 − 2 , k0 − 1 (6.14)

for later convenience, see (6.27), (6.28).

Also

R(l)(u) =


1

(1−γlu)(η−γlu)
R̃(l)(−γlu) l = 1, 2, . . . , k0 − 3

1
η
r̃(u, δ0) l = k0 − 2

, (6.15)

f (l)(u) =

{
−η+γlu

u
l = 1, ..., k0 − 3

−η
u

l = k0 − 2
, (6.16)

where r̃(u, δ0) was defined in (6.10).

Transfer matrices can be constructed as in (5.10)

t(l)(u; {u(l)j }) = tr0 R̃
(l)
01(u− u

(l)
1 ) . . . R̃

(l)
0ml

(u− u(l)ml
) , l = 0, 1, . . . , k0 − 2 , (6.17)
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Model III+ (n = 5)

d = 2 d = 3 d = 4

l = 0 {5, 2}+ {5, 4, 2}+ {5, 3, 2}+ {5, 4, 3, 2}+y y y y
l = 1 {4, 2}+ {4, 2}− {4, 3, 2}+ {4, 3, 2}−y y y y
l = 2 {3, 2}+ {3, 2}− {3, 2}− {3, 2}+y y y y
l = 3 6-vertex 6-vertex 6-vertex 6-vertex

Table 3: k⃗(l) and µl for l = 0, 1, . . . , k0 − 2 for model III with µ0 = +1 and n = 5.

whose eigenvalues Λ(l)(u; {u(l)j }) are given, as in (5.11), by

Λ(l)(u; {u(l)j }) =
ml∏
j=1

(η + u− u
(l)
j )(1 + u− u

(l)
j )

ml+1∏
j=1

η + u
(l+1)
j − u

u
(l+1)
j − u

+ Λ(l+1)
aux (u; {u(l+1)

j })
ml∏
j=1

(u− u
(l)
j )(1 + u− u

(l)
j )

ml+1∏
j=1

f (l+1)(u
(l+1)
j − u) ,

l = 0, 1, . . . , k0 − 2 (6.18)

As before, Λ
(l)
aux(u; {u(l)j }) are eigenvalues of t

(l)
aux(u; {u(l)j }), which is defined by

t(l)aux(u; {u
(l)
j }) = tr0 R(l)

01(u
(l)
1 − u) . . . R(l)

0ml
(u(l)ml

− u) ,

=


(∏ml

j=1
1

(1−γl(u
(l)
j −u))(η−γl(u

(l)
j −u))

)
t(l)(γlu; {γlu(l)j }) , l = 1, ..., k0 − 3

1
ηml

t(k0−2)(−u, {−u(k0−2)
j }) l = k0 − 2

,

(6.19)

where we used (6.15), and t(k0−2)(u, {u(k0−2)
j }) is given by

t(k0−2)(u; {u(k0−2)
j }) = tr0 r̃

(k0−2)
01 (u− u

(k0−2)
1 , δ0) . . . r̃

(k0−2)
0mk0−2

(u− u(k0−2)
mk0−2

, δ0) , (6.20)
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which has eigenvalues6

Λ(k0−2)(u, {u(k0−2)
j }) =

mk0−2∏
j=1

(
η − δ0(u− u

(k0−2)
j )

)mk0−1∏
j=1

η + δ0(u− u
(k0−1)
j )

−δ0(u− u
(k0−1)
j )

+

mk0−2∏
j=1

(
δ0(u− u

(k0−2)
j )

)mk0−1∏
j=1

η − δ0(u− u
(k0−1)
j )

δ0(u− u
(k0−1)
j )

. (6.21)

The auxiliary eigenvalues are therefore

Λ(l)
aux(u; {u

(l)
j }) =


(∏ml

j=1
1

(1−γl(u
(l)
j −u))(η−γl(u

(l)
j −u))

)
Λ(l)(γlu; {γlu(l)j }) l = 1, ..., k0 − 3

1
η
mk0−2Λ

(k0−2)(−u; {−u(k0−2)
j }) l = k0 − 2

.

(6.22)
More explicitly, for l = 1, . . . , k0 − 4, the auxiliary eigenvalues are given by

Λ(l)
aux(u; {u

(l)
j }) =

ml+1∏
j=1

η + u
(l+1)
j − γlu

u
(l+1)
j − γlu

+ Λ(l+1)
aux (γlu; {u(l+1)

j })
ml∏
j=1

γl(u− u
(l)
j )

η + γl(u− u
(l)
j )

ml+1∏
j=1

−η + γl+1(u
(l+1)
j − γlu)

u
(l+1)
j − γlu

,

l = 1, . . . , k0 − 4 ; (6.23)

while for l = k0 − 3 we have

Λ(k0−3)
aux (u; {u(k0−3)

j }) =
mk0−2∏
j=1

η + u
(k0−2)
j − γk0−3u

u
(k0−2)
j − γk0−3u

+ Λ(k0−2)
aux (γk0−3u; {u(k0−2)

j })
mk0−3∏
j=1

γk0−3(u− u
(k0−3)
j )

η + γk0−3(u− u
(k0−3)
j )

mk0−2∏
j=1

−η
u
(k0−2)
j − γk0−3u

, (6.24)

and finally for l = k0 − 2

Λ(k0−2)
aux (γk0−3u; {u(k0−2)

j }) =
mk0−2∏
j=1

η + δ0(γk0−3u− u
(k0−2)
j )

η

mk0−1∏
j=1

η − δ0(γk0−3u+ u
(k0−1)
j )

δ0(γk0−3u+ u
(k0−1)
j )

+

mk0−2∏
j=1

−δ0(γk0−3u− u
(k0−2)
j )

η

mk0−1∏
j=1

η + δ0(γk0−3u+ u
(k0−1)
j )

−δ0(γk0−3u+ u
(k0−1)
j )

.

(6.25)

The equations (6.23)-(6.25) were obtained using (6.22) together with equations (6.18) and

(6.21). Having obtained Λ
(l)
aux(u, {u(l)j }) for all values of l (6.23)-(6.25), we can use them

together with (6.18) to compute Λ(0)(u, {u(0)j }).
6We used at this step the usual algebraic Bethe ansatz, since r̃(u, δ0) is of six-vertex form.
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6.2 Bethe equations

We now obtain the corresponding Bethe equations. The first set comes from requiring that
Λ

(l)
aux(u; {u(l)j }) in (6.23) have vanishing residues at the poles u = γlu

(l+1)
i , and then shifting

l 7→ l − 1

ml−1∏
j=1

η + u
(l)
i − γl−1u

(l−1)
j

u
(l)
i − γl−1u

(l−1)
j

=

ml∏
j ̸=i;j=1

γl(u
(l)
j − u

(l)
i )− η

u
(l)
j − u

(l)
i + η

ml+1∏
j=1

η + u
(l+1)
j − γlu

(l)
i

u
(l+1)
j − γlu

(l)
i

,

i = 1, 2, . . . ,ml , l = 1, 2, . . . , k0 − 3 . (6.26)

In order to obtain the two remaining sets of Bethe equations, we first substitute (6.25)

into (6.24), and then require the vanishing of the residues of Λ
(k0−3)
aux (u; {u(k0−3)

j }) at both

poles u = γk0−3u
(k0−2)
i and u = γk0−3u

(k0−1)
i . The result is

mk0−3∏
j=1

η + u
(k0−2)
i − γk0−3u

(k0−3)
j

u
(k0−2)
i − γk0−3u

(k0−3)
j

=

mk0−2∏
j ̸=i;j=1

δ0(u
(k0−2)
i − u

(k0−2)
j ) + η

u
(k0−2)
i − u

(k0−2)
j − η

×
mk0−1∏
j=1

η + δ0(γk0−2u
(k0−2)
i − u

(k0−1)
j )

−δ0(γk0−2u
(k0−2)
i − u

(k0−1)
j )

,

i = 1, ...,mk0−2 , (6.27)

1 = (−1)mk0−2

mk0−2∏
j=1

u
(k0−1)
i − γk0−1u

(k0−2)
j

u
(k0−1)
i − γk0−1u

(k0−2)
j − δ0η

mk0−1∏
j ̸=i;j=1

u
(k0−1)
i − u

(k0−1)
j − δ0η

u
(k0−1)
i − u

(k0−1)
j + δ0η

,

i = 1, ...,mk0−1 . (6.28)

Following a similar procedure as for models I and II (see transformations (4.51) and
(4.53)), we find that the Bethe equations (6.26)-(6.28) can be brought to the form

(γl)
ml−1zl =

k0−1∏
l′=1

ml′∏
j=1

′
˜̃u
(l)
i − ˜̃u

(l′)
j + η

2
cl,l′

˜̃u
(l)
i − ˜̃u

(l′)
j − η

2
cl,l′

, i = 1, . . . ,ml , l = 1, . . . , k0 − 1 , (6.29)

where the primed product omits the j = i term if l′ = l, and zl is given by

zl =


1 for l = 1, ..., k0 − 3

(−1)ml+1(γlδ0)
ml−1 for l = k0 − 2

1 for l = k0 − 1

. (6.30)

For the first k0− 3 values of l, cl,l′ is given by the same expressions as in model I (see (5.28))
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✐ ✐ ✐ ✐× ×

Figure 5: Dynkin diagram for the model III case {5, 4, 3, 2}−

for both δ0 = ±1. For l = k0 − 2 and l = k0 − 1, however, they are given by

diagonal: cl,l =

{
(δ0 + 1)χl if l = k0 − 2

−2 δ0χl if l = k0 − 1
,

off-diagonal: cl,l′ =


−χl if l′ = l − 1 and l = k0 − 2

δ0χl if l′ = l − 1 and l = k0 − 1

δ0χl′ if l′ = l + 1 and l = k0 − 2

0 otherwise

. (6.31)

In addition to the transformations performed in models I and II, for model III, for δ0 = +1
we needed to shift the last Bethe root by ˜̃u

(k0−1)
i → ˜̃u

(k0−1)
i + χk0−1η in order to bring the

Bethe equations in the form (6.29).

As an example, the Dynkin diagram for the case {5, 4, 3, 2}− (for which γ1 = γ2 = γ3 =
γ4 = −1 , δ0 = 1), is shown in Fig. 5. As already noted, the first k0 − 3 Bethe equations are
similar to those of model I, but the last two are generally significantly different.

We have checked, as for models I and II, the completeness of this Bethe ansatz, see
Appendix C.

7 Discussion and outlook

In this paper we found a new family of integrable models that we call flag integrable models.
These models are composed of operators that act on subspaces which have a flag structure.
Interestingly we find that our models are rational and are characterized by a sequence of
integers corresponding to the dimensions of the subspaces.

Even though the models have a seemingly simple structure, they exhibit interesting fea-
tures. First, we found that Model I has a symmetry algebra of a new type. The symmetry
algebra is a generalization of the usual graded algebra gl(m|n) and we correspondingly call it
a generalized graded algebra. The generators of this algebra have a different type of grading
element in the coproduct and commutation relations that corresponds to the different stripes
of the flag it connects. We found a generalization to a Yangian algebra. Models II and III
also exhibit this algebra but are not fixed by it.

Finally, we used nested algebraic Bethe ansatz to determine the spectrum of Models I,
II and III, see Eqs. (4.45)-(4.50), (5.11)-(5.25), and (6.18)-(6.28), respectively. Although
the Bethe ansatz solution for Model I appears similar to that of the gl(m|n − m) model,
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we argue in Appendix A for the case n = 3 that these models are not equivalent. An
analysis of examples with small values of L, d, k⃗ (see Appendix C) suggests that many of the
eigenvalues are described by infinite, singular and/or continuous Bethe roots. For the XXX
chain, infinite Bethe roots do not affect transfer-matrix eigenvalues, and describe descendant
(that is, not su(2) highest-weight) states (see, e.g. [28]). In contrast, for the models studied
here, as for those in e.g. [33–36], the infinite Bethe roots appear to be necessary to obtain
the spectrum. The appearance of continuous Bethe roots is also unusual. Perhaps these
features are artifacts of our choices of coordinates and gradings, and could be eliminated by
working with different choices.

The Bethe equations of all three models can be brought to a simple form, similar to
those of gl(m|n − m), see (4.55), (5.27), and 6.29, respectively. The first k0 − kd−1 − 1
Bethe equations are the same for all the three models, but the remaining kd−1 equations
differ among themselves substantially. Perhaps some of the (−1)m factors appearing in these
equations could be eliminated by introducing gradings or twists, see e.g. [44].

There are some interesting further directions that can be pursued. The physical properties
(phase structure, ground state, low-lying excitations) of the models presented here remain
to be explored. It would be interesting to see if a universal R-matrix could be formulated
along the lines as was done for gl(n) and gl(m|n) [45–47]. It would also be interesting to
clarify the remaining symmetries of model II, and to account for its unusual degeneracies. A
proper treatment of repeated singular solutions in model II is still missing. The trigonometric
models found in Appendix B also warrant further study.

We have restricted our attention to periodic boundary conditions (PBC). For the new
R-matrices found here, it would be interesting to find corresponding boundary K-matrices
(solutions of the boundary Yang-Baxter equation) [48–50], to formulate the corresponding
open-chain models, and to determine the spectrum of their transfer matrices. Perhaps there
is a choice of boundary conditions for which the models have more symmetry compared with
PBC, which could help account for degeneracies.
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A Comparison between gl(k0 − k1|...|kd−2 − kd−1|kd−1)

and gl(m|n−m)

In this section, we argue that type-I models with d > 2 stripes, which have symmetry
gl(k0 − k1|...|kd−2 − kd−1|kd−1), are not equivalent to models with two stripes (d = 2) that
have symmetry gl(m|n−m). For simplicity, we focus on the case n = 3. We first make the
argument in Sec. A.1 for the R-matrices, and then in Sec. A.2 for the corresponding Bethe
ansätze.

A.1 R-matrices

In addition to gl(3), there are three type-I R-matrices with n = 3, as given in Table 4.

d k⃗ Symmetry
2 k0 = 3, k1 = 2 gl(1|2)
2 k0 = 3, k1 = 1 gl(2|1)
3 k0 = 3, k1 = 2, k2 = 1 gl(1|1|1)

Table 4: Type-I R-matrices with n = 3.

We now argue that the gl(1|1|1) type-I R-matrix cannot be mapped to gl(2|1) or gl(1|2)
R-matrices. Our argument consists of two parts:

1. Showing that the eigenvalues are different, which implies that the R-matrices cannot
be related by similarity transformations.

2. Showing that the R-matrices cannot be related by generalized (Drinfeld) twists.

The eigenvalues and the corresponding degeneracies of the three R-matrices, displayed
in Table 5, are evidently all different.

Let us now check if the models can be related by a generalized twist

R̃12(u) = W21R12(u)W
−1
12 , (A.1)

with
[R12,W13W23] = [R23,W13W12] = 0 . (A.2)

We observe that the three R-matrices, as well as the one for gl(3), satisfy

R(∆h1) = (∆oph1)R and R(∆h2) = (∆oph2)R , (A.3)

where hi are the gl(3) diagonal generators:

h1 = e1,1 − e2,2 and h2 = e2,2 − e3,3 , (A.4)
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Model Eigenvalues Degeneracies
gl(1|2) −(1 + u)(u+ η) 1

(1 + u)(u− η) 2
−(1 + u)(u− η) 3
(1 + u)(u+ η) 3

gl(2|1) (1 + u)(u− η) 3
−(1 + u)(u− η) 1
(1 + u)(u+ η) 5

gl(1|1|1) −(1 + u)(u+ η) 1
(1 + u)(u− η) 2
−(1 + u)(u− η) 2
(1 + u)(u+ η) 4

Table 5: Spectra of type-I R-matrices with n = 3.

and
∆hi = hi ⊗ 1 + 1⊗ hi . (A.5)

Therefore, if a twist mapping these models exists, it has to satisfy

[W,∆hi] = 0 , i = 1 , 2 . (A.6)

Starting with a general 9× 9 matrix W and requiring that (A.6) be satisfied, we obtain that
W must be of ice-rule form:

W = w2,4e2,4 + w4,2e4,2 + w3,7e3,7 + w7,3e7,3 + w6,8e6,8 + w8,6e8,6 +
9∑

i=1

wi,iei,i . (A.7)

We readily find that the twist equation (A.1) cannot be satisfied with W of the form (A.7)
and with R̃ and R corresponding to gl(1|1|1) and gl(1|2) (or gl(2|1)). Notice that a twist is
ruled out even before considering (A.2).

Gauge transformations (which are particular types of similarity transformations) and
twists (including generalized twists like the one above) are the two types of transformations
known to preserve the quantum Yang-Baxter equation. Since the R-matrix for gl(1|1|1) is
not related to the R-matrices for gl(1|2) or gl(2|1) by such transformations, we believe it is
new. For more details about this R-matrix, see section 3.3.
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A.2 Bethe ansatz

The transfer-matrix eigenvalues for the case with symmetry gl(1|2), which corresponds to

model I with d = 2 and k⃗ = {3, 2}, is given by

Λ(1|2)(u; θj) =
L∏

j=1

(1 + u− θj)

[
L∏

j=1

(u− θj + η)

m1∏
j=1

u− u
(1)
j − η

u− u
(1)
j

+(−1)m1

L∏
j=1

(u− θj)

(
m1∏
j=1

u− u
(1)
j − η

u− u
(1)
j

m2∏
j=1

u+ u
(2)
j + η

u+ u
(2)
j

+

m2∏
j=1

u+ u
(2)
j − η

u+ u
(2)
j

)]
,

(A.8)

see Eqs. (5.11), (5.21), (5.22). The corresponding Bethe equations are given by

L∏
j=1

u
(1)
k − θj + η

u
(1)
k − θj

= (−1)m1+1

m2∏
j=1

u
(2)
j + u

(1)
k + η

u
(2)
j + u

(1)
k

, k = 1, ...,m1 , (A.9)

1 =

m1∏
j=1

u
(1)
j + u

(2)
k

u
(1)
j + u

(2)
k + η

m2∏
j ̸=k,j=1

u
(2)
j − u

(2)
k − η

u
(2)
j − u

(2)
k + η

k = 1, ...,m2 , (A.10)

see Eqs. (5.23)-(5.25). These results can be brought to a more symmetric form by performing
the redefinitions

u
(1)
i 7→ u

(1)
i − η

2
, u

(2)
i 7→ −u(2)i , (A.11)

leading to

Λ(1|2)(u; θj) =
L∏

j=1

(1 + u− θj)

{
(−1)m1

L∏
j=1

(u− θj)

m2∏
j=1

u− u
(2)
j − η

u− u
(2)
j

+

m1∏
j=1

u− u
(1)
j − η

2

u− u
(1)
j + η

2

[ L∏
j=1

(u− θj + η) + (−1)m1

L∏
j=1

(u− θj)

m2∏
j=1

u− u
(2)
j + η

u− u
(2)
j

]}
,

(A.12)

and

L∏
j=1

u
(1)
k − θj +

η
2

u
(1)
k − θj − η

2

= (−1)m1+1

m2∏
j=1

u
(1)
k − u

(2)
j + η

2

u
(1)
k − u

(2)
j − η

2

, k = 1, ...,m1 , (A.13)

1 =

m1∏
j=1

u
(2)
k − u

(1)
j + η

2

u
(2)
k − u

(1)
j − η

2

m2∏
j ̸=k,j=1

u
(2)
k − u

(2)
j − η

u
(2)
k − u

(2)
j + η

, k = 1, ...,m2 , (A.14)

respectively.
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The transfer-matrix eigenvalues for the case with symmetry gl(1|1|1), which corresponds

to model I with d = 3 and k⃗ = {3, 2, 1}, is given by7

Λ(1|1|1)(u; θj) =
L∏

j=1

(1 + u− θj)

[
L∏

j=1

(u− θj + η)

m1∏
j=1

u− u
(1)
j − η

u− u
(1)
j

+(−1)m1

L∏
j=1

(u− θj)

(
m1∏
j=1

u− u
(1)
j − η

u− u
(1)
j

+ (−1)m2

)
m2∏
j=1

u− u
(2)
j + η

u− u
(2)
j

]
,

(A.15)

with corresponding Bethe equations

L∏
j=1

u
(1)
k − θj + η

u
(1)
k − θj

= (−1)m1+1

m2∏
j=1

u
(2)
j − u

(1)
k − η

u
(2)
j − u

(1)
k

, k = 1, ...,m1 , (A.16)

1 = (−1)m2+1

m1∏
j=1

u
(1)
j − u

(2)
k

u
(1)
j − u

(2)
k + η

, k = 1, ...,m2 . (A.17)

Using the redefinition

u
(1)
i 7→ u

(1)
i − η

2
, (A.18)

these results become

Λ(1|1|1)(u; θj) =
L∏

j=1

(1 + u− θj)

{
(−1)m1+m2

L∏
j=1

(u− θj)

m2∏
j=1

u− u
(2)
j + η

u− u
(2)
j

+

+

m1∏
j=1

u− u
(1)
j − η

2

u− u
(1)
j + η

2

[ L∏
j=1

(u− θj + η) + (−1)m1

L∏
j=1

(u− θj)

m2∏
j=1

u− u
(2)
j + η

u− u
(2)
j

]}
,

(A.19)

and

L∏
j=1

u
(1)
k − θj +

η
2

u
(1)
k − θj − η

2

= (−1)m1+1

m2∏
j=1

u
(1)
k − u

(2)
j + η

2

u
(1)
k − u

(2)
j − η

2

, k = 1, ...,m1 , (A.20)

1 = (−1)m2+1

m1∏
j=1

u
(2)
k − u

(1)
j − η

2

u
(2)
k − u

(1)
j + η

2

, k = 1, ...,m2 , (A.21)

respectively.

7This case is not included in section 5, since there we restrict for simplicity to the cases with kd−1 > 1.
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A.2.1 Remark about gradings

As already remarked, all the R-matrices in this paper satisfy the non-graded (ordinary)
Yang-Baxter equation.

Let us compare our non-graded gl(1|2) results with corresponding results obtained using
a graded R-matrix in the FFB grading with reference state (0, 0, 1)⊗L [51, 52]. Setting in
(A.12) η = i and all inhomogeneities θj to zero, we obtain

Λ(1|2)(u; θj = 0) =(1 + u)L

{
m1∏
j=1

u− u
(1)
j − i

2

u− u
(1)
j + i

2

[
(u+ i)L + (−1)m1uL

m2∏
j=1

u− u
(2)
j + i

u− u
(2)
j

]

+ (−1)m1uL
m2∏
j=1

u− u
(2)
j − i

u− u
(2)
j

}
. (A.22)

Apart from differences in conventions and notations, this result is the same as (3.50) in [52],
except that the latter has −1 in place of our factors (−1)m1 , which can be attributed to
the fact that our R-matrix is not graded. Indeed, a similar phenomenon can be seen in the
OSp(1|2) model [25, 36, 53], compare in [36] the non-graded result (2.16) that has (−1)m

factors vs. the corresponding graded-result (3.12) that does not have such factors.

A.2.2 Fermionic duality transformation

It is interesting to investigate whether the above Bethe ansatz results for gl(1|2) and gl(1|1|1)
can be related by a fermionic duality transformation. Following the approach in [54] (see
also [55] and references therein), we define the polynomial P (u)

P (u) =
L∏

k=1

(u−θk−
η

2
)

m2∏
k=1

(u−u(2)k +
η

2
)− (−1)m1+1

L∏
k=1

(u−θk+
η

2
)

m2∏
k=1

(u−u(2)k − η

2
) , (A.23)

in terms of which the first gl(1|2) Bethe equation (A.13) becomes

P (u
(1)
k ) = 0 , k = 1, . . . ,m1 . (A.24)

Since P (u) has (for m1 even) degree L+m2, it has m
′ = L+m2 −m1 additional zeros

P (u′k) = 0 , k = 1, . . . ,m′ . (A.25)

If we identify u′ ↔ u(1), then (A.25) is the same as the first gl(1|1|1) Bethe equation (A.20),
except for (−1)m factors. We see that P (u) has the factorized form

P (u) ∝
m1∏
k=1

(u− u
(1)
k )

m′∏
k=1

(u− u′k) . (A.26)
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We observe that

P (u
(2)
j + η

2
)

P (u
(2)
j − η

2
)
= (−1)m1+1

m2∏
k ̸=j

u
(2)
j − u

(2)
k + η

u
(2)
j − u

(2)
k − η

=

m1∏
k=1

u
(2)
j − u

(1)
k + η

2

u
(2)
j − u

(1)
k − η

2

m′∏
k=1

u
(2)
j − u′k +

η
2

u
(2)
j − u′k −

η
2

, j = 1, . . . ,m2 , (A.27)

where the first equality follows from (A.23), and the second equality follows from (A.26).
That is, we have the identity

m1∏
k=1

u
(2)
j − u

(1)
k + η

2

u
(2)
j − u

(1)
k − η

2

m2∏
k ̸=j

u
(2)
j − u

(2)
k − η

u
(2)
j − u

(2)
k + η

= (−1)m1+1

m′∏
k=1

u
(2)
j − u′k −

η
2

u
(2)
j − u′k +

η
2

, j = 1, . . . ,m2 .

(A.28)
The LHS of (A.28) coincides with the RHS of the second gl(1|2) Bethe equation (A.14); while
the RHS of (A.28) is the same as the RHS of the second gl(1|1|1) Bethe equation (A.21) if
we again identify u′ ↔ u(1), except for (−1)m factors. In summary, up to (−1)m factors, the
gl(1|2) and gl(1|1|1) Bethe equations are related by a fermionic duality transformation.8

However, the eigenvalue expressions for gl(1|2) (A.12) and gl(1|1|1) (A.19) are not related
in such a way. Indeed, we now observe that

P (u− η
2
)

P (u+ η
2
)
=

m1∏
k=1

u− u
(1)
k − η

2

u− u
(1)
k + η

2

m′∏
k=1

u− u′k −
η
2

u− u′k +
η
2

=

∏L
k=1(u− θk − η) + (−1)m1

∏L
k=1(u− θk)

∏m2

k=1

u−u
(2)
k −η

u−u
(2)
k∏L

k=1(u− θk)
∏m2

k=1

u−u
(2)
k +η

u−u
(2)
k

+ (−1)m1
∏L

k=1(u− θk + η)
, (A.29)

where the first equality follows from (A.26), and the second equality follows from (A.23).
That is, we have the identity

m1∏
k=1

u− u
(1)
k − η

2

u− u
(1)
k + η

2

[
L∏

k=1

(u− θk + η) + (−1)m1

L∏
k=1

(u− θk)

m2∏
k=1

u− u
(2)
k + η

u− u
(2)
k

]

=
m′∏
k=1

u− u′k +
η
2

u− u′k −
η
2

[
(−1)m1

L∏
k=1

(u− θk − η) +
L∏

k=1

(u− θk)

m2∏
k=1

u− u
(2)
k − η

u− u
(2)
k

]
. (A.30)

The LHS of (A.30) coincides with part of the expression for the gl(1|2) eigenvalue (A.12).
However, after the identification u′ ↔ u(1), the RHS of (A.30) does not appear to be related
to the gl(1|1|1) eigenvalue (A.19), which has a similar factor but with η 7→ −η. We conclude
that the gl(1|2) and gl(1|1|1) models are not related by a fermionic duality transformation.

8We thank the referee for bringing this fact to our attention.
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B Trigonometric solution

We can generalize our analysis to contain trigonometric models. Similar to [15] these models
contain several constants. In order to achieve this, we split our matrices into upper/lower
triangular and diagonal parts:

P(k,n)
+ =

k∑
i<j

eij ⊗ eji , P(k,n)
− =

k∑
i>j

eij ⊗ eji , P(k,n)
0 =

k∑
i=j

eij ⊗ eji , (B.1)

K(k,n)
+ =

k∑
i<j

eij ⊗ eij , K(k,n)
− =

k∑
i>j

eij ⊗ eij , K(k,n)
0 =

k∑
i=j

eij ⊗ eij , (B.2)

where eij are n × n matrices as before (2.1)-(2.3). Notice that K(k,n)
0 = P(k,n)

0 , so in our
Ansatz for the Hamiltonian we only need to consider one of them. Hence, we now consider
a Hamiltonian of the form

Hk⃗ =
d−1∑
i=0

(
ai I(ki,n) + b±i P(ki,n)

± + b0i P
(ki,n)
0 + c±i K(ki,n)

±

)
. (B.3)

Obviously, we can recover our previous Ansatz (2.5) from this one by putting b+i = b−i =
b0i ≡ bi, and similarly for the c’s. Let us now again solve this system recursively.

At the highest level, we recover the rational SO(n) type models from the previous section.
However, when c±0 = 0, we find the solution

b00 = 1 , b−0 = x0 , b+ =
1

x0
, (B.4)

for x0 a constant. In the next step, there are more possibilities that generalize the rational
cases. First there is the recurrence step

a1 = 0 , b01 = −2, 0 , b−1 = x1 , b+1 = − 1

x0
+

1

x0 + x1
, c±1 = 0 . (B.5)

The second solution is the termination step

a1 = ±1 , b01 = −1 , b−1 = −x0 , b+1 = − 1

x0
, c±1 = 0 . (B.6)

For x1 = 1 we recover the rational solutions. Hence, we are lead to the trigonometric
generalizations of models I and II

H̃ I,⃗k,y⃗ = a0 I(n,n) +
d−1∑
j=0

(−1)j(1 + yj)P
(kj ,n)
0 +

d−1∑
j=0

xj P
(kj ,n)
− +

d−1∑
j=0

[ 1∑j
i=0 xi

− 1∑j−1
i=0 xi

]
P(kj ,n)
+ ,

(B.7)
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where the vector y⃗ = {0,±1,±1, . . .}, where each of the signs can be different. We recover
the rational model I by setting xi = (−1)i. Similarly, we find

H̃ II,⃗k,y⃗ = a0 I(n,n) +
d−2∑
j=0

(−1)j(1 + yj)P
(kj ,n)
0 +

d−2∑
j=0

xj P
(kj ,n)
− +

d−2∑
j=0

[ 1∑j
i=0 xi

− 1∑j−1
i=0 xi

]
P(kj ,n)
+

− (−1)dP(kd−1,n)
0 −

( d−2∑
i=0

xi
)
P(kd−1,n)
− −

( d−2∑
i=0

1

xi

)
P(kd−1,n)
− ± I(kd−1,n) . (B.8)

The original model II can again be easily recovered from this solution.

C Completeness checks

We present here Bethe roots {u(l)k } corresponding to each of the eigenvalues of the homo-

geneous transfer matrices (all θj = 0) with small values L, d, k⃗ for model II (Tables 6, 7,
8), model I (Tables 9, 10, 11) and model III (Tables 12, 13), which serve as completeness
checks of the Bethe ansatz. The columns in the tables labeled “deg” display the degen-
eracy (multiplicity) of an eigenvalue. We emphasize the presence of numerous eigenvalues
described by infinite, singular and/or continuous (arbitrary) Bethe roots. For model II, we
find instances with repeated singular Bethe roots (such as the last line of Table 7), where the
roots indeed give the eigenvalue through the TQ equation (4.48), but the Bethe equations
are not all satisfied (at least naively). For models I and III, we do not find such Bethe root
configurations, so their Bethe ansätze appear to be complete.

L m1 m2 p deg {u(1)k } {u(2)k }
1 0 0 - 2 - -
1 1 1 0 2 ∞ ∞
2 0 0 - 3 - -
2 1 0 - 1 −η

2
-

2 1 1 0 4 −η
2

∞
2 1 1 0 7 ∞ ∞
2 2 2 1 1 0, −η (−1± 1√

2
)η

Table 6: Model II+ with d = 2, k⃗ = {4, 2}. Bethe roots in blue are singular solutions.
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L m1 m2 p deg {u(1)k } {u(2)k }
1 0 0 - 1 - -
1 1 0 - 1 ∞ -
1 1 1 0 2 ∞ ∞
2 0 0 - 1 - -
2 1 0 - 1 −η

2
-

2 1 0 - 1 ∞ -
2 1 1 0 2 −η

2
∞

2 1 1 0 2 ∞ ∞
2 2 0 - 1 (−1± i)η

2
-

2 2 1 0 3 0, −η 0
2 2 1 0 2 (−1± i)η

2
∞

2 2 2 0 3 −η, −η 0, 0

Table 7: Model II+ with d = 3, k⃗ = {4, 3, 2}. Bethe roots in blue are singular solutions.

L m1 m2 p deg {u(1)k } {u(2)k }
1 0 0 - 1 - -
1 1 0 - 1 ∞ -
1 1 1 0 2 ∞ ∞
2 0 0 - 1 - -
2 1 0 - 1 −η

2
-

2 1 0 - 1 ∞ -
2 1 1 0 2 −η

2
∞

2 1 1 0 2 ∞ ∞
2 2 0 - 1 (−1± i)η

2
-

2 2 1 0 2 0, −η 0
2 2 1 0 5 (−1± i)η

2
∞

2 2 2 1 1 0, −η 0, −η

Table 8: Model II− with d = 3, k⃗ = {4, 3, 2}. Bethe roots in blue are singular solutions.

L m1 m2 m3 deg {u(1)k } {u(2)k } {u(3)k }
1 0 0 0 2 - - -
1 1 0 0 2 ∞ - -
2 0 0 0 3 - - -
2 1 0 0 1 −η

2
- -

2 1 1 0 4 −η
2

∞ -

2 1 1 1 4 ∞ u
(2)
1 ∞

2 2 2 0 3 − (1±i)η
2

−
(
1± i√

2

)
η -

2 2 2 1 1 {−η, 0} −
(
1± i√

2

)
η η

2

Table 9: Model I with d = 2, k⃗ = {4, 2}. Bethe roots in blue are singular Bethe solutions; Bethe
roots in red are arbitrary.
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L m1 m2 m3 deg {u(1)k } {u(2)k } {u(3)k }
1 0 0 0 1 - - -
1 1 0 0 3 ∞ - -
2 0 0 0 1 - - -
2 1 1 0 3 −η

2
∞ -

2 1 1 1 3 ∞ u
(2)
1 ∞

2 2 0 0 6 − (1±i)η
2

- -
2 2 2 0 3 {−η, 0} 0 -

Table 10: Model I with d = 2, k⃗ = {4, 3}. Bethe roots in blue are singular solutions; Bethe roots
in red are arbitrary.

L m1 m2 m3 deg {u(1)k } {u(2)k } {u(3)k }
1 0 0 0 1 - - -
1 1 0 0 1 ∞ - -
1 1 1 0 2 ∞ ∞ -
2 0 0 0 4 - - -
2 1 0 0 1 ∞ - -
2 1 0 0 1 −η

2
- -

2 1 1 0 2 −η
2

∞ -

2 1 1 1 2 ∞ u
(2)
1 ∞

2 2 0 0 1 − (1±i)η
2

- -

2 2 1 0 2 − (1±i)η
2

∞ -
2 2 1 1 1 {−η, 0} 0 ∞

2 2 2 0 2

{
u
(1)
1 ,−η

(
η+u

(1)
1

η+2u
(1)
1

)} {
0,−2u

(1)
1

(
η+u

(1)
1

η+2u
(1)
1

)}
0

Table 11: Model I with d = 3, k⃗ = {4, 3, 2}. Bethe roots in blue are singular solutions; Bethe roots
in red are arbitrary.

L m1 m2 m3 deg {u(1)k } {u(2)k } {u(3)k }
1 0 0 0 2 - - -
1 1 0 0 2 ∞ - -
2 0 0 0 3 - - -
2 1 0 0 1 −η

2
- -

2 1 1 0 4 ∞ u
(2)
1 -

2 1 1 0 4 −η
2

∞ -

2 2 2 0 2 −(1± i)η
2

i(2i±
√
2)η

2
-

2 2 0 0 1 {∞,∞}
{
u
(2)
1 , u

(2)
2

}
∞

2 2 2 1 1

{
u
(1)
1 ,−η

(
η+u

(1)
1

η+2u
(1)
1

)}
{∞,∞} ∞

Table 12: Model III with d = 2, k⃗ = {4, 2} and µ0 = +1. Bethe roots in red are arbitrary.
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L m1 m2 m3 deg {u(1)k } {u(2)k } {u(3)k }
1 0 0 0 1 - - -
1 1 0 0 1 ∞ - -

1 1 1 0 2 ∞ u
(2)
1 -

2 0 0 0 3 - - -
2 1 0 0 1 ∞ - -
2 1 0 0 1 −η

2
- -

2 1 1 0 2 −η
2

∞ -

2 1 1 0 2 ∞ u
(2)
1 -

2 2 0 0 1 − (1±i)η
2

- -

2 2 1 0 2 − (1±i)η
2

∞ -
2 2 1 0 2 {0,−η} 0 -

2 2 2 1 1 − (1±i)η
2

{∞,∞} -

2 2 2 1 1 − (1±i)η
2

{∞, 0} ∞

Table 13: Model III with d = 3, k⃗ = {4, 3, 2} and µ0 = −1. Bethe roots in blue are singular
solutions; Bethe roots in red are arbitrary.
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