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Neural operators have emerged as a powerful tool for learning the mapping between infinite-
dimensional parameter and solution spaces of partial differential equations (PDEs). In this 
work, we focus on multiscale PDEs that have important applications such as reservoir modeling 
and turbulence prediction. We demonstrate that for such PDEs, the spectral bias towards 
low-frequency components presents a significant challenge for existing neural operators. To 
address this challenge, we propose a hierarchical attention neural operator (HANO) inspired 
by the hierarchical matrix approach. HANO features a scale-adaptive interaction range and self-
attentions over a hierarchy of levels, enabling nested feature computation with controllable 
linear cost and encoding/decoding of multiscale solution space. We also incorporate an 
empirical �1 loss function to enhance the learning of high-frequency components. Our 
numerical experiments demonstrate that HANO outperforms state-of-the-art (SOTA) methods 
for representative multiscale problems.

1. Introduction

In recent years, operator learning methods have emerged as powerful tools for computing parameter-to-solution maps of partial 
differential equations (PDEs). In this paper, we focus on the operator learning for multiscale PDEs (MsPDEs) that encompass multiple 
temporal/spatial scales. MsPDE models arise in applications involving heterogeneous and random media, and are crucial for predict-
ing complex phenomena such as reservoir modeling, atmospheric and ocean circulation, and high-frequency scattering. Important 
prototypical examples include multiscale elliptic partial differential equations, where the diffusion coefficients vary rapidly. The 
coefficient can be potentially rapidly oscillatory, have high contrast ratio, or even bear a continuum of non-separable scales.

MsPDEs, even with fixed parameters, present great challenges for classical numerical methods [1], as their computational cost 
typically scales inversely proportional to the finest scale � of the problem. To overcome this issue, multiscale solvers have been 
developed by incorporating microscopic information to achieve computational cost independent of �. One such technique is numerical 
homogenization [2–7], which identifies low-dimensional approximation spaces adapted to the corresponding multiscale operator. 
Similarly, fast solvers like multilevel/multigrid methods [8,9] and wavelet-based multiresolution methods [10,11] may face limitations 
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when applied to multiscale PDEs [1], while multilevel methods based on numerical homogenization techniques, such as Gamblets 
[12], have emerged as a way to discover scalable multilevel algorithms and operator-adapted wavelets for multiscale PDEs. Low-
rank decomposition-based methods are another popular approach to exploit the low-dimensional nature of MsPDEs. Notable example 
includes the fast multipole method [13], hierarchical matrices (ℋ and ℋ2 matrices) [14], and hierarchical interpolative factorization 
[15]. These methods can achieve (near-)linear scaling and high computational efficiency by exploiting the low-rank approximation 
of the (elliptic) Green’s function [16].

Neural operators, unlike traditional solvers that operate with fixed parameters, are capable of handling a range of input param-
eters, making them promising for data-driven forward and inverse solving of PDE problems. Pioneering work in operator learning 
methods includes [17–20]. Nevertheless, they are limited to problems with fixed discretization sizes. Recently, infinite-dimensional 
operator learning has been studied, which learns the solution operator (mapping) between infinite-dimensional Banach spaces for 
PDEs. Most notably, the Deep Operator Network (DeepONet) [21] was proposed as a pioneering model to leverage deep neural 
networks’ universal approximation for operators [22]. Taking advantage of the Fast Fourier Transform (FFT), Fourier Neural Op-
erator (FNO) [23] constructs a learnable parametrized kernel in the frequency domain to render the convolutions in the solution 
operator more efficient. Other developments include the multiwavelet extension of FNO [24], Message-Passing Neural Operators 
[25], dimension reduction in the latent space [26], Gaussian Processes [27], Clifford algebra-inspired neural layers [28], and Dilated 
convolutional residual network [29].

Attention neural architectures, popularized by the Transformer deep neural network [30], have emerged as universal backbones 
in the field of Deep Learning. These architectures serve as the foundation for numerous state-of-the-art models, including GPT 
[31], Vision Transformer (ViT) [32], and Diffusion models [33,34]. More recently, Transformers have been studied and become 
increasingly popular in PDE operator learning problems, e.g., in [35–41] and many others. There are several advantages in the 
attention architectures. Attention can be viewed as a parametrized instance-dependent kernel integral to learn the “basis” [35]
similar to those in the numerical homogenization; see also the exposition featured in neural operators [42]. This layerwise latent 
updating resembles the learned “basis” in DeepONet [39], or frame [43]. It is flexible to encode the non-uniform geometries in the 
latent space [44]. In [45,46], advanced Transformer architectures (ViT) and Diffusion models are combined with the neural operator 
framework. In [47], Transformers are combined with reduced-order modeling to accelerate the fluid simulation for turbulent flows. In 
[48], tensor decomposition techniques are employed to enhance the efficiency of attention mechanisms in solving high-dimensional 
partial differential equation (PDE) problems.

Among these data-driven operator learning models, under certain circumstances, the numerical results could sometimes overtake 
classical numerical methods in terms of efficiency or even in accuracy. For instance, full wave inversion is considered in [49] with the 
fusion model of FNO and DeepOnet (Fourier-DeepONet); direct methods-inspired DNNs are applied to the boundary value Calderón 
problems achieve much more accurate reconstruction with the help of data [50–52]; in [53], the capacity of FNO to jump signif-
icantly large time steps for spatialtemporal PDEs is exploited to infer the wave packet scattering in quantum physics and achieves 
magnitudes more efficient result than traditional implicit Euler marching scheme. [54] exploits the capacity of graph neural networks 
to accelerate particle-based simulations. [55] investigates the integration of the neural operator DeepOnet with classical relaxation 
techniques, resulting in a hybrid iterative approach. Meanwhile, Wu et al. [56] introduce an asymptotic-preserving convolutional 
DeepOnet designed to capture the diffusive characteristics of multiscale linear transport equations.

For multiscale PDEs, operator learning methods can be viewed as an advancement beyond multiscale solvers such as numerical 
homogenization. Operator learning methods have two key advantages: (1) They can be applied to an ensemble of coefficients/pa-
rameters, rather than a single set of coefficients, which allows the methods to capture the stochastic behaviors of the coefficients; 
(2) The decoder in the operator learning framework can be interpreted as a data-driven basis reduction procedure from the la-
tent space (high-dimensional) that approximates the solution data manifold (often lower-dimensional) of the underlying PDEs. This 
procedure offers automated data-adaptation to the coefficients, enabling accurate representations of the solutions’ distributions. In 
contrast, numerical homogenization typically relies on a priori bases that are not adapted to the ensemble of coefficients. In this 
regard, the operator learning approach has the potential to yield more accurate reduced-order models for multiscale PDEs with 
parametric/random coefficients.

However, for multiscale problems, current operator learning methods have primarily focused on representing the smooth parts of 
the solution space. This results in the so-called “spectral bias”, leaving the resolution of intrinsic multiscale features as a significant 
challenge. The spectral bias, also known as the frequency principle [57–59], states that deep neural networks (DNNs) often struggle 
to learn high-frequency components of functions that vary at multiple scales. In this regard, Fourier or wavelet-based methods are 
not always effective for MsPDEs, even for fixed parameters. Neural operators tend to fit low-frequency components faster than high-
frequency ones, limiting their ability to accurately capture fine details. When the elliptic coefficients are smooth, the coefficient to 
solution map can be well resolved by the FNO parameterization [23]. Nevertheless, existing neural operators have difficulty learning 
high-frequency components of multiscale PDEs, as is shown in Fig. 1 and detailed in Section 3. While the universal approximation 
theorems can be proven for FNO type models (see e.g., [60]), achieving a meaningful decay rate requires “extra smoothness”, which 
may be absent or lead to large constants for MsPDEs. For FNO, this issue was partially addressed in [61], yet the approach there 
needs an ad-hoc manual tweak on the weights for the modes chosen.

We note that for fixed parameter MsPDEs, In recent years, there has been increasing exploration of neural network methods 
for solving multiscale PDEs despite the spectral bias or frequency principle [57–59] indicating that deep neural networks (DNNs) 
often struggle to effectively capture high-frequency components of functions. Specifically designed neural solvers [62–64] have been 
developed to mitigate the spectral bias and accurately solve multiscale PDEs with fixed parameters.
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Fig. 1. We illustrate the effectiveness of the HANO scheme on the challenging multiscale trigonometric benchmark, with the coefficients and corresponding solution 
derivative shown in (a) and (b), see Appendix 3.1.2 for problem description. We notice that HANO can capture the solution derivatives more accurately, whereas FNO 
only captures their averaged or homogenized behavior. In (c) and (d), we analyze the error by decomposing it into the frequency domain [−256�, 256�]2 and plotting 
the absolute error spectrum. This shows the spectral bias in the existing state-of-the-art model, and also our method achieves superior performance in predicting 
fine-scale features, especially accurately capturing derivatives. We refer readers to Fig. 7 in Section 3.1 and Figs. 8, 9, 7.

Motivated by aforementioned challenges, we investigate the spectral bias present in existing neural operators. Inspired by con-
ventional multilevel methods and numerical homogenization, we propose a new Hierarchical Attention Neural Operator (HANO) 
architecture to mitigate it for multiscale operator learning. We also test our model on standard operator learning benchmark includ-
ing the Navier-Stokes equation in the turbulent regime, and the Helmholtz equation in the high wave number regime. Our main 
contributions can be summarized as follows:

• We introduce HANO, that decomposes input-output mapping into hierarchical levels in an automated fashion, and enables nested 
feature updates through hierarchical local aggregation of self-attentions with a controllable linear computational cost.

• We use an empirical �1 loss function to further reduce the spectral bias and improve the ability to capture the oscillatory 
features of the multiscale solution space;

• We investigate the spectral bias in the existing neural operators and empirically verify that HANO is able to mitigate the spectral 
bias. HANO substantially improves accuracy, particularly for approximating derivatives, and generalization for multiscale tasks, 
compared with state-of-the-art neural operators and efficient attention/transformers.

2. Methods

In this section, to address the spectral bias for multiscale operator learning, and motivated by the remarkable performance of 
attention-based models [30,65] in computer vision and natural language processing tasks, as well as the effectiveness of hierarchical 
matrix approach [14] for multiscale problems, we propose the Hierarchical Attention Neural Operator (HANO) model.

2.1. Operator learning problem

We follow the setup in [23,21] to approximate the operator  ∶ � ↦ � ∶= (�), with the input/parameter � ∈ drawn from a 
distribution � and the corresponding output/solution � ∈ , where  and  are infinite-dimensional Banach spaces, respectively. 
Our aim is to learn the operator  from a collection of finitely observed input-output pairs through a parametric map  ∶ ×Θ →

and a loss functional  ∶ × →ℝ, such that the optimal parameter

�∗ = argmin
�∈Θ

��∼�

[

(
 (�, �),(�)

)]
.

2.1.1. Hierarchical discretization
To develop a hierarchical attention, first we assume that there is a hierarchical discretization of the spatial domain 	. For an input 

feature map that is defined on a partition of 	, for example, of resolution 8 × 8 patches, we define (3) ∶= {
 = (
1, 
2, 
3) |
1, 
2, 
3 ∈
{0, 1, 2, 3}} as the finest level index set, in which each index 
 corresponds to a patch token characterized by a feature vec-
tor � (3)



∈ ℝ(3) . For a token 
 = (
1, 
2, 
3), its parent token � =

(

1, 
2

)
aggregates finer level tokens (e.g., (1, 1) is the parent of 

(1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 1, 3) in Fig. 2), characterized by a feature vector � (2)
�

∈ ℝ(2) . We postpone describing the aggregation 

scheme in the following paragraph. In general, we write (�) ∶= {
 = (
1, 
2, ..., 
�) |
� ∈ {0, 1, 2, 3} for � = 1, ..., �} as the index set 
of �-th level tokens and (
) denotes the index set of the finest level tokens. Note that the hierarchy is not restricted to quadtree 
setting.
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Fig. 2. Hierarchical discretization and index tree. The 2D unit square is discretized hierarchically into three levels with corresponding index sets (1), (2) , and (3) . 
To illustrate, (1)(1,2) represents the second level child nodes of node (1) and is defined as (1)(1,2) = {(1, 0), (1, 1), (1, 2), (1, 3)}.

Fig. 3. Hierarchically nested attention.

2.2. Vanilla attention mechanism

In this section, we first revisit the vanilla scaled dot-product attention mechanism for a single-level discretization. For example, 
the finest level tokens, denoted as � (
)



∈ ℝ(
) , are indexed by 
 ∈ (
). The token aggregation formula on this level can then be 

expressed as:

atten ∶ �(
)



=
∑
�∈(
)

(�
(
)


,�

(
)
�
)�

(
)
�
, (1)

where �(
)



=���
(
)


, �(
)



=�� �

(
)


, �(
)



=�� �

(
)


, and ��, �� , �� ∈ℝ(
)×(
) are learnable matrices. Here, for simplicity, we use 

the function  represents a pairwise interaction between queries and keys in the self-attention mechanism. Note that in conventional 
self-attention mechanism, the pairwise interaction potential is defined by (�(
)



, �(
)

�
) ∶= exp(�

(
)



⋅ �
(
)
�
)∕(
) and further normalized 

by a row scaling factor via softmax function. To be more specific, the vanilla self-attention is defined by

vanilla atten ∶ �(
)



=
∑
�∈(
)

(�
(
)


,�

(
)
�
)

∑
�∈(
) (�

(
)


,�

(
)
�
)
�
(
)
�
. (2)

2.3. Hierarchical attention

In this section, we present HANO in Algorithm 1, a hierarchically nested attention scheme with (�) cost inspired by ℋ2 matri-
ces [66], which is much more efficient than the vanilla attention above that scales with (�2). The overall HANO scheme (e.g., for a 
three-level example see Fig. 3) resembles the V-cycle operations in multigrid methods, and it comprises four key operations: reduce, 
multilevel local attention and decompose&mix. In this procedure, instead of using global attention aggregation as in equation (1), 
we utilize a local aggregation formula inspired by the  matrix approximation in the step of multilevel local attention. This approxi-
mation decomposes global interactions into local interactions at different scales (levels of tokens, denoted by � of (�)). Empirically 
in Section 3, this decomposition has a very minimal loss of expressivity.

2.3.1. Reduce operation using the quadtree hierarchy
The reduce operation aggregates finer-level tokens into coarser-level tokens in the hierarchy. We denote 
(�,�+1) as the set 

of indices of the (� + 1)-th level child tokens of the �-th level token 
, where 
 ∈ (�). In the quadtree case, 
(�,�+1) =
{(
, 0), (
, 1), (
, 2), (
, 3)}, where (
, �) is the concatenation of 
 and 0 ≤ � ≤ 3. The reduce map can be defined as
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�
(�)



=(�)({�
(�+1)
�

}�∈
(�,�+1) ),

which maps the (� +1)-th level tokens with indices in 
(�,�+1) to the �-th level token 
. We implement (�) as a linear layer, namely,

�
(�)



=�
(�)

0
�
(�+1)

(
,0)
+�

(�)

1
�
(�+1)

(
,1)
+�

(�)

2
�
(�+1)

(
,2)
+�

(�)

3
�
(�+1)

(
,3)
,

where �(�)

0
, �(�)

1
, �(�)

2
, �(�)

3
∈ ℝ(�−1)×(�) are matrices. The reduce operation is applied to �(�)



, �(�)



, and �(�)



for any 
 ∈ (�), and 

� = 
 − 1, ⋯ , 1. This step corresponds to the downwards arrow in Fig. 3.

2.3.2. Multilevel local attention
Instead of using global attention aggregation as in equation (1), we utilize a local aggregation formula in each single level. The 

local aggregation at the �-th level atten(�)
loc

is written using the nested �(�)


, �(�)

�
, �(�)

�
for � = 
, … , 1 as follows: for 
 ∈ (�),

atten(�)
loc

∶ �
(�)



=
∑

�∈ (�)(
)∪


(�
(�)



⋅ �
(�)
�

)�
(�)
�
, (3)

where  (�)(
) denotes the set of �-th level neighbors of 
 ∈ (�). We define  (�)(
) as the set of tokens within a specific window 
centered on the 
-th token with a fixed window size for each level. This configuration ensures that attention aggregation mirrors the 
localized scope characteristic of convolution operations.

2.3.3. Decompose&mix operation using the quadtree hierarchy
The decompose operation reverses the reduce operation from level 1 to level 
 − 1. The decompose operator (�) ∶ �

(�)



↦

{�̃
(�+1)
�

}�∈
(�,�+1) , maps the �-th level feature �
(�)



with index 
 and 1 ≤ � ≤ 
 − 1 to (� + 1)-th level tokens associated to its child 

set 
(�,�+1). The presentation above provides an equivalent matrix form of (�) and (�) from fine to coarse levels. ̃�(�+1)



is further 

aggregated to �(�+1)



in the mix operation such that �(�+1)



+ = �̃
(�+1)



for 
 ∈ (�+1). In the current implementation, we use a simple 

linear layer such that ̃�(�+1)
(
,�)

=	
(�),�
� �

(�)


, for � = 0, 1, 2, 3, with parameter matrices 	(�)

� ∈ℝ(�)×(�+1) .

At this point, we can summarize the hierarchically nested attention algorithm as follows.

Algorithm 1 Hierarchically Nested Attention.

Input: (
) , � (
)


for 
 ∈ (
) .

STEP 0: Compute �(
)


, �(
)



, �(
)



for 
 ∈ (
) .

STEP 1: For � = 
 − 1, ⋯ , 1, Do the reduce operations �(�)



=(�)({�
(�+1)
�

}�∈
(�,�+1) ) and also for �(�)

and �(�)



, for any 
 ∈ (�) .

STEP 2: For � = 
, ⋯ , 1, Do the local aggregation by equation (3) to compute �(�)


, � = 1, ..., 
, for any 
 ∈ (�) .

STEP 3: For � = 1, ⋯ , 
 − 1, Do the decompose operations {�̃(�+1)
�

}�∈
(�,�+1) =(�)(�
(�)



), for any 
 ∈ (�) ; then �(�+1)



+ = �̃
(�+1)



, for any 
 ∈ (�+1) .

Output: �(
)


for any 
 ∈ (
) .

2.3.4. Hierarchical matrix perspective
The hierarchically nested attention in Algorithm 1 resembles the celebrated hierarchical matrix method [66], in particular, the 

ℋ2 matrix from the perspective of matrix operations. In the following, we take the one-dimensional binary tree-like hierarchical 
discretization shown in Fig. 4 as an example to illustrate the reduce operation, decompose operation, and multilevel token aggregation 
in STEP 0-4 of Algorithm 1 using matrix representations.

STEP 0 Given the input features � (
), compute the queries �(
)


, keys �(
)

�
, and values �(
)



for � ∈ (
).

Starting from the finest level features � (
)


, 
 ∈ (
), the queries �(
) can be obtained by

⎡⎢⎢⎣

⋮

�
(
)


⋮

⎤⎥⎥⎦
=

⎡⎢⎢⎢⎣

��,(
)

��,(
)

⋱

��,(
)

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

|(
)|

⎡⎢⎢⎣

⋮

�
(
)


⋮

⎤⎥⎥⎦

⎫⎪⎬⎪⎭
|(
)|,

and for the keys �(
) and values �(
), similar procedures follow.

STEP 1 For � = 
 − 1 ∶ 1, Do the reduce operations �(�)



=(�)({�
(�+1)
�

}�∈
(�,�+1) ) and also for �
(�)



and �(�)


, for any 
 ∈ (�).

If (�) is linear, the reduce operations correspond to 
⎡⎢⎢⎣

⋮

�
(�)


⋮

⎤⎥⎥⎦
= R

(�)
⎡⎢⎢⎣

⋮

�
(�+1)


⋮

⎤⎥⎥⎦
. In matrix form, the reduce operation is given by 

multiplying with
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Fig. 4. Hierarchical discretization of 1D domain. The coarsest level partition is plotted as the top four segments in pink. The segment (0, 0) is further partitioned 
into two child segments (0, 0, 0) and (0, 0, 1). During the reducing process, the computation proceeds from bottom to top to obtain coarser level representations. For 
example, the (0, 0) representations are obtained by applying learnable reduce operations (2) and (1) on (0, 0, 0) and (0, 0, 1) respectively. When generating the 
high-resolution representations, the computation proceeds from top to bottom by applying learnable decomposition operations (1) and (2) . The red frames show 
examples of attention windows at each level.

R
(�) ∶=

⎡⎢⎢⎢⎢⎣

�
(�)

0
�
(�)

1

�
(�)

0
�
(�)

1
⋱ ⋱

�
(�)

0
�
(�)

1

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

|(�+1)|

⎫⎪⎬⎪⎭
|(�)|,

and �(�)

0
, �(�)

1
∈ℝ(�−1)×(�) are matrices parametrized by linear layers. In practice, queries, keys, and values use different �(�)

0
, �(�)

1

to enhance the expressivity. In general, these operators (�) are not limited to linear operators. The composition of nonlinear 
activation functions would help increase the expressivity. The nested learnable operators (�) also induce the channel mixing and 
are equivalent to a structured parameterization of ��, �� , �� matrices for the coarse level tokens, in the sense that, inductively,

⎡⎢⎢⎣

⋮

�
(�)


⋮

⎤⎥⎥⎦
= R

(�)⋯R
(
−1)

⎡⎢⎢⎣

⋮

�
(
)


⋮

⎤⎥⎥⎦

= R
(�)⋯R

(
−1)

⎡⎢⎢⎢⎣

��,(
)

��,(
)

⋱

��,(
)

⎤⎥⎥⎥⎦

⎡⎢⎢⎣

⋮

�
(
)


⋮

⎤⎥⎥⎦
.

(4)

STEP 2 With the �-th level queries and keys, we can calculate the local attention matrix 
(�)

loc
at the �-th level with (
(�)

loc
)
,� ∶=

exp(�
(�)



⋅ �
(�)
�

) for 
 ∈ (�)(�), or 
 ∼ � using the following local aggregation at the �-th level atten(�)
loc
. For the nested �(�)



, �(�)

�
, �(�)

�

for � = 
, … , 1, the local aggregation is for 
 ∈ (�),

atten(�)
loc

∶ �
(�)



=
∑

�∈ (�)(
)∪


(�
(�)


,�

(�)
�

)�
(�)
�
, (5)

where  (�)(
) is the set of �-th level neighbors of 
 ∈ (�).

STEP 3 The decompose operations, opposite to the reduce operations, correspond to the transpose of the following matrix in the 
linear case,

D
(�) ∶=

⎡⎢⎢⎢⎢⎣

	
(�)

0
	
(�)

1

	
(�)

0
	
(�)

1
⋱ ⋱

	
(�)

0
	
(�)

1

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

|(�+1)|

⎫⎪⎬⎪⎭
|(�)|.

The �-th level aggregation in Fig. 3 contributes to the final output � (
) in the form
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Fig. 5. A demonstration of the decomposition of attention matrix into three levels of local attention matrix.

D
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−1),T ⋯D

(�),T
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loc
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⋮

⎤⎥⎥⎦
.

Eventually, aggregations at all 
 levels in one V-cycle can be summed up as

⎡
⎢⎢⎣

⋮

�
(
)


⋮

⎤
⎥⎥⎦
=

(

−1∑
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���
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(�)⋯R

(
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(
)
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⋮
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(
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⋮

⎤
⎥⎥⎦
. (6)

The hierarchical attention matrix


ℎ ∶=


−1∑
�=1

(D(
−1),T ⋯D
(�),T


(�)

���
R
(�)⋯R

(
−1)) +

(
)

loc
,

in equation (6) resembles the three-level ℋ2 matrix decomposition illustrated in Fig. 5 (see also [66] for a detailed description). 
The sparsity of 
ℎ lies in the fact that the attention matrix is only computed for pairs of tokens within the neighbor set. The ℋ

2

matrix-vector multiplication in equation (6) implies the (�) complexity of Algorithm 1.
Note that, the local attention matrix at level (1) (pink), level (2) (blue) and level (3) (green) are 
(1)

���
, 
(2)

���
and 
(3)

���
, 

respectively. However, when considering their contributions to the finest level, they are equivalent to the attention matrix 
D
(2),T

D
(1),T


(1)

���
R
(1)

R
(2) ∈ ℝ(3) × ℝ(3) (pink), D

(2),T

(2)

���
R
(2) ∈ ℝ(3) × ℝ(3) (blue) and 
(3)

���
(green), as demonstrated in Fig. 5. 

Each pink block and blue block are actually low-rank sub-matrices with rank (1) and rank (2), respectively, by definition.

2.3.5. Complexity
We conclude the section by estimating the complexity of Algorithm 1.

Proposition 2.1. The reduce operation, multilevel local attention, and decomposition/mix operations together form a V-cycle for updating 
tokens, as illustrated in Fig. 3. The cost of one V-cycle is �(�) if  is a quadtree, as implemented in the paper.

Proof. For each level �, the cost to compute equation (3) is �(|(�)|(�)) since for each 
 ∈ (�) the cardinality of the neighbor set 
 (�)(
) is bounded by a constant �. The reduce operation � (�−1)



=(�−1)({�

(�)
�

}�∈
(�−1,�) ) costs at most |(�)|(�)(�−1) flops and so 

does the decompose operation at the same level. Therefore, for each level, the operation cost is �(|(�)|(�)) + 2|(�)|(�)(�−1). 
When  is a quadtree, (
) =�, (
−1) =�∕4, ⋯ , (1) = 4, therefore the total computational cost ∼(�). □

2.4. Overall architecture

The overall neural network architecture uses the standard Transformer [32] architecture for computer vision tasks, and the HANO 
attention is a drop-in replacement of the attention mechanism therein. The input � is first embedded into � × � tokens represented 
as a tensor of size � × � × (
) using patch embedding, for a dataset with resolution � × � , such as in the multiscale elliptic 
equation benchmark. These tokens are then processed by a multi-level hierarchically nested attention, as described in Section 2, 
resulting in hidden features �(
)



, 
 ∈ (
). Finally, a decoder maps the hidden features to the solution �. Different decoders can be 

employed depending on prior knowledge of the PDE model. For example, [21] uses a simple feedforward neural network (FFN) to 
learn a “basis” set, [67] employs a data-driven SVD-based decoder, and in our work, the compose and mix operations function as the 
decoder.

In this paper, we choose 
 = 5 as the depth of the HANO, window size of 3 × 3 for the definition of the neighborhood  (⋅)(⋅) in 
equation (3), GELU as the activation function, and a CNN-based patch embedding module to transfer the input data into features/to-
kens.

For a dataset with resolution � ×� , such as in the multiscale elliptic equation benchmark 3.1, the input feature �
(5) is represented 

as a tensor of size � × � × ! via patch embedding. The self-attention is first computed within a local window on level 5. Then the 
reduce layer concatenates the features of each group of 2 × 2 neighboring tokens and applies a linear transformation on the 4! -
dimensional concatenated features on �

2
×

�

2
level 2 tokens, to obtain level 2 features � (2) as a tensor of the size �

2
×

�

2
× 2! . The 

procedure is repeated from level 2 to level 1 with � (1) of size �
4
×

�

4
× 4! .
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Table 1
Hyperparameters configurations.

Module Hyperparameters

Patch embedding patch size: 4, padding: 0

Hierarchical Attention number of levels: 5
down sampling ratio |�+1|∕|�|: 4
feature dimension at each level: {32,32,32,32,32}
window size at each level: {3,3,3,3,3}
LayerNorm position: after attention
number of cycles: 2

For the decompose operations, starting at level 1, a linear layer is applied to transform the 4! -dimensional features � (1) into 8! -
dimensional features. Each level 1 token with 8! -dimensional features is decomposed into four level 2 tokens with 2! -dimensional 
features. These four level 2 tokens are added to the existing level 2 feature � (2) with output size of �

2
×

�

2
× 2! . The decomposition 

procedure is repeated from level 2 to level 3. The output of level 3 is � (3), which has a size of � × � ×! . We call the above procedures 
a cycle and we repeat � cycles by the same set up with layer normalizations between cycles.

The detailed configuration for HANO, which may consist of different levels and feature dimensions for each task, is presented in 
Table 1.

2.5. Comparison with existing multilevel transformers

In vision transformers like [65,68] with a multilevel architecture, attentions are performed at each level separately, resulting in 
no multilevel attention-based aggregation. This may lead to the loss of fine-scale information in the coarsening process, which is not 
ideal for learning multiscale operators where fine-scale features are crucial. The following components in the HANO approach we 
proposed could potentially address this issue:

(1) Attention-based local aggregations at each level, followed by summation of features from all levels to form the updated fine-scale 
features;

(2) The reduce/local aggregation/decompose/mix operations, inspired by the 2 hierarchical matrix method, enable the recovery 
of fine details with a linear cost;

(3) Nested computation of features at all levels, with simultaneous parameterization of the learnable matrices ��, �� , �� in a 
nested manner. Those components highlight the novelty of our method.

Meanwhile, the nested token calculation approach also differs from existing multilevel vision transformers [65,68], as we perform 
the reduce operation before attention aggregation, resulting in nested �, �, � tokens. Additionally, our approach differs from UNet 
[69], which utilizes a maxpooling for the reduce operation. For a numerical ablation study in which UNet and SWIN have the same 
general architecture, but different ways to aggregate features in each level, please refer to Table 2.

Our attention matrix has a global interaction range but features low-rank off-diagonal blocks at each level, as shown in Section 2.3. 
Note that the overall attention matrix itself is not necessarily low-rank, distinguishing it from efficient attention models using kernel 
tricks or low-rank projections [70–74].

3. Experiments

In this section, we tested HANO’s evaluation accuracy and efficiency compared to other state-of-the-art neural operators and 
other Transformers in several standard operator learning benchmarks. In Section 3.1, a new operator learning benchmark is created 
for solving multiscale elliptic PDEs, and common neural operators are tested. HANO demonstrates higher accuracy and robustness 
for coefficients with different degrees of roughness/multiscale features. In Section 3.4, HANO is tested in the Navier-Stokes equation 
benchmark problem with a high Reynolds number. In Section 3.5, HANO is tested in a benchmark for the Helmholtz equation.

3.1. Data generation for porous media benchmark

We apply the HANO model to learn the mapping from coefficient functions to solution operators for multiscale elliptic equations. 
We use the porous media benchmark with a two-phase coefficient produced from a log-normal random field following e.g. [75,76], 
and popularized by [77,23] as a standard task in operator learning. The model equation in divergence form writes

{
−∇ ⋅ (�∇�) =  in 	

� = 0 on "	
(7)

where the coefficient 0 < �min ≤ � ∶= �(#) ≤ �max, ∀# ∈ 	, and the forcing term  ∈ $2(	; ℝ). By the Lax-Milgram lemma, the 
coefficient to solution map  ∶$∞(	; ℝ+) →�1

0
(	; ℝ), � ↦ (�) is well-defined.
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Table 2
The baseline methods are implemented with their official implementation if publicly available. Performance 
is measured with relative $2 errors (×10−2) and relative �1 errors (×10−2). For the Darcy rough case, we 
run each experiment 3 times to calculate the mean and the standard deviation (after ±) of relative $2 and 
relative �1 errors. All experiments use a fixed train-val-test split setup, see Section 3.2 for details.

Model Runtime (s) Darcy smooth Darcy rough Multiscale

$2 �1 $2 �1 $2 �1

FNO2D 7.278 0.706 3.131 1.782 ±0.021 9.318 ±0.088 1.949 14.535

FNO2D �1 7.391 0.684 2.583 1.613 ±0.010 7.516 ±0.049 1.800 9.619

UNET 9.127 2.169 4.885 3.591 ±0.127 6.479 ±0.311 1.425 5.012

U-NO 11.259 0.678 2.580 1.185 ±0.005 5.695 ±0.005 1.350 8.577

U-NO �1 11.428 0.492 1.276 1.023 ±0.013 3.784 ±0.016 1.187 5.380

MWT 19.715 — — 1.138 ±0.010 4.107 ±0.008 1.021 7.245

GT 38.219 0.945 3.365 1.790 ±0.012 6.269 ±0.418 1.052 8.207

SWIN 41.417 — — 1.622 ±0.047 6.796 ±0.359 1.489 13.385

HANO $2 9.620 0.490 1.311 0.931 ±0.021 2.612 ±0.059 0.842 4.842

HANO �1 9.620 0.218 0.763 0.343±0.006 1.846±0.023 0.580 1.749

— MWT [24] only supports resolution with powers of two.

We also include experiments for multiscale trigonometric coefficients with higher contrast. The newly generated benchmark 
using rough or multiscale coefficient �(#) test the capacity of neural operators to capture fast oscillation (e.g. the diffusion coefficient 
becomes �%(#) = �(#∕�) with � ≪ 1), higher contrast ratio �max∕�min, and even a continuum of non-separable scales. See Section 3.1.2
for details. Results for three benchmarks are summarized in Table 2.

3.1.1. Two-phase coefficient
The two-phase coefficients {�} and approximations to solutions {�} in Section 3.1 are generated according to https://github .

com /zongyi -li /fourier _neural _operator /tree /master /data _generation as a standard benchmark. The forcing term is fixed as  (#) ≡ 1

in 	. The coefficients �(#) are generated according to � ∼ � ∶= '#
(
0, (−Δ+ �()−2

)
, where the covariance is inverting this elliptic 

operator with zero Neumann boundary conditions. The mapping ' ∶ℝ →ℝ takes the value �max on the positive part of the real line 
and �min on the negative part. The push-forward is defined in a pointwise manner, thus � takes the two values inside 	 and jumps 
from one value to the other randomly with likelihood characterized by the covariance. Consequently, �max and �min can control the 
contrast of the coefficient. The parameter � controls the “roughness” of the coefficient; a larger � results in a coefficient with rougher 
two-phase interfaces, as shown in Fig. 6. Solutions � are obtained by using a second-order finite difference scheme on a staggered 
grid with respect to �.

In [23] and all subsequent work benchmarking this problem for operator learning, the coefficient is determined using �max = 12, 
�min = 3, and � = 9, which results in a relative simply topology of the interface. In this case, the solutions are also relatively smooth 
(which is referred to as “Darcy smooth”). To show the architectural advantage of HANO, we adjust the parameters to increase the 
likelihood of the random jumps of the coefficients, which results in much more complicated topology of the interfaces, and solutions 
generated show more “roughness” (which is referred to as “Darcy rough”). See Fig. 6 for an example.

3.1.2. Multiscale trigonometric coefficient
We also consider equation (7) with multiscale trigonometric coefficient adapted from [12], as one of the multiscale elliptic 

equation benchmarks. The domain 	 is (−1, 1)2, and the coefficient �(#) is defined as

�(#) =

6∏
�=1

(1 +
1

2
cos(���(#1 + #2)))(1 +

1

2
sin(���(#2 − 3#1))),

where �� is uniformly distributed between 2
�−1 and 1.5 ×2�−1 for each �, and the forcing term is fixed as  (#) ≡ 1. The reference so-

lutions are obtained using the linear Lagrange finite element methods on uniform triangulation cut from a 1023 ×1023 Cartesian grid. 
Datasets of lower resolution are created by downsampling the higher resolution dataset using bilinear interpolation. The experiment 
results for the multiscale trigonometric case with different resolutions are shown in Table 2. HANO obtains the best relative $2 error 
compared to other neural operators. See Figs. 1 and 8 for illustrations of the coefficient and comparison of the solutions/derivatives 
at the slice # = 0.

3.2. Training setup

We consider pairs of functions {(�� , �� )}
�
�=1

, where �� is drawn from a probability measure specified in Sections 3.1.1 and 3.1.2, 

and �� = (�� ). During training and evaluation, �� and �� are evaluated pointwisely on a uniform 2D grid �2 ∶= {(#1, #2) = (
ℎ, �ℎ) ∣

, � = 0, … , � − 1} as matrices �� and �� . We generate the hierarchical index tree  using a quadtree representation of nodes with 
depth 
, where the finest level objects are pixels or patches aggregated by pixels.

We apply the ADAM optimizer with a maximum learning rate 10−3, weight decay 10−4, and a 1-cycle scheduler from [78]. We 
choose batch size 8 for experiments in Sections 3.1 and 3.4, and batch size 4 for experiments in Sections 3.1.2 and 3.5.
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Fig. 6. Top: (a) smooth coefficient in [23], with �max = 12, �min = 3, � = 9, (b), reference solution, (c) HANO solution, (d) HANO, absolute (abs.) error, (e) FNO2D, 
abs. error; Bottom: (a) rough coefficients with �max = 12, �min = 2, � = 20, (b) reference solution, (c) HANO solution, (d) HANO, abs. error, (e) FNO2D, abs. error, the 
maximal error of FNO2D is around 900� = 9e−4.

For the Darcy rough case, we use a train-validation-test split of 1280, 112, and 112, respectively, with a max of 500 epochs. For 
Darcy smooth and multiscale trigonometric cases, we use a split of 1000, 100, and 100, respectively, with a max of 500 epochs for 
the Darcy smooth case and 300 for the multiscale trigonometric case.

Baseline models are taken from the publicly available official implementations, and changes are detailed in each subsection if 
there is any. All experiments are run on a NVIDIA A100 GPU.

Empirical �1 loss function For multiscale problems, we adopt an �1 loss function instead of the conventional $2 loss, which 
places greater emphasis on high-frequency components. Empirically, we observe that the model’s training is more efficient and the 
generalization is more robust than those without. First, the empirical $2 loss function is defined as

$(
{
(�� ,�� )

}�
�=1

;�) ∶=
1

�

�∑

=1

‖�� − (�� ;�)‖�2∕‖��‖�2 ,

where ‖ ⋅ ‖�2 is the canonical �2 vector norm. The normalized discrete Fourier transform (DFT) coefficients of  are given by

 ( )()) ∶=
1√
�

∑
#∈�2

 (#)*−2
�#⋅) , ) ∈ℤ
2
� ∶=

{
) = ()1, )2) ∈ℤ

2 ∣ −�∕2 + 1 ⩽ )� ⩽ �∕2, � = 1,2
}

(8)

The empirical �1 loss function is thus given by,

� (
{
(�� ,�� )

}�
�=1

;�) ∶=
1

�

∑



‖�� − (�� ;�)‖ℎ∕‖��‖ℎ, (9)

where ‖�‖ℎ ∶=
√∑

)∈ℤ2
�
|)|2( (�)()))2. � can be viewed as a weighted $ loss using |)|2 weights to balance the error in low- and 

high-frequency components. Note that the frequency domain representation of the discrete �1 norm is used following the practices 
in e.g. [79,80]. Here the discrete �1 norm approximated using difference quotient in the physical space can also be employed, 
however, from the numerical quadrature point of view, by Parseval identity equation (9) is exact with no quadrature error.

3.3. Empirical study on the spectral bias in operator learning

We compare HANO and FNO in terms of prediction error dynamics across frequencies from epoch 0 to epoch 100 (end) in Fig. 7
for a comprehensive comparison. The subfigures (c,d) in Fig. 7 suggest that existing methods can learn low frequencies quickly but 
struggle with higher frequencies. At the end of the training, plenty of high-frequency components are still not well resolved as shown 
in Fig. 1(b,c,d) and Fig. 9. This phenomenon is often referred to as the spectral bias, well-documented for training neural networks for 
conventional classification tasks, and here we observe it in operator learning tasks. On the contrary, HANO’s error decays faster for 
higher frequencies and more uniformly overall. It also achieves lower testing errors. Experimentally, the ablation suggests that the 
hierarchical nested attention allows the model to capture finer-scale variations better, which also helps HANO outperform existing 
methods as is shown in Fig. 1. We also observe that, with the �1 loss function, spectral bias is further mitigated, which applies to 
FNO-based variants as well.

To better illustrate the spectral bias of multiscale operator learning, we record the training dynamics in the frequency domain. 
Recall that, the spatial domain 	 = [0, 1]2 is discretized uniformly with ℎ = 1∕� to yield a Cartesian grid �2 in our experiments. For 
any ) ∈ ℤ2

�, consider the normalized discrete Fourier transform (DFT) coefficients  ( )(⋅) of  in equation (8), the mean absolute 
prediction error for a given frequency ) ∈ℤ2

� is measured by
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Fig. 7. Top: (a)-(e) show the training error dynamics in the frequency domain. The x-axis shows the first 20 dominating frequencies, from low frequency (left) to high 
frequency (right). The y-axis shows the number of training epochs. The colorbar shows the normalized $2 error (with respect to the error at epoch 0) in log10 scale. 
We compare five different methods; Bottom: (f)-(j) Corresponding testing error dynamics in the frequency domain for different methods.

 train( ; )) ∶=
1

�

�+
�
�∑

=1

| (�train
 − (�train
 ))())|,

 test ( ; )) ∶=
1

�

�test∑

=1

| (�test
 − (�+*�+
 ))())|,

where {�train



, �train



}
�train


=1
and {�test



, �test



}
�test


=1
are the training and testing datasets of Darcy rough task. Heuristically, for low frequen-

cies ), ( ; )) represents the capability of the neural network for predicting the “global trend”. Conversely, for high frequencies ), 
( ; )) represents the capability for predicting variations on smaller scales. During training, we record  train( ; )) and  test ( ; ))
for each ) ∈ℤ2

� at each epoch.
From Fig. 7, we conclude that existing methods struggle with learning higher frequencies. UNet and UNO mitigate this to some 

extent, likely due to their UNet-like multi-level structure. HANO’s error pattern shows faster decay than others for higher frequencies 
and is more uniform overall. It also achieves lower testing errors. The mathematical heuristics of MWT, UNet, and UNO can be 
attributed to multigrid methods [9] and wavelet-based multiresolution methods [10,11]. However, these methods may have limi-
tations for multiscale PDEs [1] because they apply instance-independent kernel integration regardless of the input data (or latent 
representations). In contrast, attention-based operations in the HANO architecture, which becomes more efficient enabled by the 
data-driven reduce/decompose operations, have the potential to address this limitation by adapting the kernel to a specific input 
instance.

Comparison with existing methods Our comprehensive evaluation incorporates several contemporary methods:

• FNO Variants: The multiwavelet neural operator (MWT) [24], which implements wavelet convolutions on top of FNO’s FFT 
architecture, is also included in this study.

• UNet-based Models: We include the original UNet [69] and U-NO [81], a U-shaped neural operator.
• Transformer-based Neural Operators: We also tested Galerkin Transformer (GT) [35], and SWIN Transformer [65], a general-
architectured multiscale vision transformer.

• �1-loss evaluation ablation study: we train specific models (FNO2D, U-NO) using the �1 loss to understand its effect, leading 
to the variants FNO2D �1 and U-NO �1. We have also trained a variant of HANO using the $2 loss function, which we refer to 
as HANO $2. This variant, along with the other variants we have discussed, is included in Table 2.

In experiments, we found that HANO outperforms other neural operators in all tasks. The efficacy of the �1 loss is noticeable 
across architectures; for instance, observe the performance difference between FNO2D, U-NO and their respective �1-loss-trained 
variants. Additionally, the modifications in FNO-CNN notably elevate its performance with only a modest increase in runtime. As 
depicted in Fig. 6, transitioning from Darcy smooth to Darcy rough and then to multiscale trigonometric problems, the enhancement 
in high-frequency components highlights HANO’s increasing advantage over other methods.
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Fig. 8. (a) multiscale trigonometric coefficient, (b) reference solution, (c) comparison of predicted solutions on the slice # = 0, (d) comparison of predicted derivative 
"�

"-
on the slice # = 0.

Fig. 9. Top: (a)-(e) absolute error of different operator learning methods; Bottom: (f)-(j) absolute error spectrum in log10 scale of different operator learning methods.

Comparison of solutions/derivatives for more neural operators We show the coefficient, reference solution from Multiscale trigonomet-
ric dataset, and the comparison with other operator learning models such as GT, SWIN, and MWT in Fig. 8. HANO resolves the finer 
scale oscillations more accurately, as reflected by the predicted derivatives in (d) of Fig. 8.

Comparison of error spectrum for more neural operators In Figs. 1 (c) and (d), we decompose the error into the frequency domain 
[−256�, 256�]2 and plot the absolute error spectrum for HANO and FNO. Here, in Fig. 9, we also include the absolute error and 
absolute error spectrum for other baseline models, such as MWT, GT, and SWIN. The comprehensive comparison also demonstrates 
that existing methods exhibit the phenomena of spectral bias to some degree. This empirical evidence also demonstrates the reason 
that HANO has the best accuracy in evaluation.

3.4. Navier-Stokes equation

In this section, we consider the 2D Navier-Stokes equation (NSE) dataset benchmarked in [23]. This dataset contains data gen-
erated for NSE in the vorticity-streamfunction formulation approximated by a pseudo-spectral solver with a Crank-Nicholson time 
stepping on the unit torus �2. For # ∈ �

2 and + ∈ [0, � ], �(#, +) = ∇⟂'(#, +) is the velocity, and /(#, +) denotes the vorticity. This 
formulation then writes
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Table 3
Benchmark for the Navier-Stokes equation. 64 × 64 resolution is used for both training and testing. � is 
the training sample size, either � = 1000 or � = 10000. The number of testing samples is 100 or 1000, 
respectively. We use the $2 loss function, the Adam optimizer, and the OneCycleLR scheduler with a cosine 
annealing strategy. The learning rate starts with 1 × 10−3 and decays to 1 × 10−5 . All models were trained 
for 500 epochs and use $2 loss function.

Model #Parameters � = 50 � = 30 � = 30 � = 20 � = 20 (new)
0 = 1e − 3 0 = 1e − 4 0 = 1e − 4 0 = 1e − 5 0 = 1e − 5

� = 1000 � = 1000 � = 10000 � = 1000 � = 1000

FNO-3D 6,558,537 0.0086 0.1918 0.0820 0.1893 —
FNO-2D 2,368,001 0.0128 0.1559 0.0834 0.1556 0.0624

U-Net 24,950,491 0.0245 0.2051 0.1190 0.1982 0.1058

TF-Net 7,451,724 0.0225 0.2253 0.1168 0.2268 0.1241

ResNet 266,641 0.0701 0.2871 0.2311 0.2753 0.1518

DilResNet 586,753 0.0315 0.2561 0.2081 0.2315 0.1641

HANO 7,629,350 
.

�� 
.
��� 
.
��� 
.
��� 
.
���

"+/+ � ⋅∇/ = 0Δ/+  ,

Δ' +/ = 0,

/(#,0) = /0(#),

where /0 is the initial vorticity field, 0 is the viscosity,  is the rotation of a vector forcing term, and Re is the Reynolds number, 
defined as Re ∶= 1�$

0
with the density 1 (= 1 here). The length scale of the fluid $ is set to 1 here. The Reynolds number is a 

dimensionless parameter and is inversely proportional to the viscosity 0. The operator to be learned is the approximation to

 ∶ /(⋅,0 ≤ + ≤ 9)→ /(⋅,10 ≤ + ≤ � ),

mapping the vorticity up to time 9 to the vorticity up to some later time � . We experiment with viscosities 0 = 10−3, 10−4, 10−5, and 
decrease the final time � accordingly as the dynamics becomes more turbulent with increasing Reynolds number.

Time dependent neural operator Following the standard setup in [23], we fix the resolution as 64 × 64 for both training and testing. 
Ten time-slices of solutions /(⋅, +) at + = 0, ..., 9 are taken as the input data to the neural operator  which maps the solutions at 
10 given timesteps to their subsequent time step. This procedure, often referred to as the rolled-out prediction, can be repeated 
recurrently until the final time � . For example, the �-th rollout is to obtain {/(⋅, +
)}

�

=�−9

↦ /(⋅, +�+1). In Table 3, the results are 
listed for HANO, FNO-3D (FFT in space-time), FNO-2D (FFT in space, and time rollouts), U-Net [69], TF-Net [82], ResNet [83] and 
DilResNet [29], and HANO achieves the best performance.

Furthermore, we also test models on the same Navier-Stokes task with 0 = 10−5 but introduce an alternative training configuration 
labeled as � = 20 (new). Note that all models incorporating these specialized training techniques show consistently performance 
enhancement when compared to the original setup. The inclusion of these training tricks contributes to more stable generalization 
errors across various models, justifying their use in performance comparisons. Hence, both evaluation methods offer an equitable 
basis for contrasting the efficacy of our approach with existing baselines. We present the comprehensive overview of the training 
configurations here (Fig. 10).

Two training setups

• Original training setup: Samples consist of 20 sequential time steps, with the goal of predicting the subsequent 10 time steps 
from the preceding 10. Using the roll-out prediction approach as described by [23], the neural operator uses the initial 10-time 
steps to forecast the immediate next time step. This predicted time step is then merged with the prior 9 time steps to predict the 
ensuing time step. This iterative process continues to forecast the remaining 10 time steps.

• New training setup: Our findings indicate that an amalgamation of deep learning strategies is pivotal for the optimal perfor-
mance of time-dependent tasks. While [23] employed the previous 10-time steps as inputs for the neural operator, our approach 
simplifies this. We find that leveraging just the current step’s data, similar to traditional numerical solvers, is sufficient. During 
training, we avoid model unrolling. Originally, we had 1000 samples, each consisting of 20 sequential time steps. We have trans-
formed these into 19,000 samples, where each sample now comprises a pair of sequential time steps. These are then shuffled 
and used to train the neural operator to predict the subsequent time step based on the current one. For testing, we revert to the 
roll-out prediction method as only the initial time step’s ground truth is available. These methods align with some techniques 
presented in [25]. As shown in Table 3, the second approach provides better performance. Also note that FNO-3D performs FFT 
in both space and time, while other models are designed with more conventional marching-in-time schemes, such that they are 
applied in an autoregressive fashion. Therefore, the new alternative training configuration is not applicable to FNO-3D.
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Fig. 10. Benchmark for the Navier-Stokes equation with 0 = 1*− 5.

Fig. 11. The mapping �↦ �.

3.5. Helmholtz equation

We test the performance of HANO for the acoustic Helmholtz equation in highly heterogeneous media as an example of multiscale 
wave phenomena, whose solution is considerably expensive for complicated and large geological models. This example and training 
data are taken from [84], for the Helmholtz equation on the domain Ω ∶= (0, 1)2. Given frequency / = 103 and wavespeed field 
� ∶ Ω →ℝ, the excitation field � ∶ Ω →ℝ solves the equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
−Δ−

/2

�2(#)

)
� = 0 in Ω,

"�

"�
= 0 on "Ω1, "Ω2, "Ω4,

"�

"�
= 1 on "Ω3,

where "Ω3 is the top side of the boundary, and "Ω1,2,4 are other sides. The wave speed field is �(#) = 20 + tanh(�̃(#)), where �̃ is 

sampled from the Gaussian random field �̃ ∼ (0, 
(
−Δ+ 22

)−3
), where 2 = 3 and 3 = 2 are chosen to control the roughness. The 

Helmholtz equation is solved on a 100 × 100 grid by finite element methods. We aim to learn the mapping from � ∈ ℝ100×100 to 
� ∈ℝ100×100 as shown in Fig. 11. In this example, following the practice in [84], a training dataset of size 4000 examples is adopted, 
while the test dataset contained 800 examples. All models were trained for 100 epochs.

For issues like high-frequency problems, especially Helmholtz equations with a large wavenumber, HANO might exhibit limita-
tions due to the inherent challenge in approximating high-frequency components locally. Such scenarios highlight the difficulty of 
capturing the propagation of high-frequency solutions through local attention mechanisms alone. This challenge is analogous to the 
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Table 4
Performance on the Helmholtz benchmark.

Model time params(m) $2(×10−2) �1(×10−2)

FNO2D 6.2 16.93 1.25 7.66
UNET 7.1 17.26 3.81 23.31
DILRESNET 10.8 1.03 4.34 34.21
U-NO 21.5 16.39 1.26 8.03
LSM 28.2 4.81 2.55 10.61
HANO 13.1 11.35 
.�� �.�


Fig. 12. Comparison of training dynamics between HANO trained with �1 loss and $2 loss.

limitations faced by classical numerical methods in devising straightforward hierarchical matrix formulations for the Green’s function 
of Helmholtz equations with large wavenumbers. It is noteworthy that the wavenumber is modest in this benchmark, and HANO 
surpasses other baseline methods, by a relatively modest margin as shown in Table 4. The error of our rerun FNO is comparable 
with the reported results in [84]. We note that the four models benchmarked for the Helmholtz equation in [84], including FNO and 
DeepONet, failed to reach a relative error less than 1 × 10−2. We also compare the evaluation time of the trained models in Table 4. 
Compared to HANO, FNO has both a larger error and takes longer to evaluate. Moreover, FNO is known to be prone to overfitting 
the data when increasing the stacking of spectral convolution layers deeper and deeper [85]. UNet, as a CNN-based method, can 
evaluate much faster (30 times faster than HANO) but has the worst error (60 times higher than HANO).

3.6. Training dynamics

We present the dynamics of training and testing error over 100 epochs of training in Fig. 12. We compare HANO trained with 
�1 and $2 loss functions, and show the evolution of errors as well as the loss curves during the training process. The comparison 
shows that HANO with �1 loss achieves lower training and testing errors. It also suggests that the �1 loss function reduces the 
generalization gap (measured by the difference between training error and testing error), while $2 loss function fails to do so.

3.7. Memory usage

We report the memory usage of different models for the Darcy smooth (with resolution 211×211) and Darcy rough (with reso-
lution 256×256) benchmarks in Table 5. The table shows that the memory usage of HANO remains stable across resolutions. For 
the higher resolution of 256×256, both MWT and GT consume more CUDA memory than HANO, even though HANO achieves much 
higher accuracy.

3.8. Discretization invariance

FNO achieves discretization invariance through Fourier interpolation, enabling models trained on low-resolution data to handle 
high-resolution input. By incorporating suitable interpolation operators, HANO can achieve a comparable capability. Specifically, 
it can be trained on lower resolution data but evaluated at higher resolution, without requiring any higher resolution data during 
training (achieving zero-shot super-resolution).
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Table 5
The memory usage (GB) of different models 
by using torchinfo.

Model Darcy smooth Darcy rough

FNO 0.72 1.04

GT 1.40 4.53

MWT — 1.27

HANO 0.89 1.21

Table 6
Comparison of discretization invariance property for HANO and FNO for the multiscale 
trigonometric coefficient benchmark. The relative $2 error (×10−2) with respect to the 
reference solution on the testing resolution is measured.

FNO HANO

Train
Test

128 256 512 128 256 512

64 5.2808 7.9260 9.1054 1.3457 1.3557 1.3624

128 3.9753 6.0156 0.6715 0.6835

256 3.1871 0.5941

We conducted the experiments following the same setup as in [23] for the multiscale trigonometric coefficient benchmark. The 
models were trained on 64 × 64, 128 ×128, and 256 ×256 resolutions, and tested on 128 × 128, 256 ×256, and 512 ×512 resolutions, 
respectively. Results in Table 6 show that HANO incorporating linear interpolation is more stable than FNO.

3.9. Datasets and code

The code and datasets can be accessed at the following location: https://github .com /xlliu2017 /HANO.

4. Conclusion

In this work, we investigated the “spectral bias” phenomenon commonly observed in multiscale operator learning. To our best 
knowledge, we conducted the first in-depth numerical study of this issue. We proposed HANO, a hierarchical attention-based model 
to mitigate the spectral bias. HANO employs a fine-coarse-fine V-cycle update and an empirical �1 loss to recover fine-scale features 
in the multiscale solutions. Our experiments show that HANO outperforms existing neural operators on multiscale benchmarks in 
terms of accuracy and robustness.

Limitation and outlook: (1) HANO’s current implementation requires a regular grid, and extending it to data clouds and graph 
neural networks could offer new opportunities to exploit its hierarchical representation. (2) The current attention-based operator in 
HANO can achieve discretization invariance using simple interpolation [42] (e.g. see Section 3.8). However, either simple interpola-
tion or Fourier interpolation (used by FNO) may suffer from aliasing errors in the frequency domain, as indicated by our experiments 
and recent analysis [60,86]. Better balance between discretization invariance and model accuracy may be achieved with proper 
operator-adaptive sampling and interpolation techniques.

CRediT authorship contribution statement

Xinliang Liu: Writing – original draft, Methodology, Formal analysis, Conceptualization. Bo Xu: Visualization, Validation, Soft-
ware, Methodology, Investigation, Data curation. Shuhao Cao:Writing – review & editing, Methodology, Formal analysis. Lei Zhang:
Writing – review & editing, Writing – original draft, Supervision, Methodology, Funding acquisition, Formal analysis, Conceptualiza-
tion.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

Data will be made available on request.



X. Liu, B. Xu, S. Cao et al.

Acknowledgements

BX and LZ are partially supported by the Shanghai Municipal Science and Technology Project 22JC1401600, National Key 
Research and Development Program of China 2023YFF0805200, NSFC grant 12271360, and the Fundamental Research Funds for 
the Central Universities. SC is partially supported by the National Science Foundation award DMS-2309778.

References

[1] L.V. Branets, S.S. Ghai, X.-H. Wu, Challenges and technologies in reservoir modeling, Commun. Comput. Phys. 6 (1) (2009) 1–23.
[2] B. Engquist, P.E. Souganidis, Asymptotic and numerical homogenization, Acta Numer. 17 (2008) 147–190.
[3] T.Y. Hou, X.-H. Wu, Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comput. 68 (227) 

(1999) 913–943.
[4] Y. Efendiev, T. Hou, Multiscale Finite Element Methods: Theory and Applications, vol. 4, Springer Science & Business Media, 2009.
[5] Y. Efendiev, J. Galvis, T.Y. Hou, Generalized multiscale finite element methods (gmsfem), J. Comput. Phys. 251 (2013) 116–135, https://doi .org /10 .1016 /j .jcp .

2013 .04 .045, http://www .sciencedirect .com /science /article /pii /S0021999113003392.
[6] E. Chung, Y. Efendiev, T.Y. Hou, Adaptive multiscale model reduction with generalized multiscale finite element methods, J. Comput. Phys. 320 (2016) 69–95.
[7] E. Chung, Y. Efendiev, T.Y. Hou, Multiscale Model Reduction: Multiscale Finite Element Methods and Their Generalizations, vol. 212, Springer Nature, 2023.
[8] W. Hackbusch, Multigrid Methods and Applications, Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985.
[9] J. Xu, L. Zikatanov, Algebraic multigrid methods, Acta Numer. 26 (2017) 591–721.
[10] M.E. Brewster, G. Beylkin, A multiresolution strategy for numerical homogenization, Appl. Comput. Harmon. Anal. 2 (4) (1995) 327–349.
[11] G. Beylkin, N. Coult, A multiresolution strategy for reduction of elliptic PDEs and eigenvalue problems, Appl. Comput. Harmon. Anal. 5 (2) (1998) 129–155.
[12] H. Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games, SIAM Rev. 59 (1) (2017) 99–149.
[13] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (2) (1987) 325–348.
[14] W. Hackbusch, L. Grasedyck, S. Börm, An introduction to hierarchical matrices, in: Proceedings of Equadiff 10, Masaryk University, 2002, pp. 101–111.
[15] K. Ho, L. Ying, Hierarchical interpolative factorization for elliptic operators: differential equations, Commun. Pure Appl. Math. 69 (8) (2016) 1415–1451.
[16] M. Bebendorf, Efficient inversion of the galerkin matrix of general second-order elliptic operators with nonsmooth coefficients, Math. Comput. 74 (251) (2005) 

1179–1199.
[17] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification, J. Comput. Phys. 366 (2018) 

415–447.
[18] Y. Fan, J. Feliu-Fabá, L. Lin, L. Ying, L. Zepeda-Nunez, A multiscale neural network based on hierarchical nested bases, Res. Math. Sci. 6 (21) (2019).
[19] Y. Fan, L. Lin, L. Ying, L. Zepeda-Núnez, A multiscale neural network based on hierarchical matrices, Multiscale Model. Simul. 17 (4) (2019) 1189–1213.
[20] Y. Khoo, J. Lu, L. Ying, Solving parametric pde problems with artificial neural networks, Eur. J. Appl. Math. 32 (3) (2020) 421–435.
[21] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of operators, Nat. 

Mach. Intell. 3 (3) (2021) 218–229.
[22] T. Chen, H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical 

systems, IEEE Trans. Neural Netw. 6 (4) (1995) 911–917.
[23] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential equations, 

in: The International Conference on Learning Representations, 2021.
[24] G. Gupta, X. Xiao, P. Bogdan, Multiwavelet-based operator learning for differential equations, Adv. Neural Inf. Process. Syst. 34 (2021) 24048–24062.
[25] J. Brandstetter, D.E. Worrall, M. Welling, Message passing neural PDE solvers, in: International Conference on Learning Representations, 2022, https://

openreview .net /forum ?id =vSix3HPYKSU.
[26] J. Seidman, G. Kissas, P. Perdikaris, G.J. Pappas, Nomad: nonlinear manifold decoders for operator learning, Adv. Neural Inf. Process. Syst. 35 (2022) 5601–5613.
[27] Y. Chen, B. Hosseini, H. Owhadi, A.M. Stuart, Solving and learning nonlinear pdes with gaussian processes, J. Comput. Phys. 447 (2021) 110668.
[28] J. Brandstetter, R. van den Berg, M. Welling, J.K. Gupta, Clifford neural layers for PDE modeling, in: The Eleventh International Conference on Learning 

Representations, 2023, https://openreview .net /forum ?id =okwxL _c4x84.
[29] K. Stachenfeld, D.B. Fielding, D. Kochkov, M. Cranmer, T. Pfaff, J. Godwin, C. Cui, S. Ho, P. Battaglia, A. Sanchez-Gonzalez, Learned simulators for turbulence, 

in: International Conference on Learning Representations, 2022.
[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 

(2017).
[31] T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot learners, 

Adv. Neural Inf. Process. Syst. 33 (2020) 1877–1901.
[32] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An 

image is worth 16x16 words: transformers for image recognition at scale, in: International Conference on Learning Representations, 2021, https://openreview .
net /forum ?id =YicbFdNTTy.

[33] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Adv. Neural Inf. Process. Syst. 33 (2020) 6840–6851.
[34] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image synthesis with latent diffusion models, in: Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 2022, pp. 10684–10695.
[35] S. Cao, Choose a transformer: Fourier or galerkin, Adv. Neural Inf. Process. Syst. 34 (2021).
[36] N. Geneva, N. Zabaras, Transformers for modeling physical systems, Neural Netw. 146 (2022) 272–289.
[37] G. Kissas, J.H. Seidman, L.F. Guilhoto, V.M. Preciado, G.J. Pappas, P. Perdikaris, Learning operators with coupled attention, J. Mach. Learn. Res. 23 (1) (2022) 

9636–9698.
[38] Z. Li, K. Meidani, A.B. Farimani, Transformer for partial differential equations’ operator learning, Trans. Mach. Learn. Res. (2023), https://openreview .net /

forum ?id =EPPqt3uERT.
[39] Z. Hao, Z. Wang, H. Su, C. Ying, Y. Dong, S. Liu, Z. Cheng, J. Song, J. Zhu, GNOT: a general neural operator transformer for operator learning, in: International 

Conference on Machine Learning, PMLR, 2023, pp. 12556–12569.
[40] A.H. De Oliveira Fonseca, E. Zappala, J. Ortega Caro, D.V. Dijk, Continuous spatiotemporal transformer, in: A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. 

Sabato, J. Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 202, PMLR, 
2023, pp. 7343–7365.

[41] Z. Xiao, Z. Hao, B. Lin, Z. Deng, H. Su, Improved operator learning by orthogonal attention, arXiv :2310 .12487, 2023.
[42] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: learning maps between function spaces with 

applications to pdes, J. Mach. Learn. Res. 24 (89) (2023) 1–97, URL http://jmlr .org /papers /v24 /21 -1524 .html.
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