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Abstract
Identifying the underlying trajectory pattern in the spatial-temporal data anal-
ysis is a fundamental but challenging task. In this paper, we study the
problem of simultaneously identifying temporal trends and spatial clusters of
spatial-temporal trajectories. To achieve this goal, we propose a novel method
named spatial clustered and sparse nonparametric regression (Scanner). Our
method leverages the B-spline model to fit the temporal data and penalty terms
on spline coefficients to reveal the underlying spatial-temporal patterns. In par-
ticular, our method estimates the model by solving a doubly-penalized least
square problem, in which we use a group sparse penalty for trend detection and
a spanning tree-based fusion penalty for spatial cluster recovery.We also develop
an algorithm based on the alternating direction method of multipliers (ADMM)
algorithm to efficiently minimize the penalized least square loss. The statisti-
cal consistency properties of Scanner estimator are established in our work. In
the end, we conduct thorough numerical experiments to verify our theoreti-
cal findings and validate that our method outperforms the existing competitive
approaches.
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1 INTRODUCTION

Spatial-temporal data analysis has attracted increasing research interests and applications in many scientific and engi-
neering fields, such as disease spread analysis (Feng, 2022; Lawson, 2018; Torabi & Rosychuk, 2011; Ugarte et al., 2010),
climate data analysis (Erhardt et al., 2015; Velarde et al., 2004; Wan et al., 2021; Zhang et al., 2016), house market study
(Gong & de Haan, 2018; Wang et al., 2022), and environmental science (Fioravanti et al., 2022; Johnson et al., 2023; Jurek
& Katzfuss, 2023; Rougier et al., 2023; Zhang et al., 2023). In these practical applications, it is an essential step to inves-
tigate the underlying spatial-temporal pattern. For example, Feng (2022) used a spatial-temporal generalized additive
model for the COVID-19 mortality data to detect epidemic peaks over time; Zhang et al. (2016) modeled the daily precipi-
tation data with a spatial functional linear model to understand the regionalization pattern of precipitation. In this work,
we aim to both detect the temporal trends and identify the spatial clusters of the spatial-temporal data.

Suppose n spatial-temporal trajectories as {y(si, t)}ni=1,where y(si, t) is the observation at the location si ∈ R2, and time
t ∈  . We consider the following model

y(si, t) = g(si, t) + 𝜖(si, t), (1)
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where g(si, t) is the unknown smooth function depending on location and timestamp, and 𝜖(si, t) is the measurement
error. Our goal is to detect locations with temporal trends, that is, g(si, t) is not constant, and the spatial cluster pattern
such that g(si, t) = g(si′ , t) for all t if two locations si and si′ are from the same spatial cluster, simultaneously.

Our study ismotivated by a dataset recording the precipitation inChina from1995 to 2014. In the dataset, the precipita-
tion data are collected from 654meteorological stations.We show the stations’ locations in Figure 1a and the observations
of 20 yearly precipitation of randomly selected 50 stations in Figure 1b. In the literature, it has been widely studied to
understand the temporal changes and discover the underlying local precipitation regions, which benefits climate pre-
diction and flood zone management (Chen et al., 2009; Zhang et al., 2016). In our study, we first investigated the yearly
precipitation pattern of each station. We used spline regression models to fit each station’s data and evaluate the model
significance with the hypothesis test in Wood (2013), which is a Wald type test to test whether the smooth term is 0 or
not. The p-values are shown in Figure 2a. We found that only 53 stations have p-values smaller than 0.05, while the spline
models of the other stations are not statistically significant from the testing results. The result of the hypothesis test gives
us a hint that most of the stations have stationary yearly precipitation. Multiple comparisons are also an issue in this
procedure. If using Bonferroni’s correction to correct the multiple comparisons in this procedure, the significance level
will become 0.05∕660 = 7 × 10−5, which leads to only one significant station. However, Bonferroni’s correction does not
consider spatial information. Besides this, the p-values are calculated in each station based on a limited number of obser-
vations, which does not borrow observations from other stations. Furthermore, to detect the local precipitation regions,
we adopted the k-means clustering method to the spline coefficients across these stations (Abraham et al., 2003). We
found 37 clusters based on Gap Statistic (Dudoit & Fridlyand, 2002; Tibshirani et al., 2001). Gap statistic is a widely used
method to select the number of clusters in k-means. For a given number of clusters k, the pooled within-cluster sum of
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F IGURE 1 Locations and observations of meteorological stations. (a) The locations of 660 analyzed stations; (b) 50 temporal trend
lines of 50 selected stations randomly selected from all 660 stations.
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F IGURE 2 Preliminary results (a) p-value of individual models. (b) Clusters based on K-means.
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squares around cluster means Wk is calculated. The Gap statistic is defined as the difference between the expectation
of log(Wk) and the observed log(Wk), where the expectation is approximated based on bootstrap samples. The value of
k with the minimum value of Gap statistic is selected as the optimal number of clusters. As shown in Figure 2b, some
detected clusters are spatially contiguous, and some are scattered. These preliminary findings motivate our study to iden-
tify temporal trends and spatial clusters. On the one hand, we want to avoid insignificant temporal changes to improve
the model estimation accuracy. On the other hand, by revealing the spatial cluster pattern, we can further enhance the
model estimation efficiency by integrating the data within the same cluster.

However, it is a highly non-trivial task to develop an efficient method to automatically detect both temporal trends
and spatial clusters for spatial-temporal trajectories. Up to date, there exists a bunch of work on identifying spatially
contiguous clusters based on hypothesis tests, including Kulldorff and Nagarwalla (1995), Jung et al. (2007) and Cook
et al. (2007). However, these methods are developed for one-time spatial observations and cannot be applied to cluster the
temporal curves across spatial regions. One of the popular methods of clustering temporal curves is fitting the curves with
statisticalmodels and then clustering themodel coefficients. For example, inAbrahamet al. (2003) andZhang et al. (2015),
the authors estimated the temporal curveswith somebasis functions andused k-means on the basis coefficients to perform
the clustering. James and Sugar (2003), Luan and Li (2003), and Coffey et al. (2014) used B-spline models to fit temporal
data and identified the cluster pattern with linear mixed models. However, these clustering methods did not consider
locations’ spatial correlation. To identify the spatially contiguous clusters, Romano et al. (2013) and Haggarty et al. (2015)
adopted variogram models. Jiang and Serban (2012), Liang et al. (2021), and Hu et al. (2022) used the Markov random
field to incorporate spatial dependency. However, none of these mentioned works considered temporal trend detection.

Although there is no naive solution in the literature to address both the temporal trends detection and spatial clus-
ters identification tasks, we, fortunately, find some connections between the two tasks: As no temporal trend for simeans
g(si, t) − c = 0 for some constant c for all t, and si, si′ from the same cluster is equivalent to g(si, t) − g(si′ , t) = 0 for all t, the
two tasks can be reformulated as sparse structure recovering problems. The penalizationmethod has beenwidely adopted
to identify sparse components (Fan & Li, 2001; Simon et al., 2013; Tibshirani, 1996; Zhang, 2010). For example, Wang
et al. (2008) used the smoothly clipped absolute deviation (SCAD, Fan & Li, 2001) to select significant functional com-
ponents in varying-coefficient models, and Huang et al. (2010) performed variable selection in nonparametric additive
models with group lasso (Simon et al., 2013). In these methods, spline models were adopted to approximate the smooth
functions, and penalization terms were added to spline coefficients to select nonzero components. Also, there exist a few
works using penalization methods to discover model-based clusters (Liu et al., 2023; Ma et al., 2020; Ma & Huang, 2017;
Wang, 2024; Wang, Zhu, & Zhang, 2023; Yang et al., 2019; Zhu & Qu, 2018). Specifically, the fusion penalty is adopted in
these methods to sparsify the model coefficient differences. With zero coefficient difference, two subjects will have the
same estimated coefficients, which indicates that they come from the same cluster. However, to the best of our knowl-
edge, there is no penalization method in the literature that can solve the temporal trends detection and spatial clusters
identification tasks simultaneously.

To simultaneously address temporal trends detection and spatial cluster identification tasks, we propose a novel penal-
ized approach named spatial clustered and sparse nonparametric regression (Scanner) method in this paper.We adopt the
nonparametric additive model to estimate the temporal curves for the spatial locations. Inspired by the sparse penaliza-
tion technique, ourmodel estimationmethod incorporates two penalty terms: one group sparse penalty to select temporal
trends and the other spanning tree-based fusion penalty to identify spatial clusters. To solve the doubly-penalized esti-
mation problem, we develop an ADMM-based algorithm (Boyd et al., 2011), which enjoys fast convergence. We also
investigate the theoretical properties of our proposed Scanner estimator. It is shown that our estimator is statistically con-
sistent and has the capability to reveal the true temporal trends and spatial clusters with probability one. Our theoretical
findings are also validated by thorough numerical experiments.

The article is organized as follows. In Section 2, we will propose ourmodel and develop themodel estimationmethod.
In Section 3, wewill establish the theoretical properties of our proposed estimator.Wewill provide the simulation study in
Section 4, which compares our proposedmethod with the existing competitive approaches under different scenarios. Our
proposed method will be applied to study the precipitation dataset in Section 5. We will conclude the work in Section 6.

2 METHODOLOGY

In this section, we will first introduce our Scanner model in Section 2.1. Then, we will give the penalized estimation
method in Section 2.2, which can simultaneously achieve the detection of temporal trends and spatial clusters. To solve
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the penalized optimization problem, we will develop an ADMM-based algorithm in Section 2.3. Finally, we will provide
the hyper-parameter selection method in Section 2.4.

2.1 The Scannermodel

Given a spatial-temporal dataset {{y(si, tl)}Tl=1}
n
i=1, we assume the observation y(si, tl) at the location si and time tl

follows

y(si, tl) = g(si, tl) + 𝜖(si, tl), (2)

where g(si, t) is the unknown smooth function depending on location and timestamp, and 𝜖(si, t) is the measurement
error.

Denote the set of locations with and without temporal trends as f andf , respectively. Thus, g(si, t) is not a constant
if si ∈  , and g(si, t) is a constant if si ∈ f . Regarding spatial clustering, without loss of generality, suppose there are
K underlying non-overlapped spatial clusters {k}Kk=1. In the kth cluster k, g

(k)(t) is the mean function. If two locations
si and si′ are from the same cluster k, then it holds g(si, t) = g(si′ , t) = g(k)(t) for all t. Otherwise g(si, t) ≠ g(si′ , t). Note
that, for the kth cluster k, if a location si has no temporal trend, then according to our definition, g(k)(t) is a constant for
all t, and we have all locations in k have no temporal trend and thus k ⊂ f ; Otherwise, k ⊂ f with all locations in
k have the same temporal trend.

To investigate the temporal trend of g(si, t), we decompose it into two parts, a location-specific intercept 𝜇(si) and a
trend function f (si, t), such that

y(si, tl) = 𝜇(si) + f (si, tl) + 𝜖(si, tl). (3)

Here, we assume the expected value E(f (si, t)) = 0 with respect to t to guarantee the model identifiability. If a loca-
tion si has no temporal trend, then its trend function f (si, t) would become zero, and g(si, t) = 𝜇(si) for all t is a
constant.

In the kth cluster k, g(k)(t) = 𝜇

(k) + f (k)(t), where 𝜇(k) and f (k)(t) are the intercept and the trend function, respectively.
If two locations si and si′ are from the same cluster k, then it holds 𝜇(si) = 𝜇(si′ ) = 𝜇

(k), and f (si, t) = f (si′ , t) = f (k)(t) for
all t. Otherwise, at least one of 𝜇(si) ≠ 𝜇(si′ ) and f (si, t) ≠ f (si′ , t) holds for two locations si and si′ from different clusters.
Note that, for the kth cluster k, if a location si has no temporal trend, then according to our definition f (k)(t) = f (si, t) = 0
for all t.

To approximate the unknown smooth function f (si, t), we leverage the standardized B-spline approach (Liu &
Yang, 2010; Ma & Yang, 2011; Xue & Yang, 2006). Specifically, denote 𝜿 = {0 = 𝜅0 < 𝜅1 < · · · < 𝜅L < 𝜅L+1 = 1} as a parti-
tion of the interval  = [0,T], where L is the number of interior knots. Let {Bj(t)}L+dj=1 be a set of standardized B-spline basis
functions of degree dwith interior knots 𝜿 on  such that E(Bj(t)) = 0 and E(B2j (t)) = 1. With J = L + d be the number of
B-spline basis functions, the trend function in the kth cluster f (k)(t) can be approximated as

f (k)(t) ≈
J∑

j=1
Bj(t)𝛽(k)j (s) = B⊤(t)𝜷 (k)

, (4)

where B⊤(t) = (B1(t), … ,BJ(t))⊤ is the spline basis matrix and 𝜷 (k)(s) = (𝛽1(s), … , 𝛽J(s))⊤ is the coefficient vector. Then,
we can formulate our model in a spatial-temporal semiparametric form

y(si, tl) =

{
𝜇

(k) + 𝜖(si, tl), si ∈ k and k ⊂ f ,

𝜇

(k) + B⊤(tl)𝜷 (k) + 𝜖(si, tl), si ∈ k and k ⊂ f .
(5)

We name our model as spatial clustered and sparse nonparametric regression (Scanner).
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2.2 Penalized estimation

When the partitions of {k}Kk=1 and {f ,f } are known, one can easily estimate the model by solving a least square
problem:

min 1
2T

T∑

l=1

⎛
⎜
⎜⎝

∑

k⊂f

∑

i∈k

(
y(si, tl) − 𝜇

(k))2 +
∑

k⊂f

∑

i∈k

(
y(si, tl) − 𝜇

(k) − B⊤(tl)𝜷 (k))2
⎞
⎟
⎟⎠
. (6)

However, in our problem, the partitions remain unknown and need to be recoveredwith the observed data. To address this
issue, we introduce pseudo local coefficients at si as𝜶(si) = [𝜇(si), 𝜷(si)⊤]⊤. Following themodel (5), our goal is equivalent
to find the set f = {i, 1 ≤ i ≤ n; ||𝜷(si)|| ≠ 0} and the cluster sets {k}Kk=1 such that 𝜶(si) = 𝜶(si′ ) if si and si′ ∈ k, where
|| ⋅ || is the Euclidean norm.

For the first task of identifying the sparsity of {𝜷(si)}ni=1, we adopt the group sparsity penalty
∑n

i=1 (||𝜷(si)||; 𝛾1, 𝜆1i)
based on the minimax concave penalty (MCP) (Zhang, 2010),

(t; 𝛾, 𝜆) =

{
𝜆|t| − t2

2𝛾
, |t| ≤ 𝛾𝜆,

1
2
𝛾𝜆

2
, |t| > 𝛾𝜆,

(7)

where 𝛾1 and 𝜆1i are two hyper-parameters. If a location si has an insignificant temporal trend, the estimated local spline
coefficients 𝜷(si) will shrink to zero, which recovers the model y(si, t) = 𝜇(si) + 𝜖(si, t).

In the second task of recovering spatially contiguous clusters, one can represent the locations’ spatial relationship
with a graph topology and construct the graph-based fusion penalty (Hallac et al., 2015):

∑

(si,si′ )∈
(||𝜶(si) − 𝜶(si′ )||; 𝛾2, 𝜆2), (8)

where  is an undirected graph connecting all locations {si, i = 1, … ,n} and 𝛾2, 𝜆2 are hyper-parameters. In the above
penalties, ||𝜶(si) − 𝜶(si′ )|| will shrink to zero if two locations, si and si′ , are connected in the graph and have similar
coefficients. Thus, the spatial cluster pattern can be formed with the same estimated coefficients 𝜶’s.

In spatial data, it is reasonable to assume that locations closer to each other are similar, and a minimum span-
ning tree (MST) tends to connect closer locations. Graph-based and MST-based approaches are used in different works,
such as Gower and Ross (1969), Eldershaw and Hegland (1997), and Grygorash et al. (2006). As discussed in Li and
Sang (2019), the naive graph-based fusion penalty would introduce O(||) complexity, which might cause intensive com-
putation with large n. They proposed using MST based on spatial locations only. As discussed by Li and Sang (2019), the
constructed MST may not be fully compatible with the true cluster structure when using spatial location information
only, which means that the constructed MST may not connect the locations in the same cluster properly. Lin et al. (2022)
also discussed this issue for MST based on location information for the varying coefficient model. They discussed the
properties of the cluster structure based on the constructed MST, which may be different from the true cluster structure.
Zhang et al. (2024) improved the approach using local information to construct MSTs. They showed that by increas-
ing the local sample size, the true cluster structure can be recovered based on the constructed MST based on spatial
and local information. Wang, Zhang, and Zhu (2023) also used local information to construct MSTs and identify clus-
ter structures for recurrent event data. Inspired by Zhang et al. (2024), we consider simplifying the spatial graph with a
model-based minimum spanning tree (MST) in this work. Specifically, we do a local spline fitting at each location and
obtain the location coefficient estimation 𝛼̂init(si). Then, with the given spatial graph, we define the weight between two
locations as

wii′ =

{
||𝜶̂init(si) − 𝜶̂init(si′ )||, if (si, si′ ) ∈ .

∞, otherwise.
(9)

We construct the MST,  , based on the above weight and only penalize two locations if they are connected in the MST.
And the size of  is n − 1.
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Thus, we propose the following doubly penalized least square problem,

min 1
2T

n∑

i=1

T∑

l=1

(
y(si, tl) −

(
𝜇(si) + B⊤(tl)𝜷(si)

))2

+
n∑

i=1
(||𝜷(si)||; 𝛾1, 𝜆1i) +

∑

(si,si′ )∈
(||𝜶(si) − 𝜶(si′ )||; 𝛾2, 𝜆2).

(10)

In (10), the first term is a least square loss for model fitting, the second term is the group penalty to identify the nonzero
vector 𝜷(si) ≠ 0, and the third term is the tree-based fusion penalty to cluster the coefficients {𝜶(si), i = 1, … ,n}.

2.3 Optimization

For the notation simplicity, we denote 𝜇(si) = 𝜇i, 𝜷(si) = 𝜷 i, 𝜶(si) = 𝜶i in this section. We rewrite the problem in (10) in
a matrix form:

min 1
2

n∑

i=1

1
T
||yi − X𝜶i||2 +

n∑

i=1
(||𝜷 i||; 𝛾1, 𝜆1i) +

∑

(si,si′ )∈
(||𝜶i − 𝜶i′ ||; 𝛾2, 𝜆2), (11)

where X = (1,B)with B = (B(t1), … ,B(tT))⊤. To solve the above penalized minimization problem, we adopt the ADMM
algorithm (Boyd et al., 2011).

First, we introduce 𝜹ii′ = 𝜶i − 𝜶i′ for (si, si′ ) ∈  and 𝝍 i = 𝜷 i for i = 1, … ,n. Denote 𝜶 = (𝜶⊤

1 , … ,𝜶
⊤

n )⊤, 𝝍 =
(𝝍⊤

1 , · · ·𝝍
⊤

n )⊤, and 𝜹 = (𝜹⊤ii′ , (si, si′ ) ∈  ), then the above problem is equivalent to the following constrained optimization
problem with regard to (𝜶,𝝍 , 𝜹),

L0(𝜶,𝝍 , 𝜹) = 1
2

n∑

i=1

1
T
||yi − X𝜶i||2 +

n∑

i=1
(||𝝍 i||; 𝛾1, 𝜆1i) +

∑

(si,si′ )∈
(||𝜹ii′ ||; 𝛾2, 𝜆2),

s.t. 𝜶i − 𝜶i′ = 𝜹ii′ and 𝜷 i = 𝝍 i.

(12)

Let 𝜽 = (𝜹⊤,𝝍⊤)⊤, y = (y⊤1 , … , y⊤n )⊤, and ̃X = In ⊗ X, the matrix version of the above problem can be written as,

L0(𝜶,𝜽) =
1
2T

||y − ̃X𝜶||2 +
n∑

i=1
(||𝝍 i||; 𝛾1, 𝜆1i) +

∑

(si,si′ )∈
(||𝜹ii′ ||; 𝛾2, 𝜆2),

s.t. K𝜶 = 𝜽,

(13)

where K = ((H⊗ IJ+1)⊤,M⊤)⊤. Here, H is the incident matrix of the tree such that 𝜹 = (H⊗ IJ+1)𝜶 (Li & Sang, 2019;
Zhang et al., 2024).M = In ⊗ (0, IJ) is the selection matrix such that 𝝍 = M𝜶.

Then, we give the augmented Lagrangian as

L(𝜶,𝜽, 𝝂) = L0(𝜶,𝜽) + ⟨𝝂,K𝜶 − 𝜽⟩ + 𝜌

2
||K𝜶 − 𝜽||2, (14)

where 𝝂 are Lagrangemultipliers and 𝜌 > 0 is the penalty parameter.Here,we fix 𝜌 = 1 as in the references (Liu et al., 2023;
Ma&Huang, 2017). Theminimization problem (13) is equivalent to finding theKarush–Kuhn–Tucker (KKT) point of (14)
by iteratively updating as

𝜶
(m+1) = argmin

𝜶

L(𝜶,𝜽(m)
, 𝝂

(m)), (15)

𝜽
(m+1) = argmin

𝜽

L(𝜶(m+1)
,𝜽, 𝝂

(m)), (16)

𝝂
(m+1) = 𝝂

(m) + 𝜌(K𝜶
(m+1) − 𝜽

(m+1)). (17)
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WANG and ZHANG 7 of 21

Algorithm 1. The ADMM algorithm

Input: : Initialize 𝜶(0), 𝜹(0) and 𝝂(0).
1: form = 0, 1, 2,… do
2: 𝜶

(m+1) = (̃X
⊤

̃X + 𝜌TK⊤K)−1(̃X
⊤

y − TK⊤

𝝂
(m) + 𝜌TK⊤

𝜽
(m)).

3: ̃𝜽
(m+1) =

[
̃𝜹
(m+1)

𝝍̃
(m+1)

]
= K𝜶

(m+1) + 1
𝜌

𝝂
(m).

4: 𝝍
(m+1)
i =

⎧
⎪
⎨
⎪⎩

ST(𝝍̃ (m+1)
,𝜆1i∕𝜌)

1−1∕(𝛾1𝜌)
if ‖𝝍̃ (m+1)

i ‖ ≤ 𝛾1𝜆1i

𝝍̃
(m+1)
i o.w.

5: 𝜹
(m+1)
ii′ =

⎧
⎪
⎨
⎪⎩

ST
(
̃𝜹
(m+1)
il ,𝜆2∕𝜌

)

1−1∕(𝛾2𝜌)
if ‖ ̃𝜹(m+1)

ii′ ‖ ≤ 𝛾2𝜆2

̃𝜹
(m+1)
ii′ o.w.

6: 𝝂
(m+1) = 𝝂

(m) + 𝜌(K𝜶
(m+1) − 𝜽

(m+1)).
7: if the convergence criterion is met then
8: Stop
9: end if
10: end for

We relegate the detailed updates and derivations to the Supporting Information and summarize the algorithm in
Algorithm 1, in which ST(𝝎, t) = (1 − t∕||𝝎||)+𝝎 is the soft thresholding operation, and (t)+ = t if t > 0 and 0 otherwise.

Remark 1. The convergence criterion is based on the primal residual K𝜶
(m+1) − 𝜽

(m+1). The algorithm is
stopped if ||K𝜶

(m+1) − 𝜽
(m+1)|| < 𝜔, where𝜔 is a small positive value. Herewe use𝜔 = 0.001 (Boyd et al., 2011).

Remark 2. Our ADMM-based algorithm can also be used in the case of graph-based fusion penalty in (8). We
can achieve this by replacing the incident matrix of the tree with that of the graph inK in (13). Then, the rest
of the algorithmic updates will remain the same.

2.4 Hyper-parameter selection

The hyper-parameters play an important role in our estimation. 𝜆1i’s control the sparsity of temporal trends, and 𝜆2 con-
trols the homogeneity of the locations. A grid search for these hyper-parameters will lead to a high computation cost. To
select proper hyper-parameters, we use a two-step procedure similar to Tang and Li (2023). First, we set 𝜆2 = 0 and select
𝜆1i for each location i = 1, … ,n. Then, with the selected {𝜆1i}i, we choose the optimal 𝜆2. We propose to use the Bayesian
information criterion to select hyper-parameters in different steps. In the first step, the BIC is defined as below:

BIC
𝜆1i = log

( 1
T
||yi − 𝜇̂i − B⊤

̂𝜷 i||2
)
+ d1

log(T∕J)
T∕J

,

where 𝜇̂i and ̂𝜷 i are the estimates for 𝜇i and 𝜷 i, respectively, and d1 is 1 if ̂𝜷 i ≠ 0while 0 otherwise. In the second step, we
consider the modified BIC (Ma et al., 2020),

BIC
𝜆2 = log

( 1
N
||y − ̃X𝜶̂||2

)
+ log(nJ)

(
logN
N

̂K +
log(N∕J)
N∕J

d2
)
,

whereN = nT, ̂K is the number of estimated clusters, and d2 is the number of unique estimated temporal trends. Follow-
ing the references (Liu et al., 2023; Ma & Huang, 2017; Yang et al., 2019), we use fixed values of 𝛾1 = 3 and 𝛾2 = 3. The
proposed two-step procedure is used in the simulation studies in Section 4 and the real data example in Section 5. In the
simulation study, we evaluate the model and the procedure in different scenarios, and the proposed method can identify
both temporal trends and cluster patterns well.
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8 of 21 WANG and ZHANG

In the SupportingMaterial, we provide the code files and datasets for reproducing the results of our simulation studies
and the real data analysis. Please refer to the attached README file for the details of each file.

3 THEORETICAL PROPERTIES

In this section, the theoretical properties of the proposed estimators are studied. We first introduce some notations. Let
𝜇

(k) and f (k), k = 1, … ,K, be the common intercept and the temporal function for cluster k, respectively. Define ||f (t)||22 =
∫

f 2dt as the squared L2 norm for any square integrable function f (t) on  . For a vector x, define ||x|| as the Euclidean

norm. aT ≫ bT means that a−1T bT = o(1). For simplicity, we write fi = fi(t) = f (si, t), 𝜖i(t) = 𝜖(si, t), and ||f || = ||fi(t)||2.
LetC( ) be the class of continuous functions on  andC(d) = {g(t)|gd(t) ∈ C( )}.We have the following assumptions.

(C1) The observation time points {t1, … , tT} are chosen independently from an unknown distribution with a density
fT(⋅), which is bounded away from 0 and infinity over  = [0, 1].

(C2) There is a positive constant M1 such that E[𝜖i(t)4] ≤ M1 < ∞ for t ∈  . And the random sequence 𝜖i(t) satisfies
the 𝛼-mixing condition, where the 𝛼-mixing coefficient satisfying 𝛼(s) ≤ M2𝜌

s for 0 < 𝜌 < 1 and M2 is a positive
constant with 0 < M2 < ∞.

(C3) For each fi, fi ∈ C(d) is a dth order continually differentiable function and E(fi) = 0.
(C4) There exists a constant cf > 0 such that mini∈f ||fi|| ≥ cf .
(C5) For any two locations si and si′ in the given connected network , if they are from the same cluster, then there exists

a path connecting them such that all locations on the path belong to the same cluster.

Condition (C1) is commonly used in longitudinal data analysis (Huang et al., 2004; Wang et al., 2008). The 𝛼-mixing
condition is generally used in longitudinal data analysis when independent error processes are not assumed; see Xue and
Yang (2006) and Liu et al. (2023). (C3) is used in Liu et al. (2023) with an additional zero expectation assumption. This zero
expectation assumption is a standard assumption for identifiability used in the literature, such asXue andYang (2006), Liu
and Yang (2010) and Li et al. (2019). (C4) is a common assumption in nonparametric additive models (Huang et al., 2010;
Li et al., 2019). (C5) is used in Zhang et al. (2024) to guarantee that locations in the same cluster will not be separated by
other clusters. By removing inner-cluster connections, the original graph can be reduced to K subgraphs, which are the
K clusters.

First, we have the following Lemma 1 to guarantee that the locations in the same cluster are connected in the MST
constructed based on weights defined in (9). This Lemma is also discussed in Zhang et al. (2024). The difference is that
we have B-spline regression estimators instead of OLS estimators.

Lemma 1. Given the MST based on the weights in (9), consider any two locations si and si′ in the same cluster.
Under Condition (C5), there exists a path in the MST connecting si and si′ such that all the locations on the path
belong to the same cluster with probability approaching 1 as local sample size T → ∞.

Next, we will prove the theoretical properties of the Scanner estimator when the cluster structure {}Kk=1is known.
Let  = {k; f (k) ≠ 0, 1 ≤ k ≤ K} and  = {k; f (k) = 0, 1 ≤ k ≤ K}, which are the sets of clusters with nonzero temporal
trends and zero temporal trends, respectively. When the cluster structure is known, defineW as an n × K matrix such
that wik = 1 if location i is in cluster k, 0 otherwise. Let ̃W = W⊗ IJ+1, and U = ̃X̃W = W⊗ X. We write the district
cluster parameters vector as 𝝓 =

(
𝝓
⊤

1 ,𝝓
⊤

2 , … ,𝝓
⊤

K
)
⊤, where 𝝓k =

(
𝜇

(k)
,𝝓

⊤

2k
)
⊤. Here, 𝝓k’s are distinct vectors of 𝜶i’s, 𝜇(k)’s

are the distinct intercepts of of 𝜇i’s, and 𝝓2k’s are the distinct vectors of 𝜷 i’s. When the cluster structure is known, the
corresponding estimator is defined below,

̂𝝓 = argmin
𝝓

1
2T

||y −U𝝓||2 +
K∑

k=1

∑

i∈k


(
||𝝓2k||; 𝛾1, 𝜆1i

)
, (18)

where the objective function in this optimization problem is a special case of (11) when the cluster structure is known.
Let ̃f (k)(t) = B⊤(t)𝝓2k, which is the temporal function in cluster k when the cluster structure is known. And the esti-

mator based on ̂𝝓 is ̂f
(k)

= B⊤(t) ̂𝝓2k. Define rT =
(
1
T
+ J

T

)1∕2
, 𝜆min = mini 𝜆1i, and 𝜆max = maxi 𝜆1i. Theorem 1 shows the

asymptotic properties of 𝜇̂(k) and ̂f
(k)
for k = 1, … ,K.
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WANG and ZHANG 9 of 21

Theorem 1. Suppose that conditions (C1)–(C4) hold,n is fixed and J = O(T𝜅)with 0 < 𝜅 < 0.5, thenas T → ∞,
𝜆max → 0 and 𝜆min

rT+J−d
→ ∞, we have the following results:

1. ̂f
(k)

= 0 for k ∈  .
2. |𝜇̂(k) − 𝜇

(k)| = Op(rT + J−d) for k = 1, … ,K and ||̂f (k) − f (k)|| = Op(rT + J−d) for k ∈  .

Let 𝜶̃ = (𝜶̃1, … , 𝜶̃n)⊤ = ̃W ̂𝝓. Then, 𝜶̃i = ̂𝝓k if i ∈ k with 𝜶̃i = (𝜇̃i, ̃𝜷
⊤

i )⊤. Denote ̃f i = B⊤(t) ̃𝜷 i. Based on these defini-
tions, we know that 𝜇̃i = 𝜇̂

(k) and ̃f i = ̂f
(k)
if i ∈ k. From the results in Theorem 1, we have the theoretical properties

of 𝜇̃i and ̃f i. Let 𝜶̂ = (𝜶̂⊤

1 , … , 𝜶̂
⊤

n )⊤ be the proposed estimator in (11) with 𝜶̂
⊤

i = (𝜇̂i, ̂𝜷
⊤

i ). Then, the estimated function
is ̂f i = B⊤(t) ̂𝜷 i. Next, we will study the relationship between ̂f i and ̃f i, 𝜇̂i and 𝜇̃i. Define the minimum cluster difference
b = mink≠k′

[
|𝜇(k) − 𝜇

(k′)| + ||f (k) − f (k′)||
]
.

Theorem 2. Suppose that conditions (C1)–(C4) and the conditions in Theorem 1 hold, b > 𝛾2𝜆2 and 𝜆2 ≫ rT +
J−d, then

|𝜇̂i − 𝜇̃i| = Op(rT + J−d) and ||̂f i − ̃f i|| = Op(rT + J−d).

Theorem 2 guarantees that the estimated intercept and estimated temporal functions converge to those when
assuming the cluster structure is known. We have the following corollary from Theorem 1 and Theorem 2 directly.

Corollary 1. Suppose the conditions in Theorem 2 hold, as T → ∞, we have the following results:

1. ̂f i = 0 for i ∈ f .
2. |𝜇̂i − 𝜇i| = Op(rT + J−d) for i = 1, … ,n and ||̂f i − fi|| = Op(rT + J−d) for i ∈ f .

Part 1 of Corollary 1 says that the proposedmethod is consistent in temporal trend selection; that is, it can identify the
zero temporal trends with probability approaching 1. Part 2 provides the rate of convergence in estimating the nonzero
temporal trend functions and intercepts.

The following two corollaries give us the results of recovering the cluster structure.

Corollary 2. Suppose (C5) and all conditions in Theorem 2 hold, then the cluster structure can be recoveredwith
probability approaching 1.

Corollary 3. The result in Corollary 2 holds for any graph satisfying condition (C5).

The result of Corollary 2 depends on Lemma 1. As Zhang et al. (2024) discussed, the number of connections between
clusters is K − 1 under Lemma 1. By removing connections between clusters, that is, identifying nonzero coefficient
differences between two locations si and si′ , the original graph can be separated into K subgraphs, which correspond to K
clusters. For any graphs satisfying condition (C5), we can also have K subgraphs by removing any connections between
different clusters.

4 EXPERIMENTAL STUDY

In this section, we empirically examine the performance of our proposed Scanner method. In Section 4.1, we first study
the impact of the number of locations n and time length T on our estimator and compare the performance to existing
competitive approaches. In Section 4.2, we evaluate and compare algorithm complexities. Another comparisonwithmore
groups is provided in Section 4.3.

In the numerical studies, the locations are uniformly located in the space [−1, 1]2. The graph  is construed based
on Delaunay triangulation (Lee & Schachter, 1980). Then, an MST can be construed based on graph  and the weights
provided in (9). Wemainly compare the following three penalization methods. The first method only considers the graph
fusion penalty in the objective function, which will be the function in (11) without the sparsity penalty. This method
is denoted as “SCN.” The second method considers the sparsity penalty and the graph fusion penalty based on . This
method is denoted as “Scanner.GF.” The third method has the sparsity penalty and the MST fusion penalty based on
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10 of 21 WANG and ZHANG

 , denoted as “Scanner.MST.” These three methods are based on our proposed algorithm and implemented in R. All
simulations are implemented in server Mesxuuyan with 16-node Dual-10 Xeon CPU (2.20GHz) 12.8GB RAM per core in
Computational Science Research Center at San Diego State University.

We use several metrics to evaluate the performance of the methods. First, we report the average root mean square
error (ARMSE) to evaluate themodel estimation performance. ARMSE is defined asARMSE =

√
1
n

∑n
i=1||ĝi − gi||2, where

||ĝi − gi||2 is approximated by 1000 values evaluated over (0, 1). To compare the performance of recovering cluster, we
use the estimated number of clusters ( ̂K) and adjusted Rand Index (ARI) (Hubert & Arabie, 1985). ARI is widely used
to measure the agreement of two partitions. The largest value is 1, and the larger, the better. As for the temporal trend
detection, we report the F1 score (Sasaki, 2007). We can treat temporal trend detection as a 0-1 classification problem. F1
score measures the accuracy of classification with the highest value of 1 and the smallest value of 0. The higher the value
of F1 score, the better accuracy of temporal trend detection is. The F1 score is defined as F1 = 2PR

P+R
, where P is precision

and R is recall.

4.1 Study on location number n and time length T

In this part, we study the performances of our proposedmethods on different numbers of locations (n) and time length T.
The performances are compared through the estimation performance (ARMSE), clustering performance ( ̂K, ARI), and
zero trend identifications (number of identified zero trends, F1 score). We consider several traditional methods besides
the three penalization methods. “Global” is the B-spline regression model when all locations are pooled together, which
ignores both temporal trends structure and cluster structure. “Local” refers to themethod of fitting an individual B-spline
regression model for each location, which ignores the spatial information for different locations. “Local.k” uses k-means
to find clusters based on local B-spline regression coefficients when the number of clusters is known as the true value.
“Local.gap” uses k-means based on B-spline regression coefficients when the number of clusters is selected based on Gap
statistic (Dudoit & Fridlyand, 2002; Tibshirani et al., 2001). “k-means” refers to the method of using k-means to find the
clusters based on the original observationswhen the number of clusters is fixed at the true value. Similarly, “k-means.gap”
is the method based on Gap statistic. Gap statistic is implemented by R package cluster. These four clustering approaches
do not consider spatial information. We also considered two spatial clustering methods, “ClustGeo” and “skater.” “Clust-
Geo” (Chavent et al., 2018) is a Ward-like hierarchical clustering algorithm that uses dissimilarities in the feature space
and the spatial space. Here, we use the Euclidean distance of observations as the dissimilarities in the feature space and
the Euclidean distance of locations as the dissimilarities in the spatial space. R package ClustGeo is used. “skater” is a
spatial clustering method based on graph connections. Two graph connections are 10 nearest neighbors and Delaunay
triangulation, “skater.knn” and “skater.tri” are used to denote these twomethods, respectively. R package “spdep” is used
to implement “skater” algorithms. However, these two approaches cannot identify zero temporal trends.

We consider five underlying clusters separated by solid lines in Figure 3. Assume that g(si, t) = 1 if si ∈ 1, g(si, t) = 2
if si ∈ 2, g(si, t) = 1 − exp(1.5t) if si ∈ 3, g(si, t) = sin(2𝜋t) if si ∈ 4 and g(si, t) = 1.5t3 if si ∈ 5. Note that the first two
clusters have no temporal trend, while the other three clusters have temporal trends. Under different cluster structures,
the numbers of nonzero temporal trends are 52, 101, and 255 for n = 100,200, and 500, respectively. The random noises
are from a normal distribution with zero mean and variance 𝜎2 = 0.42. The number of locations n takes 100,200, and 500.
The time stamp tl for l = 1, … ,T are simulated fromUniform distribution (0, 1)with T = 20 or 50. We consider different
combinations of n and T. Cubic B-spline is used, and the number of basis functions is 5 for T = 20 and 6 when T = 50.

Tables 1–3 show the average results of 200 simulations across n = 100,200, 500 and T = 20, 50. Standard deviations
across 200 simulations are presented in subscripts. We observe that “Scanner.MST” outperforms other methods in terms
of estimatingmean functions (small ARMSE), estimating the number of clusters ( ̂K), recovering spatial cluster structures
(large ARI), and detecting nonzero temporal trends (large F1 score). “Global” and “Local” do not consider the sparsity
and cluster structure of the data. Thus, they have large ARMSE. “Local.k”, “Local.gap”, “k-means” and “k-means.gap”
can recover the cluster structure. But they cannot recover the structure well, which can be seen from ARI, even when
the number of clusters is fixed at the true value. This is because these methods do not take time order into consideration
and ignore the spatial information in the data even when there are 50 observations locally. Among the approaches with
consideration of spatial information (“ClustGeo”, “skater.knn” and “skater.tri”), “ClustGeo” can achieve better results
in terms of recovering cluster structure compared to other traditional methods. These indicate the importance of spa-
tial information in finding cluster structure. “SCN” uses spatial information in the model, which can recover the spatial
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WANG and ZHANG 11 of 21

n = 100 n = 200 n = 500

Temporal trend No Yes

F IGURE 3 Cluster structures for n = 100,200, 500. The solid lines and the color show the underlying cluster structure and the shape
represents the status of temporal trends. A triangle represents a temporal trend, a circle represents no temporal trend.

TABLE 1 The summary results for n = 100 based on averages of 200 simulations.

Method ARMSE K̂ ARI TT F1 Score

T = 20 Global 1.11±0.0002 - - - -

Local 0.26±0.0084 - - - -

Local.k 0.30±0.1020 5.00 0.73±0.1420 - -

Local.gap 0.56±0.3064 3.17±1.4334 0.49±0.3076 - -

k-means 0.22±0.1525 5.00 0.82±0.1694 - -

k-means.gap 0.43±0.2877 3.76±1.3496 0.63±0.2890 - -

ClustGeo 0.20±0.0267 5.00 0.86±0.0451 - -

skater.knn 0.83±0.0469 5.00 0.33±0.0820 - -

skater.tri 0.86±0.0329 5.00 0.41±0.0878 - -

SCN 0.10±0.0305 5.18±0.3809 0.96±0.0285 - -

Scanner.GF 0.08±0.0327 5.54±0.6635 0.97±0.0276 55.54±5.8643 0.97±0.0481

Scanner.MST 0.07±0.0326 5.94±0.9957 0.91±0.0949 52.79±3.4650 0.99±0.0308

T = 50 Global 1.11±0.0001 - - - -

Local 0.18±0.0056 - - - -

Local.k 0.26±0.1127 5.00 0.74±0.1539 - -

Local.gap 0.60±0.3571 3.04±1.6066 0.44±0.3334 - -

k-means 0.25±0.1698 5.00 0.80±0.1641 - -

k-means.gap 0.39±0.1922 3.93±1.1694 0.66±0.2087 - -

ClustGeo 0.20±0.0255 5.00 0.84±0.0520 - -

skater.knn 0.83±0.0532 5.00 0.34±0.0784 - -

skater.tri 0.87±0.0408 5.00 0.42±0.0795 - -

SCN 0.12±0.0258 5.89±0.5706 0.92±0.0175 - -

Scanner.GF 0.12±0.0234 6.46±0.9661 0.93±0.0196 52.81±1.7719 0.97±0.0153

Scanner.MST 0.04±0.0197 5.36±0.7379 0.97±0.0617 52.05±0.8551 1.00±0.0133
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12 of 21 WANG and ZHANG

TABLE 2 The summary results for n = 200 based on averages of 200 simulations.

Method ARMSE K̂ ARI TT F1 Score

T = 20 Global 1.18±0.0001 - - - -

Local 0.23±0.0051 - - - -

Local.k 0.22±0.1424 5.00 0.84±0.1647 - -

Local.gap 0.38±0.1891 3.99±1.1342 0.65±0.2510 - -

k-means 0.19±0.1468 5.00 0.82±0.1676 - -

k-means.gap 0.35±0.1846 3.93±0.9746 0.68±0.2191 - -

ClustGeo 0.13±0.0900 5.00 0.87±0.1407 - -

skater.knn 0.67±0.0610 5.00 0.40±0.1163 - -

skater.tri 0.74±0.0746 5.00 0.39±0.0623 - -

SCN 0.05±0.0189 5.00±0.0000 1.00±0.0074 - -

Scanner.GF 0.04±0.0194 5.00±0.0707 1.00±0.0069 101.40±3.5218 1.00±0.0148

Scanner.MST 0.04±0.0187 5.34±0.6466 0.98±0.0467 101.68±5.5253 1.00±0.0216

T = 50 Global 1.18±0.0000 - - - -

Local 0.17±0.0035 - - - -

Local.k 0.23±0.1459 5.00 0.81±0.1623 - -

Local.gap 0.38±0.1771 3.79±0.9750 0.65±0.2345 - -

k-means 0.24±0.1764 5.00 0.79±0.1780 - -

k-means.gap 0.40±0.1676 3.90±1.0514 0.64±0.1864 - -

ClustGeo 0.12±0.0912 5.00 0.85±0.1483 - -

skater.knn 0.67±0.0579 5.00 0.39±0.1104 - -

skater.tri 0.76±0.0828 5.00 0.40±0.0716 - -

SCN 0.05±0.0182 5.00±0.0000 0.99±0.0076 - -

Scanner.GF 0.04±0.0191 5.00±0.0000 0.99±0.0073 101.50±0.6180 1.00±0.0024

Scanner.MST 0.03±0.0131 5.19±0.5342 0.99±0.0322 100.97±0.3939 1.00±0.0020

cluster pattern well. However, the ARMSE tends to be larger than “Scanner.GF” and “Scanner.MST” since it does not con-
sider the sparsity of temporal trends. Among themethods, only “Scanner.GF” and “Scanner.MST” can identify the cluster
structure and sparsity of temporal trends simultaneously. Thus, they can achieve better estimation performance (smaller
ARMSE) than other approaches.When comparing these twomethods, we observe that “Scanner.MST” has similar or bet-
ter performances in terms of smaller ARMSE, larger ARI, and larger F1 score. Regarding the standard deviations across
200 simulations, “Scanner.MST” has slightly larger standard deviations than “Scanner.GF” for estimating the number of
clusters ( ̂K), and recovering the cluster structure (ARI). We also notice that, as T increases, the performances will become
better. The simulation results in this section show that when spatial cluster structure and sparsity of time trends exist,
ignoring either information can lead to worse performances.

4.2 Study on computation complexity

In this section, we study the computation complexity of different penalizationmethods. This means that we will compare
the computing time for SCN, Scanner.GF and Scanner.MST. An example of the constructed  and the correspondingMST
is given in Figure 4 when the number of locations is 100, and the number of clusters is 5. The true functions used to
construct the graph and MST in Figure 4 are provided in Section 4.1. Graph  in Figure 4a has 284 connections between
locations, and the MST  in Figure 4b has 99 connections, which is n − 1. The number of connections is reduced by
more than 50% when using a tree instead of the original graph. Then, the computational cost based on  is expected to
significantly reduce the cost based on .
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TABLE 3 The summary results for n = 500 based on averages of 200 simulations.

Method ARMSE K̂ ARI TT F1 Score

T = 20 Global 1.16±0.0005 - - - -

Local 0.78±0.0248 - - - -

Local.k 0.28±0.1727 5.00 0.84±0.1457 - -

Local.gap 0.38±0.1369 4.16±0.9374 0.71±0.1886 - -

k-means 0.29±0.1580 5.00 0.79±0.1496 - -

k-means.gap 0.36±0.1366 4.30±0.8740 0.74±0.1397 - -

ClustGeo 0.15±0.0648 5.00 0.94±0.0628 - -

skater.knn 0.71±0.0397 5.00 0.32±0.0851 - -

skater.tri 0.75±0.0154 5.00 0.41±0.0225 - -

SCN 0.08±0.0242 5.04±0.2078 0.99±0.0071 - -

Scanner.GF 0.07±0.0246 5.05±0.2185 0.99±0.0063 255.85±0.9912 1.00±0.0019

Scanner.MST 0.07±0.0260 5.13±0.4171 1.00±0.0094 254.96±0.8044 1.00±0.0016

T = 50 Global 1.16±0.0000 - - - -

Local 0.17±0.0024 - - - -

Local.k 0.25±0.1550 5.00 0.79±0.1685 - -

Local.gap 0.37±0.1624 4.03±0.9321 0.66±0.2052 - -

k-means 0.27±0.1771 5.00 0.78±0.1673 - -

k-means.gap 0.37±0.1578 4.15±0.9758 0.70±0.1381 - -

ClustGeo 0.11±0.0742 5.00 0.94±0.0573 - -

skater.knn 0.71±0.0387 5.00 0.31±0.0883 - -

skater.tri 0.75±0.0264 5.00 0.41±0.0306 - -

SCN 0.02±0.0098 5.01±0.0997 1.00±0.0026 - -

Scanner.GF 0.02±0.0093 5.01±0.0997 1.00±0.0022 255.18±0.3852 1.00±0.0008

Scanner.MST 0.02±0.0060 5.00±0.0707 1.00±0.0009 255.00±0.0707 1.00±0.0001

(a) (b)

F IGURE 4 An example of constructing graph and MST when n = 100. The color shows the underlying cluster structure and the shape
represents the status of temporal trends. A triangle represents a temporal trend, a circle represents no temporal trend. Gray solid lines
between locations represent that locations are connected in the graph. (a) an undirected graph constructed based on Delaunay triangulation;
(b) MST based on the graph in (a) and the weights using (9).
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14 of 21 WANG and ZHANG

We compare the computation cost of SCN, Scanner.GF and Scanner.MST when n = 100,200, 500 for T = 100. The
computation cost is compared based on the computation time. For each simulation, the total time based on 100 values of
𝜆1 and 150 values 𝜆2 is recorded. The range of 𝜆1 is from 0.0001 to 0.3, and the range of 𝜆2 is from 0.1 to 10. Figure 5 shows
the average computation time across 200 simulations.When n = 100, these threemethods have similar computation time.
When n = 200 and 500, the computation cost of Scanner.MST is about 65% of SCN and Scanner.GF. We also know that
Scanner.MST performs better in recovering cluster structure (larger ARI) and sparsity from Tables 1–3. Recall that the
results in Section 4.1 indicate that Scanner.MSTand Scanner.GFhave comparable performances in estimating parameters,
recovering cluster structure, and detecting temporal trends. Togetherwith the results in this part, we can conclude that the
Scanner.MST method is running faster than the Scanner.GF and SCN with similar performances or better performances
than Scanner.GF and SCN.

4.3 Study on complexity cluster structure

In this part, we study the performances of the proposed methods under a more complicated scenario with 10 clusters
for n = 100 and T = 20, 50,100. The functions of the ten clusters are g(si, t) = 1, g(si, t) = −1, g(si, t) = 2, g(si, t) = −2,
g(si, t) = 1 − exp(1.5t), g(si, t) = −1 + exp(1.5t), g(si, t) = sin(2𝜋t), g(si, t) = − sin(2𝜋t), g(si, t) = 1.5t3 and g(si, t) = −1.5t3.
Figure 6 shows the cluster structure. The number of nonzero temporal trends is 75. Table 4 shows the average values of
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F IGURE 5 Averaged computation time when n = 100,200, 500 for T = 100 across 200 simulations.

Temporal trend
No

Yes

F IGURE 6 Cluster structure for n = 100 when the number of clusters is 10. The solid lines and the color show the underlying cluster
structure and the shape represents the status of temporal trends. A triangle represents a temporal trend, a circle represents no temporal trend.
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TABLE 4 The summary results for 10 clusters based on averages of 200 simulations.

Method ARMSE K̂ ARI TT F1 Score

T = 20 SCN 0.18±0.0345 9.22±0.5531 0.95±0.0173 - -

Scanner.GF 0.17±0.0379 9.49±0.7017 0.95±0.0223 88.68±8.7721 0.90±0.0485

Scanner.MST 0.22±0.0899 9.80±1.7557 0.89±0.0693 93.70±8.3563 0.88±0.0440

T = 50 SCN 0.10±0.0292 10.27±0.6852 0.97±0.0150 - -

Scanner.GF 0.10±0.0322 10.46±0.8554 0.97±0.0197 79.11±3.2698 0.96±0.0197

Scanner.MST 0.06±0.0159 10.58±0.7980 0.98±0.0280 78.06±4.0445 0.97±0.0254

T = 100 SCN 0.04±0.0136 10.06±0.2471 1.00±0.0065 - -

Scanner.GF 0.04±0.0133 10.08±0.2720 1.00±0.0062 77.48±3.1383 0.97±0.0198

Scanner.MST 0.03±0.0031 10.02±0.1404 1.00±0.0054 76.41±2.9726 0.98±0.0190

different measures based on 200 simulations. We observe that the proposed method can recover the cluster structure well
with ̂K close to 10 and ARI close to 1. The F1 score of “Scanner.GF” increases by about 5% for T = 50,100 compared to
T = 20, and the F1 score of “Scanner.MST” increases by about 10% for T = 50,100 compared to T = 20. These indicate
that the performance of identifying nonzero temporal trends improves a lot when T = 50,100 compared to T = 20. And
when T = 50,100, “Scanner.MST” and “Scanner.GF” have similar standard deviations across 200 simulations.

5 REAL DATA ANALYSIS

In this section, we apply our proposed Scanner approach to study our motivating dataset described in Section 1. The orig-
inal data were collected daily by the National Meteorological Information Center, China Meteorological Administration.
Precipitation regions are studied in different literature (Gomes et al., 2018; Liu & Xu, 2016; Roushangar &Alizadeh, 2018;
Satyanarayana & Srinivas, 2011; Xiao et al., 2013). Claps et al. (2022) gave a review of rainfall regionalization techniques.
Finding homogeneous precipitation regions is essential in studying the precipitation trends, estimation of precipitation
quantiles in ungauged locations (Claps et al., 2022), investigating spatial distributions of precipitation (Satyanarayana &
Srinivas, 2011) and effective management of water resources (Roushangar & Alizadeh, 2018). Studying annual precipita-
tion is one of the approaches (Roushangar & Alizadeh, 2018; Satyanarayana & Srinivas, 2011). After having precipitation
regions, people can study the features of different regions separately. In traditional hydrology methodology, model-free
approaches are used, which cannot identify the temporal trends.

We study the cluster and temporal pattern for yearly precipitation data in 660 basic stations from 1995 to 2014. As
shown in Figure 1a, these stations are spatially spread, and closer stations could have similar precipitation patterns. For
each location,wehave local observations to fit individual spline regressionmodels, and the regression coefficients are used
to construct the MST to represent the spatial connections among stations. Besides this, from the 50 randomly temporal
trend lines of 50 selected stations in Figure 1b, some trends could be constants over the considered year period. These
observations motivate us to find spatial clusters and detect zero and nonzero temporal trends together.

Our goal is to find the precipitation region and estimate the temporal trends simultaneously. In the analysis, we have
n = 660 (660 stations) and T = 20 (number of observations in each station). As discussed in Section 2, 𝜌 = 1 is used in
the algorithm. Similar to the simulation studies, the procedure introduced in Section 2.4 is used. That is, in the first step,
tuning parameter 𝜆′1is are selected from a grid of 100 values with a range from 0.0001 to 0.3. In the second step, a grid of
1000 values of 𝜆2 ranging from 0.1 to 20 is used. 𝛾1 = 𝛾2 = 3 are used following the literature as discussed in Section 2.4.
The graph constructed based on the Delaunay triangulation has 1959 connections. And the MST has 659 connections.
Figure 7 shows the constructed undirected graph and the MST. The MST only has about 30% connections of the graph in
Figure 7a. As shown in the simulation study, Scanner based onMST has similar model performances to themethod based
on the graph but has less computation cost. Thus, we only use Scanner based on MST to analyze the yearly precipitation
data.

We show the estimated results in Figure 8. In the figure, colors indicate different clusters, and the pattern indicates
whether a temporal trend exists. There are 23 spatial clusters in total, and 5 of them have temporal trends. The map has
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16 of 21 WANG and ZHANG

(a) (b)

F IGURE 7 Constructed undirected graph and MST. The solid lines between stations represent connections in the graph. (a)
Undirected graph. (b) MST.

F IGURE 8 Maps of estimated clusters and trends based on Scanner.MST. The color shows different clusters, and the pattern shows the
existence of temporal trends.

a similar cluster pattern to the regions in Chen et al. (2009) and Zhang et al. (2016) based on daily precipitation data,
which are related to the stepwise manner of East Asian monsoon (Ding, 2004), where the stepwise manner refers to the
fact that the regions are not continuous and jumps exist among different regions. We also apply the spatial clustering
method,ClustGeo, to the data. The estimated clusters are shown in Figure 9 when the number of clusters is fixed at 23.
The cluster structure based onClustGeo in Figure 9 has more isolated stations than that in Figure 8. There are also similar
cluster patterns between these two results. For example, both clusters are detected in the northeast of China, Xizang
province area, and the east coast area.

Figure 10a shows the fitted lines and 95% confidence bands of the five clusters with temporal trends. The separable
confidence bands indicate that these five clusters are different. Figure 10b shows the estimated mean and the 95% confi-
dence intervals for clusters without temporal trends. Besides these, it can be seen that Cluster 1 has a little temporal trend
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F I GURE 9 Maps of estimated clusters based on ClustGeo. The color shows different clusters.
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F IGURE 10 Estimated clusters with time trends and without time trends. (a) Estimated clusters with nonzero time trend. (b) 95%
confidence intervals for clusters with zero time trend.

around year 1995, which corresponds to the northern parts in Figure 8. The yearly precipitation change is relatively small
compared to other clusters. Cluster 4 is close to Cluster 3, which shows an increasing trend. This means that yearly pre-
cipitation has increased in these two clusters, especially in Cluster 4, which also indicates that attention should be given
to this area about the precipitation change. Cluster 4 and Cluster 3 are also close on themap and correspond to the central
north. Cluster 2 is the central cluster with larger precipitation than clusters 1, 2, and 3, which has a slightly decreasing
trend in the recent five years. This also indicates that there is a potential drought in this area. Cluster 5 has a different
cycle than other clusters, which corresponds to the southern cluster in Figure 8. This area is close to the ocean, which
has larger precipitation than other clusters but also has a larger variability among different years. For clusters without
temporal trends, the yearly precipitations are stationary over these 20 years. Different clusters have different estimated
yearly precipitations and may have different variations due to different numbers of stations. In clusters 12, 19, and 22,
there are 3, 1, and 2 stations, respectively. In other clusters without temporal trends, there are at least 5 stations, resulting
in small variations. Compared to the regions in Chen et al. (2009) and Zhang et al. (2016) based on monthly data, there
are some similarities and differences due to different research perspectives (monthly data vs yearly data) and statistical
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approaches. In particular, Cluster 5 is smaller than a similar cluster in the literature. In the literature, the cluster around
the area in cluster 5 also contains more western areas. Our result canmake sense because stations in western areas are far
from the ocean, which could have different patterns than those closer. Cluster 2 is similar to the northern part of cluster
1 in Chen et al. (2009), which corresponds to the areas around the Yellow River. Cluster 3 is similar to cluster 2 in Chen
et al. (2009) and Zhang et al. (2016), which corresponds to a dry region. Cluster 3 and Cluster 4 are similar but show some
differences in temporal trends. For the Hainan island, we got a similar pattern to that in Zhang et al. (2016), where the
western part separated from other areas in Hainan.

Within one cluster, we can assume stations are homogeneous. And among different clusters, different patterns exist.
Then, cluster features can be studied in different clusters. For example, studying spatial correlations of precipitation is
important for surface data generation, data collection, and interpretation, as discussed in Fan et al. (2021). They studied
spatial correlations of daily precipitation over different precipitation regions, where these regions are based onmodel-free
approaches, which may not show the differences among different regions. Our clusters are data-driven, which can better
reveal the heterogeneity of different areas.

6 CONCLUSION

In this article, we propose a new method called spatial clustered and sparse nonparametric regression (Scanner) models
to find spatial clusters and select nonzero temporal trends for spatial temporal data. To achieve the goal, we use B-spline
regression models to model longitudinal curves and design a doubly penalized least squared approach. In Scanner, a
group sparse penalty is used to detect temporal trends, and a spanning tree-based fusion penalty is used for identifying
spatial clusters. A new algorithm based on the ADMM algorithm is developed to find the cluster structure of locations,
identify the sparsity of temporal trends, and estimate parameters automatically. In the simulation study, we used several
numerical examples to investigate and compare the performance of Scanner. The numerical results show that Scanner
can recover the spatial structure and detect temporal trends well. We also found that the tree-based fusion penalty has a
similar or better performance compared to the graph-based fusion penalty inmost scenarios. Furthermore, the tree-based
approach can greatly reduce the computational cost. When the number of clusters is larger, the tree structure might
hurt the performance of recovering cluster structure a little bit when local data is not enough. But the results are still
reasonable. Besides these, we established the theoretical properties of the Scanner estimator in terms of its consistency in
recovering cluster structure and identifying temporal trends.

In our simulation studies and the real data analysis, all locations have the same number of observations and are
observed at the same time points. Theoretically, the algorithm can handle missing values as long as each location has
observations since we can still use B-spline to approximate the smooth functions, that is f (si, t) = B⊤(t)𝜷(si), which does
not require that all locations have the same observed time. However, the performances still need to be investigated under
different missing scenarios.

The idea of the proposed approach can be extended to varying coefficientmodels (Wang et al., 2008) and semiparamet-
ric varying coefficient models Tian et al. (2014). In varying coefficient models withmultiple covariates, the corresponding
regression coefficients aremodeled as smooth functions of time. In traditional varying coefficientmodels, for each covari-
ate, the smooth function is assumed to be the same across all locations. This can be relaxed by assuming smooth functions
have clusters across different locations. Furthermore, we can also select variables and find clusters of spatial locations
simultaneously by using doubly penalty functions used in ourwork. The advantages of the extendedmodel are that amore
flexible model may have better estimation performance, and the double penalty approach can find clusters and identify
the sparsity of effects of covariates together. However, there are still some disadvantages that need to be addressed in the
future. As discussed here and in the literature, location-basedMSTmay not accurately identify the true clusters. We need
to explore the approaches of using local information to construct MST and evaluate the performances. The computation
efficiency is another potential issue since multiple smooth functions are needed to be estimated together. Besides these,
the proposed approach can also be extended to other types of models to study different kinds of spatial temporal data,
such as binary data and count data.
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