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Abstract

This paper considers the Westervelt equation, one of the most widely used models
in nonlinear acoustics, and seeks to recover two spatially-dependent parameters of
physical importance from time-trace boundary measurements. Specifically, these are
the nonlinearity parameter κ(x) often referred to as B/A in the acoustics literature
and the wave speed c0(x). The determination of the spatial change in these quantities
can be used as a means of imaging. We consider identifiability from one or two
boundary measurements as relevant in these applications. For a reformulation of the
problem in terms of the squared slowness s = 1/c20 and the combined coefficient η = κ

c2
0

we devise a frozen Newton method and prove its convergence. The effectiveness (and
limitations) of this iterative scheme are demonstrated by numerical examples.
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1 Introduction

Imaging with ultrasound has a long and successful history based on a vast range of ap-
plications. However, as is often the case, the use of lower frequencies naturally leads
to lower resolution and at higher frequencies sound propagation is affected by scatter-
ing and stronger attenuation. Enhanced ultrasound-based techniques such as nonlinearity
parameter imaging [5, 6, 8, 17, 33, 35, 38, 39], harmonic imaging [3, 34, 35], and vibro-
acoustography [11, 12, 23, 30, 31] have been developed to overcome these drawbacks and
improve imaging quality. They make use of nonlinear effects that arise at higher intensities
or when waves interact and are characterised by a multiplicative coefficient that is usually
called parameter of nonlinearity and denoted by B/A. We will here use the mathematically
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convenient abbreviation[s] κ for a quantity containing B/A. This coefficient depends on
tissue properties and therefore varies in the spatial direction, κ = κ(x).

While ultrasound imaging relies on the propagation of sound waves and is therefore phys-
ically and mathematically correctly described by some wave-type partial differential equa-
tion (pde), algorithms implemented in modern ultrasound scanners make use of model
simplifications that allow one to apply methods from signal processing (beamforming, fil-
tering) to generate an image based on the principles of transmission and reflection, based
on differences in the acoustic impedance Z. These simplifications are not able to capture
nonlinearity so that one has to return to the pde model and consider κ = κ(x) (and often
also the speed of sound c0 = c0(x)) as a spatially variable coefficient.

In the following subsections we provide more background on the mathematical models. In
particular we will show at which position in the pde these coefficients appear, which of
course is a factor crucial for their recovery. We then describe the inverse problem and the
basic method of its solution.

We consider, as one of the most established classical model of nonlinear acoustics, the
Westervelt equation in pressure formulation

utt − c20∆u− b∆ut = κ(u2)tt + g in (0, T )× Ω , (1)

where u is the acoustic pressure, c0 the speed of sound, b the diffusivity of sound, ̺0
the mass density, and κ = βa

̺0c20
= 1

̺0c20
( B
2A

+ 1) contains the nonlinearity parameter βa or

B/A. 1 We assume (1) to hold in a domain Ω ⊆ R
3 and equip it with initial conditions

u(t = 0) = u0, ut(t = 0) = u1, as well as absorbing or impedance boundary conditions on
the rest of the boundary to enable restriction to a bounded computational domain Ω, which
without loss of generality we can assume to be smooth. The space- and time-dependent
interior source term g in (1) models excitation by a piezoelectric transducer array.

The pressure data h taken at the receiver array is expressed as a Dirichlet trace on some
manifold Σ immersed in the computational domain Ω or attached to its boundary Σ ∈ Ω

h(t, x) = u(t, x), (t, x) ∈ (0, T )× Σ. (2)

Note that Σ could [may as well just] simply be a subset of discrete points on a manifold.

The inverse problem of nonlinearity parameter tomography consists of reconstructing κ =
κ(x) from measurements (2). Often, the speed of sound varies in space as well c0 = c0(x)
and needs to be recovered alongside with κ. This is a natural requirement as the sound
speed will between objects to be imaged and also from the background.

Reconstruction of c0 = c0(x) as a pde coefficient is actually already being done in ultra-
sound tomography [2, 13, 14, 18, 32] for c0, but in a linear wave equation, that is, with

1More precisely, the pde is 1
λ(x)utt −∇ · ( 1

̺0(x)
∇u) − bDu = κ(u2)tt + g with u being the pressure, λ

the bulk modulus, ̺0 the mass density, and c0 = λ
̺0

the sound speed, (cf., e.g., [4, 28] for the linear case).
As mentioned above, spatial variability of ̺ is not relevant in our context; rather, dependence of c0 on x
is due to variability of λ.
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κ = 0. We mention in passing that in principle the mass density ̺0 also varies in the spatial
direction. However, in ultrasound imaging, this coefficient does not play a significant role
and is therefore usually neglected.2

We refer to [1, 24, 25, 37] for results related to the identification of the nonlinearity coef-
ficient κ alone. In [1] its uniqueness from the whole Neumann-Dirichlet map (instead of
the single measurement (2)) is shown; [37] provides a uniqueness and conditional stabil-
ity result for the linearised problem of identifying κ in a higher order model of nonlinear
acoustics in place of the Westervelt equation. In [24, 25] we have proven injectivity of the
linearised forward operator mapping κ to h in the Westervelt equation with classical strong
damping and also with some fractional damping models as relevant in ultrasonics.

The aim of this paper is to provide results on the simultaneous recovery of κ(x) and c0(x).
In Section 2 we will prove injectivity of the linearised forward operator from measurements
with two excitations. This serves as a basis for applying a frozen Newton method and
showing its convergence in Section 3.1. Numerical reconstruction results are provided in
Section 3.2.

1.1 The inverse problem

Consider identification of the space dependent nonlinearity coefficient κ(x) and sound speed
c0(x) for the attenuated Westervelt equation in pressure form

(

u− κ(x)u2
)

tt
− c0(x)

2△u+D[u] = r in Ω× (0, T )

∂νu+ γu = 0 on ∂Ω × (0, T ), u(0) = 0, ut(0) = 0 in Ω
(3)

from observations of the acoustic pressure

h(x, t) = u(x, t) , x ∈ Σ , t ∈ (0, T ). (4)

The physical meanings of the quantities in this model are listed in Table 1, where we
assume ̺0 > 0, b > 0, γ ≥ 0 to be known constants, whereas B/A (and therefor κ), as well
as c0 may depend on the x variables.

In equation (3), the damping term D is defined by one of the two following fractional
damping models

D = b(−△)β∂α
t (combination of Caputo-Wismer-Kelvin and Chen-Holm – ch )

D = b1(−△)∂α1

t + b2∂
α2+2
t (fractional Zener – fz )

2The notation c0, ̺0 for the (reference) sound speed and mass density, respectively, refers to he usual
decomposition of the mass density into a reference and a fluctuation part ̺ = ̺0+̺∼, and correspondingly
for c0 = λ

̺0

, where λ is the bulk modulus. While the total mass density ̺ would be subject to a balance

law (namely conservation of mass) and thus appear as one of the states in a PDE model, its appearance
as a coefficient only affects the reference part ̺0. This is due to the typical expansion rules (known as
Blackstock’s scheme in the nonlinear acoustics literature) for obtaining linear and quadratic acoustic wave
equations from nonlinear balance and constitutive laws, cf. e.g., [15, 20] and the references therein.
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u . . . pressure [gm−1s−2]
c0 . . . sound speed [ms−1]

κ = B/A+2
̺0c20

. . . nonlinearity coefficient [g−1ms2]

̺0 ∈ R+ . . . mass density [g m−3]
B/A . . . nonlinearity parameter [1]
b ∈ R

+ . . . diffusivity of sound [m2 s−1]
γ ∈ R

+
0 . . . boundary impedance [m−1]

Table 1: Physical quantities appearing in the pdes.

(for more details see, e.g., [25] and the references therein, in particular [9, 36, 10] for ch and
[16, 29, 7] for fz ).

The time fractional derivatives appearing in the damping models are defined by the Djrbashian-
Caputo derivative

∂α
t u = I1−αut

with the Abel integral operator

(I1−αv)(t)
1

Γ(1− α)

∫ t

0

v(s)

(t− s)α
ds

and α ∈ (0, 1). For defining fractional powers of the negative Laplacian−△ with impedance
boundary conditions in the ch case, we use the spectral definition

((−△)βv)(x) =
∞
∑

j=1

λβ
j

∑

k∈Kλj

〈v, ϕk
j 〉ϕ

k
j (x).

Excitation is modeled by an interior space and time dependent source term r, which indeed
allows to describe the acoustic signal emitted by a transducer array immersed in the domain
Ω, see also [21].

In most of this paper, we will work with the following alternative formulation that moves the
spatially variable coefficient c0(x) away from the Laplacian and thus leads to a symmetric
positive (as well as relatively simple) elliptic differential operator in the equation. 3 To
this end, we divide (3) by c20(x) and rewrite it, using the new coefficient functions s(x),
η(x), as

(

s(x)u− η(x)u2
)

tt
−△u+ D̃u = r̃ in Ω× (0, T )

∂νu+ γu = 0 on ∂Ω × (0, T ), u(0) = 0, ut(0) = 0 in Ω
(5)

3An alternative to achieve symmetry would be to use the weighted L2 inner product with weight
function 1/c20(x)
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where (again with physical units in brackets)
s = 1

c2
0

. . . squared slowness [m−2s2]

η = κ
c2
0

= βa

̺0c40
= B/A+2

̺0c40
= B/A+2

̺0
s
2 . . . nonlinearity coefficient [g−1m−1s4]

D̃ = b̃(−△)β∂α
t (ch ) or D̃ = b̃1(−△)∂α1

t + b̃2∂
α2+2
t (fz ).

Note that we neglect variability of the damping and driving terms term with division by
c0(x)

2 and assume D̃ to come with constant and known coefficients; incorporation of this
c0(x) dependence would lead to the pde

(

s(x)u− η(x)u2
)

tt
−△u+ sDu = s r in Ω× (0, T ). (6)

Neglecting this dependency in the damping term can be justified by smallness of the damp-
ing coefficient so that spatial variability of this term has a very minor effect. Neglecting
spatial variability of s in the excitation term does not matter due to the fact that the
support of r is typically remote from the region of variable (and unknown) sound speed.

The inverse problem of reconstructing η(x), s(x) from the observations (4) can then be
written as

F (η, s) = h, (7)

where F = C ◦ S and with the parameter-to-state map S : (η, s) 7→ u where u solves (5)
and is subject to the observation operator C : u 7→ trΣu.

Well-definedness of the forward operator F and its linearisazion in appropriate function
spaces is discussed at the beginning of Section 3.1.

Notation

Below we will make use of the spaces Ḣβ(Ω) induced by the norm

‖v‖Hβ(Ω) =
(

∞
∑

j=1

λβ
j

∑

k∈Kλj

|〈v, ϕk
j 〉|

2
)1/2

(8)

with the eigensystem (λj, ϕj) of some selfadjoint positive definite operator A (in this paper,
it will be the negative Laplacian with impedance boundary conditions).

Moreover, the Bochner-Sobolev spaces Lp(0, T ;Z), Hq(0, T ;Z) with Z some Lebesgue or
Sobolev spaces and T a finite or infinite time horizon will be used.

We denote the Laplace transform of a function v ∈ L1(0,∞) by v̂(z) =
∫∞

0
e−ztv(t) dt for

all z ∈ C such that this integral exists.

2 Uniqueness

In this section we will prove linearised uniqueness of κ(x) and c0(x) in R
d from two obser-

vations, considering the alternative formulation (5), with T = ∞ and

s =
1

c20
, η =

κ

c20
. (9)
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To this end we will show injectivity of the linearised forward operator with respectto η(x)
and s(x), given two appropriately chosen excitations r̃i, i ∈ {1, 2}. On the one hand, this
is essential for well-definedness and convergence of the frozen Newton method considered
in the reconstruction section below. On the other hand, via (9), uniqueness of η(x) and
s(x) is equivalent to uniqueness of κ(x) and c0(x).

The linearisation of the forward operator F : (η, s) 7→ trΣu is formally given by
F ′(η, s)(dη, ds) = trΣdu, where du solves

(

s(x) du− 2η(x) udu
)

tt
−△du+ D̃du = −

(

ds(x) u− dη(x) u2
)

tt
in Ω× (0, T ). (10)

This simplifies considerably if we linearise around vanishing nonlinearity η = 0 and constant
wave speed s = 1/c2 for some c ∈ R+, which yields F ′(0, 1

c2
)(dη, ds) = trΣdu, where du

solves
1

c2
dutt −△du+ D̃du = −

(

ds(x) u0 − dη(x) (u0)2
)

tt
in Ω× (0, T )

with homogeneous initial and boundary conditions. Here u0 solves (5) with η = 0, s = 1
c2
,

which in its turn is a linear constant coefficient pde.

To obtain injectivity of the linearisation, we use two excitations r̃i, i ∈ {1, 2} and the

corresponding components of the forward operator ~F = (F1, F2) are defined by Fi = C ◦Si

with Si : (η, s) 7→ ui where ui solves (5) with r̃ = r̃i, i ∈ {1, 2} and C : u 7→ trΣu. Our goal
is to prove that with an appropriate choice of r̃1, r̃2, the only solution to the homogeneous
equation ~F ′(0, 1

c2
)(dη, ds) = (0, 0) is (dη, ds) = (0, 0). To this end, we construct the

excitations r̃i, i ∈ {1, 2} such that they lead to space-time separable solutions u0
i (x, t) =

φi(x)ψi(t) of (5),

r̃i(x, t) :=
1

c2
φ(x)ψ′′

i (t)−△φ(x)ψi(t) + D̃[φψi](x, t), i ∈ {1, 2}. (11)

Expanding the solutions dui, i ∈ {1, 2} in terms of eigenfunctions ϕj of −△, we can write
the Laplace transformed solutions dui, i ∈ {1, 2} as

dui

∧

(x, z) =
∞
∑

j=1

1
ωλj

(z)
∑

k∈Kλj

(

〈dsφi, ϕ
k
j 〉ψ

′′
i

∧

(z) + 〈dηφ2
i , ϕ

k
j 〉(ψ

2
i )

′′
∧

(z)
)

ϕk
j (x). (12)

Here (λj, ϕ
k
j ) is an eigensystem of −△ equipped with the impedance boundary conditions

of (5), 〈·, ·〉 is the L2 inner product on Ω, and

ωλ(z) =

{

1
c2
z2 + b̃λβzα + λ for ch

b̃2z
2+α2 + 1

c2
z2 + b̃1λz

α1 + λ for fz ,

are the reciprocals of the relaxation functions 1
ωλ
. We will make use of the following two

auxiliary results on these relaxation functions.
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Lemma 2.1 (Lemma 11.4 in [26]) For ch or fz damping, the poles of 1
ωλ

differ for dif-
ferent λ.

Lemma 2.2 (Lemma 11.5 in [26]) For ch or fz damping, the residues of the poles of
1
ωλ

do no vanish.

With (12), the premiss F ′
i (0,

1
c2
)(dη, ds) = 0, i ∈ {1, 2} reads as

0 =
∞
∑

j=1

1
ωλj

(z)
∑

k∈Kλj

(

〈dsφi, ϕ
k
j 〉ψ

′′
i

∧

(z) + 〈dηφ2
i , ϕ

k
j 〉(ψ

2
i )

′′
∧

(z)
)

ϕk
j (x0), x0 ∈ Σ i ∈ {1, 2}.

Taking the residues at the singularities (which are the poles pj of the relaxation func-
tions) and applying Lemmas 2.1, 2.2, we can single out the contributions pertaining to the
individual eigenvalues

0 =
∑

k∈Kλj

(

〈dsφi, ϕ
k
j 〉ψ

′′
i

∧

(pj) + 〈dηφ2
i , ϕ

k
j 〉(ψ

2
i )

′′
∧

(pj)
)

ϕk
j (x0), x0 ∈ Σ i ∈ {1, 2}, j ∈ N.

(13)
In case of one space dimension, the eigenvalues are single and the inner sum consists of
one term #Kλj = 1. However, in higher space dimensions, we typically have to deal with
multidimensional eigenspaces, that is, #Kλj > 1, with (ϕk

j )k∈Kλj as an orthonormal basis
of the eigenspace corresponding to λj . Looking at each of these eigenspaces individually,
it becomes apparent that in order not to lose the essential information separating the
individual eigenfunction contributions contained in (13), we have to make the assumption
that these eigenspaces keep their dimension after taking the observation traces. This can
be cast as the linear independence assumption

(

∑

k∈Kλ

bkϕk(x) = 0 for all x ∈ Σ

)

=⇒
(

bk = 0 for all k ∈ Kλ
)

. (14)

for any eigenvalue λ of −△ and is basically a geometric condition on Σ. Under condition
(14), from (13) we immediately obtain

0 = 〈dsφi, ϕ
k
j 〉ψ

′′
i

∧

(pj) + 〈dηφ2
i , ϕ

k
j 〉(ψ

2
i )

′′
∧

(pj), j ∈ N, k ∈ Kλj , i ∈ {1, 2}. (15)

Now we set φ1 = φ2 =: φ for some function φ 6= 0 almost everywhere in Ω, so that for each
k and j, (15) becomes a two-by-two system of equations for the coefficients akj := 〈dsφ, ϕk

j 〉
and bkj := 〈dηφ2, ϕk

j 〉. Choosing ψ1, ψ2 such that for all poles pj, the system matrix is
regular, that is,

0 6= det

(

ψ′′
1

∧

(pj) (ψ2
1)

′′
∧

(pj)

ψ′′
2

∧

(pj) (ψ2
2)

′′
∧

(pj)

)

j ∈ N, (16)
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we obtain akj = 0, bkj = 0 for all j ∈ N, k ∈ Kλj . Hence, the functions dsφ and dη φ2

vanish in L2(Ω) and by our choice of φ 6= 0 a.e. this implies that ds = 0, dη = 0 almost
everywhere in Ω.

Thus, we have proven the following.

Theorem 2.1 Assume that T = ∞, that (14) holds for the eigenspaces of −△ and that the
excitations r̃i take the form (11) with φ ∈ D(−△), φ 6= 0 a.e. in Ω and ψ1, ψ2 satisfying
(16). Then, F ′

i (0,
1
c2
)(dη, ds) = 0, i ∈ {1, 2} implies dη = 0, ds = 0.

The same proof also works with the original κ(x) and c0(x) formulation.

Indeed for F̃i : (κ, c
2
0) 7→ trΣui (note that we take the squared sound speed as a variable),

where ui solves (3) with

ri(x, t) := φ(x)ψ′′
i (t)− c20△φ(x)ψi(t) +D[φψi](x, t), i ∈ {1, 2} (17)

we get that the linearisation around vanishing nonlinearity coefficient κ(x) = 0 and con-
stant sound speed c20(x) = c2 is F̃ ′

i (0, c
2)(dκ, dc20) = trΣdui, where

dui,tt − c2△dui +Ddui = dκφ2(ψ2
i )

′′ + dc20△φψi in Ω× (0, T ).

Thus, from F̃ ′
i (0, c

2)(dκ, dc20) = 0 for i ∈ {1, 2}, together with (14) and Lemmas 2.1, 2.2,
we obtain, in place of (15), that

0 = 〈dκφ, ϕk
j 〉(ψ

2
i )

′′
∧

(pj) + 〈dc20△φ2
i , ϕ

k
j 〉ψi

∧

(pj), j ∈ N, k ∈ Kλj , i ∈ {1, 2}.

Hence, under the assumption

0 6= det

(

(ψ2
1)

′′
∧

(pj) ψ1

∧

(pj)

(ψ2
2)

′′
∧

(pj) ψ2

∧

(pj)

)

j ∈ N, (18)

we obtain the following.

Theorem 2.2 Assume that T = ∞, that (14) holds and the excitations ri take the form
(17) with φ ∈ D(−△), φ 6= 0, △φ 6= 0 a.e. in Ω and ψ1, ψ2 satisfying (18). Then,
F̃ ′
i (0, c

2)(dκ, dc20) = 0, i ∈ {1, 2} implies dκ = 0, dc20 = 0.

3 Reconstruction of the nonlinearity coefficient and

sound speed by a regularised Newton scheme

3.1 Well-definedeness and convergence a frozen Newton method

We first of all restrict ourselves to the classical Kelvin-Voigt damping D̃ = −b̃△∂t, that is,
chwith α = β = 1. Later on, in Subsection 3.1.1, we will return to both general damping
models ch , fz .
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By a slight extension of [19, Theorem 1.1 and Proposition 3], the parameter-to-state map

S : D(F ) → V := H1(0, T ;H2(Ω)) ∩W 1,∞(0, T ;H1(Ω)) ∩W 2,∞(0, T ;L2(Ω)) (19)

is well-defined on

D(F ) := {(η, s) ∈ L∞(Ω)×L∞(0, T ;L∞(Ω)) :
1

s

∈ L∞(0, T ;L∞(Ω)), s ∈ H1(0, T ;L3(Ω))}

for a smooth bounded domain Ω ⊆ R
d, d ∈ {1, 2, 3}, r̃ ∈ L2(0, T ;L2(Ω))∪H1(0, T ;H−1(Ω))

with r̃ small enough in this norm. Note that we will have to deal with a potentially
time-dependent s below and thus consider a function space that is able to capture this.
By Sobolev’s Lemma, this implies that evaluation of u at single points or on a smooth
manifold is feasible in a continuous way and thus F : D(F ) → Y is well-defined for any
Y ⊇ L∞(0, T ;C(Σ)) in case Σ is a smooth manifold or Y ⊇ L∞(0, T ; ℓ∞(Σ)) in case Σ
is a set of discrete points. To make use of a Hilbert space structure, we will simply set
Y = L2(0, T ;L2(Σ)) or Y = L2(0, T ; ℓ2(Σ)), respectively.

Likewise it follows that for any (η, s) ∈ D(F ), (dη, ds) ∈ L∞(Ω) × L∞(0, T ;L∞(Ω)), the
Gâteaux derivative of the forward operator is given by F ′(η, s)(dη, ds) = trΣdu, where du
solves (10).

In particular, for applying a frozen Newton method to (7), we linearise at s = 1/c2 (for
some constant c), η = 0, that is, we use F ′(0, 1/c2)(dη, ds) = trΣdu, where

1

c2
dutt −△du+ D̃du = −

(

ds(x) u− dη(x) u2
)

tt
in Ω× (0, T )

Using two well-chosen excitations r̃1, r̃2, from Theorem 2.1 we have linearised injectivity
of the two component forward operator ~F = (F1, F2) with Fi = C ◦ Si and Si : (η, s) 7→ ui

defined as the parameter-to-state map for (5) with r̃ = r̃i, i ∈ {1, 2}. Thus we conclude
formal well-definedness of a frozen Newton scheme by

(ηn+1, sn+1) = (ηn, sn) + (dη, ds) where (dη, ds) solves ~F ′(η0, s0)(dη, ds) = ~h− ~F (ηn, sn)

provided that ~h − ~F (ηn, sn) lies in the range of ~F ′(η0, s0). However, the inverse problem
inherits the ill-posedness from the original nonlinear one and the given data is typically
contaminated with noise, that is, in place of ~h = (h1, h2) we only have ~hδ ≈ ~h. Thus
regularisation needs to be applied and the convergence analysis of the resulting iterative
reconstruction scheme requires structural conditions on the forward operator. One of the
conditions allowing for convergence guarantees is range invariance of the linearised forward
operator (as plausible from the above requirement of the residual lying in the range of
~F ′(η0, s0)) and can be established for our problem in the slightly relaxed form

~F (η,~s)− ~F (η0,~s0) = ~F ′(η0,~s0)(dη(η,~s), ~ds(η,~s)). (20)

To illustrate this first of all in the single excitation case

F (η, s)− F (η0, s0) = F ′(η0, s0)(dη(η, s), ds(η, s)), (21)
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note that it is straightforward to see that by setting

dη(η, s) = dη(η) := η − η0,

ds(η, s) = ds(η, s; u, u0) :=
1

u0

(

(s− s0)u− (η − η0)(u
2 − u2

0)− η0(u− u0)
2
) (22)

we can satisfy the identity (21). However, through time dependence of u0 and u, the ex-
pression for ds(η, s) in the second identity of (22) will be time dependent as well. Thus we
consider s as a space and time dependent function. Moreover, we have to take into account
two excitations resulting in two different states ui, i ∈ {1, 2} and thus also need two copies
of s to be able to capture this in (22), thus considering~s(x, t) = (s1(x, t), s2(x, t)). Introduc-
ing so much additional dimensionality in parameter space clearly counteracts uniqueness
and after all our aim is to reconstruct only one only space dependent s(x) (along with the
nonlinearity coefficient η(x)). This is achieved by penalisation with an operator

P : (s1, s2) 7→ (s1 − Proj
L2(0,T ;µ)
const s

1, s2 − Proj
L2(0,T ;µ)
const s

2) (23)

where Proj
L2
µ(0,T )

const is the L2
µ projection on the space of constant functions with a finite

measure µ on (0, T ), including the case of an infinite time horizon T = ∞. Note that
in the latter case we do not use µ as the ordinary Lebesgue measure λ, since this would
exclude the constant-in-time solutions that we are actually looking for but, e.g., define µ
by dµ(t) = t−2dλ(t).

Setting (η0,~s0) = (0, 1/c2, 1/c2) and abbreviating

K := ~F ′(η0,~s0), ~h0 = ~h− ~F (η0,~s0),

r : (η, s1, s2) 7→ (dη(η), ds(η, s1; u1, u1
0), ds(η, s

2; u2, u2
0)) as in (22),

we can thus write the original inverse problem (7) equivalently as a combination of an
ill-posed linear and a well-posed nonlinear problem

Kr̂ = ~h0

r(η,~s) = r̂

P~s = 0

(24)

for the unknowns (η,~s, r̂). In view of (22) we expect r to be close to the identity in the
sense of

∃ cr ∈ (0, 1) ∀(η,~s) ∈ U(⊆ X) : ‖(dη(η,~s), ~ds(η,~s))−(η−η0,~s−~s0)‖X ≤ cr‖(η−η0,~s−~s0)‖X
(25)

for some sufficiently small neighborhood U ⊆ X of the exact solution (η†,~s†), an estimate
that we will establish in an appropriate function space settingX in the proof of Theorem 3.1
below. The symbol ~s† is hard to identify and given previous nightmares with IP typsetting
out of latex ........

10



Thus, a natural way of making use of the structure (24) in a regularised frozen Newton
type method is to define iterates for ~x = (η, s1, s2) with r(x) ≈ x− x0 as minimizers of

xδ
n+1 ∈ argminx∈D(~F )‖K(x− xδ

n) +
~F (xδ

n)− hδ‖pY + αnR(x) + ‖Px‖2Z . (26)

with a proper X lower semicontinuous functional R, a sequence of positive regularisa-
tion parameters tending to zero (αn)n∈N ⊆ R+, αn

n→∞
−→ 0 and P as in (23), Z :=

L2
µ(0, T ;L

2(Ω))2. In view of the well-posedness results quoted above, we choose X ⊆
L∞(Ω) × L∞(0, T ;L∞(Ω))2 and Y ⊇ L∞(0, T ;L∞

ν (Σ)) with ν being just the Lebesgue
measure in case of a smooth manifold Σ and the counting measure in case σ consists of
discrete points.

This includes the Hilbert space setting

X = Xη ×X2
s
with Xη = Hσ(Ω), Xs = Hτ(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

Y = L2(0, T ;L2
ν(Σ))

2 (27)

in space dimensions d ∈ {1, 2, 3} for any σ > d/2, τ > 1/2, since due to Sobolev’s and
Agmon’s interpolation inequality 4, Xs continuously embeds into L∞(Ω)×L∞(0, T ;L∞(Ω)).
With this and R(x) = ‖x− x0‖

2
X we can write (26) as

~xδ
n+1 = ~xδ

n + (K⋆K + P ⋆P + αnI)
−1
(

K⋆(~hδ − ~F (~xδ
n))− P ⋆P~xδ

n + αn(~x0 − ~xδ
n)
)

(28)

where K⋆ denotes the Hilbert space adjoint of K : X → Y .

In case of noisy data with noise level δ satisfying the bound

‖~hδ − ~F (η†, s†)‖L2(0,T ;L2(Ω)) ≤ δ (29)

we have to stop the iteration according to

n∗(δ) → 0, δ

n∗(δ)−1
∑

j=0

cjrα
−1/2
n∗(δ)−j−1 → 0 as δ → 0 (30)

with cr as in (25). With the simple geometric sequence αn = α0θ
n for some θ ∈ (0, 1), this

just corresponds to the usual a priori choice αn∗(δ) → 0 and δ2/αn∗(δ)−1.

From [22, Theorem 2.2] and Theorem 2.1 we thus conclude the following convergence result.

Theorem 3.1 Let the conditions of Theorem 2.1 on the observation set Σ and on the
excitations r̃1, r̃2 be satisfied. Let ~x0 = (η0, s

1
0, s

2
0) ∈ U := Bρ(~x

†) for some ρ > 0 sufficiently
small, assume that ui

0 = Si(η0, s
1
0, s

2
0) is bounded away from zero

|ui
0| ≥ c > 0 a.e. on (0, T )× Ω, i ∈ {1, 2}, (31)

and let the stopping index n∗ = n∗(δ) be chosen according to (30).

Then the iterates (~xδ
n)n∈{1,...,n∗(δ)} are well-defined by (28), remain in Bρ(~x

†) and converge
in X (defined as in (27) with τ ∈ (1, 5/4)), ‖~xδ

n∗(δ)
−~x†‖X → 0 as δ → 0. In the noise free

case δ = 0, n∗(δ) = ∞ we have ‖~xn − ~x†‖X → 0 as n → ∞.

4‖v‖2
L∞(Ω) ≤ C‖v‖H1(Ω)‖v‖H2(Ω)

11



Maybe remark here that we will comment on the assumption (31) shortly?

Proof. With τ ∈ (1, 5/4), the solution space V defined in (19) is embedded inHτ(0, T ;L∞(Ω)∩
W 1,3(Ω)) and on the other hand the parameter space Xs defined in (27) is embedded in
L∞(0, T ;L∞(Ω)) ∩ Hτ (0, T ;L6(Ω)); moreover η − η0 and η0 are time-independent. Using
the fact that Hτ (0, T ) and H2(Ω) are Banach algebras, we obtain the following estimates.
We start from the identity

ds(η, s)− (s− s0) =
1
u0

(u− u0)
(

(s− s0)− (η − η0)(u+ u0)− η0(u− u0)
)

,

and, using the above mentioned continuous embeddings, estimate the individual terms as
follows

‖ 1
u0
(u− u0)(s− s0)‖L2(H2) ≤ ‖ 1

u0
‖L∞(H2)‖u− u0‖L∞(H2)‖s− s0‖L2(H2)

‖ 1
u0
(u− u0)(s− s0)‖Hτ (H1) ≤ ‖ 1

u0
‖Hτ (L∞)‖u− u0‖Hτ (L∞)‖s− s0‖Hτ (H1)

+
(

‖ 1
u0

‖Hτ (L∞)‖(u− u0)‖Hτ (W 1,3) + ‖ 1
u0

‖Hτ (W 1,3)‖u− u0‖Hτ (L∞)

)

‖s− s0‖Hτ (L6)

‖ 1
u0

(u− u0)(u+ u0)(η − η0)‖L2(H2) ≤ ‖ 1
u0

‖L2(H2)‖u− u0‖L∞(H2)‖u+ u0‖L∞(H2)‖η − η0‖H2

‖ 1
u0

(u− u0)(u+ u0)(η − η0)‖Hτ (H1) ≤ ‖ 1
u0

‖Hτ (L∞)‖u− u0‖Hτ (L∞)‖u+ u0‖Hτ (L∞)‖η − η0‖H1

+
(

‖ 1
u0
‖Hτ (L∞)‖u− u0‖Hτ (L∞)‖(u+ u0)‖Hτ (W 1,3)

+ ‖ 1
u0
‖Hτ (L∞)‖u− u0‖Hτ (W 1,3)‖(u+ u0)‖Hτ (L∞)

+ ‖ 1
u0

‖Hτ (W 1,3)‖u− u0‖Hτ (L∞)‖(u+ u0)‖Hτ (L∞)

)

‖η − η0‖Hτ (L6)

and analogously for the term 1
u0

(u− u0)
2η0.

This together with assumption (31) and Lipschitz continuity of S allow us to establish a
bound of the form

‖(dη(η,~s), ~ds(η,~s))− (η − η0,~s−~s0)‖X ≤ C‖(η − η0,~s−~s0)‖
2
X

which in a sufficiently small neighborhood of (η0,~s0) yields the estimate (25) with small cr.

♦

3.1.1 An all-at-once formulation

As can be seen from the proof of Theorem 3.1, we need to avoid division by zero by
assuming (31); however, as a solution to a wave equation, u0 will typically change sign.
This problem can be circumvented by considering the all-at-once version, which allows us
to choose u0 not necessarily as a pde solution and also allows for much more freedom in
the choice of the function spaces.

12



To this end, we consider the model and the observation equation as a system of op-
erator equations for the sought-after coefficients and the states. That is, we set ~x =
(η, s1, s2, u1, u2) and replace the definition of ~F = (F1, F2) by

Fi(η, s
1, s2, u1, u2) =

(

Fmod(η, si, ui)
trΣu

i

)

where

〈Fmod(η, s, u), w〉W ∗,W =

∫ T

0

∫

Ω

(

(

s(x)u− η(x)u2
)

wtt + (−△u+ D̃u)w
)

dx dt

w ∈ W := {v ∈ H2(0, T ;L2(Ω)) : v(T ) = 0, vt(T ) = 0},

(32)

where 〈·, ·〉W ∗,W denotes the dual pairing in W .5 Note that we aim here to allow for low
regularity of the coefficients to decrease the degree of ill-posedness of the inverse problem as
much as possible. This is enabled by the weak formulation (with respect to time derivatives)
of the pde model in (32) and allows to use the function spaces

X = Xη ×X2
s
×X2

u with Xη = L2(Ω), Xs = L2(0, T ;L2(Ω)),

Xu =

{

L2(0, T ;H2(Ω)) ∩H α̃(0, T ; Ḣ β̃(Ω)) in case of ch

H α̃1(0, T ;H2(Ω)) ∩H α̃1+2(0, T ;L2(Ω)) in case of fz

Y = (W ∗)2 × L2(0, T ;L2
ν(Σ))

2.

(33)

Here the exponents are chosen such that D̃ maps Xu into L2(0, T ;L2(Ω)) and Xu contin-
uously embeds into L∞(0, T ;L∞(Ω)):

α̃ ≥ α, β̃ ≥ β, α̃1 ≥ α1, α̃2 ≥ α2, α̃ >
1

2
, β̃ >

d

2
, max{α̃1, α̃2} > 0 . (34)

The range invariance condition

~F (η,~s, ~u)− ~F (η0,~s0, ~u0) = ~F ′(η0,~s0, ~u0)(dη(η,~s), ~ds(η,~s) ~du(η,~s))

can be verified with dη, ds defined as in (22) and du = u−u0. Injectivity of ~F ′(0, 1/c2, 1/c2, u1
0, u

2
0)

can be shown analogously to Theorem 2.1, for u0
i (x, t) = φ(x)ψi(t) with φ ∈ D(−△), φ 6= 0

a.e. in Ω, ψ1, ψ2 satisfying (16), but actually without u0
i needing to solve (5). Finally, the

estimate of r(~x)− (~x− ~x0) simplifies to

‖r(~x)− (~x− ~x0)‖
2
X ==

2
∑

i=1

‖ 1
u0
(u− u0)

(

(s− s0)− (η − η0)(u+ u0)− η0(u− u0)
)

‖2L2(L2)

≤
2

∑

i=1

‖ 1
u0

‖2L∞(L∞)‖(u− u0)‖
2
L∞(L∞)

(

‖s− s0‖L2

+ ‖η − η0‖L2(L2)‖u+ u0‖L∞(L∞) + ‖η0‖L2(L2)‖u− u0‖L∞(L∞)

)2

.

5for T = ∞ the end conditions are to be understood in a limiting sense limt→∞ v(t) = 0, limt→∞ vt(t) =
0
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Thus, applicability and convergence of the frozen Newton method transfers to this all-at-
once setting as follows.

Theorem 3.2 Let the conditions of Theorem 2.1 on the observation set Σ and on the
functions φ, ψ1, ψ2 in u0

i (x, t) = φ(x)ψi(t) be satisfied. Let ~x0 = (η0, s
1
0, s

2
0, u

1
0, u

2
0) ∈ U :=

Bρ(~x
†) for some ρ > 0 sufficiently small, and let the stopping index n∗ = n∗(δ) be chosen

according to (30).

Then the iterates (~xδ
n)n∈{1,...,n∗(δ)} are well-defined by (28), remain in Bρ(~x

†) and converge
in X (defined as in (33) with (34)), ‖~xδ

n∗(δ)
− ~x†‖X → 0 as δ → 0. In the noise-free case

δ = 0, n∗(δ) = ∞ we have ‖~xn − ~x†‖X → 0 as n → ∞.

The price to pay for this more relaxed setting is convergence of the coefficients in a weaker
norm as compared to Theorem 3.1.

3.2 Reconstructions

In this section we show reconstructions of η(x), s(x) in (5) with Caputo-Wismer-Kelvin
damping, that is,

(

s(x)u− η(x)u2
)

tt
−△u− b△∂α

t u = r̃ in Ω× (0, T )

∂νu+ γu = 0 on ∂Ω× (0, T ), u(0) = 0, ut(0) = 0 in Ω.
(35)

in one space dimension Ω = (0, 1) with Dirichlet-Neumann conditions γ(0) = ∞, γ(1) = 0
from measurements at two points Σ = (0.1, 1). (Note that since we impose homogeneous
Dirichlet boundary conditions at the left endpoint, measuring u there would not provide
any additional information; indeed, also in practice the transducer array will be immersed
into the overall computational domain Ω.)

For the numerical solution of (35), we follow the method of [25] and rewrite the equation
by integrating once with respect to time

(

s(x)− 2η(x)u
)

ut − b̃△I1−α
t u−△I1t u = I1t r̃ in Ω× (0, T )

∂νu+ γu = 0 on ∂Ω × (0, T ), u(0) = 0 in Ω,
(36)

to which we apply a modified Crank-Nicolson solver taking into account the fractional
integral term. Likewise for its linearisation (10).

To test the frozen Newton method from Section 3.1, we consider three scenarios A, B and
C as described below. While the theory from Section 3.1 requires two executions6 and an
extension of s to a time dependent function, this was not needed in practical computa-
tions. The reconstructions shown here are based on a single excitation, but carrying out
measurements at two points Σ = {0.1, 1}. Also s is treated as a function of x only. Both

6maybe use “experiments” or “excitatons” rather than “executions”?

14



coefficients were discretised using a chapeau basis set and the starting values were η0 = 0
and s = 1.

Figures 1 and 2 show a simultaneous reconstruction of both η(x) and s(x) under 1% and
0.1% noise in the time trace data. Here the value of the solution u(x, t) was negative and
there was therefore no cancellation effect on the s(x) and the η(x) term (test case A). In
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Figure 1: Reconstruction of both η(x) and s(x) under 1% data noise; test case A.
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Figure 2: Reconstruction of both η(x) and s(x) under 0.1% data noise; test case A.

Figure 3 we show the difference when the sign of u(x, t) is reversed so that there is the
potential for a cancellation effect between η(x) and s(x) (test case B). In fact this occurred
resulting in a poorer reconstruction in both functions. Data noise here was again 0.1%.
The final picture 4 shows a more complex function η(x) with two features (test case C),
one at each end of the interval. For this run the function u(x, t) was zero at the endpoint
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Figure 3: Reconstruction of both η(x) and s(x) under 0.1% data noise; test case B.

x = 0 and so small in comparison at the left end as opposed to the right. Since η occurs
in combination with u in the equation this means a relative loss of information at the left-
hand endpoint. This is clearly visible from the left hand graphic. In, addition this error in
η(x) now affects the combined term (s− ηu) and results in a similarly poor reconstruction
of s(x) near x = 0. Note that a seemingly overall better match of η at the fourth iterate
is dismissed in subsequent iterations that are much worse in approximating the left hand
feature. 7 This is due to the fact that the mismatch is weighed by the values of u which
are small near the left endpoint, but penalize deviations occurring in the right half of the
interval (as is the case for iteration 4) much more strongly. These reconstructions were
made using 0.1% data noise.
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Figure 4: Reconstruction of both η(x) and s(x) under 0.1% data noise; test case C.

This effect of smallness of u at the left hand endpoint is also apparent in the other figures,
particularly in the case where there is a significant feature near this endpoint. In all figures

7textcolorredShould we add further comment here on this? Such as stopping condition? ]not sure how
...]
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we imposed the sign constraint imposed by the physical problem that η(x) ≥ 0.

For an η function with support away from x = 0 the reconstructions shown in figure 2 under
0.1% noise and in figure 1 with 1% added noise indicate a reasonable reconstruction of both
η and s(x). Note that a poor initial guess (both these functions taken to be constant zero
and one respectively) leads to a severe overshoot in the first computed approximation to
s(x) although this quickly settles down. In this case both actual s(x) and η(x) functions
have support away from the left-hand endpoint x = 0 and there is also overshoot in the
first iteration of η.

The difference between (0.1%) and 1% of added noise to the data simulated by the direct
solver is quite apparent and indicates the severe ill-conditioning of the inverse problem.

0 5 10 15 20 25 30

−5

−4

−3

−2

−1

0

log10 σn

n

•

•
••••••••••••••••••

••••••••••

Figure 5: Singular values of the Jaco-

bian.

Finally, we show a plot of the singular values
of the Jacobian matrix frozen at s(x) = 1 and
η(x) = 0. As Figure 5 shows there is indeed an
exponential decay of the singular values and the
initial steep decay of the largest values means
that under even relatively small noise in the data
it will be difficult to use more than about ten rel-
evant modes as the above reconstruction figures
demonstrate. However the decay rate of the sin-
gular values overall is actually more favourable
for reconstructions than for classical exponen-
tially ill-posed problems such as the backwards
or sideways heat problems, the Cauchy problem
for the Laplacian or inverse obstacle scattering.

All of the above reconstructions were obtained using the value α = 1
2
but none were sensitive

to this parameter except for the extreme ends of its range. However, it is certainly the
situation if we had α = 1 and thus exponential damping the usefulness of the resulting very
small values of u obtained from anything beyond modest time values would be extremely
limited – in particular for the reconstruction of η(x) as this is inherently coupled to the
magnitude of u. 8

Two-dimensional reconstructions in the practically relevant case of a piecewise constant
coefficient η, corresponding to inclusions in a homogeneous background, can be found in
[27].
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[16] Sverre Holm and Sven Peter Näsholm. A causal and fractional all-frequency wave equa-
tion for lossy media. The Journal of the Acoustical Society of America, 130(4):2195–
2202, 2011.

[17] Nobuyuki Ichida, Takuso Sato, and Melvin Linzer. Imaging the nonlinear ultrasonic
parameter of a medium. Ultrasonic Imaging, 5(4):295–299, 1983. PMID: 6686896.

[18] Ashkan Javaherian, Felix Lucka, and Ben T. Cox. Refraction-corrected ray-based in-
version for three-dimensional ultrasound tomography of the breast. Inverse Problems,
36(12):125010, 41, 2020.

[19] B. Kaltenbacher and I. Lasiecka. Global existence and exponential decay rates for the
Westervelt equation. Discrete and Continuous Dynamical Systems (DCDS), 2:503–
525, 2009.

[20] Barbara Kaltenbacher. Mathematics of Nonlinear Acoustics. Evolution
Equations and Control Theory (EECT), 4:447–491, 2015. open access:
https://www.aimsciences.org/article/doi/10.3934/eect.2015.4.447.

[21] Barbara Kaltenbacher. Periodic solutions and multiharmonic expansions for the West-
ervelt equation. Evolution Equations and Control Theory EECT, 10:229–247, 2021.

[22] Barbara Kaltenbacher. Convergence guarantees for coefficient reconstruction in PDEs
from boundary measurements by variational and Newton type methods via range
invariance. 2022. submitted and arXiv:2209.12596 [math.NA].

[23] Barbara Kaltenbacher. On the inverse problem of vibro-acoustography. Mec-
canica, 2022. to appear; https://doi.org/10.1007/s11012-022-01485-w; see also
arXiv:2109.01907 [math.AP].

[24] Barbara Kaltenbacher and William Rundell. On the identification of the nonlinearity
parameter in the Westervelt equation from boundary measurements. Inverse Problems
& Imaging, 15:865–891, 2021.

19



[25] Barbara Kaltenbacher and William Rundell. On an inverse problem of nonlinear
imaging with fractional damping. Mathematics of Computation, 91:245–276, 2022.
see also arXiv:2103.08965 [math.AP].

[26] Barbara Kaltenbacher and William Rundell. Inverse Problems for Fractional Partial
Differential Equations. Graduate Studies in Mathematics. AMS, 2023. to appear.

[27] Barbara Kaltenbacher and William Rundell. Nonlinearity parameter imaging in the
frequency domain. 2023. submitted; see also arXiv:2303.09796 [math.NA].
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