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A B S T R A C T

The bacteria Vibrio cholerae relies heavily upon an aquatic reservoir as a transmission route with two distinct
serotypes observed in many recent outbreaks. In this paper, we extend previously studied ordinary differential
equation epidemiological models to create a two-strain 𝑆𝐼𝑅𝑃 (susceptible-infectious-recovered-pathogen)
system which incorporates both partial cross-immunity between disease strains and environmental pathogen
transmission. Of particular interest are undamped anti-phase periodic solutions, as these display a type of
coexistence where strains routinely switch dominance, and understanding what drives this switch can optimize
the efficiency of the host population’s control measures against the disease. We derive the basic reproduction
number 𝑅0 and use stability analysis to examine the disease free and single-strain equilibria. We formulate a
unique coexistence equilibrium and prove uniform persistence of both strains when 𝑅0 > 1. In addition, we
simulate solutions to this system, along with seasonally forced versions of the model with and without host
coinfection. Cross-immunity and transmission pathways influence damped or sustained oscillatory dynamics,
where the presence of seasonality can modify, amplify or synchronize the period and phase of serotypes, driving
epidemic waves. Cycling of serotypes over large time intervals, similar to observed data, is found for a range
of cross-immunity levels, and the inclusion of coinfection in the model contributes to sustained anti-phase
periodic solutions.

1. Introduction

Cholera, unlike many diseases, can survive, proliferate, and com-
pete in the aquatic environment, a necessary factor to consider when
modeling its long-term dynamics [1]. Previous susceptible-infected-
recovered-pathogen (𝑆𝐼𝑅𝑃 ) ordinary differential equations models
have examined a single cholera strain invading a host population while
considering the pathogen environmental concentration [2–6]. Multi-
strain disease models of cholera and other infectious diseases, with
multiple serotypes conferring some degree of cross-immunity against
secondary infection from a strain other than the strain from the primary
infection, have also been extensively examined, but without consider-
ing an environmental component [7–9]. These models may consider
strain differences in environmental and host fitness parameters, as
well as partial cross-immunity. It is necessary, however, to consider
strain diversity and analyze multi-strain models which incorporate both
cross-immunity factors and pathogen environmental compartments
to better understand transmission dynamics and long-term behavior
(e.g. coexistence versus competitive exclusion) of circulating serotypes
for cholera [2,10]. In this paper, we extend the single-strain model to a
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two-strain 𝑆𝐼𝑅𝑃 cholera model, considering two distinct serotypes of
the bacteria, Ogawa and Inaba, and analyze equilibrium, stability and
uniform persistence of solutions to the system.

The Ogawa and Inaba serotype strains of cholera have been ob-
served to display cyclic behavior within a given host population [7].
This has been analyzed in models excluding the environmental compo-
nent [7–9], and here we study cyclic behavior in our extended model
which includes the environmental component. The cyclic behavior that
is of particular interest in the presence of both serotypes is a cycling of
dominance - a version of coexistence. One serotype has an outbreak
wave while the other is present to a lesser degree, and after a time,
the dominant serotype’s presence lessens while the other grows until a
switch in dominance takes place. Cycling of this nature was observed
in Matlab, Bangladesh between 1983 and 2005 [7]. Similar behavior
has been observed in Haiti following an outbreak in 2010, dubbed
serotype switching instead of cycling due to the short timeframe of
cholera presence [11]. We investigate which mechanisms drive the cy-
cle dynamics and contribute to switches in dominance. Understanding
these mechanisms will contribute to optimizing control strategies for
outbreaks in host populations, such as those seen in [12,13].
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Several factors are thought to be influential in creating cyclic be-
havior: serotypes have the same life-history traits [14]; induced cross-
immunity between serotypes [14]; and seasonality (i.e. increase in
infections due to a rainy season) [15]. Several papers have investigated
these cycles with models built to incorporate both serotypes [7–9].
These studies showed that the oscillations observed depend strongly
upon both seasonality and cross-immunity. The periodic relationship
was explored via analysis of damped oscillations of the coexistence
equilibrium of the autonomous system, observing that natural fre-
quencies modulate the bifurcation structures of the forced system via
the cross-immunity parameter. The seasonality incorporated into the
model used by Kamo and Sasaki (and Adams and Boots) gave sustained
oscillations for limited ranges of parameter values. However, these
models did not consider the role of the environment in the transmission
of the disease or serotype specific waning, so we incorporate these
factors and build off the 𝑆𝐼𝑅𝑃 model presented in [3].

In this paper, we examine the two serotype 𝑆𝐼𝑅𝑃 model, consid-
ering the effect of seasonality by changing the environment-to-host
transmission parameter to be a periodic function of time. We explore
the initial autonomous model analytically and also perform numerical
investigations of the system and with and without periodic forcing. The
basic reproduction number (𝑅0) is established, with the disease-free
equilibrium globally asymptotically stable when 𝑅0 ≤ 1. We show that
there exists two unstable single-strain (‘‘boundary’’) equilibria and a
unique coexistence equilibrium when 𝑅0 > 1. While the complexity
of our derived coexistence equilibrium stifles proving convergence,
we prove that the disease is uniformly persistent in the population.
Furthermore, numerical simulations of the infectious host compart-
ments of the autonomous system show damped, anti-phase oscillations
which converge to equilibrium. Simulations of the corresponding non-
autonomous system give undamped solutions while synchronizing the
oscillations of the two solutions. The speed of synchronization de-
pends on the degree of seasonality and cross-immunity present. We
use simulations to further explore the effects of the seasonal forcing,
cross-immunity, multiple transmission pathways, and the impact of
coinfection (or lack thereof) on the periodicity and phase shift of
solutions.

2. Model and analysis

Our model is similar to the classic 𝑆𝐼𝑅 epidemic model, but we
consider two cholera strains and add the extra compartments 𝑃1 and 𝑃2
to represent the concentrations of the pathogen strains in the environ-
ment. New individuals are born at a constant total rate 𝜇, which is also
the per-capita death rate. The susceptible hosts, 𝑆, can be infected by
either strain, from a first-time infected host via 𝛽1𝑆𝐼𝑗 , from a pathogens
in the environment via 𝛿𝑆𝑃𝑗 , or from a host with a re-infection at rate
𝛽2𝑆𝐼𝑗𝑘. Infected individuals shed pathogens into the environment via
rates 𝛼1𝐼𝑗 and 𝛼2𝐼𝑘𝑗 . We assume that the pathogen does not proliferate
in the environment. First time and re-infected individuals, 𝐼𝑗 and 𝐼𝑘𝑗 ,
respectively, recover at per-capita rates 𝜈. Upon recovering from strain
𝑗, an individual can be reinfected with strain 𝑘 at a reduced rate via
((1 − 𝛾)𝛽1𝐼𝑘 + 𝛽2𝐼𝑗𝑘)𝑅𝑗 , where 𝛾 is the cross immunity parameter. Note
that 𝛾 = 1 represents perfect cross immunity (i.e. recovered individuals
from one strain cannot be infected with the other strain) while 𝛾 = 0

represents no cross immunity (i.e. recovered from one strain are fully
susceptible to infection from the other strain). Additionally, we define
a parameter 0 ≤ 𝜂 ≤ 1 to be the probability of gaining permanent
immunity after re-infection. Previous models of two cholera serotypes
have assumed permanent serotype specific immunity after infection
so that there is full immunity after secondary infection with the dis-
tinct serotype from first infection. However, other models of cholera
have that waning immunity and multiple re-infections are possible
biologically. Thus, the parameter 𝜂 generalizes the case of permanent
immunity after secondary infection (𝜂 = 1) to allow for re-infection by
the distinct serotype from most recent infection with probability 1 − 𝜂.

Note that we assume there are no consecutive reinfections by the same
strain, which we will explain further as we focus our analysis on the
case 𝜂 = 0 (no permanent immunity). For convenience, we list breif
descriptions of the variables and parameters of our model in Table 1.
Also, note that all proofs from model analysis to follow are located
in Appendix A.

The resulting system, based off of the models in [3,7], is the
following set of ordinary differential equations for 𝑗, 𝑘 = 1, 2, 𝑗 ≠ 𝑘:

d𝑆

d𝑡
= −𝛽1(𝐼1 + 𝐼2)𝑆 − 𝛽2(𝐼12 + 𝐼21)𝑆 − 𝛿(𝑃1 + 𝑃2)𝑆 + 𝜇(1 − 𝑆)

d𝐼𝑗

d𝑡
= 𝛽1𝐼𝑗𝑆 + 𝛽2𝐼𝑘𝑗𝑆 + 𝛿𝑃𝑗𝑆 − (𝜈 + 𝜇)𝐼𝑗

d𝑅𝑗

d𝑡
= 𝜈𝐼𝑗 + (1 − 𝜂)𝜈𝐼𝑘𝑗 − (1 − 𝛾)(𝛽1𝐼𝑘 + 𝛽2𝐼𝑗𝑘)𝑅𝑗 − (1 − 𝛾)𝛿𝑃𝑘𝑅𝑗 − 𝜇𝑅𝑗

d𝐼𝑘𝑗

d𝑡
= ((1 − 𝛾)(𝛽1𝐼𝑗 + 𝛽2𝐼𝑘𝑗 ) + (1 − 𝛾)𝛿𝑃𝑗 )𝑅𝑘 − (𝜂𝜈 + (1 − 𝜂)𝜈 + 𝜇)𝐼𝑘𝑗

d𝑅𝑘𝑗

d𝑡
= 𝜂𝜈𝐼𝑘𝑗 − 𝜇𝑅𝑘𝑗

d𝑃𝑗

d𝑡
= 𝛼1𝐼𝑗 + 𝛼2𝐼𝑘𝑗 − 𝑟𝑗𝑃𝑗 .

(2.1)

A schematic diagram of model (2.1) is presented in Fig. 1. Notice
that since the 𝑅𝑘𝑗 component is decoupled, we can effectively ignore
that component in our analysis. Also, note that the host population
subsystem has been implicitly normalized, so 𝑁 ∶= 𝑆 + 𝐼1 + 𝐼2 + 𝐼12 +

𝐼21 +𝑅1 +𝑅2 +𝑅12 +𝑅21 ≤ 1. Indeed, by a standard argument, we have
that this system is well-posed and dissipative (that is, for each non-
negative initial condition, a unique solution exists which will always
stay non-negative and is attracted to a bounded set). Solutions starting
in the bounded set remain in there, i.e. the set is positively invariant, as
detailed further in the following proposition:

Proposition 2.0.1. System (2.1) is well-posed and dissipative in R11
+ and

positively invariant on the set

{𝑥 = (𝑆,𝐼1, 𝐼2, 𝑅1, 𝑅2, 𝐼21, 𝐼12, 𝑅21, 𝑅12, 𝑃1, 𝑃2) ∈ R
11
+ |

𝑁 = 𝑆 + 𝐼1 + 𝐼2 + 𝑅1 + 𝑅2 + 𝐼21 + 𝐼12 + 𝑅21 + 𝑅12 ≤ 1,

𝑃1 + 𝑃2 ≤ A

𝑟
},

(2.2)

where A ∶= max{𝛼, 𝛼2}, 𝑟 ∶= min{𝑟1, 𝑟2}. Furthermore, since the birth
and death rates are equal, the host population is conserved, and {𝑥 ∈

R11
+ |𝑁 = 1

}
is an invariant set.

Our model is tailored toward the two most prevalent serotypes
of cholera, Ogawa and Inaba, which differ primarily in certain ex-
pressed antigens, leading to less immunity against the other serotype
than against the most recent infecting serotype. Additionally, these
serotypes are not thought to differ significantly in virulence or other
life-history parameters [14]. Thus, we consider symmetric parameters
with imperfect cross-immunity for the two serotypes in model (2.1).
Also, an important complexity for cholera is seasonality, which will
be considered later in this paper, and is the driving force behind the
sustained cycling found in prior serotype models [7–9] (see Fig. 1).

Our system contains a few key differences between the previous
serotype models in [7–9]. First, as noted before, we add the environ-
mental pathogen component, which is the major transmission route
for cholera. Next, underlying the construction of a simplified model
detailed in [7–9] is the assumption that one can be infected with
both strains simultaneously, which we do not assume in our model.
Although there are examples of pathogens where coinfection is ob-
served (e.g. HIV and HBV), to the best of our knowledge, there is no
documented evidence of coinfection with distinct cholera serotypes,
and phylogenetic studies have concluded that within-patient mutation
was a more likely source of variation than coinfection with multiple
strains of V. cholerae [16]. There are several reasons for rarity of
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Table 1
Variables and parameters with units for the model.

𝑆 Susceptible population density unitless

𝐼𝑗 Density of strain 𝑗 infectious individuals unitless

𝐼𝑘𝑗 Density of individuals previously infected with strain 𝑘, currently infected with strain 𝑗 unitless

𝑅𝑗 Density of strain 𝑗 recovered population unitless

𝑅𝑘𝑗 Density of population recovered from strain 𝑘 and strain 𝑗 unitless

𝑃𝑗 Strain 𝑗 bacteria population in the environment cells

𝜇 Host population turnover rate (birth rate = death rate) 1/day

𝛽1 Transmission rate from 1st time infected host 1/day

𝛽2 Transmission rate from reinfected host 1/day

𝛿 Environment-to-host transmission rate 1/(cells × day)

𝜈 Recovery rate 1/day

𝛾 Cross-immunity factor 𝛾 ∈ [0, 1]

𝜂 Probability of gaining permanent immunity after reinfection 𝜂 ∈ [0, 1]

𝛼1 Pathogen shedding rate into environment from 1st time infected host cells/(day × individual)

𝛼2 Pathogen shedding rate into environment from reinfected host

𝑟 Pathogen decay rate cells/(day × individual)

Fig. 1. Schematic diagram of (2.1). Solid lines represent dynamics of host densities. Dashed lines represent dynamics of pathogen population. Red and blue lines signify secondary
infections from strains 1 and 2, respectively.

coinfection: low probability of distinct exposures, especially if serotype
prevalence cycles; within-host competition negatively impacting over-
all infection as observed with dengue serotypes [17]; or interference of
second infection through immune stimulation by initial infecting strain,
which has been observed between the rhinovirus and the influenza
A virus [18]. Thus, we focus on the case when coinfection does not
occur although we do briefly consider coinfection in Section 3.2 to have
a more complete comparison of results with prior works. Finally, we
allow for susceptibility to sequential re-infections by distinct serotype
from previous infection with probability 1 − 𝜂, as opposed to assuming
lifelong serotype-specific immunity.

Now, we consider the case 𝜂 = 0, along with 𝛽 ∶= 𝛽1 = 𝛽2,
𝛼 ∶= 𝛼1 = 𝛼2, which reduces the system to

d𝑆

d𝑡
= −𝛽(𝑦1 + 𝑦2)𝑆 − 𝛿(𝑃1 + 𝑃2)𝑆 + 𝜇(1 − 𝑆)

d𝑦𝑗

d𝑡
= 𝛽𝑦𝑗𝑆 + 𝛿𝑃𝑗𝑆 + (1 − 𝛾)𝛽𝑦𝑗𝑅𝑘 + (1 − 𝛾)𝛿𝑃𝑗𝑅𝑘 − (𝜈 + 𝜇)𝑦𝑗

d𝑅𝑗

d𝑡
= 𝜈𝑦𝑗 − (1 − 𝛾)𝛽𝑦𝑘𝑅𝑗 − (1 − 𝛾)𝛿𝑃𝑘𝑅𝑗 − 𝜇𝑅𝑗

d𝑃𝑗

d𝑡
= 𝛼𝑦𝑗 − 𝑟𝑃𝑗 ,

(2.3)

where 𝑦𝑗 = 𝐼𝑗+𝐼𝑘𝑗 is the total density of individuals infected with strain
𝑗.

We consider (2.3), a special case of the more general system (2.1),
as a model of serotype cycling with environmental transmission. An
implicit assumption in the above model is that immunity gained by re-
covery from one serotype is lost after infection from the other serotype
(i.e. by reentering compartment 𝑅𝑗 after exiting compartment 𝐼𝑘𝑗).
This consideration allows us to reduce the number of equations for
the model, as in the prior serotype models [7–9] while still allowing
more than two sequential individual infections (alternating between
serotypes). Studies have shown that the mean time between heterolo-
gous infections is much lower than the mean time between homologous
infections, and cross-immunity against the other strain is weaker than
immunity against the infecting strain [19]. Essentially, while rein-
fections from the same strain are not common [7], immunity does
wane over time, and reinfection is possible [19]. Our minimal model
considers the more typical case of secondary infection with a different
serotype than the previous infection (heterologous sequential infec-
tions). The model considers serotype cycling on an individual level and
explores if that drives serotype cycling on the level of the population.

By Proposition 2.0.1, system (2.3) is well-posed and dissipative in
R7
+ and positively invariant on the set
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 = {(𝑆, 𝑦1, 𝑦2, 𝑅1, 𝑅2, 𝑃1, 𝑃2) ∈ R
7
+|𝑆+𝑦1+𝑦2+𝑅1+𝑅2 ≤ 1, 𝑃1+𝑃2 ≤ 𝛼

𝑟
}.

(2.4)

We use ̊ to denote the interior of .

2.0.1. Disease free equilibrium

Notice that at the disease free equilibrium (DFE), (𝑆̄0, 0, 0, 0, 0, 0, 0),
𝑆̄0 = 1 since the population is normalized. We use the next generation
method as shown in [3,20] to characterize its stability.

We define a next-generation matrix by considering the linearized
system at the DFE. We divide the population into non-infected individu-
als, consisting of susceptible and recovered compartments, and infected
states with the remaining variables. Then the linearized ‘‘infection’’ sub-
system is 𝐱′ = (𝐹 − 𝑉 )𝐱, where 𝐱 = (𝑦1, 𝑦2, 𝑃1, 𝑃2), 𝐹 contains entries
corresponding to new infections, and −𝑉 contains all other transition
terms in the Jacobian matrix evaluated at 0:

𝐹 =

⎛⎜⎜⎜⎜⎜⎝

𝛽 0 𝛿 0

0 𝛽 0 𝛿

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠

, 𝑉 =

⎛⎜⎜⎜⎜⎜⎝

(𝜈 + 𝜇) 0 0 0

0 (𝜈 + 𝜇) 0 0

−𝛼 0 𝑟 0

0 −𝛼 0 𝑟

⎞⎟⎟⎟⎟⎟⎠

. (2.5)

Notice

𝐹𝑉 −1 =

⎛
⎜⎜⎜⎜⎜⎝

𝛽

𝜈+𝜇
+

𝛿𝛼

𝑟(𝜇+𝜈)
0

𝛿

𝑟
0

0
𝛽

𝜈+𝜇
+

𝛿𝛼

𝑟(𝜇+𝜈)
0

𝛿

𝑟

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (2.6)

The basic reproduction number for this system is the spectral radius of
𝐹𝑉 −1,

𝑅0 =
𝛽

(𝜈 + 𝜇)
+

𝛿

(𝜈 + 𝜇)

(
𝛼

𝑟

)
. (2.7)

The first term represents the average number of secondary infections
from one infectious individual during its infectious period through host-
to-host transmission; the first factor in the second term represents the
same with respect to environment-to-host transmission, regulated by
the second factor with respect to pathogen shedding and decay. The
first diagonal entry represents the basic reproduction number of strain
1 when considering it in a single-strain 𝑆𝐼𝑅𝑃 model; the second would
represent the same for strain 2 in a single strain 𝑆𝐼𝑅𝑃 model.

Standard analysis allows us to conclude that the DFE is locally
asymptotically stable on  for 𝑅0 < 1. We extend this further to global
stability in the following result.

Theorem 2.1. If 𝑅0 ≤ 1, then the DFE is globally asymptotically stable
in .

The proof in Appendix A uses the method introduced by [21] of
constructing a Lyapunov function from the next generation method
decomposition. Note that for a periodic version of the model with
seasonality introduced in Section 3, we also prove that the DFE is
globally attracting when the corresponding periodically defined 𝑅0 is
strictly less than one (see Appendix C).

2.0.2. Single-strain equilibria

Biologically, single-strain equilibria represent the possibility of com-
petitive exclusion — one strain maintains a nonzero steady state while
the other strain is driven to extinction with all relevant compartments
resting at zero. Specifically, at the strain 𝑗 single-strain equilibrium
(SSE), 𝐸𝑗 , the strain 𝑘 components are zero. Thus, 𝐸𝑗 can be considered
as the strain 𝑘 DFE with components

𝑆̄𝑗 =
𝑟(𝜇 + 𝜈)

𝛽𝑟 + 𝛼𝛿
=

1

𝑅0

𝑦̄𝑗 =
𝜇(𝛽𝑟 + 𝛼𝛿 − 𝑟(𝜇 + 𝜈))

(𝜈 + 𝜇)(𝛽𝑟 + 𝛼𝛿)
=

𝜇𝑟

𝛽𝑟 + 𝛼𝛿
(𝑅0 − 1)

𝑅̄𝑗 =
𝜈

𝜇
𝑦̄𝑗 =

𝜈𝑟

𝛽𝑟 + 𝛼𝛿
(𝑅0 − 1)

𝑃𝑗 =
𝛼

𝑟
𝑦̄𝑗 =

𝛼𝜇

𝛽𝑟 + 𝛼𝛿
(𝑅0 − 1)

(2.8)

and 𝑦𝑘 = 𝑅𝑘 = 𝑃𝑘 = 0. Hence, for 𝑅0 > 1, both single-strain equilibria

are nonnegative with invasion fitness number (the ‘‘basic reproduction

number’’ when viewing this equilibrium as a strain 𝑘 DFE)

𝑅
(𝑘)
𝑖𝑛𝑣

= 𝜌(𝐹𝑉 −1) = 1 + (1 − 𝛾)
𝜈

𝜈 + 𝜇
(𝑅0 − 1) (2.9)

where

𝐹 =

(
𝛽𝑆̄𝑗 + (1 − 𝛾)𝛽𝑅̄𝑘 𝛿𝑆̄𝑗 + (1 − 𝛾)𝛿𝑅̄𝑘

0 0

)
=

(
1

𝑅0

+ (1 − 𝛾)𝑅̄𝑘

)(
𝛽 𝛿

0 0

)

and

𝑉 =

(
𝜈 + 𝜇 0

−𝛼 𝑟

)
.

Symmetry of parameters allow us to conclude that 𝑅(𝑗)
𝑖𝑛𝑣

= 𝑅
(𝑘)
𝑖𝑛𝑣

∶=

𝑅𝑖𝑛𝑣. Note that the invasion reproduction numbers depend on cross-
immunity 𝛾 - the smaller the degree of cross-immunity, the stronger the
force of infection from each strain. Threshold dependence of invasion
reproduction numbers is on 𝑅0, though, which leads to instability of
the single-strain equilibria.

Lemma 2.2. Both single-strain equilibria 𝐸1 and 𝐸2 exist if and only if
𝑅0 > 1. When they exist, they are unstable.

This result is consistent with the biological observation in
Bangladesh that competitive exclusion between the serotype strains
does not occur [7]. However, within its boundary — that is, when 𝑆,
𝑦𝑗 , 𝑅𝑗 , and 𝑃𝑗 are initially nonzero, and 𝑦𝑘 = 𝑅𝑘 = 𝑃𝑘 = 0 - the strain 𝑗
singe-strain equilibrium is globally asymptotically stable. Formally, we
define the boundary sets:

𝑋
(1)

0
= {(𝑆, 𝑦1, 0, 𝑅1, 𝑅2, 𝑃1, 0) ∈ R

7
+|𝑦1 + 𝑃1 > 0},

𝑋
(2)

0
= {(𝑆, 0, 𝑦2, 𝑅1, 𝑅2, 0, 𝑃2) ∈ R

7
+|𝑦2 + 𝑃2 > 0}.

(2.10)

Theorem 2.3. The strain 𝑗 single-strain equilibrium is globally asymptot-
ically stable within the strain 𝑗 boundary 𝑋(𝑗)

0
if 𝑅0 > 1.

2.0.3. Coexistence equilibrium

The result that both single-strain equilibria will be unstable if they
exist is a strong indication of a coexistence result, either in the form
of a periodic solution (more likely a result for the forced system
explored later and is consistent with biological observations in [7]) or
coexistence equilibrium. We can prove several results about positive
equilibria depending on the magnitude of 𝛾. The first result below
supports intuitive understanding of coexistence equilibria for a system
with symmetric parameters and provides a simplification useful for
proving Proposition 2.4.1.

Lemma 2.4. Given the existence of a coexistence equilibrium (𝑆̄, 𝑦̄1,

𝑦̄2, 𝑅̄1, 𝑅̄2, 𝑃1, 𝑃2) of the serotype system with symmetric parameters, it
follows that 𝑦̄1 = 𝑦̄2, 𝑅̄1 = 𝑅̄2, and 𝑃1 = 𝑃2.

Hence, we can write the coexistence equilibrium as (𝑆̄, 𝑦̄, 𝑦̄, 𝑅̄,

𝑅̄, 𝑃 , 𝑃 ). Solving, we obtain two possible nontrivial solutions for the
system (details included in Appendix B). The terms for the two possible
coexistence equilibria (𝑆̄, 𝑦̄, 𝑦̄, 𝑅̄, 𝑅̄, 𝑃 , 𝑃 ) are written out below.
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Table 2
System (2.3) equilibria and stability.

Equilibria Existence Stability

𝐸0 = (1, 0, 0, 0, 0, 0, 0) always exists GAS if 𝑅0 ≤ 1;
unstable if 𝑅0 > 1

𝐸1 = (
1

𝑅0

,
𝜇𝑟

𝐵
(𝑅0 − 1), 0,

𝜈𝑟

𝐵
(𝑅0 − 1), 0,

𝛼𝜇

𝐵
(𝑅0 − 1), 0) exists iff 𝑅0 > 1; always unstable

𝐸2 = (
1

𝑅0

, 0,
𝜇𝑟

𝐵
(𝑅0 − 1), 0,

𝜈𝑟

𝐵
(𝑅0 − 1), 0,

𝛼𝜇

𝐵
(𝑅0 − 1)) exists iff 𝑅0 > 1 always unstable

𝐸3 = (𝑆+ , 𝑦+ , 𝑦+ , 𝑅+ , 𝑅+ , 𝑃+ , 𝑃+) exists if 𝑅0 > 1 and 0 < 𝛾 < 1 stability unknown

𝑆̄± =
−𝜎(𝐵 + 𝜇𝑟) + 2𝑈𝑟 ±𝑄

2𝐵(2 − 𝜎)

=
𝜇𝑟

𝜇𝑟 + 2𝐵𝑦̄±

𝑦̄± =
𝜎(𝐵 − 𝜇𝑟) − 2𝑈𝑟 ±𝑄

4𝐵𝜎

𝑅̄± =
𝜈𝑟𝑦̄±

𝜇𝑟 + 𝜎𝐵𝑦̄±

𝑃± =
𝛼

𝑟
𝑦̄±

(2.11)

where

𝐵 ∶= 𝛽𝑟 + 𝛼𝛿, 𝜎 ∶= 1 − 𝛾, 𝑈 ∶= 𝜇 + 𝜈, and

𝑄 =
√
(2𝑈𝑟 − 𝜎(𝐵 + 𝜇𝑟))2 + 4𝜎𝐵𝜇𝑟(2 − 𝜎).

The following proposition establishes existence and uniqueness of the
coexistence equilibrium.

Proposition 2.4.1. If 𝑅0 > 1 and 0 < 𝛾 < 1, then there exists a unique
coexistence equilibrium given by (𝑆̄+, 𝑦̄+, 𝑦̄+, 𝑅̄+, 𝑅̄+, 𝑃+, 𝑃+) in (2.11).

Notice that if 𝛾 = 1 and 𝑅0 > 1, then there exists a line of coexistence
equilibria defined by the equation 𝑓 (𝑆)

𝑆
= −(𝛽 +

𝛿𝛼

𝑟
)(𝑦1 + 𝑦2) with

𝑓 (𝑆) = 𝜇(1 − 𝑆). The Jacobian of the resulting system evaluated at a
coexistence equilibrium has an eigenvalue 𝜆 = 0 (see Appendix B). The
behavior of the solutions around this set remains an open problem, but
we suspect the set of equilibria is stable and attracting.

We summarize the findings regarding our equilibria in Table 2.

2.1. Disease persistence

The previous section displayed the global asymptotic stability of the
DFE when 𝑅0 ≤ 1 and the existence of a unique coexistence equilib-
rium. The structure of the coexistence equilibrium makes statements
about its stability elusive, but we can obtain uniform persistence for
the system. All relevant definitions are located in Appendix A.

Theorem 2.5. Let 𝑅0 > 1 for system (2.3). Then, both strains of the
disease uniformly persist in R7

+; that is, there exists an 𝜖 > 0 such that if
min{𝑦1(0) + 𝑃1(0), 𝑦2(0) + 𝑃2(0)} > 0, then

lim inf
𝑡→∞

min{𝑦1(𝑡), 𝑃1(𝑡), 𝑦2(𝑡), 𝑃2(𝑡)} > 𝜖.

The uniform persistence tells us that both strains of the disease
will persist over time in the population. Graphically, they will move
away from the competitive exclusion equilibria towards the coexistence
equilibrium as long as 𝑅0 > 1. For practical purposes like determining
control measures (e.g. vaccination strategies), this result is too vague;
we need a more precise vision of how the disease will behave over time
when it is endemic in a population. Further analytical results for the
behavior of the system are difficult to obtain, so we turn to numerical
simulations to explore coexistence dynamics.

3. Numerical exploration: stability, seasonal forcing and coinfec-
tion

A primary motivation of our study is on the serotype cycling be-
havior exhibited in Bangladesh, where data exhibits the behavior of
the strains cycling (i.e. switching in dominance) in an undamped and

anti-phase pattern [7]. In order to explore the possibility of serotype
cycling in our system, we first numerically calculate stability of the
derived coexistence equilibrium (since analytical formulation was not
feasible). As in [7,8], simulations show damped oscillations eventu-
ally converging to the coexistence equilibrium corresponding to the
presence of complex eigenvalues with negative real part. In each simu-
lation, we computed the eigenvalues and eigenvectors of the linearized
system around the formulated coexistence equilibrium value, which in-
dicated local asymptotic stability in all cases except 𝛾 = 1. Competitive
exclusion is not exhibited.

We demonstrate numerically the effect that cross-immunity has on
oscillatory behavior of solutions. We include one example of exploring
the eigenvector relationship with oscillatory behavior as explored in [8]
in Fig. 2(c) (expounded on later). We see the eigenvector components
lying ‘‘opposite’’ each other corresponds to the anti-phase behavior
seen in the autonomous model prior to convergence to equilibrium.
Depending on 𝛾, Kamo & Sasaki observe in-phase, damped solutions
to their autonomous system — we generally see anti-phase, damped
solutions (Fig. 2(a)). However, to capture similar dynamics to those
observed in Bangladesh, we adjust our model to allow the possibility
of undamped oscillatory behavior by introducing a periodic forcing
function representing the effect of seasonality on environment-to-host
transmission.

Cholera is known to depend heavily on seasons: outbreaks of cholera
are significantly more prevalent during an area’s rainy season [15,22].
One would then expect oscillations in the levels of infections — low
levels of infection during a dry season and high levels of infection
during the rainy season [23] - suggesting the presence of periodic
solutions. Additionally, as observed in Bangladesh, data collected over
a period of about 20 years not only displayed the expected oscillatory
behavior but also showed regular switches in dominance between
the two observed serotypes, Ogawa and Inaba [7], i.e. the presence
of stable, quasiperiodic, anti-phase cycles for the two infectious host
populations. We attempt to qualitatively match this data and reproduce
the behavior by introducing a seasonal change in transmission rate. We
rewrite the environment-to-host transmission rate 𝛿 as

𝛿𝑡 = 𝛿(1 + 𝛿0 sin (2𝜋𝑡∕365.2242)) (3.1)

where 𝛿 is now the base transmission rate and 𝛿0 ∈ [0, 1] measures the
degree of seasonality. The forcing function creates a non-autonomous
system to which much of the previous analysis does not apply. How-
ever, we are able to construct the basic reproduction number 𝑅0 for the
periodic system and prove global asymptotic stability of the DFE of the
non-autonomous system when 𝑅0 < 1, presented in Appendix C.

The periodic forcing creates sustained oscillations and eventually
synchronizes the transient anti-phase dynamics; however, the length
of the transient serotype cycling depends upon cross-immunity 𝛾, for
which we refer to previous work to better understand the mechanisms
behind this behavior. Kamo & Sasaki (2002) use the explicit expression
for their coexistence equilibrium to show that the natural frequency
associated with anti-phase oscillations at this equilibrium is dependent
on both cross-immunity 𝜎 (𝜎 ∶= 1 − 𝛾) and transmission 𝛽, while the
natural frequency associated with the in-phase oscillations is dependent
only upon cross-immunity. They conclude that the smaller 𝜎 is, the
more the anti-phase mode contributes to solution behavior, allowing
an indication of which mode to expect influencing the behavior of
the solution [8,9]. Note that 𝛽, the host-to-host transmission rate, is
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Fig. 2. Eigenvector influence on system (2.3) oscillations. 2(a): The eigenvalues of the Jacobian all have negative real part, confirming our observation that the proportion of host
populations converge to the equilibrium value of 0.0549. 2(b): The forcing function takes the damped, anti-phase oscillations in the autonomous system and synchronizes them to
an in-phase periodic solution. The disease does not die out in the graph of the forced system although the minimums do get close to 0. Note that the dynamics of the pathogen
populations for large enough time will be the same as those of the host population since the pathogen solution becomes proportional to the host solution as 𝑡 increases. 2(c)
We graph the second and third components of the eigenvector (those corresponding to strain 1 and strain 2 infectious hosts, respectively) corresponding to the pair of complex
conjugate eigenvalues in the manner of [8]. The eigenvectors are ‘‘opposites’’, indicating the presence of the anti-phase behavior we see at the beginning of both solutions. This
simulation produced only one pair of complex eigenvalues, so we do not have a second pair of eigenvectors to represent the ‘‘in-phase’’ oscillations as in [8].

transformed by the seasonal forcing function in their model, whereas
we write the environment-to-host transmission rate, 𝛿, as our parameter
affected by seasonal forcing. It follows that the natural frequency will
be affected when forces of transmission 𝛽 or 𝛿 are affected by the
forcing function. Extending these results of both cross-immunity and
transmission influences, Adams & Boots (2007) conclude that solutions
with in-phase dynamics are more common than those with anti-phase
dynamics [9]. We were not able to derive this same approximation
due to additional complexities in our system, but our model behavior
agrees with the results for their systems. Figs. 3 and 4 give patterns
of oscillatory behavior changing with respect to 𝛾, where changes in
𝛾 affect the ‘‘period’’ (i.e. time between peaks), speed of convergence,
and amplitudes. Thus, the intensity of cross-immunity is observed to
affect how often a serotype switch in dominance occurs, how quickly
a stable steady state (without seasonal forcing) or in-phase periodic
solution (with seasonal forcing) is reached, and the total case load for
both strains.

We simulate the solutions of the proportion of infectious hosts and
compare the unforced system (2.3) and its forced system. Parameters
(see Table 3) from [3,7] are adjusted to account for the normalization
of the model and the time scale given in days. Log-scale on the 𝑦-axis
is used for ease of comparison between figures. Sustained, anti-phase
periodic solution remain elusive, except in a resonant case around
𝛾 = 0.4 discussed below. All other simulations using the forcing
function for the consolidated model lead to final convergence to in-
phase solutions. However, in some simulations, the forcing function
provides the necessary change in the system to exhibit behavior very
similar to that seen in the Bangladesh data: an anti-phase, undamped
periodic solution for a long period of time prior to convergence to in-
phase solutions. For biological purposes, this period of time could be
considered ‘‘long enough’’ in the host population time scale to consider
the solution as having sustained anti-phase oscillations.

Simulations for the autonomous and non-autonomous systems ex-
hibited anti-phase behavior similar to that in the Bangladesh dataset for
an approximate range of 0.4 ≤ 𝛾 ≤ 0.8 (Figs. 3, 4). As cross-immunity
strengthens, competitive behavior increased between the two strains.
The forced system in particular displays rapid interannual cycles [7]
for some values of 𝛾 in this range — seasonal forcing creates rapid
fluctuations in case loads for each strain. The autonomous system
displays a moderate amount of these cycles for 𝛾 ≈ 0.8 and gives higher
amplitude damped solutions for an approximate range of 0.4 ≤ 𝛾 ≤ 1.
The behaviors of the two systems show the most disparity approaching
𝛾 = 0.5 from either direction but grow in similarity as 𝛾 approaches 0

and 1, with anti-phase cycles synchronizing in amplitude and period,
and with inter-annual cycles dampening in the case of Fig. 3. In the
case of Fig. 3, solutions are nearly indistinguishable between the two
systems for high values of 𝛾. Environment-to-host transmission 𝛿 is
small and the degree of seasonality 𝛿0 is low, and the influence of
cross-immunity outcompetes the low influence of seasonal forcing as
𝛾 increases, synchronizing the systems’ behaviors. Thus, strong cross-
immunity between strains can outweigh the effects of weak seasonal
forcing in disease dynamics. Section 3.1 further explores the effects of
seasonal forcing on transmission. Out-of-phase (that is, neither in-phase
nor anti-phase) oscillations appear for 𝛾 > 0.5 in Fig. 3 .

A threshold for 𝛾 appears around 0.4 (Figs. 3, 4) where the non-
autonomous solutions switch from fast synchronization to long-term
transient cycling. Around this threshold, Fig. 4 shows resonance appear-
ing in the solution to the non-autonomous system. Further investigation
shows this anti-phase resonance occurring for an approximate range
of 0.395 ≤ 𝛾 ≤ 0.4125. These irregular oscillations eventually settle
into sustained anti-phase oscillations with ‘‘pulses’’, where minor anti-
phase small amplitude waves (pulses) occur in-phase with major larger
amplitude anti-phase oscillations (see Fig. 5). For 𝛾 > 0.4125, conver-
gence to in-phase oscillations occurs once again although convergence
occurs more slowly than for 𝛾 < 0.395. Adams & Boots found similar
longer period resonant behavior in their system for a similar range of
𝛾, (0.35 < 𝛾 < 0.4) [9]. Summaries of results from past studies and
comparisons of numerical results for both the autonomous and non-
autonomous models from system (2.3) can be found in Tables D.4 and
D.5 in Appendix D.

We note behavior of the special cases of the system when 𝛾 = 0

and 1. When 𝛾 = 0, the two strains can behave almost independently
from one another since they can freely infect any host regardless of
prior infections [8]. Notice that in the simulations shown in the two
examples above, the solutions converge to the same behavior over time
in both the forced and unforced systems. When 𝛾 = 1, the system can
be written as

d𝑆

d𝑡
= 𝜇(1 − 𝑆) − (𝛽𝑦1 + 𝛿𝑃1)𝑆 − (𝛽𝑦2 + 𝛿𝑃2)𝑆

d𝑦𝑗

d𝑡
= (𝛽𝑦𝑗 + 𝛿𝑃𝑗 )𝑆 − (𝜈 + 𝜇)𝑦𝑗

d𝑅𝑗

d𝑡
= 𝜈𝑦𝑗 − 𝜇𝑅𝑗

d𝑃𝑗

d𝑡
= 𝛼𝑦𝑗 − 𝑟𝑃𝑗 .

(3.2)



Mathematical Biosciences 365 (2023) 109086

7

L. LeJeune and C. Browne

Table 3
Parameter values, 𝑅0, and initial conditions in simulations.

Parameter Fig. 2 Fig. 3 Fig. 4 Fig. 6 Figs. 7, 8

𝛽 0.125 0.30547 [7] 0.13576 ranges wrt 𝑅0, 𝛿 see Fig. 3
𝛿 0.5 1.07 × 10−7 [3] 1.804 × 10−6 ranges wrt 𝑅0, 𝛽 see Fig. 3
𝜇 4.978 × 10−5 7.056 × 10−5 [7] see Fig. 3 see Fig. 3 see Fig. 3
𝜈 1/9.5 1/9.5 [7] see Fig. 3 see Fig. 3 see Fig. 3
𝛼 1/5 106 [3] see Fig. 3 see Fig. 3 108

𝑟 0.9 10 [3] see Fig. 3 see Fig. 3 see Fig. 3
𝛿0 0.9 0.1 see Fig. 3 see Fig. 3 0.15
𝛾 0.02 ranges over [0, 1] see Fig. 3 0.5
𝑅0 2.2420 3.0016 see Fig. 3 see Fig. 3 13.0582

Note that values without references are assumed values used in simulations.

As mentioned in Section 2.0.3, this yields a line of coexistence
equilibria, which may be a stable attracting set. This has yet to be
proven, but simulations support this claim. Perfect cross-immunity
makes the strains biologically indistinguishable; if infected densities
are combined, the system ought to act as a single strain model (with
densities half the size) [8]. Simulations support this, showing that the
strain with the largest initial condition will dominate the other strain
and remain dominant in a manner of coexistence — both strains remain
present in the population and follow the same pattern of behavior.
Solutions to the autonomous system can converge to two distinct equi-
libria values, and solutions to the non-autonomous system will oscillate
together in the same manner, with one always larger than the other.

3.1. Comparing transmission pathways

System (2.3) considers multiple transmission pathways: infections
occur from hosts interacting with infectious hosts as well as from hosts
interacting with the contaminated environment. Both are important
pathways to consider [24]. At the peak of an outbreak, host-to-host
transmission contributes significantly to infections, and it is suggested
that this contributes to the rapid spread of the disease, while environ-
mental transmission drives slower dynamics [25]. To compare the dual
infection routes, we fix 𝑅0 = 3.0016 as in Fig. 3 with 𝛾 = 0.5 and vary
direct and environmental transmission parameters 𝛽 and 𝛿, ranging 𝛽
from 0 to 0.3055 𝛿 accordingly with respect to the fixed 𝑅0. Fig. 6
shows that changing those transmission parameters has virtually no
effect on the autonomous system dynamics, but in the non-autonomous
system, increasing 𝛽 and decreasing 𝛿 eventually slows the rate of
synchronization of the solutions, increases the length of time between
peaks, and changes the inter-cycle dynamics. Additionally, the overall
case load amplitude decreases significantly, agreeing with the model’s
structure since the seasonal forcing is only linked to the environmental
transmission mode. When 𝛿 is smallest, the oscillatory behavior is
almost identical to that in the corresponding graph of the autonomous
system, while the middle values of 𝛿 show less change in the rate
of synchronization and exhibit oscillations that dampen more slowly,
and large values of 𝛿 can provide more rapid synchronization with
less dampening. In contrast, the smallest values of 𝛿 show significantly
damped oscillations. Thus, with the inclusion of seasonality, we can
conclude a strong dependence of the system’s oscillatory behavior on
transmission as well as on cross-immunity. Understanding oscillatory
dynamics will inform of when a switch in serotype dominance is
approaching and which serotype to vaccinate against, providing timely
and cost-effective control against upcoming outbreaks.

3.2. Considering coinfection

Our simulations have only produced undamped, anti-phase oscilla-
tory behavior for solutions to the infectious compartments in a partic-
ular resonant case (around 𝛾 = 0.4 as shown in Fig. 3), as opposed to
larger parameter ranges showing cycling for the other models in [7,8],
and [9], which consider an additional compartment to represent coin-
fection of both strains. We can incorporate a coinfection compartment

𝐼 into System (2.1) in the same manner by assuming 𝛽 ∶= 𝛽1 = 𝛽2,
𝛼 ∶= 𝛼1 = 𝛼2 (that is, transmission rate and shedding rate are the same
for first and secondary infections), and considering 𝑅 ∶= 𝑅12 + 𝑅21.
If we consider permanent immunity after infection from both strains
(i.e. take 𝜂 = 1), then we can obtain their system (see below) with the
addition of the pathogen compartments, dropping the 𝑅 equation since
it does not affect solution dynamics for the rest of the system. Since
pathogen dynamics occur on a much more rapid time scale than those
of the host, we apply quasi-steady state analysis and consider a time
scale 𝜏 where 𝑡 = 𝜖𝜏; 𝜏 represents the fast time scale of the pathogen
(e.g. decay rate) and 𝑡 the slow time scale of the host (e.g. host life
span). Then, we can consider host populations fixed with respect to
the pathogen populations on the new time scale and solve the equation

0 = 𝛼𝑦𝑗 − 𝑟𝑃
∗
𝑗

to obtain a quasi-steady state 𝑃 ∗
𝑗
as a function of 𝑦𝑗 : 𝑃

∗
𝑗
(𝑦𝑗 ) =

𝛼

𝑟
𝑦𝑗 .

Redefining 𝛽 ∶= 𝛽 +
𝛿𝛼

𝑟
, the system then becomes that as considered

in [7,8], and [9]:

d𝑆

d𝑡
= −𝛽(𝑦1 + 𝑦2)𝑆 + 𝜇(1 − 𝑆)

d𝑦𝑗

d𝑡
= 𝛽(𝑆 + (1 − 𝛾)𝑧𝑘)𝑦𝑗 − (𝜇 + 𝛾)𝑦𝑗

d𝑧𝑗

d𝑡
= 𝛽𝑆𝑦𝑗 + 𝛽(1 − 𝛾)𝑧𝑗𝑦𝑘 − 𝜇𝑧𝑘,

(3.3)

where 𝑦𝑗 = 𝐼𝑗 +𝐼 +𝐼𝑘𝑗 represents the density of hosts infected by strain
𝑗 and 𝑧𝑗 = 𝐼𝑗 + 𝑅𝑗 represents the density of hosts exposed to strain 𝑗
but susceptible to strain 𝑘.

Note that when 𝜂 = 0, the system does not consolidate when we
have coinfection, contrary to system (2.3), so we do not explore the
dynamics of the system with coinfection and 𝜂 = 0. The 𝑧𝑗 compartment
plays a similar role to the 𝑅𝑗 compartment in system (2.3), with the key
difference being the first term of the differential equation. In system

(3.3), the first term of
d𝑧𝑗

d𝑡
is nonlinear, representing the rate of infection

of susceptible individuals with strain 𝑗. The first term of
d𝑅𝑗

d𝑡
in system

(2.3), 𝜈𝑦𝑗 , represents the rate of recovery of infectious individuals.
This difference in linearity appears to strongly affect the periodic and
anti-phase behavior of the solutions. In most numerical simulations
of system (2.3), we observe transient anti-phase dynamics (often with
semi-chaotic oscillations) prior to convergence to an in-phase solution
of the same period as the forcing function. Without the nonlinear
term, system (2.3) does not have as much resonance to perturb the
solution away from the general structure provided by the periodic
forcing function. The nonlinearity seems to induce more resonance for
creating periodic solutions with sustained anti-phase oscillations.

Fig. 7 displays simulations of the coinfection model with additional
pathogen environmental compartment (no QSSA). Solutions exhibit
undamped, anti-phase oscillations between serotypes, similar to the
undamped, anti-phase cycling in serotype dominance in the Bangladesh
data from [7]. We examine the behavior of the periodic solution as 𝛾
ranges between 0 and 1. Solutions appear out-of-phase when 𝛾 = 0,
with the magnitude of strain 2 peaks greater than those of strain 1.
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Fig. 3. Simulation of system (2.3). Eigenvalues of the Jacobian indicate the autonomous system solutions will be stable for 𝛾 < 1. Stability is inconclusive when 𝛾 = 1. All solutions
exhibit some initial anti-phase oscillatory behavior, which resolve quickly when 𝛾 < 0.5, converging to the stable equilibrium value for the autonomous system and to in-phase
oscillations for the non-autonomous system. The equilibria, maxima, and minima decrease as 𝛾 increases. Solution amplitudes increases as 𝛾 increases. The time between peaks for
a single strain is about one year for 𝛾 > 0.5.

For weak cross-immunity 𝛾 ≈ 0.3, solutions converge to anti-phase
periodic solutions. Rapid fluctuations appear as behavior appears as
𝛾 approaches that critical threshold of 0.5, and anti-phase behavior
reappears as cross-immunity continues to strengthen. For 𝛾 = 1,
the solutions have in-phase interannual cycles, with strain 2 peaks
of greater magnitude than those of strain 1. The amplitudes of both
solutions decrease as 𝛾 approaches 1. The periods do not appear to have
a monotonic dependency on 𝛾 as the period for 𝛾 = 0.3 is much shorter
than for the other stable periodic solutions of 𝛾.

Solutions of the autonomous system with these parameters (Fig. 8)
display the expected anti-phase cycles converging to coexistence equi-
librium. Interannual cycles appear for 𝛾 > 0.5 as similarly observed in
the simulation of the autonomous system with coinfection component

in [7]. For the smallest values of 𝛾, the cycles are out-of-phase until
convergence, and the phases separate further as 𝛾 increases. All other
solutions settle into damped, anti-phase oscillations that converge to
the equilibrium; any interannual cycles disappear. When 𝛾 = 1, solu-
tions oscillate in-phase with strain 2 always having larger magnitude
than strain 1. The periods for these solutions vary; notice the increase
when 𝛾 = 0.5 and 𝛾 = 0.8, where the period increases from 1 year
to 2–3 years. We conclude that the inclusion of coinfection gives a
larger range of parameter values for cycling with higher amplitude
resonant anti-phase periodic solutions. However, we do find transient
anti-phase oscillations for long enough times to match cycling observed
in Bangladesh for 𝛾 between 0.4 and 0.8 in our forced model without
coinfection. Furthermore, the autonomous system always displayed
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Fig. 4. Simulation of system (2.3). Parameters, initial conditions, and 𝑅0 are the same as in Fig. 3 except 𝛽 = 0.13576 and 𝛿 = 1.804 ∗ 10−6 to account for a stronger force of
infection from the environment (taken from Fig. 6). This larger 𝛿 creates stronger dynamical differences between the unforced and forced systems. The speed of oscillation decreases
over time. The forced system exhibits noise between cycles. Equilibrium values and steady cycles are reached more quickly for smaller values of 𝛾. Oscillatory behavior is more
sustained for 𝛾 near 0.5 and larger. Eigenvalues indicate all solutions to the autonomous system will be LAS for 𝛾 < 1. Stability is inconclusive for 𝛾 = 1. Equilibria, maxima, and
minima decrease as 𝛾 increases. Time between same-strain peaks approaches 1 year as 𝛾 increases.

anti-phase damped oscillations as opposed to the coinfection model
(Fig. 7).

4. Discussion

The present work highlights the roles played by cross-immunity,
transmission pathways, and seasonality in infection dynamics for a
multiple serotype model of cholera. Particularly in the case of seasonal
forcing, an understanding of the periodicity and phase behavior of un-
damped oscillatory solutions, which have biological foundation in the
Bangladesh data, is key to determining appropriate control measures.
To elucidate mechanisms driving cholera serotype dynamics in the

host population and in the environment, we extend previously studied
models that either consider a single-strain 𝑆𝐼𝑅𝑃 model or a two-strain
𝑆𝐼𝑅model with a cross-immunity component. With 𝑅0 ≤ 1, the disease
will die out regardless of the initial case load or pathogen population in
the environment. When 𝑅0 > 1, unstable single-strain equilibria and a
unique positive coexistence equilibrium appear. Competitive exclusion
will not happen, as we prove uniform persistence of both strains in the
population. In general, solutions attain the endemic steady state after
damped oscillations representing an intrinsic frequency of outbreak
waves. Cycling of dominance is observed in some simulations between
both serotypes prior to reaching the endemic equilibrium. The inclusion
of seasonality, creating a non-autonomous system and forcing periodic
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Fig. 5. Exploration of resonance around 𝛾 = 0.4. For 𝛾 = 0.3925 (left) and 𝛾 = 0.425 (right), solutions converge to in-phase oscillations, matching general trend in Fig. 4, with the
smaller cross-immunity 𝛾 values synchronizing faster, particularly for 𝛾 < 0.4. For 𝛾 = 0.4125 (center), initial dynamics settle into sustained anti-phase oscillations with ‘‘pulses’’
over the long term.

Fig. 6. Compare transmission routes for system (2.3). Parameters are the same as in Fig. 3 with 𝛾 = 0.5, 𝛽 ranging from 0 to 0.3055 and 𝛿 changing in proportion to 𝛽, 𝛿0 = 0.1,
keeping 𝑅0 fixed at 3.0016. As 𝛽 increases and 𝛿 decreases, the behavior of the unforced system stays virtually the same. In the forced system, synchronization of solutions slows,
and the period of the oscillations increases. Both systems primarily exhibit anti-phase behavior with smaller values of 𝛽 showing faster synchronization to in-phase behavior.
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Fig. 7. Coinfection with seasonality. Parameters and initial conditions (with coinfection 𝐼 added) are the same as in Fig. 3 except for 𝛿0 = 0.15 and 𝛼 = 108. Here, 𝑅0 = 13.0582

which is high because we use 𝛼 = 108. This was the only 𝛼 value large enough to sustain the anti-phase dynamics observed. Using 𝛼 = 106 as in Fig. 3, all simulations converge
to in-phase oscillations (except for 𝛾 = 1).

Fig. 8. Coinfection without seasonality. Parameters, initial conditions (with coinfection 𝐼 added), and 𝑅0 the same as for the non-autonomous system in Fig. 7.

dependence of environment-to-host transmission on the season, allows
for more diverse oscillatory dynamics, including in-phase, anti-phase,
and out-of-phase cycles and undamped periodic solutions.

The cross-immunity induced from infection by one serotype against
the other (parameter 𝛾) impacted both the length of time of damped
oscillations and the proportion of infectious hosts. The non-autonomous
system (i.e. the autonomous system with the seasonal forcing function)
exhibits some anti-phase periodic dynamics which, over time (depend-
ing on the degree of seasonal forcing) synchronized the solutions to
undamped, in-phase oscillations of a periodic nature. Inclusion of coin-
fection – included in the motivating two-strain 𝑆𝐼𝑅model but excluded

in our primary system – leads to more sustained cycling, as shown by
simulations with anti-phase, undamped periodic behavior of infectious
host solutions similar to the observed behavior in Bangladesh, although
we find a resonant case of anti-phase cycling and, more generally,
transient anti-phase oscillations for long enough times to match that
observed behavior for a range of 𝛾 values in our forced model without
coinfection. Ultimately, the underlying consideration of a coinfection
compartment allows for the presence of a nonlinear term in the infec-
tious host compartments which still allows the seasonal forcing function
to contribute periodic dynamics to the behavior of the solutions but
which resonates the solutions away from synchronization, magnifying
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the intrinsic anti-phase oscillatory mode. Like [8], we observe an
association between 𝛾 and the two modes (in-phase and anti-phase) of
the infectious host solutions. Characterizing the relationship in a more
rigorous manner to accurately predict outbreak behavior is a focus of
future work.

Varying transmission pathways also affects the structure of the oscil-
latory behavior within the forced system. Increasing host-to-host trans-
mission 𝛽 and decreasing environment-to-host transmission 𝛿 slowed
the synchronizing behavior as well as the time between switches in
dominance. Quantifying the relationship between cross-immunity and
transmission dynamics can inform best practices for a vaccination con-
trol strategy such as when to vaccinate and which strain to vaccinate
against. Working to decrease environment-to-host transmission addi-
tionally would slow down disease dynamics and reduce the magnitude
of an outbreak. Furthermore, the environment can act as a reservoir
for a serotype to persist during the lull period after declining from
an outbreak or when the other serotype is dominant, after which the
seemingly absent serotype can invade the host population by infect-
ing new susceptibles along with recovered individuals with partial
cross-immunity [26]. Analysis of the stochastic representation of the
system applying a multitype branching process to a continuous time
Markov chain has been done around the single-strain equilibria, giving
thresholds for the probability of serotype invasion, and environmental
parameter 𝛿 was found to have a high relative impact on probability of
invasion (not shown in this paper). Ultimately, combining environmen-
tal and genomic surveillance with better model prediction can allow
public health authorities to understand when a serotype may cause an
outbreak.

In order to obtain our analytical results, we considered minimal
structure for a two strain cholera model with environmental transmis-
sion, sequential infection by distinct serotypes, and imperfect cross-
immunity. Additional complexities that are realistic to consider include
logistic growth of the pathogen, non-symmetric parameters to consider
greater strain diversity, terms detailing the mutation from Ogawa to
Inaba (and potentially vice-versa), death due to cholera, treatment,
and a waning immunity period as well as considering how instances
of reinfection affect the immunity of an individual. Stochastic analysis
when both strains are persistent around the coexistence equilibrium
to determine the probability of a serotype switch in dominance is
the subject of future work. Analysis of the system with the seasonal
forcing function, particularly determining a persistence result, is still
an open problem. Overall, cholera has many complexities that need to
be considered to obtain accurate understanding of the dynamics of the
disease — transmission through the environment, multiple serotypes
with imperfect cross-immunity, and seasonal dependence of transmis-
sion are focused on in this model. Furthering our understanding of how
these features influence timing, severity, and serotype prevalence of
each outbreak is crucial to optimizing control strategies against cholera.
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Appendix A. Proofs of theorems

Proof of Proposition 2.0.1. First, note that the boundary of R11
+

consists of eleven R10
+ hyperplanes, e.g. for the first component 𝑆, the

boundary is

𝜕𝑆 ∶= {0} × R+ × R+ × R+ × R+ × R+ × R+ × R+ × R+ × R+ × R+.

Fix a point 𝑢 on 𝜕𝑆, so 𝑆 = 0 and all other components of 𝑢 are pos-
itive. Then, the outward unit normal at 𝑢 is 𝑛(𝑢) = ( − 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0). Let

𝐹 (𝑆, 𝐼1, 𝐼2, 𝑅1, 𝑅2, 𝐼21, 𝐼12, 𝑅21, 𝑅12, 𝑃1, 𝑃2)

= (𝑆̇, 𝐼̇1, 𝐼̇2, 𝑅̇1, 𝑅̇2, 𝐼̇21, 𝐼̇12, 𝑅̇21, 𝑅̇12, 𝑃̇1, 𝑃̇2),

so 𝐹 (𝑢) = (𝜇,−(𝜈 + 𝜇)𝐼1,−(𝜈 + 𝜇)𝐼2, 𝑅̇1, 𝑅̇2, 𝐼̇21, 𝐼̇12, 𝑅̇21, 𝑅̇12, 𝑃̇1, 𝑃̇2).
Hence,

𝑛(𝑢) ⋅ 𝐹 (𝑢) = −𝜇 < 0.

The same argument, applied to all the boundaries, gives that R11
+

is positively invariant. In fact, we have the existence of a compact,
positively invariant subset of R11

+ under our solution flow.
Let 𝑁 = 𝑆 + 𝐼1 + 𝐼2 + 𝑅1 + 𝑅2 + 𝐼21 + 𝐼12 + 𝑅21 + 𝑅12. Then,

𝑁̇ = 𝜇(1 −𝑁) (A.1)

which gives

𝑁̇ + 𝜇𝑁 = 𝜇

𝑒𝜇𝑡𝑁̇ + 𝜇𝑒𝜇𝑡𝑁 = 𝜇𝑒𝜇𝑡

d𝑒𝜇𝑡𝑁

d𝑡
= 𝜇𝑒𝜇𝑡

Integrating both sides gives

𝑒𝜇𝑡𝑁(𝑡) −𝑁0 = 𝑒𝜇𝑡 − 1

𝑁(𝑡) = 1 + (𝑁0 − 1)𝑒−𝜇𝑡

𝑁(𝑡) ≤ 1.

Hence,

𝑃̇ ∶= 𝑃̇1 + 𝑃̇2

= 𝛼1𝐼1 + 𝛼2𝐼21 − 𝑟1𝑃1 + 𝛼1𝐼2 + 𝛼2𝐼21 − 𝑟2𝑃2

≤ max{𝛼𝑖}(𝐼1 + 𝐼2 + 𝐼21 + 𝐼12) − max{𝑟𝑖}𝑃

≤ A − 𝑟𝑃 .

By the comparison principle, we have that 𝑃 (𝑡) ≤ 𝑥(𝑡) where 𝑥(𝑡)

satisfies 𝑥̇ = A − 𝑟𝑥. This has a zero at 𝑀 ∶=
A

𝑟
. The phase portrait

gives lim sup𝑡→∞ 𝑥(𝑡) ≤𝑀 . Hence,

lim sup
𝑡→∞

𝑃 (𝑡) ≤ lim sup
𝑡→∞

𝑥(𝑡) ≤𝑀.

Therefore, the region

𝛤 = {(𝑆, 𝐼1, 𝐼2, 𝑅1, 𝑅2, 𝐼21, 𝐼12, 𝑅21, 𝑅12, 𝑃1, 𝑃2)

∈ R
11
+
|𝑆 + 𝐼1 + 𝐼2 + 𝑅1 + 𝑅2 + 𝐼21 + 𝐼12 + 𝑅21 + 𝑅12 ≤ 1, 𝑃1 + 𝑃2 ≤ A

𝑟
}

is positively invariant with respect to system (2.1). Notice also that this
shows the system to be well-posed and dissipative. Also, Appendix A
gives that

{
(𝑆, 𝐼1, 𝐼2, 𝑅1, 𝑅2, 𝐼21, 𝐼12, 𝑅21, 𝑅12, 𝑃1, 𝑃2) ∈ R11

+ |𝑁 = 1
}
is in-

variant.
□

Proof of Theorem 2.1. As in [3,21], we use the method of constructing
a Lyapunov function from the next generation method decomposition
of our system. We apply the Perron–Frobenius Theorem to a Lyapunov
function, then extend the results with LaSalle’s Invariance Principle to
achieve the desired result.

Let 𝑥 = (𝑦1, 𝑦2, 𝑃1, 𝑃2)
𝑇 and 𝑥𝑗 = (𝑦𝑗 , 𝑃𝑗 )

𝑇 . The system is normalized,
so

𝑆 + (1 − 𝛾)𝑅𝑘 ≤ 1 (A.2)

for 𝑘 ∈ [1, 2]. We can write the second equation of (2.3) as

d𝑦𝑗

d𝑡
= (𝛽𝑦𝑗 + 𝛿𝑃𝑗 )(𝑆 + (1 − 𝛾)𝑅𝑘) − (𝜈 + 𝜇)𝑦𝑗 . (A.3)
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From here, we can rewrite the infectious-pathogen subsystem as

d𝑦𝑗

d𝑡
≤ 𝛽𝑦𝑗 + 𝛿𝑃𝑗 − (𝜈 + 𝜇)𝑦𝑗 (A.4)

d𝑃𝑗

d𝑡
= 𝛼𝑦𝑗 − 𝑟𝑃𝑗 . (A.5)

Hence,

d𝑥𝑗

d𝑡
≤ (𝐹 ′ − 𝑉 ′)𝑥𝑗 (A.6)

where

𝐹 ′ =

(
𝛽 𝛿

0 0

)
, 𝑉 ′ =

(
𝜈 + 𝜇 0

−𝛼 𝑟

)
. (A.7)

Notice that 𝜌(𝐹 ′(𝑉 ′)−1) = 𝑅0 where 𝑅0 is the reproduction number
described in (2.7). By the Perron–Frobenius Theorem, the irreducible
matrix (𝑉 ′)−1𝐹 ′ has a positive left eigenvector 𝑢 > 0 corresponding to
eigenvalue 𝜌((𝑉 ′)−1𝐹 ′) = 𝜌(𝐹 ′(𝑉 ′)−1) = 𝑅0, i.e. 𝑢

𝑇 (𝑉 ′)−1𝐹 ′ = 𝑅0𝑢
𝑇 . We

then consider a Lyapunov function

𝐿(𝑥) = 𝑢𝑇 (𝑉 ′)−1(𝑥1 + 𝑥2). (A.8)

Then,

d𝐿

d𝑡
=
𝜕𝐿

𝜕𝑆
⋅
d𝑆

d𝑡
+
𝜕𝐿

𝜕𝑦1
⋅
d𝑦1
d𝑡

+⋯ +
𝜕𝐿

𝜕𝑃2
⋅
d𝑃2
d𝑡

(A.9)

= 𝑢𝑇 (𝑉 ′)−1(
d𝑥1
d𝑡

+
d𝑥2
d𝑡

) (A.10)

≤ 𝑢𝑇 (𝑉 ′)−1(𝐹 ′ − 𝑉 ′)(𝑥1 + 𝑥2) (A.11)

= (𝑅0 − 1)𝑢𝑇 (𝑥1 + 𝑥2). (A.12)

Since 𝑅0 ≤ 1, it follows that d𝐿

d𝑡
≤ 0. If both d𝐿

d𝑡
= 0 and 𝑅0 < 1, then

the last equality on line (A.12) implies 𝑢𝑇 (𝑥1+𝑥2) = 𝟎, i.e. 𝑢1(𝑦1+𝑦2) = 0

or 𝑢2(𝑃1+𝑃2) = 0. Since 𝑢 is an eigenvector, one component is nonzero,
so either 𝑦1 = −𝑦2 or 𝑃1 = −𝑃2. Since 𝑦𝑗 , 𝑃𝑗 ≥ 0, either 𝑦1 = 𝑦2 = 0

or 𝑃1 = 𝑃2 = 0. It follows from the second, third, sixth, and seventh
equations of the original system that if 𝑦𝑗 = 0, then 𝑃𝑗 = 0 and vice

versa. Thus, the largest invariant set for which d𝐿

d𝑡
= 0 is satisfied is

𝑦1 = 𝑦2 = 𝑃1 = 𝑃2 = 0. The fourth and fifth equations show global
convergence to 𝑅 = 0, and hence to 𝑆 = 1 by the first equation, on
the above invariant set. The invariant set is then just {(1, 0, 0, 0, 0, 0, 0)}.
Global asymptotic stability of the DFE in  follows from LaSalle’s
Invariance Principle.

When both 𝑅0 = 1 and d𝐿

d𝑡
= 0, we have

0 =
d𝐿

d𝑡
(A.13)

= 𝑢𝑇 (𝑉 ′)−1(
d𝑥1
d𝑡

+
d𝑥2
d𝑡

) (A.14)

= 𝑢𝑇 (𝑉 ′)−1

×

⎛⎜⎜⎝
(𝛽𝑦1 + 𝛿𝑃1)(𝑆 + (1 − 𝛾)𝑅2) + (𝛽𝑦2 + 𝛿𝑃2)(𝑆 + (1 − 𝛾)𝑅1) − (𝜈 + 𝜇)(𝑦1 + 𝑦2)

𝛼(𝑦1 + 𝑦2) − 𝑟(𝑃1 + 𝑃2),

⎞⎟⎟⎠
(A.15)

and by (A.12) with assumption 𝑅0 = 1,

0 = (𝑅0 − 1)𝑢𝑇 (𝑥1 + 𝑥2) (A.16)

= 𝑢𝑇 (𝑉 ′)−1(𝐹 ′ − 𝑉 ′)(𝑥1 + 𝑥2) (A.17)

= 𝑢𝑇 (𝑉 ′)−1

(
𝛽𝑦1 + 𝛿𝑃1 + 𝛽𝑦2 + 𝛿𝑃2 − (𝜈 + 𝜇)(𝑦1 + 𝑦2)

𝛼(𝑦1 + 𝑦2) − 𝑟(𝑃1 + 𝑃2)

)
. (A.18)

Thus, we have that (2.21) and (2.24) are both equal to zero. Since
𝑢𝑇 (𝑉 ′)−1 > 0, it follows that

(𝛽𝑦1+𝛿𝑃1)(𝑆+(1−𝛾)𝑅2)+(𝛽𝑦2+𝛿𝑃2)(𝑆+(1−𝛾)𝑅1) = 𝛽𝑦1+𝛿𝑃1+𝛽𝑦2+𝛿𝑃2,

(A.19)

giving

(𝛽𝑦1 + 𝛿𝑃1)(𝑆 + (1 − 𝛾)𝑅2 − 1) + (𝛽𝑦2 + 𝛿𝑃2)(𝑆 + (1 − 𝛾)𝑅1 − 1) = 0.

By Appendix A, (𝑆 + (1 − 𝛾)𝑅𝑘 − 1) ≤ 0, and since 𝑦𝑘, 𝑃𝑘 are
non-negative, we conclude that

(𝛽𝑦1 + 𝛿𝑃1)(𝑆 + (1 − 𝛾)𝑅2 − 1) = 0 = (𝛽𝑦2 + 𝛿𝑃2)(𝑆 + (1 − 𝛾)𝑅1 − 1).

Without loss of generality, this gives us two cases to consider:
Case 1: 𝛽𝑦1 + 𝛿𝑃1 = 0

In this case, 𝑦1 = 𝑃1 = 0 since all populations are nonnegative.
It follows that d𝑅1

d𝑡
≤ −𝜇𝑅1; on the invariant set, then, 𝑅1 = 0.

From equation (Appendix A),

(𝛽𝑦2 + 𝛿𝑃2)(𝑆 − 1) = 0.

If 𝑆 = 1, then 𝑆 is at equilibrium, so 𝑦2 = 𝑃2 = 𝑅2. If 𝛽𝑦2 + 𝛿𝑃2 = 0, it
follows that 𝑅2 = 0 on the invariant set, so 𝑆 = 1. Thus, the invariant
set is the singleton {(1, 0, 0, 0, 0, 0, 0)}.

Case 2: (𝑆 + (1 − 𝛾)𝑅2 − 1) = 0 = (𝑆 + (1 − 𝛾)𝑅1 − 1)

By Proposition 2.0.1, the sum of host populations is one in the
positively invariant set  (2.4). It is easy to see that 𝑆 > 0, so
(𝑆 + (1 − 𝛾)𝑅2 − 1) = 0 ⇒ 𝑆 = 1, and all other components are zero.
Thus, the invariant set is the singleton {(1, 0, 0, 0, 0, 0, 0)}. Then, the DFE
is globally asymptotically stable on , again by LaSalle’s Invariance
Principle. □

Proof of Lemma 2.2. By (2.9), 𝑅(𝑘)
𝑖𝑛𝑣

> 1 if and only if 𝑅0 > 1 (recall
that 𝛾 ≤ 1 since it represents cross-immunity). By [20], the single-strain
equilibrium 𝐸𝑘 is unstable since 𝑅

(𝑘)
𝑖𝑛𝑣

> 1. □

Proof of Theorem 2.3. Without loss of generality, consider the strain
2 boundary where all strain 1 infection components are 0. Our system
reduces to

d𝑆

d𝑡
= −𝛽𝑦2𝑆 − 𝛿𝑃2𝑆 + 𝜇(1 − 𝑆)

d𝑦2
d𝑡

= 𝛽𝑦2𝑆 + 𝛿𝑃2𝑆 + (1 − 𝛾)𝛽𝑦2𝑅1 + (1 − 𝛾)𝛿𝑃2𝑅1 − (𝜈 + 𝜇)𝑦2

d𝑅1

d𝑡
= −(1 − 𝛾)𝛽𝑦2𝑅1 − (1 − 𝛾)𝛿𝑃2𝑅1 − 𝜇𝑅1

d𝑅2

d𝑡
= 𝜈𝑦2 − 𝜇𝑅2

d𝑃2
d𝑡

= 𝛼𝑦2 − 𝑟𝑃2

(A.20)

Since lim𝑡→∞ 𝑅1(𝑡) = 0, the limiting system is equivalent to the system
analyzed in [3] with the immunity component and pathogen growth
rates taken to be 0. When restricted to this boundary, the system’s basic
reproduction number is just 𝑅0. The desired result then follows from
Theorem 3.4 of [3]. □

Proof of Lemma 2.4. Notice that we can write 𝑃𝑗 =
𝛼

𝑟
𝑦𝑗 . Solving the

equilibrium equations 𝑦1 = 0 and 𝑦2 = 0 gives

𝑆̄ =
1

𝑅0

− (1 − 𝛾)𝑅1, 𝑆̄ =
1

𝑅0

− (1 − 𝛾)𝑅2. (A.21)

It follows that 𝑅1 = 𝑅2.
Then, since 𝑅̇1 = 0 and 𝑅̇2 = 0, setting 𝑅̇1 = 𝑅̇2 and letting

𝐵 ∶= 𝛽 +
𝛼𝛿

𝑟
gives

𝜈𝑦1 − (1 − 𝛾)𝐵𝑦2𝑅1 − 𝜇𝑅1 = 𝜈𝑦2 − (1 − 𝛾)𝐵𝑦1𝑅2 − 𝜇𝑅2 (A.22)

which, since 𝑅1 = 𝑅2, simplifies to

(𝑦1 − 𝑦2)(𝜈 + (1 − 𝛾)𝐵𝑅1) = 0. (A.23)

Suppose that 𝑦1 ≠ 𝑦2. Then, 𝑅1 = −
𝜈

(1−𝛾)𝐵
< 0. Since the equilibrium

is non-negative, we must have 𝑦1 = 𝑦2. It follows that 𝑃1 = 𝑃2. □

Solving for the EE:
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At this equilibrium, noting that 𝑃 =
𝛼

𝑟
𝑦̄, System (2.2) reduces to

0 = −2
𝐵

𝑟
𝑆̄𝑦̄ + 𝜇(1 − 𝑆̄)

0 = (𝑆̄ + 𝜎𝑅̄)
𝐵

𝑟
− 𝑈

0 = 𝜈𝑦̄ − 𝜇𝑅̄ − 𝜎
𝐵

𝑟
𝑅̄𝑦̄

(A.24)

where 𝐵 ∶= 𝛽𝑟+ 𝛼𝛿, 𝜎 ∶= 1− 𝛾, and 𝑈 ∶= 𝜇+ 𝜈. From here, we can also
write 𝑆̄ and 𝑅̄ in terms of 𝑦̄:

𝑆̄ =
𝜇𝑟

𝜇𝑟 + 2𝐵𝑦̄
and 𝑅̄ =

𝜈𝑟𝑦̄

𝜇𝑟 + 𝜎𝐵𝑦̄
. (A.25)

We can also write 𝑦̄ and 𝑆̄ as

𝑦̄ =
𝜇𝑟(1 − 𝑆̄)

2𝐵𝑆̄
and 𝑆̄ =

1

𝑅0

− 𝜎𝑅̄. (A.26)

Substituting the expression for 𝑅̄ into the latter expression for 𝑆̄ gives

𝑆̄ =
1

𝑅0

− 𝜎
𝜈𝑟𝑦̄

𝜇𝑟 + 𝜎𝐵𝑦̄
. (A.27)

Finally, substituting this into the latter expression for 𝑦̄, we obtain a
quadratic equation in terms of 𝑦̄:

2𝜎𝐵2𝑦̄2 + 𝐵(2𝑈𝑟 − 𝜎(𝐵 − 𝜇𝑟))𝑦̄ + 𝑈𝜇𝑟2(1 − 𝑅0) = 0. (A.28)

The equations in (2.11) follow directly.

Proof of Proposition 2.4.1. First, note that if we have a positive
value for 𝑦̄, then all other corresponding components will be positive
as well. Next, we see (A.28) has a positive leading coefficient. Further,
its constant term is negative if and only if 𝑅0 > 1. Using Descartes
Rule of Signs, the quadratic equation has one positive real root and one
negative real root. Thus, we have the existence of a unique (positive)
coexistence equilibrium.

To determine the exact expressions for the coexistence equilibrium,
notice that, since 𝛾 < 1, we have 𝜎 < 1, and

𝑄 ≥ 2𝑈𝑟 − 𝜎(𝐵 + 𝜇𝑟), (A.29)

i.e.

0 ≥ 2𝑈𝑟 − 𝜎(𝐵 + 𝜇𝑟) −𝑄. (A.30)

Examining the numerator of 𝑆±, this implies the positive coexistence
equilibrium component for 𝑆̄ is necessarily given by 𝑆̄+. The corre-
sponding values for the other equilibrium components then are 𝑦̄+,
𝑅̄+, and 𝑃+. Hence, the unique coexistence equilibrium for the reduced
7-equation system is given by (𝑆̄, 𝑦̄, 𝑦̄, 𝑅̄, 𝑅̄, 𝑃 , 𝑃 ) = (𝑆̄+, 𝑦̄+, 𝑦̄+, 𝑅̄+, 𝑅̄+,

𝑃+, 𝑃+). □

A.1. Persistence definitions/theorems and proof of Theorem 2.5

We use the following definitions from [27] (adapted to our system
as needed).

Definition Appendix A.1. A map 𝜙 ∶ [0,∞) ×R7
+ → R7

+ (so 𝜙(𝑡, 𝑥0) ∶=
(𝑆(𝑡), 𝑦1(𝑡), 𝑦2(𝑡), 𝑅1(𝑡), 𝑅2(𝑡), 𝑃1(𝑡), 𝑃2(𝑡)) where 𝑡 ∈ [0,∞), 𝑥0 ∈ R7

+, and
any component, e.g. 𝑆(𝑡), is the solution to the respective compartment
of system (2.3) with initial condition 𝑥0) is called a (global autonomous)
semiflow to system (2.3) if

1. 𝜙(0, 𝑥) = 𝑥 for all 𝑥 ∈ R7
+.

2. 𝜙(𝑡 + 𝑠, 𝑥) = 𝜙(𝑡, 𝜙(𝑠, 𝑥)) for all 𝑡, 𝑠 ∈ [0,∞) and 𝑥 ∈ R7
+.

Theorem Appendix A.1. Let 𝜙 ∶ 𝐽 × 𝑋 → 𝑋 be a state-continuous
semiflow. Assume that 𝜙 is point-dissipative and asymptotically smooth.
Then, there exists a compact attractor of points, namely the closure 𝛺(𝑋)

of 𝛺(𝑋) =
⋃
𝑥∈𝑋 𝜔(𝑥).

Definition 1. Let 𝜌 ∶ 𝑋 → R+. A semiflow 𝜙 ∶ 𝐽 × 𝑋 → 𝑋 is called
uniformly weakly 𝜌-persistent, if there exists some 𝜖 > 0 such that

lim sup 𝜌
𝑡→∞

(𝜙𝑡(𝑥),𝑀) > 𝜖, ∀𝑥 ∈ 𝑋, 𝜌(𝑥) > 0.

𝜙 is called uniformly (strongly) 𝜌-persistent, if there exists some 𝜖 > 0

such that

lim inf 𝜌
𝑡→∞

(𝜙𝑡(𝑥),𝑀) > 𝜖, ∀𝑥 ∈ 𝑋, 𝜌(𝑥) > 0.

Theorem Appendix A.2. [Uniform Weak Persistence Implies Uniform
(Strong) Persistence] We set 𝜎(𝑡, 𝑥) ∶= 𝜌(𝜙(𝑡, 𝑥)) and make the following
assumptions: There exist a subset 𝐵 of 𝑋 and a sequence (𝐵𝑘) of subsets of
𝑋 such that the following properties hold:

• For every 𝑥 ∈ 𝐵, 𝜎(𝑡, 𝑥) is a continuous function of 𝑡 ≥ 0.
• There are no 𝑦 ∈ 𝐵, 𝑠, 𝑡 ∈ 𝐽 such that 𝜌(𝑦) > 0, 𝜎(𝑠, 𝑦) = 0, and
𝜎(𝑠 + 𝑡, 𝑦) > 0.

• For every 𝑘 ∈ N and every 𝑥 ∈ 𝑋, 𝜌(𝑥) > 0, there exists some 𝑡𝑘 ∈ 𝐽

such that 𝜙(𝑡, 𝑥) ∈ 𝐵𝑘 for all 𝑡 ≥ 𝑡𝑘, 𝑡 ∈ 𝐽 .
• If (𝑦𝑘) is a sequence in 𝑋 with 𝑦𝑘 ∈ 𝐵𝑘 for all 𝑘 ∈ N, then, after
possibly choosing a subsequence, there exists some 𝑦 ∈ 𝐵 such that
𝜎(𝑠, 𝑦𝑘) → 𝜎(𝑠, 𝑦) as 𝑘 → ∞, uniformly for 𝑠 in any set [0, 𝑡]

⋂
𝐽 ,

𝑡 ∈ (0,∞).

Let 𝐽 = R+ or 𝐽 = Z+. Under the assumptions above, the semiflow 𝜙 is
uniformly 𝜌-persistent, whenever it is uniformly weakly 𝜌-persistent.

Definition 2. Let ∅ ≠ 𝑀 ⊂ 𝑋. A neighborhood 𝑉 of 𝑀 is called an
isolating neighborhood of 𝑀 in 𝑋 if every compact invariant 𝐾 ⊂ 𝑉 is a
subset of 𝑀 . 𝑀 is called isolated if it has an isolating neighborhood.

Definition 3. Let 𝐶,𝐵 ⊂ 𝑋0. 𝐶 is said to be chained to 𝐵 in 𝑋0, written
𝐶 ↦ 𝐵, if there exists a total trajectory 𝜙 in 𝑋0 with 𝜙(0) ∉ 𝐶

⋃
𝐵 such

that 𝜙(−𝑡) → 𝐶 and 𝜙(𝑡) → 𝐵 as 𝑡 → ∞. A finite collection {𝑀1,… ,𝑀𝑘}

of subsets of 𝑋0 is called cyclic if, after possibly renumbering,𝑀1 ↦𝑀2

in 𝑋0 or 𝑀1 ↦ 𝑀2 ↦ ... ↦ 𝑀𝑗 ↦ 𝑀1 in 𝑋0 for some 𝑗 ∈ {2,… , 𝑘}.
Otherwise it is called acyclic.

Definition 4. A set 𝑀 in 𝑋 is called (weakly 𝜌-repelling) if there is
no 𝑥 ∈ 𝑋 such that 𝜌(𝑥) > 0 and 𝜙(𝑡, 𝑥) → 𝑀 as 𝑡 → ∞. 𝑀 is called
uniformly weakly 𝜌-repelling if there exists some 𝜖 > 0 such that

lim sup 𝑑
𝑡→∞

(𝜙𝑡(𝑥),𝑀) ≥ 𝜖 whenever 𝑥 ∈ 𝑋, 𝜌(𝑥) > 0.

Theorem Appendix A.3. [Acyclicity Theorem] Let 𝛺 ⊂
⋃𝑘
𝑖=1𝑀𝑖 where

each 𝑀𝑖 ⊂ 𝑋0 is isolated (in 𝑋), compact, invariant, and weakly 𝜌-
repelling, 𝑀𝑖

⋂
𝑀𝑗 = ∅ if 𝑖 ≠ 𝑗. If {𝑀1,… ,𝑀𝑘} is acyclic, then 𝜙 is

uniformly weakly 𝜌-persistent.

We are now ready to prove persistence for our system.

Proof of Theorem 2.5.
We follow the methods detailed in [27] by showing the existence

of a compact attractor and that the DFE and SSEs are isolated, in-
variant, acyclic, and repelling. First, note that from Section 2, the
system is well-posed and dissipative in R7

+, giving the existence of a
compact attracting set in R7

+ (Theorem Appendix A.1. We construct the
proof using 𝜌 ∶ R7

+ → R+ with 𝜌 ∶= min{𝑦1 + 𝑃1, 𝑦2 + 𝑃2}, noting
that if lim inf 𝑡→∞ 𝜌(𝜙(𝑡, 𝑥)) > 𝜖, the existence of a compact (indeed,
closed) global attractor requires that lim inf 𝑡→∞ 𝑦1(𝑡), lim inf 𝑡→∞ 𝑦2(𝑡),
lim inf 𝑡→∞ 𝑃2(𝑡), lim inf 𝑡→∞ 𝑃2(𝑡) > 0, i.e. lim inf 𝑡→∞ 𝜌(𝜙(𝑡, 𝑥)) > 𝜖. We
construct the extinction set 𝑋0, defined by

𝑋0 = {𝑥 ∈ R
7
+|𝜌(𝜙(𝑡, 𝑥)) = 0 ∀𝑡 ≥ 0}. (A.31)
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The invariant set 𝑋0 can be decomposed in terms of ‘‘disease-free’’ and
boundary sets (2.10):

𝑋0 ={𝑥 ∈ R
7
+|𝜌(𝜙(𝑡, 𝑥)) = 0 ∀𝑡 ≥ 0}

={(𝑆, 0, 0, 𝑅1, 𝑅2, 0, 0) ∈ R
7
+} ∪𝑋

(1)

0
∪𝑋

(2)

0
.

(A.32)

In the same manner, 𝜌(𝜙(𝑡, 𝑥)) must be positive for all 𝑥 ∈ R7
+∕𝑋0. and

for all 𝑡 > 0.
Let 𝛺 =

⋃
𝑥∈𝑋0

𝜔(𝑥). We have that 𝛺 ⊂ 𝑋0 since 𝑋0 is invariant. On
each boundary, since the invasion reproduction numbers are greater
than 1, the corresponding single-strain equilibrium will be GAS by
Theorem 2.3. Then, the only limit points of 𝑋0 are the equilibria 𝐸0

(DFE), 𝐸1 (strain 2 SSE/strain 1 DFE), and 𝐸2 (strain 1 SSE/strain
2 DFE). Thus, 𝛺 =

⋃2
𝑖=0𝑀𝑖, where 𝑀𝑖 = 𝐸𝑖. Since each 𝑀𝑖 is an

equilibrium point, each 𝑀𝑖 is compact and invariant in R7
+.

We next examine the linearization of the system in 𝑋0. Since 𝑅0 > 1,
the DFE is unstable, and both single-strain equilibria are also unstable
by Lemma 2.2. Specifically, the Jacobian matrix of each equilibria
must have at least one eigenvalue with positive real part. Thus, for
any neighborhood 𝑉 of each equilibria, the linearized system with
initial condition 𝑣 ∈ 𝑉 will grow unbounded in the direction of the
eigenvector associated with that eigenvalue. By the Hartman-Grobman
Theorem, the nonlinear system (2.3) is topologically conjugate to the
linearized system in some neighborhood of the given equilibrium. Thus,
system (2.3) will also be unbounded, and it follows that each 𝑀𝑖 is
isolated in R7

+.
Since 𝑅0 > 1, Theorem 2.3 states that on each boundary, the

corresponding single-strain equilibrium will be globally asymptotically
stable. On the invariant set where 𝑦1(𝑡) = 𝑅1(𝑡) = 𝑃1(𝑡) = 𝑦2(𝑡) = 𝑅2(𝑡) =

𝑃2(𝑡) = 0 for all 𝑡 ≥ 0, all compartments decouple and go to zero with
the exception of d𝑆

d𝑡
= 𝜇(1 − 𝑆). Thus, 𝑆 will increase and converge to

equilibrium component 𝑆̄ = 1 since the system is normalized. Hence,
our DFE is globally asymptotically stable on this set. We will show that
asymptotic stability implies that no equilibrium is chained to itself.

Assume an asymptotically stable equilibrium 𝐸 is chained to itself;
that is, suppose there exists a trajectory 𝜙(𝑡, 𝑥0) such that 𝑥0 ≠ 𝐸

(𝜙(𝑡0, 𝑥0) = 𝑥0) and 𝜙(𝑡, 𝑥0) → 𝐸, 𝜙(−𝑡, 𝑥0) → 𝐸 as 𝑡 → ∞. Since 𝑥0 ≠ 𝐸,
fix 𝜖 > 0 such that 𝜙(𝑡, 𝑥0) ∉ 𝑁𝜖(𝐸) (the 𝜖-neighborhood of 𝐸). Since 𝐸
is asymptotically stable, there exists 𝛿𝜖 such that if 𝜙(𝑡1, 𝑥0) ∈ 𝑁𝛿𝜖

(𝐸)

for 𝑡1 ≥ 0, then 𝜙(𝑡) ∈ 𝑁𝜖(𝐸) for all 𝑡 ≥ 𝑡1. Since 𝜙(−𝑡, 𝑥0) → 𝐸

as 𝑡 → ∞, fix 𝑡2 > 𝑡0 large enough that 𝜙(−𝑡2, 𝑥0) ∈ 𝑁𝛿𝜖
(𝐸). Since

𝐸 is asymptotically stable, 𝜙(𝑡, 𝑥0) ∈ 𝑁𝜖(𝐸) for all 𝑡 ≥ −𝑡2. This is a
contradiction to 𝑥0 ∉ 𝑁𝜖(𝐸) since 𝑡0 > −𝑡2. To show each equilibrium
is not chained to itself through another equilibrium, it is sufficient to
say that, within each hyperplane on the boundary, the other equilibria
do not exist (or a solution would have to go through the origin which
cannot happen because it is invariant). Hence,

⋃2
𝑖=0𝑀𝑖 is acyclic.

By Theorem Appendix A.3, the last step for the desired result is
to show each 𝑀𝑖 is weakly 𝜌-repelling in R7

+, (see Definition 4 in the
appendix). To show this, we follow the methods outlined in [22,28].
Define the stable manifold of equilibrium 𝐸𝑖, 𝑖 = 0, 1, 2 as

𝑊 𝑆 (𝐸𝑖) = {𝑥0 ∈ 𝑋|𝜙(𝑡, 𝑥0) →
𝑡→∞

𝐸𝑖} (A.33)

Our goal is to show that

𝑀 ∶=

(
2⋃
𝑖=0

𝑊 𝑆 (𝐸𝑖)

)
∩𝑋Int = ∅. (A.34)

By way of contradiction, suppose there exists 𝑥0 ∈𝑀 ; that is, suppose
there exists

𝑥0 = (𝑆(0), 𝑦1(0), 𝑦2(0), 𝑅1(0), 𝑅2(0), 𝑃1(0), 𝑃2(0)) (A.35)

with 𝑦1(0) ≠ 0, 𝑦2(0) ≠ 0, and with 𝜙(𝑡, 𝑥0) →
𝑡→∞

𝐸𝑖 for some fixed 𝑖,

𝑖 = 0, 1, 2. We write 𝐸𝑖 = (𝑆̄, 𝑦1, 𝑦2, 𝑅1, 𝑅2, 𝑃1, 𝑃2). Let 𝜖 > 0. Then, there

exists 𝛿 > 0 such that if ‖𝑥0 − 𝐸𝑖‖ < 𝛿, then ‖𝜙(𝑡, 𝑥0) − 𝐸𝑖‖ < 𝜖 for all
𝑡 ≥ 0. In other words,

‖(𝑆(𝑡)− 𝑆̄, 𝑦1(𝑡)−𝑦1, 𝑦2(𝑡)−𝑦2, 𝑅1(𝑡)− 𝑅̄1, 𝑅2(𝑡)− 𝑅̄2, 𝑃1(𝑡)−𝑃1, 𝑃2(𝑡)−𝑃2)‖ < 𝜖.
(A.36)

We recall two points: first, 𝑆̄ ≤ 1 for all equilibrium 𝐸𝑖, and second,
𝑦𝑗 = 𝑅̄𝑗 = 𝑃𝑗 = 0 for 𝑗 = 1 or 𝑗 = 2 (or both) by the structure of the
three equilibrium. It follows that

1 − 𝜖 ≤ 𝑆(𝑡) ≤ 1 + 𝜖, 0 < 𝑦𝑗 (𝑡) < 𝜖, 0 < 𝑅𝑗 (𝑡) < 𝜖, 0 < 𝑃𝑗 (𝑡) < 𝜖 (A.37)

so we can write
d𝑦𝑗

d𝑡
≥ 𝛽(1 − 𝜖)𝑦𝑗 − (𝜈 + 𝜇)𝑦𝑗 + 𝛿(1 − 𝜖)𝑃𝑗 (A.38)

which gives the decoupled matrix system

⎡
⎢⎢⎣

d𝑦𝑗

d𝑡

d𝑃𝑗

d𝑡

⎤
⎥⎥⎦
≥
[
𝛽(1 − 𝜖)𝑦𝑗 − (𝜈 + 𝜇)𝑦𝑗 + 𝛿(1 − 𝜖)𝑃𝑗

𝛼𝑦𝑗 − 𝑟𝑃𝑗

]

=

[
𝛽(1 − 𝜖) − (𝜈 + 𝜇) 𝛿(1 − 𝜖)

𝛼 −𝑟

][
𝑦𝑗

𝑃𝑗

] (A.39)

i.e.

⎡
⎢⎢⎣

d𝑦𝑗

d𝑡

d𝑃𝑗

d𝑡

⎤
⎥⎥⎦
≥ [

𝐹 − 𝑉 − 𝜖𝐾
] [𝑦𝑗
𝑃𝑗

]
(A.40)

where

𝐾 =

[
𝛽 𝛿

0 0

]
(A.41)

and 𝐹 and 𝑉 are defined as in the next generation method as in [3]
(and in [22]). Note that 𝐹 − 𝑉 is cooperative and irreducible. Since
𝑅0 > 1, Re(𝜆) > 0 where 𝜆 is the eigenvalue of 𝐹 − 𝑉 with largest
real part. For 𝜖 small enough, Re(𝜆𝜖) > 1 where (𝜆𝜖 is the eigenvalue
of 𝐹 − 𝑉 − 𝜖𝐾 with largest real part). Thus, by the form of the
fundamental matrix solution to 𝑥̇ = [𝐹 − 𝑉 − 𝜖𝐾]𝑥, the solution will
diverge. By the comparison theorem, 𝑦𝑖 and 𝑃𝑖 will also diverge. This
contradicts 𝑥0 ∈ 𝑀 , so we have weakly 𝜌-repelling. Finally, we note
the existence of a compact global ‘‘persistence attractor’’ in R7

+∕𝑋0

by Theorem 5.7 in [27]. Since all infection components in solutions
originating in R7

+∕𝑋0 become positive after 𝑡 > 0, it follows that
lim inf 𝑡→∞ min{𝑦1(𝑡), 𝑃1(𝑡), 𝑦2(𝑡), 𝑃2(𝑡)} > 𝜖. □

Appendix B. Analysis of coexistence equilibria when 𝜸 = 𝟏

When 𝛾 = 1, 𝑅1 and 𝑅2 decouple and reduce the system to
d𝑆

d𝑡
= 𝜇(1 − 𝑆) − (𝛽𝑦1 + 𝛿𝑃1)𝑆 − (𝛽𝑦2 + 𝛿𝑃2)𝑆

d𝑦𝑗

d𝑡
= (𝛽𝑦𝑗 + 𝛿𝑃𝑗 )𝑆 − (𝜈 + 𝜇)𝑦𝑗

d𝑃𝑗

d𝑡
= 𝛼𝑦𝑗 − 𝑟𝑃𝑗 .

(B.1)

This produces a line of coexistence equilibria defined by

𝑓 (𝑆)

𝑆
= −(𝛽 +

𝛿𝛼

𝑟
)(𝑦1 + 𝑦2).

The corresponding Jacobian, evaluated at the coexistence equilib-
rium

(1∕𝑅0, 𝑦̄1, 𝑦̄2,
𝛼

𝑟
𝑦̄1,

𝛼

𝑟
𝑦̄2),

is

𝐽 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝜇 − 𝑉 𝑌 −𝛽∕𝑅0 −𝛽∕𝑅0 −𝛿∕𝑅0 −𝛿∕𝑅0

𝐵𝑦̄1 𝛽∕𝑅0 − 𝑉 0 𝛿∕𝑅0 0

𝐵𝑦̄2 0 𝛽∕𝑅0 − 𝑉 0 𝛿∕𝑅0

0 𝛼 0 −𝑟 0

0 0 𝛼 0 −𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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where 𝑌 ∶= 𝑦1 + 𝑦2, 𝐵 ∶= (𝛽 +
𝛼𝛿

𝑟
) and 𝑉 ∶= (𝜈 + 𝜇), so 𝑅0 = 𝐵∕𝑉 . The

Jacobian is similar to the following matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝜇 − 𝑉 𝑌 −𝛽∕𝑅0 −𝛿∕𝑅0 −𝛽∕𝑅0 −𝛿∕𝑅0

𝐵𝑦̄1 𝛽∕𝑅0 − 𝑉 𝛿∕𝑅0 0 0

0 𝛼 −𝑟 0 0

𝐵𝑦̄2 0 0 𝛽∕𝑅0 − 𝑉 𝛿∕𝑅0

0 0 0 𝛼 −𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎠

,

so they will have the same eigenvalues. We use the second matrix to
find the eigenvalues.

||||||||||||||

−𝜇 − 𝑉 𝑌 − 𝜆 −𝛽∕𝑅0 −𝛿∕𝑅0 −𝛽∕𝑅0 −𝛿∕𝑅0

𝐵𝑦̄1 𝛽∕𝑅0 − 𝑉 − 𝜆 𝛿∕𝑅0 0 0

0 𝛼 −𝑟 − 𝜆 0 0

𝐵𝑦̄2 0 0 𝛽∕𝑅0 − 𝑉 − 𝜆 𝛿∕𝑅0

0 0 0 𝛼 −𝑟 − 𝜆

||||||||||||||
=(−𝜇 − 𝑉 𝑌 − 𝜆)[(𝛽∕𝑅0 − 𝑉 − 𝜆)(−𝑟 − 𝜆)

− 𝛼𝛿∕𝑅0][(𝛽∕𝑅0 − 𝑉 − 𝜆)(−𝑟 − 𝜆) − 𝛼𝛿∕𝑅0]

− 𝐵𝑦̄1

|||||||||||

−𝛽∕𝑅0 −𝛿∕𝑅0 −𝛽∕𝑅0 −𝛿∕𝑅0

𝛼 −𝑟 − 𝜆 0 0

0 0 𝛽∕𝑅0 − 𝑉 − 𝜆 𝛿∕𝑅0

0 0 𝛼 −𝑟 − 𝜆

|||||||||||

− 𝐵𝑦̄2

|||||||||||

−𝛽∕𝑅0 −𝛿∕𝑅0 −𝛽∕𝑅0 −𝛿∕𝑅0

𝛽∕𝑅0 − 𝑉 − 𝜆 𝛿∕𝑅0 0 0

𝛼 −𝑟 − 𝜆 0 0

0 0 𝛼 −𝑟 − 𝜆

|||||||||||
=(−𝜇 − 𝑉 𝑌 − 𝜆)[(𝛽∕𝑅0 − 𝑉 − 𝜆)(−𝑟 − 𝜆) − 𝛼𝛿∕𝑅0]

2

− 𝐵𝑦̄1[ − 𝛽∕𝑅0(−𝑟 − 𝜆)[(𝛽∕𝑅0 − 𝑉 − 𝜆)(−𝑟 − 𝜆) − 𝛼𝛿∕𝑅0]

− 𝛼(−𝛿∕𝑅0)[(𝛽∕𝑅0 − 𝑉 − 𝜆)(−𝑟 − 𝜆) − 𝛼𝛿∕𝑅0]]

− 𝐵𝑦̄2[𝛼(−𝛿∕𝑅0)[(𝛽∕𝑅0 − 𝑉 − 𝜆)(−𝑟 − 𝜆) − 𝛼𝛿∕𝑅0]

− (−𝑟 − 𝜆)(−𝛽∕𝑅0)[(𝛽∕𝑅0 − 𝑉 − 𝜆)(−𝑟 − 𝜆) − 𝛼𝛿∕𝑅0]]

=(−𝜇 − 𝑉 𝑌 − 𝜆)𝛥2 − 𝐵𝑦̄1[−𝛽∕𝑅0(−𝑟 − 𝜆) − 𝛼(−𝛿∕𝑅0)]𝛥

− 𝐵𝑦̄2[𝛼(−𝛿∕𝑅0) − (−𝑟 − 𝜆)(−𝛽∕𝑅0)]𝛥

where 𝛥 ∶= (𝛽∕𝑅0 − 𝑉 − 𝜆)(−𝑟 − 𝜆) − 𝛼𝛿∕𝑅0. We show that 𝛥 has an
eigenvalue 𝜆 = 0.

𝛥 =(𝛽∕𝑅0 − 𝑉 − 𝜆)(−𝑟 − 𝜆) − 𝛼𝛿∕𝑅0

=𝜆2 − 𝜆(−𝑟 + 𝛽∕𝑅0 − 𝑉 ) − 𝑟𝛽∕𝑅0 + 𝑟𝑉 − 𝛼𝛿∕𝑅0.

The constant term in the polynomial simplifies to

−(𝛼𝛿 + 𝑟𝛽)∕𝑅0 + 𝑟𝑉 = −𝑟𝑉 + 𝑟𝑉 = 0,

resulting in 𝜆 = 0 as an eigenvalue of 𝐽 .

Appendix C. Analysis of periodic model

The periodic model with seasonal forcing that we consider in Sec-
tion 3 is as follows:

d𝑆

d𝑡
= −𝛽(𝑦1 + 𝑦2)𝑆 − 𝛿(𝑡)(𝑃1 + 𝑃2)𝑆 + 𝜇(1 − 𝑆)

d𝑦𝑗

d𝑡
= 𝛽𝑦𝑗𝑆 + 𝛿𝑃𝑗𝑆 + (1 − 𝛾)𝛽𝑦𝑗𝑅𝑘 + (1 − 𝛾)𝛿(𝑡)𝑃𝑗𝑅𝑘 − (𝜈 + 𝜇)𝑦𝑗

d𝑅𝑗

d𝑡
= 𝜈𝑦𝑗 − (1 − 𝛾)𝛽𝑦𝑘𝑅𝑗 − (1 − 𝛾)𝛿(𝑡)𝑃𝑘𝑅𝑗 − 𝜇𝑅𝑗

d𝑃𝑗

d𝑡
= 𝛼𝑦𝑗 − 𝑟𝑃𝑗 ,

(C.1)

where 𝛿(𝑡) = 𝛿(1 + 𝛿0 sin (2𝜋𝑡∕365.2242)).
The definition of 𝑅0 for a general class of periodic population

dynamic models was first introduced by Bacaer and Guernaoui in

2006 [29]. While a threshold quantity can be often found using Floquet
theory, a challenge for defining 𝑅0 in periodic non-autonomous models
is that the number of secondary cases caused by an infectious individual
depends on the season. The advantage of Bacaer’s definition of 𝑅0 is
that it can be interpreted as the asymptotic ratio of total infections
in two successive generations of the infected population and has the
threshold properties of the dominant Floquet multiplier. Wang and
Zhao established an equivalent definition of 𝑅0 for the case of com-
partmental periodic ordinary differential equation models [30], which
we will utilize.

Define 𝐹 (𝑡) = 𝐹 and 𝑉 as before in the next generation decompo-
sition (2.5) for 𝑅0 of the autonomous model, where 𝛿(𝑡) = 𝛿 is now
a periodic function. Then the linearized subsystem at the DFE of the
periodic system (C.2) can be written as follows:

𝑑𝑥

𝑑𝑡
= (𝐹 (𝑡) − 𝑉 )𝑥. (C.2)

Consider the principal fundamental solution to (C.2), denoted by
𝛷𝐹−𝑉 (𝑡). The Floquet multipliers of the linear system (C.2) are the
eigenvalues of 𝛷𝐹−𝑉 (𝜏). It can be shown that there is a dominant
Floquet multiplier, 𝑟, which is the spectral radius of 𝛷𝐹−𝑉 (𝜏), i.e.

𝜃 = 𝜌(𝛷𝐹−𝑉 (𝜏)). (C.3)

Following [30], let 𝜙(𝑠), which is 𝜏-periodic in 𝑠, be an initial peri-
odic distribution of infectious individuals. Given 𝑡 ≥ 𝑠, 𝑒−𝑉 (𝑡−𝑠)𝐹 (𝑠)𝜙(𝑠)

gives the distribution of those infected individuals who were newly
infected at time 𝑠 and remain in the infected compartments at time 𝑡.
Then

𝜓(𝑡) ≡ ∫
𝑡

−∞

𝑒−𝑉 (𝑡−𝑠)𝐹 (𝑠)𝜙(𝑠) 𝑑𝑠 = ∫
∞

0

𝑌 (𝑡, 𝑡 − 𝑎)𝐹 (𝑡 − 𝑎)𝜙(𝑡 − 𝑎) 𝑑𝑎

is the distribution of cumulative new infections at time 𝑡 produced by
all those infected individuals 𝜙(𝑠) introduced at times earlier than 𝑡.

Let 𝐶𝜏 be the ordered Banach space of all 𝜏-periodic piecewise con-
tinuous functions from R → R6, which is equipped with the maximum
norm ‖⋅‖. Define the linear operator 𝐿 ∶ 𝐶𝜏 → 𝐶𝜏 by

(𝐿𝜙)(𝑡) = ∫
∞

0

𝑒−𝑉 𝑎𝐹 (𝑡 − 𝑎)𝜙(𝑡 − 𝑎) 𝑑𝑎, ∀𝑡 ∈ R, 𝜙 ∈ 𝐶𝜏 .

As in [30], we label 𝐿 the next-infection operator and define the
spectral radius of 𝐿 as the reproduction number:

𝑅0 ≡ 𝜌(𝐿). (C.4)

There is a useful characterization of 𝑅0 as follows. Consider the follow-
ing linear 𝜏-periodic system

𝑑𝑤

𝑑𝑡
=

[
−𝑉 +

𝐹 (𝑡)

𝜆

]
𝑤, 𝑡 ∈ R (C.5)

with parameter 𝜆 ∈ (0,∞). Denote the principal fundamental solution
of (C.5) by 𝛷(𝑡, 𝜆). Then the following holds

𝜌(𝛷(𝜏, 𝜆)) = 1 ⇔ 𝜆 = 𝑅0. (C.6)

Furthermore, we have the following equivalences:

𝑅0 < 1 ⇔ 𝜃 < 1 (C.7)

𝑅0 > 1 ⇔ 𝜃 > 1 (C.8)

where 𝜃 = 𝜌(𝛷𝐹−𝑉 (𝜏)).
We will show that 𝑅0 is a threshold quantity that determines

whether the disease dies; in particular, the disease-free equilibrium is
globally attracting for system (C.2) when 𝑅0 < 1.

Theorem Appendix C.1. Consider the flow 𝜑(𝑡, 𝑥) of system (C.2). If
𝑅0 < 1 and 𝑥 ∈ , then 𝜑(𝑡, 𝑥) → 𝐷𝐹𝐸 as 𝑡→ ∞.

Proof. Let 𝑥 ∈ . Consider the solution 𝜑(𝑡, 𝑥) of periodic system (C.2)
with period 𝜏. By the non-negativity of components and bounds of ,
in particular by 𝑆+(1−𝛾)𝑅𝑘 ≤ 1 (Appendix A), we obtain the following:
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Table D.4
Summary of numerical results: Unforced system.

No coinfection Previous model
agreement

Uniform persistence for 𝑅0 > 1 [3]
𝛾 = 1: line of coexistence equilibria exists
Oscillations, amplitudes vary w.r.t. 𝛾 [7–9]
Oscillations insensitive to variations in 𝛽, 𝛿
Anti-phase solution behavior with transient oscillations [7]
Convergence slows as 𝛾 increases; threshold at 𝛾 ≈ 0.4

Interannual oscillations occur for 𝛾 ≈ 0.8 [7]
Long, transient anti-phase behavior for 0.5 ≤ 𝛾 ≤ 0.8 [8]

Coinfection

Transient oscillations; convergence to equilibrium for all values of 𝛾
Out-of-phase behavior for small values of 𝛾; anti-phase behavior
appears as 𝛾 increases

Table D.5
Summary of numerical results: Forced system.

No coinfection Previous model
agreement

Oscillation dynamics and caseloads vary wrt 𝛾, 𝛽, 𝛿 [7–9]
Increasing (decreasing) 𝛽 (𝛿) slows synchronization, increases time [8,9]
between peaks, dampens interannual cycles, and
decreases casesloads and amplitude
As 𝛾 increased, system resembles unforced system in oscillatory speed
Anti-phase oscillations synchronize to in-phase oscillations
depending on magnitude of 𝛿0
0.4: threshold for 𝛾 where synchronization to in-phase oscillations slows
0.3975 ≤ 𝛾 ≤ 0.4125 exhibits resonance with anti-phase oscillations [9]
In-phase oscillations more common than anti-phase [9]
Synchronization slows as 𝛾 increases
Interannual oscillations for 0.5 < 𝛾 < 1 [8,9]
Long, transient anti-phase behavior for 0.5 ≤ 𝛾 ≤ 0.8 [7–9]

Coinfection

Sustained, anti-phase oscillatory dynamics for 𝛾 ∈ (0, 0.2) ∪ (0.6, 0.8); [7–9]
the second range aligns similarly with the range for sustained anti-phase
behavior in the system without coinfection

d𝑦𝑗

d𝑡
≤ 𝛽𝑦𝑗 + 𝛿(𝑡)𝑃𝑗 − (𝜈 + 𝜇)𝑦𝑗

d𝑃𝑗

d𝑡
= 𝛼𝑦𝑗 − 𝑟𝑃𝑗 .

(C.9)

Consider the principal fundamental solution of the right-hand side
of system (C.9) as a function of 𝜖: 𝛷(𝑡, 𝜖). Then 𝜌(𝛷(𝜏, 0)) = 𝜃. Since
𝛷(𝜏, 𝜖) is continuous with respect to 𝜖, for 𝜖 sufficiently small, 𝜃(𝜖) =
𝜌(𝛷(𝜏, 𝜖)) < 1 since 𝜃(0) = 𝜃 < 1 by (C.7). The matrix 𝐵(𝑡, 𝜖), where
𝐵(𝑡, 𝜖) represents the right-hand side of (C.9) as a linear vector field,
is quasi-positive. Without loss of generality, we can assume the non-
diagonal entries of 𝐵(𝑡, 𝜖) are positive. If any are zero, add a sufficiently
small constant to that entry, and the spectral radius of interest will still
fall below unity, and inequality (C.9) will still hold. Thus the matrix
𝛷(𝜏, 𝜖) will be strictly positive (since the vector field will point away
from the boundary). Then, by the Perron–Frobenius Theorem, we find
that 𝜃(𝜖) is a simple eigenvalue with strictly positive eigenvector 𝑣.
Hence 𝑧(𝑡) ≡ 𝛷(𝑡, 𝜖)𝑣 = 𝑞(𝑡)𝑒𝜉𝑡 where 𝜉 =

1

𝜏
ln(𝜃(𝜖)) and 𝑞(𝑡) is 𝜏-

periodic. So 𝑧(𝑡) → 0 as 𝑡→ ∞. Since 𝐵(𝑡, 𝜖) is quasi-positive, subsystem
(C.9) forms a comparison system using Theorem 1.2 in [31]. Choose a
constant 𝑐 such that 𝑐𝑣 ≥ 𝑥0, where 𝑥0 = 𝜑(0, 𝑥0). Then 𝑐𝑧(𝑡) ≥ 𝜑(𝑡, 𝑥0)

for all 𝑡 ≥ 0. Hence 𝑦𝑖(𝑡) → 0 and 𝑃𝑖(𝑡) → 0 as 𝑡 → ∞ for 𝑖 = 1, 2 since
𝑐𝑧(𝑡) → 0. Then, for any 𝜖 > 0 and sufficiently large time 𝑡,

𝜇(1 − 𝑆) − 𝜖 ≤ d𝑆

d𝑡
,

d𝑅𝑗

d𝑡
≤ 𝜖 − 𝜇𝑅𝑗 .

Then, because 𝑆 + (1− 𝛾)𝑅𝑗 ≤ 1, another application of the comparison

system principle yields 𝑆
𝜖 ≤ 𝑆𝑖(𝑡) ≤ 𝑆 and 𝑅

𝜖

𝑗 ≥ 𝑅𝑗 (𝑡) ≥ 0 for 𝑡

sufficiently large, where 𝑆
𝜖
→ 1 and 𝑅

𝜖

𝑗 → 0 as 𝜖 → 0. The result
follows upon taking limit as 𝜖 → 0. □

We note that whether uniform persistence of the disease can be
established when 𝑅0 > 1 is an open question for the periodic serotype
model (C.2). Because the boundary set contains single-strain periodic
systems whose global behavior is not easily determined when 𝑅0 > 1,
uniform persistence is a highly non-trivial problem.

Appendix D. Summary and comparison of numerical results

See Tables Tables D.4 and D.5
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