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Abstract

Using the analytic Bethe ansatz, we initiate a study of the scaling limit
of the quasi-periodic D

(2)
3 spin chain. Supported by a detailed symmetry

analysis, we determine the effective scaling dimensions of a large class of
states in the parameter regime γ ∈ (0, π

4
). Besides two compact degrees

of freedom, we identify two independent continuous components in the
finite-size spectrum. The influence of large twist angles on the latter
reveals also the presence of discrete states. This allows for a conjecture
on the central charge of the conformal field theory describing the scaling
limit of the lattice model.
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1 Introduction

Low-dimensional critical lattice models whose low-energy behavior is captured by field theories
with a non-compact target space have attracted increasing attention in recent years. Such
theories may support continuous spectra of critical exponents, which have been argued to de-
scribe the multifractal scaling of the critical wave functions at the integer quantum Hall plateau
transition and other disorder-driven quantum phase transitions [1, 2]. At the same time, finite
lattice realizations of such models with a compact configuration space may facilitate numerical
studies of questions arising in the context of AdS/CFT dualities [3]. This is particularly true if
these lattice models are integrable and allow for a solution of their spectral problem by means
of Bethe ansatz methods.

One approach to study two-dimensional disorder problems such as quantum Hall systems
or dirty d-wave superconductors is based on supersymmetric reformulations in terms of spin
chains based on supergroup symmetries [4–7]. A characteristic feature of these spin chains is
that their Hilbert space has a Z2 staggering, i.e. the local degrees of freedom in these spin
chains are different (conjugate) representations of the underlying algebra on even and odd sites
respectively. Motivated by these findings, integrable deformations of such staggered superspin
chains have been constructed [8–13]. Beginning with Ref. [11] on an integrable sl(2|1) super-
spin chain with alternating three-dimensional quark and antiquark representations as the local
degrees of freedom, finite-size studies of these models have provided evidence for the presence of
continuous components in their spectrum of critical exponents. The latter manifest themselves
through towers with a macroscopic number of energy levels that extrapolate to the same scaling
dimension in the thermodynamic limit, but exhibit strong (logarithmic) corrections to scaling
that lift their degeneracies in the finite system. By now the most studied and best understood
of the models with such properties is the staggered six-vertex model related to the antiferro-
magnetic Potts model [14–19], whose low energy effective theory has been identified to be the
SL(2, R)/U(1) black hole conformal field theory featuring one compact and one non-compact
bosonic degree of freedom [20].

A common property of the models mentioned above is that they are staggered (either by
choosing alternating representations of the underlying algebra, or by considering inhomogeneous
shifts of the spectral parameter in the vertex model). This staggering allows for the construction
of a conserved ‘quasi momentum’ operator, which has been crucial in the identification of
the scaling limit. Note however, there also exist translation-invariant models, e.g. based on
twisted Lie algebras including several spin chains from the A

(2)
n series in their regime III [21–23],

for which signatures for the existence of continuous components of the conformal spectrum
have been observed. Based on finite-size estimates of their central charge and the spectra of
elementary excitations, it has been argued that the A

(2)
n models allow for two (or more) non-

compact degrees of freedom (in addition to the compact ones) in the scaling limit for the higher
rank cases with n > 3. Due to numerical and analytical difficulties, a reliable description of
the conformal spectra in these models has not been possible, though.

Interestingly, the staggered six-vertex model has recently been shown to allow for a mapping
to a homogeneous integrable spin chain constructed from the twisted affine D

(2)
2 Lie algebra [24];

as a consequence, a quasi momentum can be constructed in one formulation but not in the other.
Such a factorization is not known for the higher-rank models based on D

(2)
n . Nevertheless,

obvious questions to ask are whether these, too, give rise to a series of non-compact CFTs;
what is the counting of compact and non-compact degrees of freedom; and finally, what is the
operator content of the CFTs describing the low energy spectrum in the scaling limit.
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With this paper, we begin the investigation of these questions for the simplest case beyond
the staggered six-vertex model, i.e. the D

(2)
3 spin chain. Our paper is organized as follows: in

Sec. 2, after recalling the underlying integrable structures, we construct the transfer matrix
of the model subject to generic diagonal twisted boundary conditions, and we identify some of
its symmetries. Generalizing the analytical Bethe ansatz for the periodic case [25], we obtain
the eigenvalues of the transfer matrix and the resulting Hamiltonian with local, i.e. nearest-
neighbor interactions. In Sec. 3, combining results from the exact diagonalization of small
systems with the numerical solution of the Bethe equations, we identify the root configurations
of the low-lying states. This is then used in Sec. 4 to compute the ground state energy density
in the thermodynamic limit, and in Sec. 5 to construct the renormalization group trajectories
for the ground state and excitations used in the finite-size scaling analysis of the spectrum.
The latter is done separately for the compact and the non-compact parts of the spectrum, both
with and without the twist. The flow of the compact modes under the twist resembles that of
two compact bosons with compactification radii depending on the anisotropy. In addition, we
observe the emergence of discrete states from the continuous parts of the spectrum of conformal
weights for sufficiently large twists, similar as in other lattice realizations of the black hole CFT.
Based on the analytical dependence of these discrete weights on the twist, we conjecture a result
for the central charge of the model in its scaling limit which is consistent with that of two copies
of the SL(2, R)/U(1) sigma model.

2 The D
(2)
3 spin chain

In this section, we define the D
(2)
3 spin chain, describe its symmetries, and review its Bethe

ansatz solution.

2.1 The R-matrix

The main building block of the D
(2)
3 integrable quantum spin chain is the 36×36 D

(2)
3 R-matrix

obtained in [26]. We follow here the conventions in Eqs. (A.8-10) of [27]; i.e. our R-matrix
R(u) is related to the one of Jimbo RJ(x) [26] by the following identifications and rescaling:

R(u) = e−2u−6ηRJ(x) , x = eu , k = e2η . (2.1)

Moreover, we henceforth set η = iγ, so that γ is our anisotropy parameter. This R-matrix
satisfies the Yang-Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) , (2.2)

and has the two U(1) symmetries

[R(u) , (hj ⊗ I+ I⊗ hj)] = 0 , j = 1, 2 , (2.3)

where
h1 = e(1,1) − e(6,6) , h2 = e(2,2) − e(5,5) , (2.4)

and e(k,l) denotes the elementary 6 × 6 matrix with 0 everywhere except for one 1 at position
(k, l); and I is the identity matrix.
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Further important properties of this R-matrix include PT symmetry:

R21(u) := P12 R12(u)P12 = Rt1t2
12 (u) , (2.5)

where P is the permutation matrix, and t denotes transposition; braiding unitarity:

R12(u)R21(−u) = ξ(u) ξ(−u) I⊗2 , ξ(u) = 4 sinh(u+ 2iγ) sinh(u+ 4iγ) ; (2.6)

regularity:
R12(0) = ξ(0)P12 ; (2.7)

crossing symmetry:

R12(u) = V1 Rt2
12(4iγ − u)V1 = V t2

2 Rt1
12(4iγ − u)V t2

2 , V =

 e−3iγ

e−iγ

1
1

eiγ

e3iγ

 , (2.8)

with V 2 = I and
V1 R12(u)V1 = V2 R21(u)V2 ; (2.9)

quasi-periodicity:

R12(u+ iπ) = U1 R12(u)U1 = U2 R12(u)U2 , U =

( 1
1
0 1
1 0

1
1

)
, (2.10)

with U2 = I; and the two Z2 symmetries:

R12(u) = U1 U2 R12(u)U1U2 , (2.11)

R12(u) = W1(u)W2(0)R12(u)W1(u)W2(0) , W (u) =

 e−u

−e−u

1
−1

eu
−eu

 . (2.12)

with W (u)2 = I.

2.2 The transfer matrix and its symmetries

We consider a closed homogeneous spin chain of length L with diagonally-twisted boundary
conditions. The corresponding transfer matrix t(u) is therefore given by [28,29]

t(u) := tr0 K0 T0(u) , (2.13)

where T0(u) is the monodromy matrix

T0(u) := R0L(u) . . .R01(u) . (2.14)

Moreover, the diagonal twist matrix K is given by

K = e
∑2

j=1 iϕj hj = diag
(
eiϕ1 , eiϕ2 , 1 , 1 , e−iϕ2 , e−iϕ1

)
, (2.15)

where ϕ1 and ϕ2 are twist angles, which we restrict to real ϕ1,2. Note that the local Hilbert
space at each site has dimension 6. Furthermore,

[R(u) ,K⊗K] =
[
R(u) , e

∑2
j=1 iϕj (hj⊗I+I⊗hj)

]
= 0 , (2.16)
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where the last equality follows from (2.3). The transfer matrix (2.13) has the commutativity
property

[t(u) , t(v)] = 0 , (2.17)

which is the hallmark of quantum integrability, as a consequence of (2.2), (2.16).
The U(1) symmetries of the R-matrix (2.3) are inherited by the transfer matrix[

t(u) ,h
(L)
j

]
= 0 , j = 1, 2 , (2.18)

where1

h
(L)
j =

L∑
i=1

(hj)i , (2.19)

and (hj)i denotes the generator hj (2.4) at site i, that is

(hj)i = I⊗ · · · ⊗ I⊗ hj︸︷︷︸
i

⊗I⊗ · · · ⊗ I . (2.20)

Further properties inherited from the R-matrix by the transfer matrix include crossing
symmetry:

t
t(u; {ϕj}) = t(4iγ − u; {−ϕj}) , (2.21)

periodicity:
t(u+ iπ) = t(u) , (2.22)

and Z2 symmetry:
t(u) = U⊗L

t(u)U⊗L , (2.23)

see Eqs. (2.8), (2.10), (2.11), respectively. The Z2 symmetry (2.23) is a generalization of the

Z2 symmetry found for D
(2)
2 [14, 24,30].2 For generic values of the twists ϕ1, ϕ2, we also have

W (0)⊗L
t(u;ϕ1, ϕ2)W (0)⊗L = t(u;−ϕ2,−ϕ1) . (2.24)

Hence, if the twist angles satisfy ϕ1 + ϕ2 = 0 (but not for generic values), then the transfer
matrix (2.13) also has the Z2 symmetry

W (0)⊗L
t(u;ϕ,−ϕ)W (0)⊗L = t(u;ϕ,−ϕ) . (2.25)

Finally, we note that the transfer matrix has the CPT-like symmetry

V ⊗L Π t
t(u; {−ϕj})ΠV ⊗L = t(u; {ϕj}) , (2.26)

where Π is the parity operator

Π =

⌊L
2
⌋∏

i=1

Pi,L+1−i , (2.27)

which on any local operator Xi at site i acts as ΠXi Π = XL+1−i, see e.g. [31]; in Eq. (2.27)
⌊x⌋ denotes the floor of x. Proofs of the symmetries (2.21), (2.24) and (2.26) are sketched in
Appendix A.

1We will henceforth abbreviate h
(L)
j as hj when the meaning is clear from the context.

2In [30], the Z2 symmetry of the D
(2)
2 closed-chain transfer matrix is expressed (3.32) in terms of an operator

constructed from a matrix C (2.10), in a gauge that is specified by a matrix B (2.9), with

BC B =

(
1
0 1
1 0

1

)
,

which is evidently a reduction of the matrix U in (2.10).

4



2.3 Bethe ansatz

Let |Λ⟩ denote a simultaneous (normalized) eigenstate of the transfer matrix t(u) (2.13) and
of the U(1) generators hj

t(u) |Λ⟩ = Λ(u) |Λ⟩ , (2.28)

hj |Λ⟩ = hj |Λ⟩ , j = 1, 2 . (2.29)

The eigenvalues Λ(u) are given by

Λ(u) = (4 sinh(u− 2iγ) sinh(u− 4iγ))L eiϕ1 A(u)

+ (4 sinh(u− 4iγ) sinh u)L
[
eiϕ2 B1(u) + B2(u) + B3(u) + e−iϕ2 B4(u)

]
+ (4 sinh(u− 2iγ) sinh u)L e−iϕ1 C(u) , (2.30)

with

A(u) =

m1∏
j=1

sinh(u− u
[1]
j + iγ)

sinh(u− u
[1]
j − iγ)

,

B1(u) =

m1∏
j=1

sinh(u− u
[1]
j − 3iγ)

sinh(u− u
[1]
j − iγ)

m2∏
j=1

sinh(u− u
[2]
j )

sinh(u− u
[2]
j − 2iγ)

,

B2(u) =

m2∏
j=1

2 cosh
(

1
2

(
u− u

[2]
j

))
sinh

(
1
2

(
u− u

[2]
j − 4iγ

))
sinh(u− u

[2]
j − 2iγ)

,

(2.31)

and

C(u) = Ā(4iγ − u) , B3(u) = B̄2(4iγ − u) , B4(u) = B̄1(4iγ − u) , (2.32)

where the barred quantities are obtained by negating all the Bethe-roots (i.e. u
[l]
j 7→ −u[l]j ),

that is,

Ā(u) =

m1∏
j=1

sinh(u+ u
[1]
j + iγ)

sinh(u+ u
[1]
j − iγ)

,

B̄1(u) =

m1∏
j=1

sinh(u+ u
[1]
j − 3iγ)

sinh(u+ u
[1]
j − iγ)

m2∏
j=1

sinh(u+ u
[2]
j )

sinh(u+ u
[2]
j − 2iγ)

,

B̄2(u) =

m2∏
j=1

2 cosh
(

1
2

(
u+ u

[2]
j

))
sinh

(
1
2

(
u+ u

[2]
j − 4iγ

))
sinh(u+ u

[2]
j − 2iγ)

.

(2.33)

If u and η = iγ are real, then the bar has the interpretation of complex conjugation, and the
periodic transfer-matrix eigenvalue has the crossing symmetry

Λ̄(u) = Λ(4iγ − u) , (2.34)

similarly to the XXZ model [32]. The result for the periodic case (ϕ1 = ϕ2 = 0) was obtained
by Reshetikhin via the analytical Bethe ansatz in [25]. The generalization to the twisted case
is presented in Appendix B. Note that we have redefined the Bethe-roots from [25] as

u
[1]
j = 2ixj , u

[2]
j = 2iyj . (2.35)
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We also note that the eigenvalues (2.30) have the periodicity Λ(u+ iπ) = Λ(u), consistent with
(2.22).

An eigenvalue Λ(u) of the transfer matrix is a Fourier polynomial and hence an analytic
function. By requiring that the residues of (2.30) at the apparent poles

u = u
[1]
j + iγ , u = u

[2]
j + 2iγ (2.36)

vanish, one obtains the Bethe equations (BE)sinh
(
u
[1]
j − iγ

)
sinh

(
u
[1]
j + iγ

)
L

= ei(ϕ2−ϕ1)

m1∏
k ̸=j

sinh
(
u
[1]
j − u

[1]
k − 2iγ

)
sinh

(
u
[1]
j − u

[1]
k + 2iγ

) m2∏
k=1

sinh
(
u
[1]
j − u

[2]
k + iγ

)
sinh

(
u
[1]
j − u

[2]
k − iγ

) ,
j = 1, . . . ,m1 ,

m1∏
k=1

sinh
(
u
[2]
j − u

[1]
k − iγ

)
sinh

(
u
[2]
j − u

[1]
k + iγ

) = e−iϕ2

m2∏
k ̸=j

sinh 1
2

(
u
[2]
j − u

[2]
k − 2iγ

)
sinh 1

2

(
u
[2]
j − u

[2]
k + 2iγ

) , j = 1, . . . ,m2 ,

(2.37)

see also [25,33].

Note that the BE are invariant under the transformations u
[1]
j → u

[1]
j +iπ and u

[2]
j → u

[2]
j +2iπ.

Hence, one can restrict

−π
2
< ℑm(u

[1]
j ) ≤ π

2
, (2.38)

−π < ℑm(u
[2]
j ) ≤ π . (2.39)

Notice that we are also allowed to do u
[2]
j → u

[2]
j + iπ, but only if we shift all the Bethe-roots

(i.e. for every j) at the same time.
The eigenvalues hj of the U(1) generators hj (see Eq. (2.29)) are given by [25]

h1 = L−m1 ,

h2 = m1 −m2 .
(2.40)

As usual, the Bethe ansatz provides solutions for

L ≥ m1 ≥ m2 ≥ 0 . (2.41)

Although an algebraic Bethe ansatz construction of the eigenstates |u[1]1 , . . . , u
[1]
m1 ;u

[2]
1 , . . . , u

[2]
m2⟩

of the D
(2)
3 transfer-matrix (2.13) has not yet been worked out in detail, we expect that these

states can be constructed as follows: the first level of nesting (introducing type-1 Bethe roots

u
[1]
1 , . . . , u

[1]
m1) can be accomplished [34] using certain elements of the monodromy matrix (2.14),

reducing the problem to D
(2)
2 . The transfer matrix for the latter can be expressed as a product

of A
(1)
1 transfer matrices [30], which can then be diagonalized by the usual algebraic Bethe

ansatz (introducing the type-2 Bethe roots u
[2]
1 , . . . , u

[2]
m2). We therefore expect that the Z2

symmetry (2.23) shifts all type-2 Bethe roots by iπ

U⊗L |u[1]1 , . . . , u
[1]
m1

;u
[2]
1 , . . . , u

[2]
m2

⟩ ∝ |u[1]1 , . . . , u
[1]
m1

;u
[2]
1 + iπ, . . . , u[2]m2

+ iπ⟩ . (2.42)

Indeed, the Z2 symmetry in the D
(2)
2 case shifts all Bethe roots by iπ (see (3.34) in [30]); and,

in the D
(2)
3 case, these Bethe roots correspond to type-2 Bethe roots.
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2.4 Hamiltonian

Commuting integrals of motion for the D
(2)
3 spin chain are obtained by expanding the transfer

matrix (2.13) about the regular point u = 0 (2.7). The leading term is

t(0) = (4 sinh(2iγ) sinh(4iγ))L eiP , (2.43)

where eiP is the one-site translation operator of the model with quasi-periodic boundary con-
ditions, whose matrix elements are given by[

eiP
]b1,...,bL
a1,...,aL

= exp
{
iϕ1

(
δb11 − δb16

)
+ iϕ2

(
δb12 − δb15

)}
δb2a1δ

b3
a2
. . . δbLaL−1

δb1aL . (2.44)

From (2.30) we find that its eigenvalues eiP are parameterized by the Bethe roots as

eiP = eiϕ1

m1∏
k=1

sinh(u
[1]
k − iγ)

sinh(u
[1]
k + iγ)

. (2.45)

Similarly, we define the local Hamiltonian of the D
(2)
3 spin chain as3

H = sinh(2iγ)
d

du
log (t(u))

∣∣∣
u=0

+ L sinh(2iγ) [coth(2iγ) + coth(4iγ)] I⊗L . (2.46)

the eigenenergies are

E =

m1∑
k=1

ϵ0(u
[1]
k ) = −

m1∑
k=1

2 sinh2(2iγ)

cosh
(
2u

[1]
k

)
− cosh (2iγ)

. (2.47)

The Hamiltonian of course inherits the U(1) and Z2 symmetries of the transfer matrix

[H ,hj] = 0 , j = 1 , 2 , (2.48)[
H , U⊗L

]
= 0 , (2.49)[

H(ϕ,−ϕ) ,W (0)⊗L
]
= 0 , (2.50)

see Eqs. (2.18), (2.23), (2.25), respectively. The Hamiltonian also has the additional CP
symmetry, [

H , V ⊗L Π
]
= 0 , (2.51)

see Appendix A. We emphasize that this symmetry does not extend to the full transfer matrix,
which has only the CPT symmetry (2.26).

The U(1) generators commute with the Z2 symmetry (2.23)[
hj , U

⊗L
]
= 0 , j = 1 , 2 , (2.52)

and they transform into each other under W (0) (2.12)

W (0)⊗L
h1W (0)⊗L = −h2 ,

W (0)⊗L
h2W (0)⊗L = −h1 . (2.53)

3With this sign the Hamiltonian generalizes the D
(2)
2 spin chain which has been related to the antiferromag-

netic Potts model [24] or respectively the corresponding staggered-six vertex model [30,35] .
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Under the CP symmetry, the U(1) generators transform as

V ⊗L Πhj ΠV
⊗L = −hj , j = 1 , 2 . (2.54)

The symmetry transformations (2.50) together with (2.51) induce degeneracies in the energy
spectrum between different sectors of the U(1)-charges. For the analysis of the finite-size
spectrum, it is sufficient to focus on one representative of a given energy level, keeping these
degeneracies implicit. The symmetries (2.50), (2.51) allow one to restrict to the case h1 ≥
|h2| for suitably chosen twist angles. In addition, we found by exact diagonalization of the
Hamiltonian for small system sizes that one can further restrict to

0 ≤ h2 ≤ h1 . (2.55)

Note that all the sectors specified by (2.55) can be accessed by the above Bethe ansatz, see
(2.41) and (2.40). Further, we should stress that the defined Hamiltonian is non-Hermitian.
This leads to complex eigenvalues. On numerical grounds, we find, however, that the energies
of the ground state and lowest excitations are real. In the rest of this work, we study states
parameterized by the classes of Bethe root configurations listed in the following section. These
states, too, turn out to have real energies.

3 Methodology of studying the scaling limit

To study the scaling limit of a lattice model, one should define an L-dependence to the low-
lying energy states. Such an assignment |ΨL⟩ will be called an RG-trajectory. For the ground
state or for the lowest energy states in the disjoint sectors (h1, h2) of the Hilbert space, such
an assignment is clear. On the other hand, constructing individual RG trajectories |ΨL⟩ for
generic low-energy states is not a trivial task. The fact that the considered model is integrable
allows for the following strategy: For small initial lattice sizes L = Lin ≲ 6, we diagonalize
the Hamiltonian in the subspace spanned by eigenvectors of the U(1) generators with given
eigenvalues h1, h2.

4 The eigenvalues are then matched via (2.47) with a solution of the Bethe
ansatz equations {u[1], u[2]}m1

m2
where m1 and m2 are determined by (2.40). The state |ΨL⟩ at

higher L = Lin + 2 is obtained by solving the Bethe ansatz equations for a pattern of Bethe
roots that qualitatively resembles the one of the state |ΨLin

⟩. Via this procedure, we construct
the RG trajectory |ΨL⟩ up to L ∼ 2000 without relying on a direct diagonalization of the
Hamiltonian, which is an impossible task for L ≫ 1 since the size of the Hilbert space grows
exponentially.

3.1 Considered class of states

In the above procedure, it is essential to understand the structure of the low-energy spectrum in
terms of the Bethe roots. However, the particular structure depends essentially on the domain
of the parameters γ, ϕ1 and ϕ2. In the regime

γ ∈ (0, π
4
) (3.1)

4Note that the full Hilbert space has dimension 6L.
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and for small ϕ1,2, we found that the bulk of the Bethe root configurations corresponding to
low energy states consists of 4-strings, each containing a pair of conjugate roots on both levels
centered at real xj:

u[1] −→ v
[1]
j = xj + δ

[1]
j +

iπ

2
− iγ − iϵ

[1]
j , v̄

[1]
j = xj + δ

[1]
j − iπ

2
+ iγ + iϵ

[1]
j ,

u[2] −→ v
[2]
j = xj + δ

[2]
j +

iπ

2
+ iϵ

[2]
j , v̄

[2]
j = xj + δ

[2]
j − iπ

2
− iϵ

[2]
j ,

(3.2)

where j ≤ L
2
and δ

[k]
j , ϵ

[k]
j are small real deviations. For even system sizes, the ground state of

the system is realized in the sectors h1 = h2 = 0 with ϵ
[2]
j ≡ 0. See Fig. 1 for the ground state

of the L = 18 chain. The low-energy spectrum is described by various root configurations. In
this work, we focus on a particular class of states described by the following additional roots
outside these 4-string configurations:

i) Level-1 roots on the line iπ
2

ii) Level-2 roots placed on the line iπ.

iii) Level-2 roots placed on the real line.

subject to the constraint (2.41).

-1.5 -1 -0.5 0.5 1 1.5

ℑm(u)

ℜe(u)

π

π
2−γ + π

2

−π
2

γ − π
2

−π

Figure 1: Bethe root configuration of the ground state for L = 18 and γ = 0.4 plotted in the complex
u-plane. Blue (red) symbols denote level 1 (2) roots. One can clearly see the pattern (3.2).

4 Root density approach for the ground state

For even L the ground state is parameterized by roots arranged in the configuration (3.2) where

j runs from one to L
2
and ϵ

[2]
j is set to zero. Further, we find numerically that the remaining

deviations δ
[k]
j , ϵ

[1]
j in (3.2) tend to zero as L → ∞. Hence, we can study the ground state

in the root density approach [36]. By inserting (3.2) into the Bethe equations and taking the
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logarithm one obtains the following counting function for the real centers:

zx(x) =
1

2π
ψ(x, 2γ) +

1

2πL

L
2∑

k=1

χ(x− xk, 4γ) , (4.1)

where

χ(x, y) = 2 arctan (tanh(x) cot(y)) , ψ(x, y) = 2 arctan (tanh(x) tan(y)) . (4.2)

Upon differentiation we obtain the following linear integral equation for the root density defined
by ρx(x) = ∂xz

x(x):

ρx(x) =
1

2π
ψ′(x, 2γ) +

1

2π

∫ ∞

−∞
dx′ χ′(x− x′, 4γ)ρx(x′) , (4.3)

which is solved by Fourier transform giving:

ρx(x) =
1

2(π − 4γ)

1

cosh( πx
π−4γ

)
. (4.4)

The density is positive and becomes singular at γ = π
4
, giving additional support to our choice

of the parameter domain (3.1) for γ. Similarly, the dressed energy ϵx(x) of excitations corre-
sponding to the removal of a four-string is obtained from the same linear integral equation as
(4.3) but with the driving term ψ replaced by ϵx0(x) = ϵ0(x + iπ

2
− iγ) + ϵ0(x− iπ

2
+ iγ), where

ϵ0 has been defined in (2.47) above. For γ in the domain (3.1), these excitations turn out to be
gapless with a linear dispersion. The corresponding Fermi velocity is

vF :=
1

2π
lim
Λ→∞

1

ρx(Λ)

d

dΛ
ϵx(Λ) =

π sin(2γ)

π − 4γ
. (4.5)

Finally, using (4.4), we obtain the energy density e∞ in the thermodynamic limit

e∞ = −sin(2γ)

2

∫ ∞

−∞
dω

sinh(2γω)

sinh
(
πω
2

) 1

cosh(1
2
(π − 4γ)ω)

. (4.6)

5 Analysis of the finite-size spectrum

As the model is critical, the spectrum of low-energy excitations can be described within the
framework of a conformal field theory. In this paper, we extract the central charge and investi-
gate the first features of the underlying CFT, such as the spectrum of scaling dimensions. The
following prediction from conformal field theory is expected to hold [37–39],

L

2πvF
(E − Le∞) ≃ − c

12
+ h+ h̄ , (5.1)

where e∞ and vF are given by (4.6) and (4.5), respectively. Hence, by studying the asymptotic
behavior of the energies on the lattice, one can access the central charge c and the conformal
weights h, h̄ of primaries in the underlying CFT. Note that on the right-hand side of (5.1),
only the sum of the central charge and the scaling dimension X = h+ h̄ appears, such that one

10



cannot determine c or h, h̄ on their own. Suitable measures of the scaling dimensions and the
central charge are given by the effective scaling dimensions Xeff and the effective central charge
ceff defined by

Xeff =
L

2πvF
(E − Le∞) , (5.2)

ceff = − 6L

πvF
(EGS − Le∞) . (5.3)

The quantity EGS in (5.3) is the ground state energy.
Besides (5.1) we have also the following relation between the scaling dimensions and the

eigenvalue of one-site translation operator (2.44)

eiP = e
2iπ
L (h−h̄) . (5.4)

One can easily show that

eiPL = exp

{
2iπ

(
h1

ϕ1

2π
+ h2

ϕ2

2π

)}
. (5.5)

Comparing with (5.4), one analytically obtains the result for the difference h− h̄

h− h̄ = h1
ϕ1

2π
+ h2

ϕ2

2π
mod 1 . (5.6)

To proceed further in our analysis, we relied on numerical methods whose results we present in
the following sections.

5.1 Compact part

In this section, we investigate two classes of fundamental excitation patterns. In terms of the
Bethe roots, the first class is simply built from configurations following the structure (3.2) but
with a non-zero h1 in contrast to the ground state. Here, the eigenvalue h2 of the U(1)-charge
h2 is kept the same as for the ground state, i.e. h2 = 0. See Fig. 2 for an illustration.
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Figure 2: Left (right) plot displays the Bethe-root configuration in the complex u-plane of
an excited state for L = 18, γ = 0.4, ϕ1,2 = 0 in the sector h1 = 4 (8). Blue (red) symbols
denote level 1 (2) roots. This excitation corresponds to removing 2 (4) four-strings from the
configuration of the ground state, see Fig. 1.
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The second class of excitations gives h2 a non-vanishing value. This is accomplished on the
level of the Bethe roots by mechanism (i), i.e. by placing additional level-1 roots on the line iπ

2
.

We have illustrated this type of excitations in Fig. 3.
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Figure 3: Left (right) plot displays the Bethe-root configuration in the complex plane of an
excited state for L = 18, (19), γ = 0.4, ϕ1,2 = 0 in the sector h1 = 4 and h2 = 2, (3). Blue (red)
symbols denote level 1 (2) roots. This excitation is built by placing 2(3) level-1 roots (×) on
the line iπ

2
in addition to the bulk roots (•).

We start our numerical analysis by investigating the scaling behavior of the ground state.
We obtain

ceff = 4 . (5.7)

Further, for periodic boundary condition ϕ1,2 = 0, we have constructed the RG trajectories
for various excited states based on the mechanisms discussed above. Exemplary plots of the
numerical data for finite L calculated by the Bethe ansatz and their extrapolations to L→ ∞
are given in Figs. 4-5. Here, the extrapolation procedure is based on the assumption that the
effective scaling dimensions are rational functions of 1

log(L)
. We conclude that they flow to the

following effective scaling dimensions:

XCom
eff = − 4

12
+

(h1)
2

2 k
+

(h2)
2

2 k
. (5.8)

In (5.8) the first term accounts for the effective central charge and agrees with our findings
(5.7). Note the exchange symmetry of h1 and h2 observed in the spectrum. The parameter k
specifying the amplitudes is related to the anisotropy by

k =
π

γ
. (5.9)
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Figure 4: Finite-size scaling up to L ∼ 2000 of
the ground state (black) and states with pat-
tern (see Fig. 2) similar to the ground state
with h2 = 0 but with different U(1)-charge
h1, i.e., h1 = 1, 2, 3, 4, 6 in increasing order
from below. The crosses are the numerically
obtained effective scaling dimensions. The
dashed lines are given by formula (5.8) with
the associated h1,2. Solid lines are given by
a rational extrapolation. Here γ = 0.4 and
ϕ1,2 = 0.

Figure 5: Finite-size scaling up to L ∼
2000 for states with similar root configura-
tion, as depicted in Fig. 3. Crosses are the
numerically obtained effective scaling dimen-
sions. The U(1)-charges (h1, h2) take the
values (4, 0), (4, 1), (4, 2), (4, 3), (4, 4) labelled
from below. Dashed lines are given by equation
(5.8) and the solid lines are given by a rational
extrapolation. Here γ = 0.4 and ϕ1,2 = 0.

5.1.1 Spectrum flow of the compact modes under twists

We now turn to the extension of the formula (5.8) to small non-vanishing twist angles. The
analytic expression (5.6) and symmetry arguments suggest the following generalization

XCom
eff (h1, h2, ϕ1, ϕ2) =− 4

12
+

(h1 + k ϕ1

2π
)2

4 k
+

(h2 + k ϕ2

2π
)2

4 k
+

(h1 − k ϕ1

2π
)2

4 k
+

(h2 − k ϕ2

2π
)2

4 k
.

(5.10)

We have numerically verified the above expression by using the data of the periodic model by

applying the following iterative method: We start with a solution {u[1], u[2]}ϕ
in
1

ϕin
2
of the BAE (2.37)

in logarithmic form with a particular initial set (ϕin
1 , ϕ

in
2 ) of twist values e.g., (ϕ

in
1 , ϕ

in
2 ) = (0, 0).

We see that the maximal error using {u[1], u[2]}ϕ
in
1

ϕin
2
as an initial approximation for the BAE for

new values (ϕin
1 +∆ϕ1, ϕ

in
2 +∆ϕ2) behave as max {|∆ϕ1|, |∆ϕ2 −∆ϕ1|}. Hence, by taking the

steps sizes ∆ϕ1,∆ϕ2 small enough, we can iteratively obtain the state at some (ϕend
1 , ϕend

2 ).
Note that the above form of the effective scaling dimensions is compatible with the sym-

metries (2.25), (2.51). To interpret these results further, consider the conformal weights of a
twisted free boson given by [40]

hn,ω =
1

2

( n

2R
+R(ω + φ)

)2
h̄n,ω =

1

2

( n

2R
−R(ω + φ)

)2
(5.11)

where the integers n, ω label charge and winding while φ parameterizes the twisted boundary
condition. By comparing (5.11) and (5.10) we see that the excitations (5.10) mimic two inde-

pendent twisted compact bosonic modes with the same compactification radii R1,2 =
√

k
2
with
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charges n1,2 = h1,2 and zero windings. Despite extensive study of root patterns of the low-lying
excitations, we have not been able to identify any state with non-zero winding. Note that the
functional dependence on the compactification radii induced by non-zero twists ϕ1,2 is exactly
the same as for two compact bosons as expected from the symmetries of the model.

We want to end this section by the following important remark. The above expressions for
the scaling dimensions capture the leading finite-size behavior only. Corrections to (5.1) can
arise, e.g., due to perturbations of the fixed-point Hamiltonian by terms involving irrelevant
operators present in the lattice model (2.46) [39]. In the presence of a marginally irrelevant
operator, one expects these subleading corrections to contain logarithms [41]. In the present
case we observe such corrections, see e.g., Figs. 4 and 5. As we will argue below, however, these
are also a signature of non-compact degrees of freedom in the effective theory describing the
critical behavior.

5.2 Continuous part of the spectrum

Interestingly, there also exist excitations whose scaling dimensions coincide with compact ones
(5.10) up to logarithmic corrections. These excitations can be characterized by the presence
of roots of type (ii) and (iii). Consider first the ones of type (ii). Examples of their root
configurations are displayed in Fig. 6.
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Figure 6: Left (right) plot displays the Bethe-root configuration in the complex plane of an
excited state for L = 19, (18), γ = 0.4 in the sector h1 = 1 and h2 = 0. Blue (red) symbols
denote level 1 (2) roots. This excitation is built by placing 2(3) level 1 roots (×) on the line iπ

2

and 2,(3) level-2 roots (□) on the line iπ in addition to the bulk roots (•). Further, one (and a
half four-string) has been removed with respect to the lowest energy state configuration in this
sector.

By replacing more and more 4-strings by roots of type (i) and (ii), one can generate an
infinite tower of excitations labelled by the number Mπ of type (ii) roots. All of them flow to
the same scaling dimension (5.10), see Fig. 7.
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Figure 7: Left (right) plot displays the finite-Size Scaling up to L ∼ 2000 in the sectors (h1, h2):
(0, 0) × , (2, 0) ⋄ ((1, 0) △) for states with Mπ = 0, 1, 2, 3 in increasing order from below (blue,
red, green, cyan). Solid lines are rational extrapolation. One can see clearly the logarithmic
dependence of the scaling dimensions. The parameters are set to γ = 0.4 and ϕ1,2 = 0.

Using the symmetry u
[2]
j → u

[2]
j + iπ that exchanges the (ii) and (iii) types of roots, one

deduces that the RG trajectories of excitations with root configuration built by mechanism (iii)
instead of (ii), see e.g. Fig. 8, also flow to the same scaling dimensions. Let’s label them by
the number M0 of type (iii) roots.
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Figure 8: Left (right) plot displays the Bethe-root configuration in the complex plane of an
excited state for L = 19, (18), γ = 0.4 in the sector h1 = 1 and h2 = 0. Blue (red) symbols
denote level 1 (2) roots. This excitation is built by placing 2(3) level-1 roots (×) on the line iπ

2

and 2,(3) level-2 roots (△) on the real line in addition to the bulk roots (•). Further, one (and
a half four-string) has been removed with respect to the lowest energy state configuration in
this sector. It is the state displayed in Fig. 6 transformed by u[2] + iπ, and so it has the same
energy.

Further, it turns out that combinations of the two above excitation patterns are possible,
see for example Fig. 9 for the Bethe root configuration of a mixed state of both fundamental
excitations (ii) and (iii). Further, see Fig. 10 to see how such states fit in within the scaling
behavior of other states.
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Figure 9: Left (right) plot displays the Bethe-root configuration in the complex plane of an
excited state for L = 18, γ = 0.4 in the sector h1 = 0 and h2 = 0. Blue (red) symbols denote
level 1 (2) roots. This excitation is built by placing 2(4) level-1 roots (×) on the line iπ

2
and

1,(2) level-2 roots (△) on the real line and 1,(2) level-2 roots (□) on the line iπ in addition to
the bulk roots (•). This is an excitation of both non-compact modes.

0 0.1 0.2 0.3 0.4 0.5 0.6

0

-0.5

-0.25

0.25

0.5

0.75

1/ log L

X
ef
f

0 0.1 0.2 0.3 0.4 0.5 0.6

0

-0.5

-0.25

0.25

0.5

0.75

1

1.25

1.5

1/ log L

X
ef
f

Figure 10: Left (right) plot displays the finite-size scaling up to L ∼ 300 in the
sectors (h1, h2): (1, 0) ◦, (2, 1) △ ((1, 1) ×, (2, 2) □) for states with (M0,Mπ) =
(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2) in increasing order from below (black, blue, cyan, green,
red, orange). The solid lines are obtained by a rational extrapolation. The dashed lines depict
the limiting value given by (5.10). One can see clearly the logarithmic dependence of the scaling
dimensions. The parameters are set to γ = 0.4, ϕ1,2 = 0.

The obtained numerical data for various RG trajectories with different M0,Mπ can be used
to extract the form of the logarithmic corrections: The rational extrapolation in Fig. 10 suggest
a general quadratic decay as ∝ 1

log(L)2
. Further, the existence of two excitation mechanism

refines this ansatz to ∝ C1

log(L)2
+ C2

log(L)2
with state dependent constants C1,2. As the Z2 symmetry

interchanges these two contributions, we conclude that we must have C1 = C2. Multiplying the
numerical data with log(L)2 extrapolating L → ∞, we can access, by considering ratios, the
dominant state dependence for each |ΨL⟩. This numerical work reveals the following behavior:

Xeff = XCom
eff (h1, h2, 0, 0) +

A(γ)(M0 +
2
3
)2

log(L/L0)2
+

A(γ)(Mπ +
2
3
)2

log(L/L0)2
. (5.12)
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Here L0 is a non-universal, state dependent constant, which we do not attempt to calculate here.
We are left to extract the amplitude A(γ). As it is the same for all states, we determine it by
considering the effective scaling dimensions of the ground state where we expect the subleading
logarithmic corrections to be the smallest:

XGS
eff (L) = − 4

12
+

8

9

A(γ)

log(L/L0)2
. (5.13)

Following [14], we eliminate L0 by using data points for two system size L1 and L2:

A(γ) =
9

8

[
log(L

1

L2 )

(XGS
eff (L1) + 4

12
)−

1
2 − (XGS

eff (L2) + 4
12
)−

1
2

]2
. (5.14)

The numerical results are displayed in Fig. 11. Based on these, we conjecture that

A(γ) =
5π − 4γ

4γ
. (5.15)
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Figure 11: Amplitude A(γ) calculated via (5.14) for L1 = 2000, L2 = 1000 for various γ-values.
The dashed line is the conjecture (5.15). One see a fairly good matching. At the boundaries
γ ≈ 0, (π

4
) one sees deviations which are assumed to be due to increasing finite-size corrections,

see also [14].

We want to briefly comment how the above leads to two continuous components in the
spectrum of scaling dimensions. So far, we have defined the RG trajectories |ΨL⟩ by keeping the
numbers M0,π fixed, leading at first view to infinite degeneracies in the scaling limit. However,
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we can also organize the RG trajectories differently. Instead of keeping M0,π fixed, we can also
let them run under the RG flow. In particular, we group states into trajectories |ΨL⟩ such that

M0 ∼ log(L) , Mπ ∼ log(L) . (5.16)

Here (5.16) is subject to the constraint M0,π ≪ L such that |ΨL⟩ is still a low energy state for
any finite L, i.e. its energy obeys (5.1). This restriction is essential as RG trajectories leave
the low energy spectrum once M0,π ∼ L. In fact, it is straightforward to show within the
root density approach that the state with M0,π = L is highly excited: in comparison to the
energy Le∞ of the ground state (4.6), its energy is of the order ∼ L (similar as e.g. in the
staggered sl(2|1) superspin chain [11]). This supports the interpretation of the findings above
as evidence for the existence of continuous components in the conformal spectrum labelled by
two continuous quantum numbers M0,π/ logL.

The redefinition (5.16) of RG trajectories enables that (5.12) can tend as L → ∞ to a
different scaling dimension than XCom

eff (h1, h2, 0, 0). In fact, by suitably arranging the concrete
behavior (5.16), the scaling dimensions can take any value larger or equal to XCom

eff (h1, h2, 0, 0).
Note that Xeff for trajectories with similar M0,π(L) for fixed L become densely distributed
(∼ 1

log(L)
), leading to continuous spectrum of scaling dimensions. As the two excitation mech-

anisms labelled by M0 and Mπ are independent of each other, we must have two continuous
variables, call them s0 ∼ M0

log(L)
, sπ ∼ Mπ

log(L)
, whose limits label the state in the scaling limit.

The existence of two continua is also further supported by our finding for finite twist angles
discussed below.

We want to stress that for the identification of the underlying CFT with two continuous
components, a more rigorous definition of the scaling limit than in (5.16) is needed. A proper
scaling limit can be defined in inhomogeneous models, where the logarithmic corrections can
be parameterized by a conserved operator of the lattice model, the so-called quasi-momentum
operator. However, the definition of this operator in these models relies on their inhomogeneity,
and is therefore not applicable to our model. For details, we refer to the extensive study of the
staggered-six vertex model [19,42] and the pioneering work [15].

5.2.1 Spectral flow for continuum states

Having identified the finite-size spectrum for vanishing twist angles, we now turn to the question
of what happens when these angles are tuned on. We follow the procedure described below Eq.
(5.10) starting from (ϕin

1 , ϕ
in
2 ) = (0, 0) and iterating to the higher twists. This procedure can be

technically involved, as certain roots of a given configuration can tend to infinity as the twists
approach certain values. If these specific twist values are exceeded, then the infinite roots come
back to a finite value. To avoid numerical problems caused by these infinities, it is suitable to
transform to a different coordinate set. By using ζ = e−u infinitely large roots are mapped to
zero in this coordinate frame.

We start by discussing the lowest states (M0 = Mπ = 0) in the two continua first. Some
of our results are represented in Fig. 12. One can see that for small twist angles, the scaling
dimensions follow (5.12) but with the first term replaced by (5.10) with non-vanishing twist.
However, after critical values of the twists given by

ϕc
1,2 = 2γ(h1,2 + 1) =

2π(h1,2 + 1)

k
, (5.17)
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the behavior changes drastically to

Xeff = XCom
eff (h1, h2, ϕ1, ϕ2)−

(h1,2 + 1− k
ϕ1,2

2π
)2

2(k− 2)
, ϕc

1,2 < ϕ1,2 < ϕ̃c
1,2 , (5.18)

with the absence of logarithmic corrections. Numerical work suggests that the choice between 1
and 2 in the above formulae seems to taken in a way such that the second term in (5.18) always
incorporates the bigger twist angle and, if both twists are equal, minimizing the critical twist
angle (see Fig. 12). It turns out that (5.18) is valid just until the twist exceeds another critical

twist angle ϕ̃c
1,2. For example, for twisting only with ϕ1 or ϕ2 in the lowest sector h1 = h2 = 0,

we find that

ϕ̃c
1,2

∣∣∣
h1=h2=0

= 2π − ϕc
1,2

∣∣
h1=h2=0

. (5.19)
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Figure 12: The left (right) plot displays the effective scaling dimensions for the lowest state
in the continuum in the sectors (h1, h2) = (0, 0), ((1, 0)) for L = 2000, (1999), under various
twists (ϕ1, ϕ2) = (ϕ, 0), (0, ϕ), (ϕ, ϕ), (ϕ, 1

2
ϕ) (Black, Blue, Red, Green). The solid lines display

the expected behavior (5.10) for small twist angles excluding the strong logarithmic corrections.
The crosses or circles display the numerical data obtain from the Bethe ansatz for twist angles
as far as possible in the numerical procedure. The vertical lines designate the critical twist
values, where the agreement with (5.10) breaks down. The dashed lines indicate the conjec-
tured formula (5.18) for the scaling dimensions valid beyond the critical points. Note that the
matching with the conjecture is extremely accurate. We interpret this as the emergence of
discrete states having less logarithmic corrections.

So far, we have considered only the lowest states in the continua. If we twist excited states,
their scaling dimensions follow (5.18) but again spoiled by decreasing logarithmic corrections.
To further investigate this phenomenon, we have searched for twists for which the Bethe root
configurations are again regular enough to define RG trajectories. We find that a suitable point
is (ϕ1, ϕ2) = (π, 0). Here, the Bethe roots parameterizing the low-energy states consists mainly
of

u[1] −→ xj +
iπ

2
− iγ − iϵ

[1]
j , xj −

iπ

2
+ iγ + iϵ

[1]
j

u[2] −→ zl +
iπ

2
, l = 1, . . . ,Mz,

wk −
iπ

2
, k = 1, . . . ,Mw .

(5.20)
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In addition there are level-1 roots sitting exponentially close to the following values depending
on the parity of dN :=Mz −Mw:

iγ,−iγ if dN even

2iγ, 0,−2iγ if dN odd
(5.21)

Plots of typical configurations are shown in Fig. 13. It turns out that states with different
distributions dN of level-2 roots on the two lines ± iπ

2
flow to the same conformal dimensions

(5.18) with ϕ1 = π and ϕ2 = 0, see e.g. Fig. 14. We find that the scaling of dimensions of
excited states for ϕ1 = π, ϕ2 = 0 are given by

Xeff = XCom
eff (h1, h2, ϕ1, ϕ2)

∣∣
ϕ1=π,ϕ2=0

−
(h1 + 1− kϕ1

2π
)2

2(k− 2)

∣∣∣∣∣
ϕ1=π

+ Ã(γ)
dN2

log(L/L̃0)2
. (5.22)

where again L̃0 is a non-universal constant which we do not attempt to calculate here. Further,
the above formula also holds true for small deviations around the twist angles i.e. ϕ1 ≈ π,
ϕ2 ≈ 0 with the obvious modifications. We conjecture that the amplitude Ã(γ) is given by

Ã(γ) =
2(2− 5γ)γ

3(1− 4γ)2
. (5.23)

In order to interpret these results, let us recall that the scaling limit of models such as the
staggered-six vertex model or the A

(2)
2 -model possess one continuous parameter, call it s∗. Be-

sides this class of states, there also exist states where s∗ takes values in a discrete set. The
lattice regularization of those states does not possess logarithmic corrections. Further, a state
belonging to the family with continuous s∗ can become a discrete state under a twist [19, 21].
We interpret the above finding in an analogous way for our model. Consider a state whose
scaling limit is described by the two continuous variables s0, sπ. Under a twist, one of the con-
tinuous variables changes its class to the discrete one, while the other remains in the continuous
family. The latter still induces logarithmic corrections on the level of the lattice regularization
as seen in (5.22).
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Figure 13: Left (right) plot displays the Bethe-root configuration in the complex u-plane of an
excited state for L = 18, γ = 0.4 in the sector h1 = 0 and h2 = 0. Blue (red) symbols denote
level 1 (2) roots. The left figure shows the ground state configuration, while the right excitation
is built by unbalancing dN = 4 the number of level-2 on the lines ± iπ

2
. The two level-1 roots

with vanishing real part have imaginary close to ±γ.
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Figure 14: Effective scaling dimensions up to L ∼ 2000 for ϕ1 = π, ϕ2 = 0, γ = 0.4 in the sector
h1 = h2 = 0 for dN = 0, 1, 2, 3, 4 in increasing order from below (black, blue, cyan, green, red).
The crosses are the numerical data obtain from the Bethe ansatz. The solid lines are rational
extrapolation. Further, the dashed pink line is given by the constant limit value (5.18). In
order to obtain the numerical data, we have assumed that the roots which are exponentially
close to (5.21) actually sit on these values. This leads to a small offset (see the green and blue
crosses on the far right) for small system sizes, as here the approximation is inducing an error.

Ultimately, this conjecture should imply the existence of purely discrete states (apart from
the dN = 0 state) without any logarithmic corrections. We have checked that this is indeed
the case. Starting from the twist (ϕ1, ϕ2) = (π, 0), we turn on the second twist significantly.
We find that the first excited states dN = 1, 2 in the sector h1 = 0 = h2 become purely discrete
states when the second twist angle exceeds the critical value ϕ2 = 2γ. It has effective scaling
dimensions

Xeff = XCom
eff (h1, h2, π, ϕ2)−

(h1 + 1− k π
2π
)2

2(k− 2)
−

(h2 + 1− kϕ2

2π
)2

2(k− 2)
with ϕ2 > 2γ . (5.24)

Note that this check can be done on the level of small L, as we expect that this state does
not possess any logarithmic corrections, see Fig. 15. The purely discrete scaling dimensions
(5.24) are valid for large twist angle only; however, one can analytically continue back the
scaling dimensions (5.24) to zero twist. For the lowest state with h1 = h2 = 0, we obtain in
this way:

Xeff = − 4

12
+

1

k− 2
. (5.25)

Assuming that the conformal weights h, h̄ vanish in this procedure as it is for example in the
staggered six-vertex model or the A

(2)
2 model [21], we obtain on speculative grounds that the
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central charge is given by

c = 4− 12

k− 2
= 2

(
2− 6

k− 2

)
, (5.26)

which formally coincides with two black hole CFTs [3, 43,44].
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Figure 15: Effective scaling dimensions for small L and ϕ1 = 9π
10
, γ = 0.4 + iϵ in the sector

h1 = h2 = 0 for dN = 0, 1, 2, 3 (black, blue, green, red) under variation of the second twist ϕ2.
The sightly complex value of the anisotropy and offset of the first twist angle from π is due
to numerical purposes. The black solid line displays XCom

eff (h1, h2,
9π
10
, ϕ2) while the blue line is

given by (5.24). The black vertical line hallmarks the appearance of a purely discrete state.

6 Conclusion

Starting from the periodic D
(2)
3 spin chain [25], we have generalized it to the quasi-periodic

case. The boundary conditions are found to be parameterized by two twist angles ϕ1, ϕ2. The
appearance of the twists ϕ1, ϕ2 can be accounted for in the analytic Bethe ansatz such that
the model can be exactly solved in the Bethe ansatz sense (2.30), (2.37). As the rank of D

(2)
3

is two, the Bethe ansatz is two-level nested. As usual, the model possesses an infinite family of
commuting operators (2.17). Among these, a local Hamiltonian can be defined in the standard
way by the first logarithmic derivative of the transfer matrix (2.46).

The model has a rich symmetry structure, see (2.23), (2.25), (2.26). The most interesting

result is that a generalization (2.23) of the Z2-symmetry of the lower-rank case D
(2)
2 is identified.

It is related to the quasi-periodicity of the R-matrix (2.10); and on the level of the Bethe ansatz,
this symmetry maps states among each other whose level-2 Bethe roots differ by iπ. Further,
we have found that the transfer matrix is CPT-invariant (2.26), while on the Hamiltonian level
this symmetry reduces to CP-symmetry (2.51).
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Turning to the analysis of the scaling limit, we have concentrated on the regime of the
anisotropy γ ∈ (0, π

4
). The spin chain is found to be critical, as it possesses gapless excitations

with a linear dispersion relation. Hence, the effective theory of its low-lying excitations arising
in the thermodynamic limit L → ∞ should be governed by a conformal field theory. We have
identified certain classes of the low-lying energy states which are parameterized by the U(1)-
charges. We have found that their effective scaling dimensions give rise to two compact modes
in the scaling limit. More precisely, these modes mimic two compact bosons with zero winding
(5.10). Indeed, despite considerable numerical effort, we did not find any non-zero winding
states. Whether non-trivial winding states exist is left open for future investigation.

In addition to the two compact modes, we found two types of decreasing logarithmic correc-
tions. The corrections are generated by the number of level-2 Bethe roots on the real line and
on the line with imaginary part π. We provide evidence that these logarithmic corrections give
rise to two non-compact degrees of freedom in the scaling limit. The two non-compact modes
are interchanged by the Z2 symmetry (2.23). Furthermore, we have considered the influence
of large twists. We found that, beyond certain critical twist angles, some of the logarithmic
corrections disappear. We interpret this phenomenon as the emergence of discrete states under
twists. For the case of ϕ1 = π and small ϕ2, we find that one of the continua becomes totally
discrete, while the other persists. For the extreme case of ϕ1 = π and large ϕ2, we observe
the existence of purely discrete states (5.24). By analytical continuation of its effective scal-
ing dimension to zero twists, and under the assumption that the conformal dimensions vanish
there [21, 45], we access the true central charge (5.26). Formally, it agrees with the sum of
two Black Hole CFT central charges. One copy of this CFT describes the scaling limit of the
lower-rank D

(2)
2 model [15, 19,30].

For a rigorous identification of the underlying CFT, we would need a conserved operator
that parameterizes the non-compact degrees of freedom on the lattice. Such an operator, the
so-called quasi-momentum, has so far been defined only in staggered models in which either the
representation of the R-matrix [45] or the associated spectral parameter [15,46] of the quantum
spaces varies periodically along the chain. Its definition relies on the type of inhomogeneity;
hence, this construction is not applicable for the case of the homogeneous D

(2)
3 model we are

considering here. The search for such an operator might be an interesting research direction,
supporting the analysis of the scaling limit. It could help with the identification of the space of
states in the scaling limit, and especially the calculation of the density of states of the continua.

It should be possible to study the influence of open boundary conditions for selecting certain
sectors of the underlying CFT, as has been done for the lower rank case D

(2)
2 [24,30,35,47–50].

It might also be interesting to investigate the different parameter regimes γ ∈ (π
4
, π
2
). Another

natural but challenging topic might be the generalization to D
(2)
n with n > 3, as has been done

for the A
(2)
n series [23].
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A Proofs of symmetries

We sketch here proofs of some of the symmetries noted in the main text.

A.1 Crossing symmetry of the transfer matrix (2.21)

To prove that the transfer matrix (2.13) has the crossing symmetry (2.21), we begin by noting
that the transposed transfer matrix can be expressed as

t
t(u; {ϕj}) = tr0 (K0({ϕj})R0L(u) . . .R01(u))

t0t1···tL

= tr0 Rt0t1
01 (u) · · ·Rt0tL

0L (u)Kt0
0 ({ϕj})

= tr0 K0({ϕj})R10(u) · · ·RL0(u) , (A.1)

where we have passed to the final line using the PT symmetry (2.5) and the fact that the twist
matrix (2.15) is symmetric Kt = K. We then observe that the transfer matrix itself can be
expressed as

t(u; {ϕj}) = tr0 (K0({ϕj})R0L(u) . . .R01(u))
t0

= tr0 Rt0
01(u) · · ·Rt0

0L(u)K
t0
0 ({ϕj})

= tr0 V
t0
0 R10(4iγ − u)V t0

0 · · ·V t0
0 RL0(4iγ − u)V t0

0 K0({ϕj})
= tr0 K0({−ϕj})R10(4iγ − u) · · ·RL0(4iγ − u)

= t
t(4iγ − u; {−ϕj}) . (A.2)

In passing to the third equality, we have used (2.8) and (2.5); and in passing to the fourth
equality, we have used the fact

V K({ϕj}) = K({−ϕj})V . (A.3)

Finally, to pass to the last line of (A.2), we have used the result (A.1).

A.2 W (0) symmetry of the transfer matrix (2.24)

The transfer matrix (2.13) transforms under W (0)⊗L as

W (0)⊗L
t(u;ϕ1, ϕ2)W (0)⊗L = W (0)⊗L tr0 (K0(ϕ1, ϕ2)R0L(u) . . .R01(u) )W (0)⊗L

= tr0 K0(ϕ1, ϕ2)WL(0)R0L(u)WL(0) . . .W1(0)R01(u)W1(0)

= tr0 K0(ϕ1, ϕ2)W0(u)R0L(u)W0(u) . . .W0(u)R01(u)W0(u)

= tr0 K0(−ϕ2,−ϕ1)R0L(u) . . . R01(u)

= t(u;−ϕ2,−ϕ1) , (A.4)

where we have passed to the third equality using (2.12), and to the fourth equality using the
fact

W (u)K(ϕ1, ϕ2)W (u) = K(−ϕ2,−ϕ1) . (A.5)
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A.3 CPT symmetry of the transfer matrix (2.26)

In order to prove that the transfer matrix (2.13) has the CPT symmetry (2.26), we begin by
observing that the parity operator (2.27) acts as

Π t(u; {ϕj})Π = tr0 Π(K0({ϕj})R0L(u) . . .R01(u))Π

= tr0 K0({ϕj})R01(u) . . .R0L(u) . (A.6)

It then follows that

V ⊗L Π t(u; {ϕj})ΠV ⊗L = tr0 K0({ϕj})V1 R01(u)V1 . . . VL R0L(u)VL

= tr0 K0({ϕj})V0 R10(u)V0 . . . V0 RL0(u)V0

= tr0 V0 K0({ϕj})V0 R10(u) . . .RL0(u)

= tr0 K0({−ϕj})R10(u) . . .RL0(u)

= t
t(u; {−ϕj}) , (A.7)

where we have passed to the second equality using (2.9), to the fourth equality using (A.3),
and to the last equality using (A.1).

A.4 CP symmetry of the Hamiltonian (2.51)

In order to prove that the Hamiltonian has the CP symmetry (2.51), we note the more explicit
expression that follows from its definition (2.46)

H ∼ t
−1(0) t′(0) =

L−1∑
i=1

Hi,i+1 +K−1
L HL,1 KL , Hi,i+1 = Pi,i+1 R′

i,i+1(0) , (A.8)

and proceed to show that the “bulk” and “boundary” terms are separately invariant.
For the “bulk” terms in (A.8), we observe that parity acts as

ΠHi,i+1Π = HL+1−i,L−i = PL+1−i,L−i R′
L+1−i,L−i(0) . (A.9)

It follows that CP acts as

V ⊗L ΠHi,i+1ΠV
⊗L = PL+1−i,L−i VL−i VL+1−i R′

L+1−i,L−i(0)VL−i VL+1−i

= PL+1−i,L−i R′
L−i,L+1−i(0)

= HL−i,L+1−i , (A.10)

where we have passed to the second equality using (2.9). Summing over i, we obtain

V ⊗L Π

(
L−1∑
i=1

Hi,i+1

)
ΠV ⊗L =

L−1∑
i=1

HL−i,L+1−i =
L−1∑
j=1

Hj,j+1 , (A.11)

where we have performed the change of variables j = L − i to pass to the final equality. In
short, the “bulk” terms in (A.8) are CP invariant.

For the “boundary” term in (A.8), we observe that parity acts as

ΠK−1
L HL,1 KLΠ = K−1

1 H1,L K1 , (A.12)
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and therefor CP acts as

V ⊗L ΠK−1
L HL,1 KLΠV

⊗L = V1 VL K−1
1 H1,L K1 V1 VL

= K1 V1 VLH1,L V1 VL K−1
1

= K1HL,1 K−1
1

= K−1
L HL,1 KL , (A.13)

where we have passed to the second equality using (A.3), to the third equality using (2.9), and
to the final equality using the fact

[HL,1 ,KL K1] = 0 . (A.14)

We conclude that the “boundary” term is also CP invariant, and therefore, so is the full
Hamiltonian (A.8).

B Introducing a diagonal twist in the Bethe ansatz

We present here a derivation of the result (2.30) for the eigenvalue Λ(u) of the (twisted) transfer
matrix, starting from the untwisted result [25]

Λ(u)
∣∣∣
ϕ1=ϕ2=0

=(4 sinh(u− 2iγ) sinh(u− 4iγ))LA(u) + (4 sinh(u− 4iγ) sinh u)L
4∑

ℓ=1

Bℓ(u)

+ (4 sinh(u− 2iγ) sinh u)LC(u) ,
(B.1)

where A(u), Bℓ(u), C(u) are given in Eqs. (2.31),(2.32).
We proceed, in the same spirit as [25], using a kind of analytical Bethe ansatz approach.

The asymptotic behavior of the monodromy matrix (2.14) is given by

T(u) ∼
u→∞

(e2u−4iγ)L
{
diag

(
e−2iγh1 , e−2iγh2 , I , I , e2iγh2 , e2iγh1

)
+ . . .

}
, (B.2)

where the ellipsis denotes off-diagonal terms that will not contribute to the final result. It
follows that the twisted transfer matrix (2.13) has the asymptotic behavior

t(u) ∼
u→∞

(e2u−4iγ)L

{
2 I+

2∑
j=1

(
eiϕje−2iγhj + e−iϕje2iγhj

)
+ . . .

}
. (B.3)

We assume that the eigenvalue Λ(u) is given by the following “dressed” version of the
periodic result (B.1)

Λ(u) = (4 sinh(u− 2iγ) sinh(u− 4iγ))L aA(u) + (4 sinh(u− 4iγ) sinh u)L
4∑

ℓ=1

bℓBℓ(u)

+ (4 sinh(u− 2iγ) sinh u)L cC(u) , (B.4)

where the parameters a , bℓ , c are still to be determined. Evidently, we have from (2.28)

⟨Λ|t(u)|Λ⟩ = Λ(u) . (B.5)
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For u→ ∞, we evaluate the LHS of (B.5) using (B.3) and (2.29), obtaining

⟨Λ|t(u)|Λ⟩ ∼
u→∞

(e2u−4iγ)L
{
eiϕ1e−2iγ(L−m1) + eiϕ2e−2iγ(m1−m2)

+ 2 + e−iϕ1e2iγ(L−m1) + e−iϕ2e2iγ(m1−m2)
}
; (B.6)

and we evaluate the RHS of (B.5) using (B.4) to obtain

Λ(u) ∼
u→∞

(e2u−4iγ)L
{
a e−2iγ(L−m1) + b1 e

−2iγ(m1−m2)

+ b2 + b3 + b4 e
2iγ(m1−m2) + c e2iγ(L−m1)

}
. (B.7)

Comparing (B.6) and (B.7), we conclude that the parameters are given by

a = eiϕ1 , b1 = eiϕ2 , b2 = b3 = 1 , b4 = e−iϕ2 , c = e−iϕ1 , (B.8)

which is the result in (2.30).
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