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Abstract

We consider the inverse problem of recovering an unknown, spatially-dependent coef-
ficient g(x) from the fractional order equation Lqu = f defined in a region of R? from
boundary information. Here Ly = D% + Dy” + g(x) where the operators D%, Dy” denote
fractional derivative operators based on the Abel fractional integral. In the classical case
this reduces to —Au+ g(x)u = f and this has been a well-studied problem. We develop
both uniqueness and reconstruction results and show how the ill-conditioning of this inverse
problem depends on the geometry of the region and the fractional powers ¢, and .
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1 Introduction

The use of fractional derivatives in physical applications is now commonplace as deficiencies in
certain models using only integer order derivatives have been widely explored. These include
diffusion models where Brownian motion is not the underlying modality and the mean square
path length of a particle is not proportional to ¢ itself but to a fractional power t*. In the case
of 0 < o < 1 such a process is labelled as subdiffusive and is characterised by waiting times
with a non-finite mean. In classical damping for the wave equation a term of the form —b Ay,
is included and leads to exponential decay of all frequencies. On the other hand a fractional
operator here, —bADXu gives a very different situation: decay is now a power law that does
have a frequency dependency. This was in fact probably one of the first applications of fractional
derivatives in a partial differential equation and dates from the 1960’s, see Caputo [?]. Perhaps
the most important distinction is that fractional derivatives are nonlocal operators leading not
only to new physics but requiring different mathematical tools.
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The use of fractional derivatives in inverse problems for partial differential equations is more
recent but has seen an exponential increase in the number of papers over the last decade. A
survey of the early part of this work can be found in [?] and more recently in the book [?].

While the majority of this body of research involves fractional derivatives in time in models such
as D%u —Lu = f(x,t,u) where D% is a derivative based on the Abel fractional integral and
IL is an elliptic operator, there is also the possibility to consider fractional derivatives in space.
From a particle-diffusive standpoint this leads to superdiffusion where now the variance of the
mean square distance is non-finite leading to arbitrary long particle jump lengths, see [?]. In
this case there are many possible definitions. One is to look at a fractional power of the elliptic
operator —IL. and again there are several versions here, see, e.g. [?, ?]. Another is to again
use combinations of fractional derivatives of the Abel type and this is the approach taken in this
paper.

Our specific situation is to view our differential operator to be in potential form and we seek
to recover the unknown, spatially-varying coefficient as the potential ¢(x) in such a fractional
elliptic operator from boundary measurements. We assume the setting to be in two spatial di-
mensions, although as it will become apparent, the problem extends to higher spatial dimensions.
To recover such an unknown coefficient with domain Q C R? from boundary measurements re-
quires the full Dirichlet-to-Neumann map: for each member of a complete family of Dirichlet

conditions {u,} on dQ, we must provide the corresponding Neumann measurements {%"‘j’ } .

We then have (d — 1)+ (d — 1) dimensional information from which to recover a d -dimensional
unknown. In the case d > 3 the problem is overposed while for d = 2 the dimension count is
exact but is drastically under-posed if d = 1. In the R?, d > 2 setting there is an extensive
literature on this problem not only in the classical case but also when the leading term Laplacian
operator is replaced by the so-called fractional Laplacian (—A)B with 1 < 8 < 2. See, for
example, [?, ?].

We do not envision such an extensive measurement set and will in fact take only a single Dirichlet
boundary condition and measure the corresponding Neumann values on a subset of the boundary
of Q. Clearly, such a restricted problem must constrain the coefficient ¢ and we shall assume
that it is a function of a single variable x € R (with an exception being made in Remark 4.1).
This in turn will constrain the geometrical situation, but we will actually focus on the harder
(and at the same time more realistic) case of measuring in a direction orthogonal to the direction
of variability of g. The resulting inverse problem therefore must be expected to be severely ill-
posed. Moreover, rather than looking at versions of the fractional Laplacian, we are interested
in fractional derivatives based on the Abel integral operator, cf. (7), (8), (9) in order to model
anisotropic behaviour in the sense that memory due to nonlocality acts in a certain direction.

Our operators thus consist of one-sided fractional derivatives of Djrbashian-Caputo type together
with left and right averages of these. In the latter situation we look at the Riesz derivative which is
a symmetric combination of left and right fractional derivatives and uses the Riemann-Liouville
formulation to allow a larger class of solutions. The connection here to the random walk model
is that the Riesz derivative with Dirichlet boundary conditions is the generator of a stopped,
o -stable Lévy motion. See, for example, [?].



1.1 Problem Configuration

Let Q be the rectangle (0,1) x (0,L) (or more generally Q = (0,1) x D for some domain
D C R 1) and u(x,y) be defined in Q by

Lou=f  inQ (D
with
u(x,0) =u(x,L) =0, u(0,y)=¢o(y) u(l,y)=¢1(y). 2)
Here Ly is given by either
Lou = —D%u — uy, + q(x)u, 3)
or
Lot = —uy — DY u+q(x)u, 4)

where o € (1,2]. Models such as these fractional advection-dispersion flow equations occur
frequently in the literature; see for example, [?] and references within. In (2) f, ¢9, @ are
given information and we must recover g(x) from the overposed value

g°(v) = g(y) =ux(0,y), y€(0,L), (5)

where g5 is the actually available (noisy) data.
In the higher dimensional case of replacing (0,L) by D C R¢~!, these data would be given by

g°(y) = g(y) =u(0,y), yeI CD, (6)

where pure dimension count would still admit I" to be just a one-dimensional set (e.g., part of
the boundary of a two-dimensional domain D) as the quantity g to be reconstructed depends on
the single variable x only. Since variation of the data occurs in a direction orthogonal to x, we
expect the reconstruction problem to be severely ill-posed. Indeed the influence of the order of
differentiation in the PDE is only minor, as well will see in Section 3.

The operator D% will either be a one-sided Djrbashian-Caputo derivative (and there are two
sub-cases here depending on the starting position being either x =0 or x =1 in (3)), or the
Riemann-Liouville version of the Riesz derivative taken as the symmetric combination of the
one-sided derivatives, which we will consider in both settings (3), (4).

With the one-sided Abel integral operators

1 * t
oAv(x) = ) / ( il dt, for x> a,
a (x

[(y —1)l=r o
1 b v(r)
Yolx) —
Apv(x) = F(Y)/x (t—x)l—Ydt’ for x < b.

in the case a € (1,2) relevant here, the one-sided Djrbashian-Caputo derivative on (0,1) is
defined by

oD%v(x) = olf_avxx(x) (8)
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and the two-sided Riemann-Liouville Riesz derivative on the interval (—1,1) by

1 d?
2cos((2—a)7/2) dx2<

Rp%y(x) = % I ) v(x), 9)

(and likewise for RDS‘ ), which can be transformed to the interval (0,1) or (0,L) by the map
x+— (x+1)/20r y—L(y+1)/2.

An important property of the Abel integral operator that we make use of throughout this paper is
its coercivity

1
| )@y = cos(rr/2) vl e, 7€), veR0.0) (10)

with HVHZ';(O-,I) = Jp(1+ ®?)° ’fl —iat (t)aft’2 dw for s € R and the corresponding function
space is defined as HS(0,1) = {v € L*(0,1) : VIl 50,1y < oo} for s >0 while Hi(0,1) is the
completion of L?(0,1) in the above defined H*(0,1) norm for s < 0, cf. [?, ?]. It is readily
checked that the Riesz operator with homogeneous Dirichlet boundary conditions is selfadjoint

1 1
R o / 2—a 22—
—"D{vi, ) = /vxl V—f—xl Vs ) (x)dx
< x V1 2> 2008((2—&)7[/2) 0 l( )( 2 2)( ) (11)
= <V1,—RD)?V2>, Vi, V2 EH&(O,l),
thus by (10)
<—RD)(,XV,V> = ||V/HH5/2*1(0’1)~ (12)

While case (4) is naturally restricted to a 1-d setting in the y direction, we can replace —u,, with
homogeneous Dirichlet boundary conditions at y € {0,L} in (3) by a more general symmetric
elliptic differential operator in higher space dimensions with homogeneous boundary conditions
of more general type, leading to a selfadjoint positive definite operator <7 : Z(&/) — .

An example is the negative Laplacian &/ = —/\, equipped with homogeneous Dirichlet, Neu-
mann, or impedance boundary conditions and 7# = L? (D) ; more generally, we can set

o =—pVy-(aVy), H =L (D), 2(</)CH*(Q), DCR?alLipschitzdomain (13)

1/p

with the weighted L? inner product (v,w) = [, %vwdx and coefficients

acW'™(D), pelL*(D), 0<a<a(y),0<p<p(y),yeD, (14)

that are positive bounded away from zero and depend on y only.
Another option according to (12) is to use a Riesz fractional derivative also in the y direction (in
addition to the fractional DC or Riesz one in x direction in (3)), that is

o =-Rpb. r=1*0L), 9(«)CHP(Q), D=(0,L). (15)



These various combinations will turn out to give quite different answers to our ability to recover
the unknown ¢(x) from the overposed boundary data and it is a primary purpose of this paper to
highlight this aspect.

A generic application is to a layered medium that varies through ¢(x) only in one direction (the
x direction). As a more specific example of this we mention wave propagation in the frequency
2
[0

domain with g(x) = — 20 where o is the frequency and ¢ the speed of sound.

The remainder of this paper is organised as follows. We first of all derive a reconstruction method
based on separation of variables and application of Newton’s method in Section 2. The perfor-
mance of this method is illustrated by numerical tests for all of the described cases in Section 3.
In Section 4 we provide a uniqueness proof in the y-direction fractional case (4) based on inverse
Sturm-Liouville theory and discuss to what extent its ideas carry over to the x-direction Riesz
fractional case (3). Besides the main problem of reconstructing g we will here also provide a
result on unique recovery of the fractional order & in the x fractional Riesz case. Finally, in Sec-
tion 5, we provide some foundation for the Newton-type methods devised and used in Sections 2
and 3.

2 Reconstruction by Newton’s method

In this section we derive a reconstruction scheme for recovering g in (1), (2), (3), (4), from
boundary data (5). This also comprises considerations on the evaluation of the forward map F
and its derivative F’.

2.1 The x-fractional case (3)

Slightly more abstractly than (3), we consider the problem with fractional derivative in x direc-
tion for u € H*(0,1;2)NL*(0,1;,2(7)), f € L*(0,1;¢), q € L*(0,1), with a selfadjoint
operator &7 € L(Z (<), #) with compact inverse

—0D%u(x) + S u(x) +q(x)u(x) = f(x), x€(0,1),

with boundary conditions
u(0)=¢o,  u(l)=¢r,
that covers (3) with the special setting # = L*(D), 2(</) = H*(D)NH} (D), o = —/\, when
equipped with homogeneous Dirichlet boundary conditions.
Separation of variables and the expansion u(x) =Y., u;(x)¢; in terms of the eigenfunctions

@; of </ (based on the spectral theorem applied to the compact selfadjoint operator .o/ 1) leads
to problems of the form

—oD%uj(x) 4+ Ajuj(x) + g(x)u;(x) = fi(x), x€(0,1), (16)

with boundary conditions
uj<0):¢07ja uj(l):(PL]? (17)



and the overposed data
u}(O):bJ-, (18)

where f;(x) = (f(x),9;) > 0ij=(9i,9;) r, i €{0,1}, bj = (8,9;) , and 4; is the eigen-
value of &7 corresponding to ¢; .

The inverse problem now can be written as

F(q)=b

(19)

with F(q) = (Fj(q))jen, F : L*(0,1) — ¢%, Fj(q) = u';(0) where u; solves the boundary value

problem (16), (17), and b = (b;) jen With b; as in (18).
To evaluate the forward operator F, for each j € N we have to solve (16), (17). For this purpose
we use a solver w = S(f,wp,w;,A) of the boundary value problem for g =0

—oD%W(x) + Aw(x) = f(x), x€(0,1), w(0)=wp, w(l)=w (20)

and proceed by a fixed point iteration. Thus we start with u?(x) = S(fj,90,,91,j,Aj) and the
solution u; to (16), (17) is constructed by successive approximations

u?“(x) :S(fj—Q<S)”?a¢0,ja¢l,jvlj)' D

In the Djrbashian-Caputo case we obtain w = S(f,wp,w,A) via a Green’s function as follows.
From e.g., [?, Proposition 4.5], [?, Thm 5.4] with b = w,(0), G(t) = t“‘lEma(?Lt“) we have

w(x) = — / Gx— 1) f (1) di +woEq (Ax®) + bxEq(Ax%).
0
Now we eliminate b by using the right hand boundary value
1
wi == [ GU=)f(0)dr+w0Ea1(2) +bEqa(2) (22)

and this implies that

b= Ea;(l) <W1 +/()1 G(l —I)f(t)dt—WQEa71(;L)).

Finally we obtain
1
W(X) = /O K(x,t)f(t) dt+wyg eO(x) +w el(x), (23)
where
K(x,t) = e1(x)G(1—1)—G(x—1) ifr<x
X, 1) = el(x)G(l—t) ifr>x s

e0(x) = Eq1(Ax") —e1(x)Ea1(4),  e1(x) :x%



In the Riesz case, to construct w = S(f,wp,w;,4) we use a solver based on a Galerkin discreti-
sation with Jacobi polynomials as described in [?] on the symmetric interval (—1,1) and extend
it to inhomogeneous Dirichlet boundary conditions and an additional term Aw in the equation.

Forreal o, B> —1 let P P be the classical Jacobi polynomials with respect the weight function
0*Bx)=(1-x)2%(1 +x)g over [—1,1]. These are such that

1
| PP )PEP ()0 (x)dx = 1P, where
-1

a B 25
25 I (4 2+ 1)T(n+E 41) 25)

(2n+%+g+l)n!1“(n+%+§+l).

R L

and satisfy a three term recursion scheme. For our purpose we only require the case where o = f3
and thus let P%(x) = P;"%(x). Again following standard notation we define

J % (x) = (1 —xz)%P,f‘(x), o> —2.

Then it can be verified that J,%*(—x) = (—1)"J, %(x) and j—;]g“(:ﬁ:l) =0for k=0,1,...,[a]—
1 and it satisfies a three term recursion scheme analogous to the one for P*, as well as the or-
thogonality condition

1
/ T7OT %0~ %% (x) dx = Y% Gy (26)
—1

The key relation between these polynomials for our purpose is

F(€+1+a)Pa

RDa]n—a: 6' €

see [?, Corollary 1].
To extend the Galerkin method described in [?] to inhomogeneous Dirichlet boundary conditions
and an additional term Aw in the equation, we first of all consider

—RDH(R) +Aw(X) = f(R), Te(=1,1), w(=1)=wy, w(l)=w

which with w(x) = Ww(%), f(x) = f(&)
%(wl +wp + (w; —wp)x), the function
and we can use the Ansatz

2x — 1 we transform back to (0,1). With ¢ (%) =

i=
b
W =W — ¢ satisfies homogeneous boundary conditions 5.

N N N
FE) =Y AhPEFE), 0@ =) GPEE), WE) =Y w * (D).
k=0 k=0 k=0
Taking the weighted inner product with P and using orthogonality, we obtain the linear system

Fl+1+a) N L
%WHAZG,QM,(:&—A@ (=0,1,...,N, (27)
: k=0
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where G = <]j_a7P£a>Liw

The Jacobian for applying Newton’s method to (19) is computed by choosing a basis (p;);en of
L?(0,1) and setting F (q)pi = v;(0) where v; solves the boundary value problem

— oD% (x) +Ajvj(x) +g(x)vj(x) = —pr(X)uj(x), x€(0,1),

v;(0)=0, v;(1)=0, (28)

that is, v; = S(—piu;,0,0,4;). The Newton step at an iterate g is then computed as

= Z cipi, where ¢ = (¢;)ien solves Afe = r with A’j‘-i = F]{(qk)pi, rj= bf —Fj(qk).
i=1

Here b‘S <g , ;) with I being the actually given noisy data. Regularisation can be achieved

by truncatlng the expansion for 6¢ and /or the number of components F; (q ) taken into account.
Alternatively or additionally to that, Tikhonov regularisation can be applied by using regularised
approximations ¢ = (Ak*Ak + )~ 1AK “r to the solution of A¥c = r, cf. Section 5.2.

Remark 2.1. Alternatively one might think of considering the initial value problem for (16)
prescribing

u;j(0) = ¢o,;, u';(0) = by,
and define Fi(q) = u;(1), so the inverse problems reads as F(q) = ¢1 = (¢1,;) jen. The direct

solver is now actually simpler, based on the fixed point equation (relying on the representation
from, e.g., [?, Proposition4.5], [?, Thm 5.4])

uj(x) =Eq 1 (Ajx%) @0 j +xEq2(Ajx%) b,

+/ (x=1)* " Eqa(Aj(x—1)*)q(t)u;(r) dr. (29)
0

However, due to A j — oo, the operator F is unbounded.

2.2 The y-fractional case (4) with a Riesz derivative

Restricting again to one space dimension in the y-direction D = (0,L), we can apply an analo-
gous procedure by applying separation of variables with respect to eigenfunctions of —RDS‘.
While there are many open questions on the eigenvalue problem for the Djrbashian-Caputo
derivative (8), see, e.g., [?], much more can be said about the Riesz derivative (9). The Riesz

derivative operator —RD;X HY 2(0 L) — (H, HY 2(0 1))* when equipped with homogeneous Dirich-
let boundary conditions is selfadjomt and positive definite, due to (11), (12), and thus boundedly
invertible by the Lax-Milgram Lemma. Its inverse K, considered as an operator from LZ(O,L)

into itself is compact, due to the fact that Hy' / 2(O,L) compactly embeds into L?(0, L) . Moreover
K is also selfadjoint. Therefore by the spectral theorem for compact selfadjoint operators, K,
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whose nullspace is trivial, has a complete set of orthogonal eigenfunctions and the eigenvalues
are all real, positive and tend to zero. The eigenfunctions of —DS‘ = K~! are the same as those
for K and therefore still complete in L? (0,L), and its eigenvalues are real, positive and tend to
infinity.

With an eigensystem (A7, 97) jen of —RDS‘ with homogeneous Dirichlet boundary conditions,
we can write u(x,y) = Y7 u;(x)@{(y), where u; solves

—uj (x) + Afu(x) + q(x) = fj(x) x€(0,1), u;(0) = o ;(0), u;(1) = ;(1) (30

cf. (16), (17) and the overposed data

u;(0) = bj,

where fj(x) = (f(x), 9])2. 9ij = (61,07 ) 12, 1 €{0, 1}, bj = (g,0/) 2.
Again we can use successive approximations (21) to evaluate the forward operator and its Jaco-
bian. The solution operator S defined by w = S(f,wo,w1,A) such that

—w'(x) + Aw(x) = f(x), x€(0,1), w(0)=wp, w(l)=w (31)

can be obtained by simply taking the case o =2 in (23), (24) and & according to (15).

3 Reconstructions

The purpose of this section is to look at quantitative differences in the ability to reconstruct g
from the various combinations of operators and their dependence on the associated fractional
powers. We will indicate this by giving both reconstructions of g(x) and also computing the
singular values of the Jacobian matrix needed for its recovery using Newton’s method. The latter
gives a strong indication of the degree of ill-conditioning of the inverse problem.

As a baseline for the reconstructions we take a Lipschitz continuous function g(x) (in fact a
piecewise linear function). We seek recovery of this with a set of pure sine basis functions
{sinnzmx}}) . The best fit to the actual ¢ measured in L?(0,1) within this basis set for N = 11
is ||gact — grecon|| = 0.04. As we will see, the regularisation needed to stabilise the Newton
iterations even under very low levels of noise in the data measurements would preclude effective
use of a larger number of basis functions. This becomes evident when looking at the graphics
containing the singular values of the Jacobian. So we also used N = 11 basis functions in the
reconstructions.

We consider (3), (4), that is,

Lou :Dg’“u—D;‘yu%—q(x)u (32)
where D% is either the one-sided Djrbashian-Caputo derivative (8) or the symmetric Riesz
derivative (9) with homogeneous Dirichlet boundary conditions and D% is the symmetric Riesz
derivative on an interval (—L,L), with Dirichlet boundary conditions at y = —L and y = L.

When considering (3) the value o, =2 will be a default, likewise for (4) with o, = 2, but we
also use the case when the fractional exponent is the same in both directions, o, = @ .

The sub-cases we will consider are the following,
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e D% is a single fractional derivative of Djrbashian-Caputo type (8) with starting value
the left endpoint of the interval and D;x"’ = g—;z In this case we make the sub-cases of
overposed data prescribed on the left and on the right as the inversion of the nonlocal
operator D% is very different in the cases of the overposed data being posed at the starting
value of D% as opposed to the end value. This phenomenon has been seen frequently in
the case of a one-sided fractional derivative of Abel type; see [?][Sec 3.2] and [?][Chapter

10.2].

e D% is the derivative of a symmetric combination of left and a right Abel fractional inte-

. . . . . ! 2
grals, that is a one-dimensional Riesz operator (9) and again Dy = g_yz .

e Both D% and D;x‘ are Riesz derivatives as in equation (9). There are further sub-cases
here: oy =2 or a, = o, . The second assumes the same fractional operator and exponent
in both spatial directions, while the first assumes that the rectangular medium is “classical
Brownian” in one direction and “anomalous” in the other.

e We allow the length of the rectangle to vary in the y-direction. The larger the value of
L the smaller the eigenvalues in the y—direction and leading to a correspondingly less
ill-conditioned overall inverse problem. This is also intuitive in view of the fact that the
measurement interval is longer relative to the interval on which ¢ is to be reconstructed.

For numerical computations we used the methods described in Section 2, that is, a solution
representation by means of Green’s functions for the one-sided Djrbashian-Caputo fractional
derivatives and a spectral Galerkin methods using Jacobi polynomials for the Riesz cases. The
Jacobian matrix was formed by solving the linearised forward problem (28) for each ¢ basis
function py and taking the endpoint values v'(0) or v/(1). Regularisation was of Tikhonov type
with a diagonal regularisation matrix R weighted by powers of the frequencies.

The Djrbashian-Caputo case in the x direction

In figure 1 we show the first ten singular values of the Jacobian matrix computed about g = 0
for the exponents o = {%, %, %, 2}. Here we took L =2 and compared data measured on the

left and with it measured on the right. Note that the derivative here is ODCD)‘CX with starting value
at the left endpoint x = 0 in the x-direction and ;—yzz in the y direction. The exponential decay
of the singular values is evident from this graphic as is the monotonic behaviour with respect to
o and shows that the problem becomes more ill-conditioned with increasing o. However, the
influence of & on this ill-posedness is very weak in the sense that the slope of the log-singular
value decay hardly changes with a. The condition numbers of the Jacobians, that is, the ratios
between their 1st and 10th singular values are as follows: o = 1.25: 12.95, ¢ = 1.5: 14.05,
o=1.75: 1790, a =2: 20.43. As regards left-right measurements the distinction is quite
clear for the o < 2 cases but appears to be identical when o = 2. This is exactly what should be
expected for when a =2 we have the regular second derivative operator which gives symmetric
results at both endpoints.
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Figure 1: Singular values of the Jacobian for o = (1.25, 1.5, 1.75,2.0), L=2.
Leftmost figure with data on left, rightmost with data on right.

In figure 2 we show the reconstructions obtained by the Newton scheme for o = 1.5 and taking
the rectangle to be lengthened with L = 6. As to be expected, a large L value will lead to less ill-
conditioning and hence superior reconstructions. We will see a direct comparison of this effect
in the next subsection. The upper pair of figures is with no added noise, and the final relative
norm differences in g are 0.08 in both cases. The lower pair has 0.1% added noise, giving norm
differences in g of 0.113 and 0.120.

One might expect that the differences here would be almost totally insignificant, but it is a mark
of the extreme degree of ill-conditioning that such small changes in noise level can make a recog-
nisable change. Even the no added noise case required some regularisation and this explains in
part why the reconstruction doesn’t correspond exactly to the actual ¢(x). The other contributing
factor here is that we are using a restricted number N of basis elements in our reconstructed ¢
which is in itself a form of regularization.

The Riesz case in the x direction

Here we have taken D% to be the Riesz derivative in the x direction and ;—yzz in the y direction.
In this symmetric case we expect the one-sided derivative effect to vanish and this is indeed the
case. However, nonlocality still plays a role and this may be expected to show up in reconstruc-
tions when the unknown ¢ has a significant feature near one of the endpoints: prescribing data
at this endpoint will give superior reconstructions than providing it at the further endpoint. This
is indeed the situation as we see in figure 3.

We also provide the singular values of the Jacobian matrix for both the cases L =2 (the region
is a square) and L = 6. This clearly shows the decreased ill-conditioning when L is larger which
corresponds to smaller eigenvalues for a given index number in this case. In turn this decreases
the ill-conditioning in the x direction. This effect is in place for all o values including ox = 2.

Figure 3 shows a reconstruction of the standard g(x) from the Riesz derivative in the x— spatial
direction. The left and right figures correspond to data measurements on the respective sides.
Notice that the right-hand reconstruction is superior. In this case this has nothing to do with
directionality of ®D% as this is a symmetric operator on [0, 1]. Rather, the right hand data is
better able to handle the large spike in ¢(x) near x =1 than the left hand boundary measurement
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Figure 2: Reconstruction of ¢ in the DC case with o = 1.5, L=6:
Leftmost figure with data on left, rightmost with data on right.
Upper row: 0 per cent noise, lower row: 0.1 per cent noise.

due to simple proximity. If g(x) were in fact symmetric then these reconstructions would be
identical. The value of o = 1.5 is used in figure 3. In fact, the reconstruction accuracy depended
on o to only a small degree; the L? relative error difference in g(x) between the lowest and the
highest alpha value was only a factor of about 1.5.

The Riesz case in the y direction

Here we isolate the fractional operator effect to the orthogonal direction in which the unknown ¢
is defined; the differential operator in the x-direction is just Cé‘l—; . In the y-direction we take the
operator to be of Riesz type. Figure 5 shows the resulting singular values of the Jacobian with the
usual four o, values. Notice the rapid decay indicating severe ill-conditioning due to the effect
of inverting the classical operator, while there is a distinction between the a, values. Figure 6
indicates that left and right placement of the data measurements are insignificant (as would be
expected) and as in Figure 3, only the asymmetry of the target ¢ leads to a slight difference in
quality between left and right.

The Riesz case in the x and y direction

We have so far taken the assumption that the the underlying material has different properties in
the x and y directions and giving rise to differing o, and o, but it is of course possible that
there is a directional invariance and the same operator acts in both directions. The analysis is of
course a special case of the above but we do show reconstructions in Figure 8 for the case with
o = o, = ay = 1.5. Note that according to the singular value decay shown in Figure 7, this leads
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2.0 71 4(x) 2.0 14(x)

15 - 15

1.0 - 10 4

0.5 05 -

0.0 . . . . 0.0 . | | |
~1.0 —0.5 0.0 05 1.0 ~1.0 —0.5 0.0 05 1.0

Figure 3: Reconstruction of q in the Riesz-x case with @ = 1.5, L =6, and 0.1 per cent noise:
Leftmost figure with data on left, rightmost with data on right.

15 log(sv) 1 5 log(sv)

Figure 4: Singular values of the Jacobian for a = (1.25, 1.5, 1.75,2.0) for the Riesz-x case.
Leftmost figure with L =2, rightmost with L =6.

to a slight improvement of the ill-posedness as compared to the purely y fractional case, as to be
expected from comparison with the x fractional cases above.

4 Uniqueness

In this section we will provide a uniqueness result for (3) based on inverse Sturm-Liouville
theory. Section 4.2 discusses to what extent this approach can be transferred to the x-direction
Riesz fractional case (4), but ends with the conclusion that this is prevented by some still-missing
gaps in Riesz fractional inverse Sturm-Liouville theory.

4.1 Uniqueness in the y-direction Riesz fractional case

Consider
— e (x,y) — 0Dy u(x,y) + g(x)u(x,y) =0, in (0,1) x (0, L) (33)
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Figure 5: Singular values of the Jacobian for o = (1.25, 1.5, 1.75,2.0) for the Riesz-y case.
Leftmost figure with L =2, rightmost with L =6.

20 q(x) 20 14(x)

1.5 154

1.0 1.0

0.5 0.5 1

0.0 T T T ] 0.0 T T T |
—1.0 -0.5 0.0 0.5 1.0 —1.0 -0.5 0.0 0.5 1.0

Figure 6: Reconstruction of q in the Riesz-y case with &« = 1.5, L =6 and 0.1 per cent noise:
Leftmost figure with data on left, rightmost with data on right.

where ODS‘ is either the Djrbashian-Caputo or the Riesz derivative, with boundary conditions
u(x,0) =0, u(x,L) =a(x), ux(0,y) —hu(0,y)=0 wux(l,y)+Hu(l,y)=0.  (34)

(including the Dirichlet or Neumann case with h = H = or h = H = (), and corresponding
overposed data

ux(0,y) = g(v) y€(0,L). (35)
With an eigensystem (i}, ;) jeny of —dw + ¢ with impedance boundary conditions I/I;(O) —
hy;(0) =0, yi(1)+Hy;(1) =0 and L* normalisation (y;, ;) = 8 we can write u(x,y) =
Y ajw;(y)yj(x), where a;:= (a,y;) and w; solves
—oDyw;(y) +mw;(y) =0in (0,1), w;(0) =0, w;(L) =1, (36)
and thus

o(y) = iajwj<y>v/,~<o> and 0DZg(y) = — iajujwj ()¥(0). 37
Jj= Jj=

14



19 log(sv) 1 3 log(sv)

Figure 7: Singular values of the Jacobian for a = (1.25, 1.5, 1.75,2.0) for the Riesz-xy case.
Leftmost figure with L =2, rightmost with L =6.

2.0 7 q(x) 2.0 14(x)

1.5 4 1.5

1.0 H 1.0

0.5 4 0.5

0.0 T T T ) 0.0 T T T |
—-1.0 -0.5 0.0 0.5 1.0 —-1.0 -0.5 0.0 0.5 1.0

Figure 8: Reconstruction of q in the Riesz-xy case with @ = 1.5 and 0.1 per cent noise:
Leftmost figure with data on left, rightmost with data on right.

If
aj=(a,y;j) #0forall j €N, (38)

this allows us to extract both (1) jen and (y}(0)) jeny as follows.

To this end, we first of all show that the functions (w;) jcny are linearly independent. (Note that
they are not eigenfunctions, because of the inhomogeneous boundary value at y = L — if they
were, linear independence would be immediate.) Assume that 0 = Y%, ¢jw;j =:w. Then for
any n € N, also 0 = (—oDy)"W(y) = L7 ¢;(;)"w;(y) forall y € (0,L) and thus, with y — L
and w;(L) =1 we obtain 0 =}7c;(u;)". Since the Vandermonde determinant is nonzero
for the distinct values p; < tp < ---, we conclude ¢; =0, j € N, thatis, (w;);cy are linearly
independent.

Thus, for each j € N, we have w; ¢ span(w;);c ;1 and a corollary of the Hahn-Banach Theo-
rem yields existence of an element w’; € L%(0,1)* = L?(0,L) such that (w7, wi) = &;;. Applying
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w}f to (37) yields

<W;,g> = aj‘//}(())a <W;70D§‘g> = —aj,Lle//}(()) = —,Llj<W;,g>,

and so we obtain both ; and y}(0), provided a; # 0.

Sturm-Liouville theory (e.g., [?, Theorem 3.8.2] using the fact that endpoint data directly trans-
lates into norming constant data) therefore yields uniqueness of ¢.

Theorem 4.1. The boundary data (35) uniquely determines the coefficient q(x) in the boundary
value problem (33), (34), provided (38) holds.

Condition (38) can be guaranteed by setting, for example, a = &, since then a; = y;(0) and if
this would vanish, the additional impedance boundary condition would imply y; =0.

Remark 4.1. This result can be extended to a spatially higher dimensional version with respect
to x by means of [?, Corollary 1.4]. Consider the identification of q € L*(B) in the boundary
value problem

— Au(x,y) —oDyu(x,y) +q(x)u(x,y) =0 in Bx(0,L)

u(x,0) =0, u(x,L) =a(x) x€B, u(xp,y) =0 xo€dB, ye(0,L) )

from observations
ovu(xp,y) =g(y) xo€dB, ye (0,L) (40)

on the boundary of the smooth domain B.

Then, arguing as above we can uniquely recover both u; and dyyj(xo) for all xy € B and
Jj € N, provided (38) holds. Applying [?, Corollary 1.4] yields uniqueness of q.

4.2 On uniqueness in the x-direction Riesz fractional case

Considering the alternative setting

—Du(x,y) = uyy(x,y) + q(x)u(x,y) = 0, in (0,1) x (0, L), (41)
where D% = —RD? is the Riesz derivative, with boundary conditions
u(x,0) =0, u(x,L) =a(x), u(0,y)=0 wu(l,y)=0, (42)

and corresponding overposed data
ue(0,y) = g(v). (43)

we can still perform separation of variables as well as reconstruction of eigenvalues and endpoint
data as follows. For nonnegative g € L*(0, 1), arguing as in Section 2.2, using selfadjointness
of the operator —XD% + ¢ : H*a/z(O, 1) — (H*a/z(O, 1))* equipped with homogeneous Dirichlet
boundary conditions and compactness of its inverse, we can conclude existence of its spectral
decomposition and completeness of its eigenfunctions.
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Using the resulting eigensystem (u;, ¥/;) jen of —RD% 1 g with homogeneous Dirichlet bound-
ary conditions, we can write u(x,y) = Y7 u;(y)y;(x), where u; solves

—u{(y) + mjuj(y) =0in (0,L), u;j(0) =0, u;(L) =a; = (a, y;),

thus

> sinh(\/Iy)
Z uj Z’ /"sinh \/\/__j]) Wj(o) (44)

If aj # 0 forall j €N, this allows us to extract both (1) jen and (y}(0))jen: Since the func-

tions ¢;(y) = s;;};((\/\/—_y)) € L?(0,L) are linearly independent, for each j € N, ¢; ¢ span(¢;) ieN\{j}

a corollary of the Hahn-Banach Theorem yields existence of an element £ € L?(0,L)*=17%(0,L)
such that (£}, ¢;) = &;;. Applying {7 to (44) and its second derivative ylelds

05,8) = ajwi(0), (65,¢") = —a;uwi(0) = —u;(¢},g), (43)

and so we obtain both p; and y;(0), provided a; # 0 (y}(0) # 0 follows as usual in the
homogeneous Dirichlet case).

Remark 4.2. If an inverse Sturm-Liouville theory were available in the fractional case o € (1,2)
as is the situation in the integer case o = 2, then the analogue of [?, Theorem 3.8.2] would give
us uniqueness of q.

We can still benefit from knowledge of the eigenvalues in other ways. As an example, consider
recovery of the differentiation order o in case it is unknown. Then this can be obtained from the
eigenvalue asymptotics according to the following result.

Lemma 4.1. Let g € L”(—1,1). Then for any a € (1,2) there exists a constant Co > 0 such
that the eigenvalues (Ij) jeny of —XD% +q satisfy

. C .
i — (7 /2)% < [lgllp=(-1,1) +7a JEN.

Proof. We rely on results from [?] for the eigenvalues of the fractional Laplacian on the domain
(—1,1) as well as on all of R. To do so, we denote these operators by (—(_I’I)A)O‘/z and
(—RA)“/ 2 respectively. Likewise we notationally distinguish between the two Riesz fractional
versions —(_1711§D§‘ and —ﬁDf} where the latter is obtained by replacing —1 and 1 by —eo and
oo in the definition (9). It is known (see, e.g., [?]) that these operators coincide when defined on
all of R, that is,

—BD¥ = (=g A)*? on H*(R).

Moreover, we have

—&D%u=—_ {D¢u ue H%(—1,1):= {uc H*(R) : supess(u) C (—1,1)}.

17



The results in [?] provide us with an approximate eigensystem (fi;, ¥/;) jeny of (—rA)*? (and
actually also of (—(_171)A)“/2) as follows. For

2 8
with the smoothed Heaviside function
N(x) =1(_1/30)(x)9/2(x+1/3)*+ 111 /3)(x) (1 =9/2(x = 1/3)*) +1{1 3 0a) ()
/2

io= (M- BT g = (0B (1 4+ +n(F(1

and the eigenfunctions F; of the fractional Laplacian on the half line (—(0700)&) , we have,

[?, Lemmas 1, 2],

C2l-a L
|€j(x>| < (7 an) S (—1, 1) for eji= (—RA)“/Zq/j—ujwj,
_ o~ _ C2—o)

e H*(—1,1 d ' 1< —
Wi e H*(=1,1) and |[|jllp2y 1) — 1] < NGE

for some constant C > 0 independent of ¢ and j. Taking the inner products of the approx-
imate eigenvalue equation with the eigenfunctions I//l-o of the selfadjoint operator —(_1711§D)‘§‘
(with corresponding eigenvalues /.Lio) and summing up the squares of these generalised Fourier
coefficients over i € N we obtain

) ) 2
Z(Hio —ﬁj)2<‘lfzo, ‘I7j>%2(_171) = Z ((‘ﬁDg‘I/?a Il7j>L2(—1,1) _.aj<llliov II7j>L2(—1,1)>
i=1 i=1

2 oo
1((% —RDEW)) 12 )_ﬁj<%oalpj>L2(—l,l)> = ;(‘V?,eﬁé(_m'

Mz

~.

The left hand side can be estimated from below by min;cy (1 — ;)2 ;||? 2(-11) since (Y))ien

is a complete orthonormal system in L?(—1,1). Likewise, the right hand side equals ||e;||? 2(-11)"

Thus, upon renumbering the eigenvalues such that ( ‘u}) - j)z = minieN(ul.O —Q j)z , altogether
we obtain

- CR—a)\"'C2—a)
Iuﬁ’—uj\sﬁ(l— 75 ) T (46)

To estimate the difference between ,u}) and u;, we proceed analogously, testing the identity
—ﬁDﬁ‘ I//;-) + ql,l/JQ = ,u}) I//;-) = ql//;-) with y; and summing over i to obtain

I/\
™

~
[y

min(p; — ,LLJ) (Wi — .U?)2<‘Vi7 ‘V?>i2(—1,1)

ieN

I
gk

2
(<% DY) +qy) 211y — 15 (Wi, w})hz(_u))

~.
[y

I
gk

<‘quw] >L2( L) = ||61‘l’;')“i2(_1,1) < HQH%w(—l,l)-

~.
[y

18



Lemma 4.1 provides us with an asymptotic formula for « in terms of the eigenvalues that we
have previously obtained from (44), (45)

. In(uy)
o @

In(u;)
5l = 0w

where convergence actually takes place with a rate of at least |t — n(jz/2)
Thus we have proven the following result:

Theorem 4.2. For the problem (41), (42) the value of the fractional exponent & can be obtained
from the overposed conditions (43) using the formula (47).

5 The forward problem and convergence of Newton’s method

In this section we will consider the forward problem in the more general setting of ¢ depending
on x and y to first of all show well-posedness of the underlying initial boundary value problems
in Section 5.1. Then in Section 5.2 this more general setting will allow us to verify a range
invariance condition on the linearised forward operator and thus prove convergence of Newton’s
method.

5.1 Well-posedness of the forward problem

We provide an analysis of two types of x-fractional boundary value problems (3) involving the
Djrbashian-Caputo derivative (D%, namely

_(ODg_lu)x_}—du_}—qu:fv XG(O,l), M(O):¢0, u(1>:¢1 (48)

—oD%u+Au+qu=f, x€(0,1), u(0)=bg, u(l)=¢ (49)

and the Riesz derivative
—RD%u+ Autqu=1Ff, xc(0,1), u(0)=d¢o, u(l)=e (50)
and for the y-fractional case (4) with Riesz derivative
—te —"Dfut+qu=f, x€(0,1), ye(0,L), u(0)=go, u(l)=¢ (51)

the latter in the spatially 1-d case. Here we assume o € (1,2).

The anisotropy in space is taken into account by doing the analysis in Bochner spaces, with the
x-direction as the distinguished direction.
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The x-fractional cases (48), (49), (50)
Since with 1>~ %y = k2~ % xy, we have
oD%V = o> %y = (o2 %v)x — K2 %(x)ve(0) = (oD% 1), — K2~ % (x)v,(0),

using @ (x) = @ +x(¢; — @) in case of (48) and @ (x) = box + @ — by in case of (49) we can
rewrite both cases as u = ¢ +ii with

— (ol %)+ Hii+qi=f=f—A§—qp, x€(0,1),

{?(O):o for(48) 1\ (52)
i (0)=0 for (49)

where we have used 0D§‘¢3 =0fora>1.

Note that the symmetric positive definite operator &7 : (o )(C .7#°) — F only acts in the
directions y perpendicular to x, see, e.g., (13), (14). We set H°(D) := 9(%"/2) for any
6 > 0; in case of &/ = —/\, with homogeneous Dirichlet boundary conditions, we have, for
example the following correspondences to classical Sobolev spaces: H' (D) =H} (D), H*(D) =

H}(D)NH?*(D). In case of & = —ng on D = (0,L) with homogeneous Dirichlet boundary

conditions, we have H'(D) = H’ P (0,L) (and due to the definition of this space via extension
by zero outside (0,L), no case distinction with respect to ¢ is needed).

The smoothness index ¢ will have to be chosen sufficiently large in order to be able to achieve
certain embedding results; in particular, we will require H° (D) C L”(D) with

[Vll2=(p) < Cho 1Nl V|, vEHO(D). (53)

As previously noted, in this section we allow g to depend on x and y but assume that it is
sufficiently close to an only x dependent nonnegative function g

Elq_eLoo(()?l)? g=0ae., ||q_q,|LP(0,1;HG(D)) <¢, (54)

where under the LP(0,1;H°(D)) norm we formally interpret § as a function of x and y by
setting (g(x))(y) = g(x).

To obtain an energy estimate for the solution u, we multiply (52) with .79 and integrate over
(0,1) x D using integration by parts

[ (10220700, -+t ) 2(0) By -+ 3000209 Py )
(35)
= [ (@) 4@+ ), 717 s = o

Using coercivity of the Abel integral operator (10) and nonnegativity of g, we can estimate the
left hand side from below. The right hand side can be estimated from above by assuming that

172wl L < €IVl 1wl e+ Wl |7 /¥l ), vw € L2(D) NE (D).
(56)
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The latter in case (13) with a =1, ¢ =1 follows from the Kato-Ponce inequality
vwllwerp) < C(HVHW’”’I ©o.0)Wlliza o,y + 1VIzr20,7) Wl weaz (07T)> (57)

for max{r/d —d,0} <p <1lorp€2N, 1 <r<eo, pi, p2, qi, g2 € (1,0, with 3 = L+ 1,
i=1,2;see,e.g.,[?], applied with p =0, r=p; =q» =2, q1 = pp = . As a consequence
of (53) and (56), HC is a Banach algebra, that is,

|72 lowllle < 2CCh,  ll? 72l 72wl e, vw € HO (D),

which clearly would not extend to L>(0,1; H°(D)).

We make the assumption a/2—1/2> —(p—1)/(2p), thatis, pa > 1 so that Ha/Z(O, 1) con-
tinuously embeds into L2/(P=1)(0,1) and vice versa L*/(P*1)(0,1) continuously embeds into

H, -9/2 (0,1) This together with Holder’s and Young’s inequality yields

s = [ o/ ((0) g+ [~ 76 —g9). 7

D 2112
<2CChs_, LWCH%G/ || 7201 (0,1;)
(20 1Pl 1720 |
+ ||d6/2f||H;a/2(071;%) + ||£{1+0/2¢ ||H;a/2(0,l;%)> ||%G/2a||1_15/2(071;%)
1 - c
D 2112 2, ¢ 2~
<2CCH°' L“CHMO-/ uHLZI’/(P*l)(OJ;f%p) + z_gc(qv ¢7f> + 5 ||%G/ u”Hf‘/z(OJ;%ﬁ)
where B b ) )
Clq,.f) =2CCH, N7 q||o0.1.50) | 7 Ol Lo+1/0-1(0,1,) 58)
+ HMG/Z‘]CHH;D‘/Z(O’I;%) + ||’Q{1+G/26HH;0‘/2(0’1;%)'
Here we have assumed that ¢ in (54) is small enough so that
._ D
c:=cos((l—a/2)x)— 2CCy6_,;-C > 0. (59)
Applying these estimates to (55), we arrive at the energy estimate
c B 5 1
§||°Q7"/2”||H3/2<o,1%) + 1171922, ey < 7€ . 1) (60)

Due to coercivity of the Riesz operator (12), these estimates remain valid for equation (50).

The y-fractional case (51)

This is covered by the above proof, with the replacements d — 1, (D% — d £, o — RDS‘ ,

based on (11), (12); the embedding estimate (53) can thus be achieved by assuming co > % .
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Theorem 5.1. Let (53), (56) and po > 1 hold. Then for any f € H*_a/Z(O, 1;H°(D)), ¢o, ¢1,
by € H**°(D), q € LP(0,1;H°(D)) satisfying (54), (59), each of the boundary value problems
(48), (49), (50), (51) has a unique solution

we U =HY*0,1;H°(D)) L0, 1;H*° (D)) (61)

(with D = (0,L) in case of (51)). Moreover, ii = u— ¢ satisfies the bound (60).

Proof. The full proof is based on a Faedo-Galerkin discretization using eigenfunctions ¢; of
of , that is, an ansatz i(x,y) = iy(x,y) := Zl};l iij(x)@;j(y) and uniform energy estimates on the
Galerkin solutions iy derived as above. Uniform boundedness in Hilbert spaces yields a weakly
convergent subsequence of the Galerkin solutions whose weak limit can be (easily, because of
linearity) shown to yield a solution. Uniqueness results from the same energy estimates. ]

Remark 5.1. Assuming higher regularity of q with respect to x and multiplying, e.g., with
—.of Ciiy, yields higher order energy estimates.

5.2 Range invariance of the linearisation and convergence of frozen New-
ton

In a slightly different approach from Section 2, where we used separation of variables, we
here define the forward operator F: Z(F)(C X) — Y, Z(F) = {q € X : g satisfies (54)} by
F(q)(y) = ux(x0,y:q9) = S(q)x(x0,y), y € D, where xo € {0,1} and u = S(g) solves (48).

(We will here exemplarily dicuss the case (48). The other settings (49), (50), (51) can be analysed
analogously, based on Theorem 5.1).

Both X and Y are Hilbert spaces, in particular, in view of the analysis above,
X =1%0,1;H°(D)), Y =L*0,1;¢) (62)

with o such that (53), (56) is satisfied, thatis, c =1 if d =2, thatis D C R! and 0 =2 if
d =3, that is D C R? (the latter would also cover the rather nonphysical case d =4). As a
regularisation term, in view of the fact that we aim for a potential that only depends on x, we
may use an equivalent weighted norm in X

1915 := 19122 0 100 + P19 P2(0.10

with a large penalty parameter p .
The derivative of F is defined by F'(¢)dg = (S'(¢)dg)x(xo,-) where v = S'(¢)dg solves

— (0D )+ Fv+qv=—dgS(q), x€(0,1), v(0)=0, v(1)=0, (63)

or
—oD%v+ v qv=—dgS(g), x€(0,1), v(0)=0, v(1)=0, (64)
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Thus, provided u = S(gq) is bounded away from zero, F’ satisfies the range invariance condition
F'(g) = F'(q)RG with ||R —I|[x»x < Crllg—qllx (65)

for i
Ridq = 5t ((a—9)S (@)dg+dgS(a)) (66)

due to the estimate
1R dq — dallx < Cpll st ((a— ) (@)dq +dq (S(@) ~S(a)) ) | 20,100
< Cp(ZCCﬁmmeII@ [x—x <||67 ~4llz2(0,1:0 (o)) IS (@G 10,1515 (D)
+ gl 20,1515 (o) 18(2) = S(@ (0,100 )

Note that this range invariance would not hold on a space of functions depending on x only,
since multiplication with, e.g., S(§) in (66) would add variability in y.

Here it suffices to work with the Gateaux derivative F'(q)dg = limg_ %(IF(q +edq)—TF(q)) of
IF, since by the Fundamental Theorem of Calculus, for any element y* € Y* in the dual of Y,
this satisfies

1 1
* * * +0d
0 Flg+dg) ~F(@)y-y = [ " Fla-+0dg)d0dg)y- v = [ " (qo)RG, " abdg)r-»
To prove convergence of a frozen regularised Newton method,

k+1

g™ = argmin x ||F(¢") + F (q0)(¢" " —

q") = &°IIF + Wllg — doll%
or equivalently, with the Hilbert space adjoint F'(go)*: ¥ — X of F/(go),
¢ =" = (F(q0) T (a0) + %)~ (F'(q0)" (F(") — 8°) + %(g" ~ o)) (67)

it suffices to guarantee (65) at some fixed ¢ = go where the derivative is evaluated, cf. [?]. In
(67), the sequence of regularisation parameters 7 is chosen to monotonically tend to zero as
k— oo, e.g.

Y = 10" for some ¥ € (0, 1).

Indeed, with the exact solution denoted by qT , the error satisfies the recursion

¢ 4" =(F' (o) F go) + 1) (F'(q0) F'lao) | (1RGO a0 (g~ g
+F (g0)*(8° —¥) + 1e(do — q*))-
Using the estimates

1(F'(q0)*F' (q0) + 1) ™" F (q0) F' (qo) | < 1, |(F'(q0)*F (q0) + %I) ™ 'F'(q0)*|| < i

ar = || (F'(90) " F'(q0) + WI) ' nelGo— ") || = O as k — oo
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provided Go—q" € A (F'(go))* (with the rate a; <y under a source condition go—g' €
Z((F'(q0)"F'(q0))")), and assuming [ ¢“ —qollx, ll¢" —gollx < p, we obtain

fo)
14 =g |Ix < Crplld* — ¢ Ix +ax+ 5=

2%

Thus with p small enough so that Cgp < 1, an induction proof yields [|¢g*! —¢°|| < p and (by
monotonicity of )

1 o
2(1—Crp) 2/

k
g = q"llx < (Crp) 14— 4" llx + Y (Crp)*a;+
=0

for all k < k, — 1, where the stopping index k. = k.(0) is defined a priori such that

o

ki(6) — oo,
®) Yk (8)

—0, asd—0.

In particular, due to the fact that limy_,. Z’J‘-:O(CRp)k_f a; =0, we have

14 —¢f||x — 0as & — 0. (68)

Theorem 5.2. The regularised frozen Newton method (67) with Go —q' € N (F'(q9))* and
starting value qqo sufficiently close to q', such that the multiplication operator with % is
bounded as an operator from X into itself

laggey - Ix—x =M <o (69)
is well defined and converges as in equation (68).

Without going into detail, we mention that under logarithmic source conditions (as natural in
view of the exponential ill-posedness) logarithmic convergence rates can be shown.

An analogous proof can be carried out directly in the setting of Section 2, where we also have to
allow for more variation in g to enable a range invariance condition to hold. More precisely, we
consider recovery of (g;(x))sen in the system

—0D%uj(x) + Ajuj(x) + (A(i(x))g(x)) = fi(x), x€(0,1), jeN (70)

with boundary conditions (17), which results from testing (48) with @; and using the abbre-
viations #(x) = (ui(x))ien, f(x) = (fi(x))ien, uilx) = (u(x, ), @), filx) = {f(x,"), ),
(AW)) je = (X wi®i 9¢, 9;) . The forward operator is defined as in Section 2 by F(q) =

(Fi(q))jen, F : 2(F) — 2, Fi(q) = u’;(0), with Z(F) C X in the extended parameter space

X =12(0,1;h°), where h® = {w e (2 : (/'L-G/Zwi),-eN € (%} Likewise, we have a parameter-to-

1
statemap S: Z(F) — Hfl/z(O, 1;h°)NL?(0,1;h>79) . Based on Theorem 5.1 and the transform
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u — ((u, Q;) »)ien which is an isometric isomorphism from L?(0,1;H°(D)) to L*(0,1;h°)
for any o € R, both operators F and S are well defined on 2(F) = {gG € L*>(0,1;H°(D)) :

1;
q(x,y) = L7 qe(x) @u(y) satisfies (54)}. Clearly, F is given by F'(§)dg = (S'(§)dg)«(xo)
where V= §'(§)dgq solves

-

—0D%;j(x) +Ajvj(x) + (A(¥(x))q(x)); = —(A(i(x))dg(x));, x€(0,1), jeN (1)

with homogeneous Dirichlet boundary conditions. Under condition (69), on go(x,y) = Y7 ; goe(x) @¢(y)
the infinite matrix A(ip) is boundedly invertible at u:

A0 20 10, = /Eyf Zw] 0) (Late).o

1
_ 2 2 —
= llaogly > 775 lallk = 35

for q(x,y) = Y71 q¢(x)@e(y) . Consequently, with
RE dg = A(iio) ™" (G~ o) S'(§)dg +A(i)dq) (72)

and iip = S(go), i = S(§), the range invariance condition is satisfied and an analogue of Theo-
rem 5.2 follows.

Corollary 5.1. The regularised frozen Newton method (67) with F replaced by F, §o—g' €
N (F'(§o))*" and starting value Gy sufficiently close to §' and such that (69) holds, is well
defined and converges

1g*®) — gt

¢ —0asd—0.
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