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analyze the Finiteness Conjecture and the genus problem for 
simple algebraic groups of type F4.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a reductive affine algebraic group over a field k. Given a discrete valuation v
of k, we denote by kv the corresponding completion, with valuation ring Ov and residue 
field k(v). We recall that G has good reduction at v if there exists a reductive group 
scheme G over Ov whose generic fiber G ×Ov

kv is isomorphic to G ×k kv; then the closed 
fiber G ×Ov

k(v) is called the reduction of G at v and will be denoted G(v) (see §2 for 
more details, including the uniqueness of reduction, and variations). The focus of the 
recent work [14], [15], [16], [67], [68] was on the analysis of k-forms of G that have good 
reduction at all valuations in some natural set V of discrete valuations of k. We refer 
the reader to the survey [66] for a detailed discussion of this problem and some natu-
ral choices for k and V . One is particularly interested in the case where k is a finitely 
generated field and V is a divisorial set of valuations of k (which means that V consists 
of the discrete valuations that correspond to all prime divisors on a model X of k, i.e. 
an irreducible separated normal scheme of finite type over Z with function field k — 
see [66, 5.3]). In this case, there is the following Finiteness Conjecture (cf. [66, Conjec-
ture 5.7]): the set of k-isomorphism classes of k-forms of G that have good reduction 
at all v ∈ V is finite (at least when the characteristic of k is “good”). This conjecture 
has been established in a number of cases, but the general case remains the focus of 
ongoing work. Its significance for the current effort to develop the arithmetic theory of 
algebraic groups over higher-dimensional fields is predicated on deep connections with 
other important problems. In particular, the validity of the conjecture for an absolutely 
almost simple simply connected k-group G and any divisorial set of places of k would 
imply the properness of the global-to-local map H1(k, G) →

∏
v∈V H1(kv, G) in Galois 

cohomology for the corresponding adjoint group G (cf. [66, §6]). In the present paper, we 
will focus on several other applications of the Finiteness Conjecture, particularly those 
related to the genus problem for absolutely almost simple algebraic groups. This includes 
a new phenomenon that we have termed “killing the genus by a purely transcendental 
extension,” and the investigation of “eigenvalue rigidity” of Zariski-dense subgroups (cf. 
[64]) — the latter is related to the analysis of length-commensurable Riemann surfaces 
and general locally symmetric spaces in differential geometry (cf. [58], [60]). Finally, we 
develop new techniques for tackling the genus problem for some groups of type F4 and 
obtain several finiteness results in this case.

To prepare for the discussion of the genus problem, we recall that two semisimple 
algebraic groups G1 and G2 defined over a field k are said to have the same isomorphism 
classes of maximal k-tori if every maximal k-torus T1 of G1 is k-isomorphic to some 



V.I. Chernousov et al. / Advances in Mathematics 438 (2024) 109437 3
maximal k-torus T2 of G2, and vice versa. We then define the (k-)genus genk(G) (resp., 
the extended (k-)genus gen+

k (G)) of an absolutely almost simple k-group G as the set of 
k-isomorphism classes of inner k-forms of G (resp., all k-forms of G) that have the same 
isomorphism classes of maximal k-tori as G. (We note that we always have the inclusion 
genk(G) ⊂ gen+

k (G), which, in fact, is an equality whenever k is finitely generated — 
see Corollary 3.5.) The analysis of the genus is the subject of the genus problem. In 
particular, one expects to prove that the genus is always finite whenever the field k is 
finitely generated (of “good” characteristic) and is trivial in some special situations (see 
[66, §8]). One of our main results is the following theorem that relates the genus problem 
to good reduction.

Theorem 1.1. Let G be an absolutely almost simple linear algebraic group over a field 
k and let v be a discrete valuation of k. Assume that the residue field k(v) is finitely 
generated and that char k(v) �= 2 if G is of type B� (� ≥ 2). If G has good reduction at v, 
then any G′ ∈ genk(G) also has good reduction at v. Moreover, the reduction G′(v) lies 
in the genus genk(v)(G(v)) of the reduction G(v).

It should be pointed out that the proof of this theorem is based on an entirely new 
approach to good reduction of simple algebraic groups that shows that the existence of 
good reduction can be characterized in terms of the presence of maximal tori with certain 
specific properties — see Theorems 6.2 and 6.6 for precise statements. This approach 
enables us to extend to absolutely almost simple groups the techniques developed earlier 
in [13], [14], [17], and [65] to analyze the genus of a division algebra. In particular, just 
like the finiteness of the n-torsion of the unramified Brauer group nBr(k)V of a finitely 
generated field k with respect to a divisorial set of places V (provided that n is prime 
to char k) implies the finiteness of the genus of any central simple algebra D of degree n
over k (cf. [13], [14]), the above Finiteness Conjecture, in view of the following corollary 
of Theorem 1.1, would imply the finiteness of the genus of any absolutely almost simple 
algebraic k-group.

Corollary 1.2. Let G be an absolutely almost simple algebraic group over an infinite 
finitely generated field k, and let V be a divisorial set of places of k. Assume that chark �=
2 if G is of type B� (� ≥ 2). Then there exists a finite subset S ⊂ V such that every 
G′ ∈ genk(G) has good reduction at all v ∈ V \ S.

Next, applying Theorem 1.1, in conjunction with the theorem of Raghunathan-
Ramanathan [63], we obtain the following statement concerning the effect of a purely 
transcendental base change on the genus.

Theorem 1.3. Let G be an absolutely almost simple algebraic group over a finitely gen-
erated field k of characteristic �= 2, and let K = k(x) be the field of rational functions. 
Then any H ∈ genK(G ×k K) is of the form H = H0 ×k K for some H0 ∈ genk(G).
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In view of [58, Theorem 7.5], the following is an immediate consequence of Theo-
rem 1.3.

Corollary 1.4. Let G be an absolutely almost simple simply connected algebraic group 
over a number field k, and let K = k(x1, . . . , xm) be the field of rational functions in 
m � 1 variables. Then the genus genK(G ×k K) is finite, and in fact reduces to a single 
element if the type of G is different from A� (� > 1), D2�+1 (� > 1), and E6.

Theorem 1.3 prompts the question of whether for an absolutely almost simple algebraic 
group G over a field k and any G′ ∈ genk(G), the group G′ ×k K obtained by base 
change to the field of rational functions K = k(x) lies in genK(G ×k K). It turns out 
that not only is the answer to this question negative, but in fact one should expect an 
opposite phenomenon that we have termed “killing the genus by a purely transcendental 
extension.” The nature of this phenomenon reveals itself in the following two statements.

Theorem 1.5. Let A be a central simple algebra of degree n over a finitely generated field 
k, and let G = SL1,A. Assume that char k is prime to n, and let K = k(x1, . . . , xn−1)
be the field of rational functions in (n − 1) variables. Then genK(G ×k K) consists of 
(the isomorphism classes of) groups of the form H ×k K, where H = SL1,B and B is 
a central simple algebra of degree n such that its class [B] in the Brauer group Br(k)
generates the same subgroup as the class [A].

The proof uses Amitsur’s theorem on generic splitting fields [2], and a result of D. Salt-
man [73], [74] on function fields of Severi-Brauer varieties.

Theorem 1.6. Let G be a group of type G2 over a finitely generated field k of characteristic 
�= 2, 3, and let K = k(x1, . . . , x6) be the field of rational functions in 6 variables. Then 
genK(G ×k K) reduces to a single element.

The proof relies on properties of Pfister forms (cf. [40]). These results prompt the 
following conjecture.

Conjecture 1.7. Let G be an absolutely almost simple group over a finitely generated field 
k. Assume that char k is prime to the order of the Weyl group of G. Then there exists a 
purely transcendental extension K = k(x1, . . . , xm) of transcendence degree m depending 
only on the Cartan-Killing type of G such that every H ∈ genK(G ×k K) is of the form 
H0 ×k K, where H0 has the property that H0 ×k F ∈ gen(G ×k F ) for any field extension 
F/k.

In §8.4, we relate this conjecture to the notion of the motivic genus that was proposed 
by A.S. Merkurjev.

Next, we will discuss applications of our results to the analysis of weakly commen-
surable Zariski-dense subgroups, which was initiated in [58] in connection with some 
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problems in differential geometry. So, let G1 and G2 be absolutely almost simple alge-
braic groups over a field F of characteristic zero, and let Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) be 
two finitely generated Zariski-dense subgroups. We refer the reader to [58, §1] (see also 
§3 of the present paper) for the technical definition of the relation of weak commensura-
bility; here, we only mention that it is a way of matching the eigenvalues of semisimple 
elements of Γ1 and Γ2. This relation is expected to lead to a new form of rigidity, called 
“eigenvalue rigidity,” for arbitrary finitely generated Zariski-dense subgroups, where tra-
ditional forms of rigidity are inapplicable (cf. [64]). In this paper, we will show that one 
of the key issues in eigenvalue rigidity can be reduced to the Finiteness Conjecture. To 
provide more context, we recall that given a Zariski-dense subgroup Γ ⊂ G(F ), where G
is an absolutely almost simple algebraic group defined over a field F , the trace field kΓ is 
defined to be the subfield of F generated by the traces tr(Ad γ) of elements γ ∈ Γ in the 
adjoint representation on the Lie algebra g. According to a theorem of E.B. Vinberg [80], 
the field k = kΓ is the minimal field of definition of Γ. This means that k is the minimal 
subfield of F with the property that all transformations in Ad Γ can be simultaneously 
represented by matrices having all entries in k in a suitable basis of g. If such a basis 
is chosen, then the Zariski-closure of Ad Γ in GL(g) is a simple algebraic k-group G. It 
is an F/k-form of the adjoint group G called the algebraic hull of Ad Γ. It should be 
mentioned that if Γ is arithmetic, the pair (k, G) determines the commensurability class 
of Γ. While for general Zariski-dense subgroups this is no longer the case, the pair (k, G)
remains an important invariant of the commensurability class.

Now let Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) be finitely generated Zariski-dense subgroups 
of absolutely almost simple algebraic groups G1 and G2. Assume that Γ1 and Γ2 are 
weakly commensurable. Then kΓ1 = kΓ2 =: k (cf. [58, Theorem 2]). Furthermore, G1
and G2 either have the same Cartan-Killing type, or one of them has type B� and the 
other type C� for some � ≥ 3. So, apart from the ambiguity between types B and C, 
the corresponding algebraic hulls G1 and G2 are k-forms of one another. The remaining 
critical issue is the relationship between G1 and G2. More precisely, if we fix Γ1, what 
can one say about the set of the forms G2 as Γ2 ⊂ G2(F ) runs through finitely generated 
Zariski-dense subgroups that are weakly commensurable to Γ1? There is a conjecture (cf. 
[64, Conjecture 6.1]) that this set consists of finitely many k-isomorphism classes — see 
§10 for the precise formulation. If true, this would be a very strong statement1 asserting 
that the eigenvalues of elements of a Zariski-dense subgroup (which could be, for example, 
just a free group on two generators) determine the ambient algebraic group up to finitely 
many possibilities. For example, if G = SL1,A, where A is a central simple algebra of 
degree n over a field k, and Γ ⊂ G(k) is a finitely generated Zariski-dense subgroup 
with trace field k, then there would be only finitely many choices for a central simple 
k-algebra A′ (necessarily of the same degree n) such that for G′ = SL1,A′ , the group 
G′(k) contains a finitely generated Zariski-dense subgroup weakly commensurable to Γ. 
What we will see in §9 is that this conjecture again can be derived from the Finiteness 

1 Which, in particular, would be stronger than the finiteness of the genus.
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Conjecture with the help of the following result (and in fact, the above statement for 
groups of type SL1,A is already a theorem due to the fact that the Finiteness Conjecture 
has been confirmed in this case).

Theorem 1.8. Let G be an absolutely almost simple algebraic group over a finitely gen-
erated field k of characteristic zero, and let V be a divisorial set of places of k. Given a 
finitely generated Zariski-dense subgroup Γ ⊂ G(k) with trace field k, there exists a finite 
subset S(Γ) ⊂ V such that every absolutely almost simple algebraic k-group G′ with the 
property that there exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(k) that is 
weakly commensurable to Γ has good reduction at all v ∈ V \ S(Γ).

The results on weakly commensurable arithmetic groups developed in [58] were used to 
settle some long-standing problems about isospectral and length-commensurable locally 
symmetric spaces. Here we will give only one application of the results on good reduction 
to not necessarily arithmetically defined Riemann surfaces. For a Riemannian manifold 
M , we denote by L(M) the (weak) length spectrum of M , i.e. the collection of the lengths 
of all closed geodesics in M . We then call two Riemannian manifolds M1 and M2 length-
commensurable if Q · L(M1) = Q · L(M2). Consider a Riemann surface M of the form 
H/Γ, where H is the complex upper half-plane and Γ ⊂ SL2(R) is a discrete subgroup 
with torsion-free image in PSL2(R). We will assume that Γ is finitely generated and 
Zariski-dense in SL2 (which is automatically true if M is, for example, compact). Then 
one can naturally associate to Γ a quaternion algebra AΓ whose center is the trace field 
of Γ — see [42, 3.2] and §9. If Γ is arithmetic, then AΓ is the quaternion algebra required 
for its description, and in the general case it is an invariant of the commensurability class 
of Γ. In §9, we will prove the following result that contains no arithmeticity assumptions.

Theorem 1.9. Let Mi = H/Γi (i ∈ I) be a family of length-commensurable Riemann 
surfaces, where Γi ⊂ SL2(R) is a discrete finitely generated Zariski-dense subgroup with 
torsion-free image in PSL2(R). Then the quaternion algebras AΓi

(i ∈ I) belong to finitely 
many isomorphism classes over the common center (= trace field of all the Γi’s).

To the best of our knowledge, this statement is one of the first examples of applications 
of techniques from arithmetic geometry to nonarithmetic Riemann surfaces.

We conclude the paper with a series of results on forms with good reduction and the 
genus of simple algebraic groups of type F4, which have never been previously analyzed 
over fields more general than number fields. The first three results treat those forms that 
split over a quadratic extension of the base field (see Appendix 2 for a characterization 
of such forms in terms of cohomological invariants). We recall that the Q-forms of type 
F4 that have good reduction at all primes were described in [29] and [21], and that for 
any simple group G of that type over a number field k, the genus genk(G) is trivial [58, 
Theorem 7.5]. We will prove the following version of the “Stability Theorem” that was 
established previously for groups of the form SL1,A, where A is a central simple algebra 
of exponent 2 (cf. [13]), and groups of type G2 (cf. [16]).
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Theorem 1.10. Let k0 be a number field, and set k = k0(x). Then for any absolutely 
simple algebraic k-group G of type F4 that splits over a quadratic extension of k, the 
genus genk(G) is trivial.

Next, following Kato [36], we recall that a 2-dimensional global field is defined to be 
the function field of either a curve over a number field or a surface over a finite field.

Theorem 1.11. Let k be either a 2-dimensional global field of characteristic �= 2, 3 or a 
purely transcendental extension k = k0(x, y) of transcendence degree 2 of a number field 
k0. Then for any absolutely simple k-group G of type F4 that splits over a quadratic 
extension of k, the genus genk(G) is finite.

This is derived by combining Corollary 1.2 with the following theorem.

Theorem 1.12. Let k be either a 2-dimensional global field of characteristic �= 2, 3 or 
a purely transcendental extension k = k0(x, y) of transcendence degree 2 of a number 
field k0, and let V be a divisorial set of discrete valuations of k. Then the set I of k-
isomorphism classes of k-forms of type F4 that split over a quadratic extension of k and 
have good reduction at all v ∈ V is finite.

We note that similar results for groups of type G2 were obtained in [16] over 2-
dimensional global field and in [67] over purely transcendental extensions of transcen-
dence degree 2 of number fields.

Our final result applies to all forms of type F4 and contributes to one of the main 
remaining problems in the theory of Jordan algebras. We refer the reader to subsection 
A2.1 of Appendix 2 for the definition of the map φ that describes forms of type F4 in 
terms of the cohomological invariants f3, f5 and g3. J.-P. Serre has raised the problem 
of whether φ is injective. We will show that, assuming the Finiteness Conjecture, we can 
at least confirm that φ is proper.

Theorem 1.13. Let k be a finitely generated field of characteristic �= 2, 3. Assume that the 
Finiteness Conjecture holds for k-groups of type F4 with respect to any divisorial set V
of discrete valuations of k. Then the map φ is proper, i.e. the preimage of a finite set is 
finite.

Notations and conventions. We use standard notations associated with the Galois co-
homology of algebraic groups (cf. [77]). In particular, given an algebraic group G

defined over a field k and a Galois extension �/k, we denote by H1(�/k, G) the set 
H1(Gal(�/k), G(�)) of noncommutative continuous Galois cohomology, and we write 
H1(k, G) for H1(ksep/k, G(ksep)), where ksep is a separable closure of k. Similar con-
ventions are used for the set Z1(�/k, G) of noncommutative continuous 1-cocycles. We 
will slightly abuse notation and use lowercase Greek letters to denote both cocycles and 
cohomology classes whenever this does not lead to confusion. However, when we need 
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to distinguish between the two, we will write ξ for a cocycle and [ξ] for the correspond-
ing cohomology class. We extend these notations also to étale (Čech) cocycles and the 
cohomology classes they define.

For an algebraic torus T , we let X(T ) and X∗(T ) denote the corresponding groups 
of characters and cocharacters, respectively. Furthermore, we denote by Gm the one-
dimensional split torus.

Next, given a field k equipped with a discrete valuation v, we denote by kv and k(v) the 
corresponding completion and residue field, respectively. Furthermore, we set Ov ⊂ kv

and Ok,v ⊂ k to be the associated valuation rings.
Finally, we recall some definitions and notations pertaining to commutative Galois 

cohomology and unramified cohomology, which will be needed mainly in §11 and in 
Appendix 2. For a Gal(ksep/k)-module M , we write Hi(k, M) for the Galois cohomology 
group Hi(Gal(ksep/k), M). Now, if char k(v) is prime to n, then there exists a residue 
map

ρi
v : Hi(k, μ⊗j

n ) → Hi−1(k(v), μ⊗(j−1)
n ).

We say that a class x ∈ Hi(k, μ⊗j
n ) is unramified at v if x ∈ ker ρi

v and that it is ramified
otherwise. Furthermore, if V is a set of discrete valuations of k such that char k(v) is 
prime to n for all v ∈ V , then one defines the corresponding unramified cohomology of 
degree i to be

Hi(k, μ⊗j
n )V =

⋂
v∈V

ker ρi
v.

We refer the reader to [25, Ch. III and IV] for further details on these constructions.

2. Groups with good reduction

2.1. Good reduction: definition and examples

Even though the definition of good reduction for a reductive algebraic group at a dis-
crete valuation of the base field has already been mentioned in §1, we begin by repeating 
it here for the convenience of further references.

Definition 2.1. Let G be a reductive algebraic group over a field k, and let v be a discrete 
valuation of k. We say that G has good reduction at v if there exists a reductive group 
scheme2 G over the valuation ring Ov ⊂ kv with generic fiber

G ×Ov
kv � G ×k kv.

2 Let A be a commutative ring and S = Spec A. A reductive A-group scheme is a smooth affine group 
scheme G → S such that the geometric fibers Gs̄ are connected reductive groups for all geometric points s̄
of S, cf. [22, Exp. XIX, Definition 2.7] or [21, Definition 3.1.1].
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Then the k(v)-group scheme G ×Ov
k(v) is called the reduction of G at v and will be 

denoted G(v).

(We will see in subsection 2.2 below that the reduction G(v) is well-defined.) We now 
consider a couple of examples of good reduction that are relevant for the present paper.

Example 2.2. Let G = SL1,A, where A is a central simple algebra of degree n over k, and 
let v be a discrete valuation of k. Assume that A is unramified at v, which means that 
there exists an Azumaya Ov-algebra A such that A ⊗k kv � A ⊗Ov

kv as kv-algebras 
(cf. [69] and references therein). Let G = SL1,A be the semisimple group scheme over Ov

associated with A (cf. [9, 3.5.0.91]). Then

G ×k kv � G ×Ov
kv (1)

as kv-groups, hence G has good reduction at v.
Conversely, suppose G = SL1,A has good reduction at v, and let G be the corresponding 

reductive scheme over Ov. It is known that any inner form of the Ov-group scheme SLn

is of the form SL1,A for some Azumaya Ov-algebra A of degree n (cf. [9, 3.5.0.92]). So, 
if we write G as SL1,A, the isomorphism (1) implies that

either A ⊗k kv � A ⊗Ov
kv or A ⊗k kv � Aop ⊗Ov

kv.

In either case, A ⊗kkv comes from an Azumaya Ov-algebra, and therefore A is unramified. 
Thus, G = SL1,A has good reduction at v if and only if A is unramified at v.

Example 2.3. Let G = Spinn(q), where q is a nondegenerate quadratic form of dimension 
n ≥ 2 over a field k of characteristic �= 2, and let v be a discrete valuation of k with 
residue characteristic char k(v) �= 2. We will show that G has good reduction at v if and 
only if q is equivalent over kv to a quadratic form of the shape

λ(u1x2
1 + · · · + unx2

n), with λ ∈ k×
v and u1, . . . , un ∈ O×

v . (2)

First, let us assume that q is kv-equivalent to such a form and set q0 = u1x2
1 + · · ·+unx2

n. 
Then G ×k kv = Spinn(q) = Spinn(q0). On the other hand, since q0 is a regular quadratic 
form on On

v , there is a semisimple group scheme G = SPINn(q0) over Ov with generic 
fiber G ×k kv (cf. [9, 4.5.2.6, 6.2.0.28, 8.2.0.59]). This means that G has good reduction 
at v.

Conversely, suppose G = Spinn(q) has good reduction at v. When n = 2, the group 
G is a 1-dimensional torus whose splitting field is unramified at v, implying that q is 
equivalent to a form as in (2). Now suppose n > 2. Let q0 be an n-dimensional split 
quadratic form, and let G0 = SPINn(q0). Assume that G = Spinn(q) has good reduction 
at v, i.e. there exists a reductive group Ov-scheme G with generic fiber G ×k kv. Then 
G is obtained from G0 by twisting using an étale 1-cocycle ξ ∈ Z1(Ov, Aut(G0)). If n
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is odd, then Aut(G0) = SOn(q0). Then ξ can be used to twist the quadratic form q0
and obtain thereby a regular quadratic form q′ over Ov, in which case G = SPINn(q′). 
Passing to the generic fiber, we obtain that Spinn(q) � Spinn(q′) over kv and therefore 
q is kv-equivalent to a scalar multiple of q′. On the other hand, since char k(v) �= 2, the 
form q′, being regular, can be diagonalized over Ov as u1x2

1 + · · · + unx2
n with ui ∈ O×

v , 
proving our claim.

The same argument works when n is even provided we can show that in this case, the 
cohomology class [ξ] lies in the image of the map λ : H1(Ov, On(q0)) → H1(Ov, Aut(G0))
coming from the canonical morphism ν : On(q0) → Aut(G0). First, we observe that when 
n = 8, the group scheme G cannot be a triality form as otherwise the generic fiber G
would also be a triality form, which is not the case. This means that in all cases, [ξ] is 
represented by a cocycle having values in B = Im ν (we note that B is represented by 
PSOn(q0) � Z/2Z). The exact sequence

1 → μ2 −→ On(q0) ν−→ B → 1

gives rise to the exact sequence

H1(Ov,On(q0)) λ−→ H1(Ov, B) θ−→ H2(Ov, μ2) = 2Br(Ov). (3)

We note that θ([ξ]) is precisely the class of the Azumaya algebra involved in the descrip-
tion of G. Since the generic fiber of G is the spinor group of a quadratic form, the image 
of θ([ξ]) under the map Br(Ov) → Br(kv) is trivial, and then θ([ξ]) is itself trivial since 
the latter map is well-known to be injective (cf. [47, Ch. IV, Corollary 2.6]). The exact 
sequence (3) then yields that [ξ] lies in the image of λ, as required. �
2.2. The Grothendieck-Serre conjecture and its consequences

The Grothendieck-Serre conjecture predicts that for a reductive group scheme G over 
a regular local ring A with fraction field k, the map of nonabelian étale cohomology sets

H1(A,G) → H1(k, G) (where G = G ×A k)

has trivial kernel. Very significant progress on the conjecture was achieved in [23], where 
it was proved under the assumption that R contains an infinite field; the case where A
contains a finite field was treated in [52]. In the present paper, however, we will only need 
the case where A is a discrete valuation ring, which goes back to work of Y. Nisnevich 
[49], [50] (in fact, we will only need the case of a complete discrete valuation ring).

Theorem 2.4. Let G be a reductive group scheme over a discrete valuation ring A. Then 
the map of nonabelian étale cohomology sets

H1(A,G) → H1(k, G) (where G = G ×A k)



V.I. Chernousov et al. / Advances in Mathematics 438 (2024) 109437 11
is injective.

This is [49, Ch. 2, Theorem 7.1] and [50, Theorem 4.2] in the case where the residue 
field of A is perfect. The general case is treated in [30, Theorem 1]. This result has the 
following important consequence.

Proposition 2.5. [30, §6, Corollary 3] Let A be a discrete valuation ring, and k be its field 
of fractions. Then any reductive k-group has at most one reductive model over A.

For semisimple groups and perfect residue fields, this statement appears as Theorem 
5.1 in [50]; the general case is treated in [30, §6], where the argument combines The-
orem 2.4 with a general statement concerning the uniqueness of reductive models over 
regular semilocal rings — see [30, §6, Proposition 14] for the details. In the context of 
Definition 2.1, Proposition 2.5 yields the uniqueness up to isomorphism of the Ov-scheme 
of G, implying, in particular, that the reduction G(v) is well-defined.

2.3. A different approach to good reduction

The above definition of good reduction is most convenient for our purposes, in partic-
ular, for investigating connections with local-global principles. We note, however, that 
it is more traditional to define good reduction without passing to completions, i.e. by 
requiring the existence of a reductive group scheme G over the valuation ring Ok,v ⊂ k

with generic fiber G ×Ok,v
k isomorphic to G. Of course, our definition is less restrictive, 

so, a priori, we are considering a more general situation. For the sake of completeness, 
however, we will now briefly explain that for tori and absolutely almost simple groups, 
the two definitions are equivalent.

If a k-torus T has good reduction at v in the sense of Definition 2.1, then v is unramified 
in the minimal splitting field kT (cf. [48]). Let Õ denote the integral closure of Ok,v in kT . 
Then Õ/Ok,v is a Galois extension of rings. Let d = dim T , and let ξ ∈ Z1(kT /k, GLd(Z))
be a cocycle such that the corresponding twist ξ(Gd

m) of the d-dimensional k-split torus 
is k-isomorphic to T (here we identify the automorphism group Aut(Gd

m) with GLd(Z)
through the action on the character group X(Gd

m) = Zd). Then the Hopf k-algebra k[T ]
is obtained by Galois descent from kT [T ] = kT [Zd] for the action of Gal(kT /k) that 
coincides with the standard action on kT and is given by ξ on Zd. Since Õ/Ok,v is a 
Galois extension of rings, we can likewise carry out Galois descent on Õ[Zd] for the same 
action. This generates a Hopf Ok,v-algebra that yields a torus T over Ok,v with generic 
fiber T , verifying thereby the traditional definition.

Next, let G be an absolutely almost simple simply connected algebraic k-group that 
has good reduction at v in the sense of Definition 2.1, and let � be the minimal Galois 
extension of k over which G becomes an inner form of the split group G0. The fact 
that G has good reduction at v implies that the extension �/k is unramified at v. Let 
Õ denote the integral closure of Ok,v in �; then Õ/Ok,v is a Galois extension of rings. 
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Let G1 be a quasi-split inner k-form of G. Then G1 is isomorphic to the twist ξG0 for 
some ξ ∈ Z1(�/k, Σ), where Σ is the group of symmetries of the Dynkin diagram of G0, 
naturally considered as a subgroup of the automorphism group Aut(G0). Recall that 
G0 can be identified with the base change G ×Z k of the Chevalley group scheme G
over Z, and that the action of Σ comes from its action on G. The Hopf algebra k[G1]
is then obtained from �[G1] = �[G0] by Galois descent for the action of Gal(�/k) on 
�[G0] = � ⊗Z Z[G], which coincides with the standard action on � and the action via 
the homomorphism ξ : Gal(�/k) → Σ on Z[G]. This action leaves Õ[G0] := Õ ⊗Z Z[G]
invariant, and since Õ/Ok,v is a Galois extension of rings, we can carry out Galois descent 
in this situation. This yields a Hopf Ok,v-algebra that corresponds to a reductive group 
scheme G1 over Ok,v with generic fiber G1. This verifies that G1 has good reduction in 
the traditional sense. To prove this fact for G, we need a result of Harder, whose proof 
ultimately depends on weak approximation.

To give the statement, we first need to introduce some notations that are different 
from the ones used elsewhere in this paper. So, let A be a Dedekind domain with fraction 
field k. For each maximal ideal p ⊂ A, denote by k̂p the corresponding completion of k
with valuation ring Âp ⊂ k̂p. Given a flat group scheme G over A, we let G denote its 
generic fiber G×Ak, and set H1

A(k, G) to be the image of the natural map H1
fppf (A, G) →

H1
fppf (k, G) of flat cohomology. Furthermore, for ξ ∈ H1

fppf (k, G), we denote by ξp its 
image in H1

fppf (k̂p, G) under the restriction map.

Proposition 2.6. ([31, Lemma 4.1.3]) Let G be a flat group scheme of finite type over A
whose generic fiber G is a reductive k-group. Then

H1
A(k, G) = {ξ ∈ H1(k, G) | ξp ∈ Im(H1

fppf (Âp,G) → H1
fppf (k̂p, G))

for all maximal ideals p ⊂ A}.

Next, let k be a field equipped with a discrete valuation v, and set A to be the 
corresponding valuation ring Ok,v. Then it follows from the proposition that for any 
reductive group scheme G over Ok,v with generic fiber G, we have the following (note that 
since G is, by definition, smooth, its flat cohomology coincides with étale cohomology).

Corollary 2.7. The natural diagram of pointed sets

H1
ét(Ok,v,G)

ϕ

H1
ét(Ov,G)

ϕv

H1(k, G)
rv

H1(kv, G)

is cartesian.

Now let G1 be the adjoint group for the quasi-split group G1 considered above, and 
let G1 be a reductive Ok,v-scheme with generic fiber G1. By construction, G is an inner 
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twist of G1, so we can choose ξ ∈ Z1(k, G1) so that G = ξG1. We then consider the 
cartesian diagram from Corollary 2.7 with G and G replaced by G1 and G1, respectively, 
and keeping the notations for the maps. The fact that G has good reduction at v means 
that we may assume that rv([ξ]) ∈ im ϕv. We then conclude from the diagram that 
[ξ] = ϕ([ζ]) for some ζ ∈ Z1(Ok,v, G1). Then G := ζG1 is a reductive group scheme over 
Ok,v with generic fiber G, as required.

3. Generic tori, generic elements, and applications to weak commensurability

3.1. Generic tori

For an algebraic torus T defined over a field k, we denote by kT the minimal splitting 
field of T . It is well-known that the Galois group GT = Gal(kT /k) acts faithfully on the 
group of characters X(T ). Now, let G be a semisimple k-group, T a maximal k-torus of 
G, and Φ(G, T ) the corresponding root system. Then the action of GT on X(T ) permutes 
the roots, yielding a group homomorphism

θT : GT −→ Aut(Φ(G, T )) (⊂ GL(X(T ) ⊗Z Q)).

Since Φ(G, T ) generates a finite index subgroup of X(T ), this homomorphism is injective. 
We say that T is generic over k, or k-generic, if the image of θT contains the Weyl group 
W (G, T ). It is known that if k is an infinite finitely generated field, then every semisimple 
k-group G contains k-generic maximal k-tori. This can be established by first showing 
that G possesses a generic torus over a purely transcendental extension of k and then 
specializing the parameters in order to obtain a required generic torus defined over k — 
see Voskresenskīı [83, 4.2] and also [56]; we note that the specialization part is based on 
the fact that an infinite finitely generated field is Hilbertian — see [24, Theorem 13.4.2].

A different approach to the construction of generic tori was first developed in [57]
over fields of characteristic zero and then extended to fields of arbitrary characteristic in 
[61]. Among other things, this approach demonstrates that to ensure the genericity of a 
maximal k-torus, it is enough to prescribe its local behavior at finitely many specially 
chosen valuations. More precisely, assuming that char k = 0, one can choose r distinct 
primes p1, . . . , pr, where r is the number of conjugacy classes in the Weyl group of G, such 
that there exist embeddings ιi : k ↪→ Qpi

for i = 1, . . . , r. Furthermore, letting vi denote 
the pullback of the pi-adic valuation under ιi, for each i = 1, . . . , r, one can specify 
a maximal kvi

-torus Ti of G so that any maximal k-torus T of G that is conjugate 
to Ti by an element of G(kvi

) for all i = 1, . . . , r is necessarily k-generic. For a very 
similar statement in the case of positive characteristic, we refer the reader to [61]. This 
construction of generic tori yields the following stronger form of the existence theorem.

Theorem 3.1. (cf. [59, Theorem 3.1], [61]) Let G be a semisimple algebraic group over an 
infinite finitely generated field k. For any finitely generated extension � of k, the group 
G contains a maximal k-torus that is generic over �.
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In connection with this local-global construction, we would like to recall the following 
approximation statement for maximal tori and derive one consequence needed for our 
purposes.

Lemma 3.2. Let G be a reductive algebraic group over a field k, and let V be a finite set 
of discrete valuations of k. Suppose that for each v ∈ V , we are given a maximal kv-torus 
Tv of G ×k kv. Then there exists a maximal k-torus T of G that is conjugate to Tv by 
an element of G(kv) for all v ∈ V .

This is Corollary 3 in [54, §7.2]; the proof uses the fact that the variety of maximal 
tori is rational over k.

Corollary 3.3. Let G be a semisimple algebraic group over a field k, and let v be a discrete 
valuation of k. If G′ ∈ genk(G), then G′ ×k kv ∈ genkv

(G ×k kv).

Indeed, the lemma implies that every maximal kv-torus of G ×k kv (resp., of G′ ×k kv) 
is kv-isomorphic to a maximal k-torus of G (resp., of G′), and our claim immediately 
follows from the definitions.

Proposition 3.4. Let G1 and G2 be absolutely almost simple algebraic groups over a 
finitely generated field k, and let �i be the minimal Galois extension of k over which 
Gi becomes an inner form of the split group. Assume that G1 and G2 have the same 
isogeny classes of maximal k-tori. Then

(i) either G1 and G2 are of the same Killing-Cartan type, or one of them is of type B�

and the other is of type C� for some � � 3;
(ii) �1 = �2, and consequently, if the groups G1 and G2 are of the same Killing-Cartan 

type and are both either simply connected or adjoint, then they are inner twists of 
one another.

Proof. These statements were proved in the context of the analysis of weakly commen-
surable Zariski-dense subgroups in [58] and [60, §5] — see also Theorem 3.8 below. So, 
we will just briefly outline the argument in our present context of absolutely almost 
simple algebraic groups with the same tori. Set � = �1�2. Using Theorem 3.1, we can 
find a maximal k-torus T1 of G1 which is generic over �. By our assumption, there exist 
a maximal k-torus T2 of G2 and a k-defined isogeny ν : T1 → T2. We then have the 
following commutative diagram
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GL(X(T1) ⊗Z Q)

Gal(ksep/k)

θT1

θT2

GL(X(T2) ⊗Z Q),

ν̃

where ksep is a fixed separable closure of k, and ν̃ is the isomorphism induced by ν. We 
note that for any field extension F of k contained in ksep, the map ν̃ gives an isomorphism 
between the images of Gal(ksep/F ) under θT1 and θT2 , hence

|θT1(Gal(ksep/F ))| = |θT2(Gal(ksep/F ))|. (4)

Since both G1 and G2 are inner forms over �, by [58, Lemma 4.1] we have

θTi
(Gal(ksep/�)) ⊂ W (Gi, Ti) for i = 1, 2.

Combining this with the fact that T1 was chosen to be generic over �, we see that actually

θT1(Gal(ksep/�)) = W (G1, T1). (5)

Thus (4) with F = � yields the inequality |W (G1, T1)| � |W (G2, T2)|. Starting now with 
a maximal k-torus T ′

2 of G2 that is generic over � and considering a maximal k-torus 
T ′

1 of G1 that is k-isogenous to T ′
2, we similarly obtain the inequality |W (G2, T ′

2)| �
|W (G1, T ′

1)|. Since |W (Gi, Ti)| = |W (Gi, T ′
i )| for i = 1, 2, we conclude that

|W (G1, T1)| = |W (G2, T2)|. (6)

This already yields assertion (i) as the type of a reduced irreducible root system is 
uniquely determined by the order of the corresponding Weyl group except for the ambi-
guity between types B� and C� for � � 3. In addition, (6) also implies that

θT2(Gal(ksep/�)) = W (G2, T2). (7)

Now assume that �2 �⊂ �1, i.e. �1 � �. Since G1 is an inner form already over �1, we 
conclude from (5) that

θT1(Gal(ksep/�1)) = W (G1, T1).

On the other hand, it follows from (7) that θT2(Gal(ksep/�1)) contains W (G2, T2) but 
is strictly bigger as G2 is not an inner form over �1. In view of (6), this contradicts (4)
with F = �1. Thus, �2 ⊂ �1, and by symmetry we conclude that �1 = �2, as required. It 
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is well-known that for absolutely almost simple simply connected or adjoint groups, this 
fact implies that the groups are inner twists of one another. �
Corollary 3.5. Let G be an absolutely almost simple algebraic group over a finitely gen-
erated field k. Then gen+

k (G) = genk(G).

Proof. Let G′ ∈ gen+
k (G). Then according to Proposition 3.4, the group G′ is an inner 

twist of G, i.e. G′ ∈ genk(G). �
3.2. Generic elements

Let G be a (connected) absolutely almost simple algebraic group over a field k. A 
regular semisimple element γ ∈ G(k) of infinite order is called k-generic if the k-torus 
T = CG(γ)◦ (connected component of the centralizer) is k-generic. The following result 
yields the existence of generic elements in Zariski-dense subsemigroups under one natural 
assumption.

Theorem 3.6. ([61, Theorem 2]) Let G be an absolutely almost simple algebraic group 
over a finitely generated field k, and let Γ ⊂ G(k) be a Zariski-dense subsemigroup that 
contains an element of infinite order.3 Then Γ contains a regular semisimple element 
γ ∈ Γ of infinite order that is k-generic.

In characteristic zero, the existence of generic elements of infinite order in an arbitrary 
Zariski-dense subgroup was established already in [57] for any semisimple G. The case of 
positive characteristic (particularly of characteristics 2 and 3) requires a more delicate 
argument, which was given in [61] assuming G to be absolutely almost simple. We will 
also need the following refined version of Theorem 3.6 over fields of characteristic zero.

Theorem 3.7. (cf. [59, Theorem 3.4]) Let G be a connected absolutely almost simple 
algebraic group over a finitely generated field k of characteristic zero, v be a discrete 
valuation of k such that the completion kv is locally compact, and T (v) be a maximal 
kv-torus of G. Given a finitely generated Zariski-dense subgroup Γ ⊂ G(k) whose closure 
in G(kv) for the v-adic topology is open, there exists a regular semisimple element γ ∈ Γ
of infinite order such that the corresponding torus T = CG(γ)◦ is generic over k and is 
conjugate to T (v) by an element of G(kv).

3.3. Weak commensurability

(Cf. [58]) Let γ1 ∈ GLn1(F ) and γ2 ∈ GLn2(F ) be two semisimple matrices over an 
infinite field F with respective eigenvalues

3 We recall that any Zariski-dense subgroup Γ ⊂ G(k), where G is a semisimple group over a field k of 
characteristic zero, automatically contains an element of infinite order.
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λ1, . . . , λn1 and μ1, . . . , μn2

(in an algebraic closure F ). We say that γ1 and γ2 are weakly commensurable if there 
exist integers a1, . . . , an1 and b1, . . . , bn2 such that

λa1
1 · · · λ

an1
n1 = μb1

1 · · · μ
bn2
n2 �= 1.

Next, let G1 ⊂ GLn1 and G2 ⊂ GLn2 be two reductive algebraic F -groups, and let 
Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) be Zariski-dense subgroups that contain elements of 
infinite order. We say that Γ1 and Γ2 are weakly commensurable if every semisimple 
element γ1 ∈ Γ1 of infinite order is weakly commensurable to some semisimple element 
γ2 ∈ Γ2 of infinite order, and vice versa. It is easy to see that this relation does not 
depend on the choice of the matrix realizations of G1 and G2.

The following theorem summarizes the basic results about weakly commensurable 
subgroups.

Theorem 3.8. Let G1 and G2 be absolutely almost simple algebraic groups over a finitely 
generated field k, and let �i be the minimal Galois extension of k over which Gi becomes 
an inner form of the split group. Furthermore, let Γ1 ⊂ G1(k) and Γ2 ⊂ G2(k) be Zariski-
dense subgroups containing elements of infinite order. Assume that Γ1 and Γ2 are weakly 
commensurable. Then

(1) the groups G1 and G2 have the same order of the Weyl groups, or equivalently, they 
are either of the same type or one of them is of type B� and the other of type C� for 
some � ≥ 3;

(2) if char k = 0, then the trace fields of Γ1 and Γ2 coincide: kΓ1 = kΓ2 ;
(3) �1 = �2.

In characteristic zero, part (1) is Theorem 1 in [58]. Its proof in positive characteristic 
remains exactly the same due to the existence of generic elements in all characteristics 
(Theorem 3.6). The result in part (2) as stated is specific to characteristic zero; in fact, it 
is false in positive characteristic. Technically, part (3) was proved in [58, Theorem 6.3(2)]
only when k is a number field, so we will quickly sketch the general argument, which is 
similar to the proof of Proposition 3.4. We recall that a k-torus T is called k-irreducible
if it does not contain any proper k-defined subtori; the irreducibility of T is equivalent 
to the fact that the Galois group Gal(ksep/k) acts irreducibly on either of the Q-vector 
spaces X(T ) ⊗Z Q or X∗(T ) ⊗Z Q, where X(T ) and X∗(T ) are, respectively, the groups 
of characters and cocharacters of T , hence the terminology. We will need the following 
result.

Lemma 3.9. ([58, Lemma 3.6]) Let T be a k-irreducible torus. For any t ∈ T (k) of infinite 
order and any nonzero character χ ∈ X(T ), the Galois conjugates of λ = χ(t) generate 
the splitting field kT .



18 V.I. Chernousov et al. / Advances in Mathematics 438 (2024) 109437
Proof of Theorem 3.8(3). Set � = �1�2. It is enough to prove the inclusion �1 ⊂ �2 as 
the opposite inclusion is obtained by a symmetric argument. Assume the contrary, i.e. 
�1 �⊂ �2. Using Theorem 3.6, we can find a regular semisimple element γ1 ∈ Γ1 of infinite 
order which is generic over �. By our assumption, γ1 is weakly commensurable to some 
semisimple element γ2 ∈ Γ2 of infinite order. Let Ti be a maximal k-torus of Gi containing 
γi. Since T1 is �-generic, we have the inclusion θT1(Gal(ksep/�)) ⊃ W (G1, T1). On the 
other hand, the fact that G1 is an inner form of a split group over � implies the opposite 
inclusion (see [58, Lemma 4.1]). Thus,

θT1(Gal(ksep/�)) = W (G1, T1),

and in particular, [�T1 : �] = |W (G1, T1)|. The condition that γ1 and γ2 are weakly 
commensurable means that there exist characters χi ∈ X(Ti) for i = 1, 2 such that

λ := χ1(γ1) = χ2(γ2) �= 1.

It follows from Lemma 3.9 that the Galois conjugates of λ generate the splitting field 
kT1 , yielding, in particular, the inclusion kT1 ⊂ kT2 , hence the inequality

[�T2 : �] ≥ [�T1 : �] = |W (G1, T1)|. (8)

At the same time, again by [58, Lemma 4.1], we have the inclusion θT2(Gal(ksep/�)) ⊂
W (G2, T2), so

[�T2 : �] ≤ |W (G2, T2)|. (9)

However, by part (1) we have |W (G1, T1)| = |W (G2, T2)|, so comparing (8) and (9), we 
obtain that

θT2(Gal(ksep/�)) = W (G2, T2).

By our assumption � �= �2, so the last equality implies that

|θT2(Gal(ksep/�2))| > |W (G2, T2)|.

This, however, contradicts the inclusion θT2(Gal(ksep/�2)) ⊂ W (G2, T2), which again 
follows from [58, Lemma 4.1] as G2 is an inner form over �2. �

We conclude this section with the following two statements.

Proposition 3.10. (cf. [58, Isogeny Theorem 4.2]) Let G1 and G2 be two connected ab-
solutely almost simple algebraic groups over an infinite field k, and for i = 1, 2, let �i

be the minimal Galois extension of k over which Gi becomes an inner form of the split 
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group. Assume that G1 and G2 have the same order of the Weyl groups and that �1 = �2. 
Furthermore, let Ti be a maximal k-torus of Gi, and let γi ∈ Ti(k) be an element of 
infinite order. If T1 is k-generic and the elements γ1 and γ2 are weakly commensurable, 
then there exists a k-isogeny π : T1 → T2.

Corollary 3.11. Let G1 and G2 be absolutely almost simple algebraic groups over an in-
finite finitely generated field k, and let Γ1 ⊂ G1(k) and Γ2 ⊂ G2(k) be Zariski-dense 
subgroups containing elements of infinite order. Assume that Γ1 and Γ2 are weakly com-
mensurable. If a k-generic element γ1 ∈ Γ1 of infinite order is weakly commensurable 
to a semisimple element γ2 ∈ Γ2 and Ti is a maximal k-torus of Gi containing γi, then 
there exists a k-defined isogeny π : T1 → T2. In particular, the minimal splitting fields of 
T1 and T2 coincide: kT1 = kT2 , and hence the fact that T1 is k-generic implies that T2 is 
also k-generic.

Proof. According to Theorem 3.8, the fact that Γ1 and Γ2 are weakly commensurable 
implies that G1 and G2 have the same order of the Weyl group and that �1 = �2. Now, 
our assertion follows immediately from Proposition 3.10. �
4. One consequence of a result of Klyachko

We refer to [5, Ch. VI] for the terminology and notations pertaining to root systems. 
In particular, for a reduced irreducible root system Φ in a Q-vector space V , we let 
Φ∨ denote the dual root system, Q(Φ) the sublattice of V generated by the roots (root 
lattice), and P (Φ) the dual lattice of Q(Φ∨) (weight lattice); recall that Q(Φ) ⊂ P (Φ). 
Furthermore, we denote by W (Φ) the Weyl group of Φ, viewed as a subgroup of the 
automorphism group Aut(Φ). The following result plays an important role in this paper.

Theorem 4.1. Let Φ be a reduced irreducible root system. For any subgroup Γ ⊂ Aut(Φ)
containing W (Φ), we have H1(Γ, P (Φ)) = 0 if Φ is not of the type A1 or C�, and Z/2Z
otherwise.

This theorem is a particular case of the computations of H1(Γ, M) for any Γ as in the 
theorem and any Γ-invariant lattice Q(Φ) ⊂ M ⊂ P (Φ) carried out by A. Klyachko [37]. 
Unfortunately, the result in [37] is false as stated; however, the argument given therein 
does work in the situation described in the theorem. Since [37] is not readily available, 
we will reproduce the argument in Appendix 1, where we will also present the original 
statement and explain the mistake that invalidates the argument in the general case.

Corollary 4.2. Let G be a simple adjoint algebraic group over a field K, and T be a 
maximal K-torus of G which is K-generic. If the type of G is different from A1 and B�

(� ≥ 2), then for the group of cocharacters X∗(T ), we have H1(Gal(KT /K), X∗(T )) = 0.
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Proof. Let Φ = Φ(G, T ) be the root system of G. Since G is adjoint, the character group 
X(T ) coincides with Q(Φ). So, the dual group X∗(T ) of cocharacters can be identified 
with P (Φ∨). By our assumption, the type of Φ is different from A1 and B�, so the type of 
the dual system Φ∨ is different from A1 and C�. Furthermore, the fact that T is generic 
means that the Galois group Gal(KT /K) in its action on X∗(T ) contains the Weyl group 
W (Φ) — cf. §3.1. Our assertion now follows directly from Theorem 4.1. �

Since the proof of Theorem 4.1 is deferred to Appendix 1, we will now give an example 
that, on the one hand, shows a situation where the corollary can be checked by a direct 
computation, and on the other hand, demonstrates that the assertion can be false if the 
ambient group is not adjoint.

Example 4.3. Let L/K be a separable field extension of degree n > 2 such that the Galois 
group Gal(M/K) of the minimal Galois extension M of K that contains L is isomorphic 
to Sn. Set G = Gal(M/K) and H = Gal(M/L). Corresponding to the extension L/K, we 
have a maximal K-generic K-torus T = RL/K(Gm)/Gm of the adjoint group G = PGLn

of type An−1. The group of cocharacters X∗(T ) fits into the following exact sequence of 
G-modules

0 → Z −→ Z[G/H] −→ X∗(T ) → 0,

leading to the exact sequence in cohomology

0 = H1(G,Z[G/H]) −→ H1(G, X∗(T )) −→ H2(G,Z) α−→ H2(G,Z[G/H]) = H2(H,Z).

In terms of the natural identifications

H2(G,Z) � Hom(G,Q/Z) and H2(H,Z) � Hom(H,Q/Z),

the map α corresponds to the restriction map

Hom(G,Q/Z) −→ Hom(H,Q/Z).

It easily follows that α is injective for n > 2, and we obtain H1(G, X∗(T )) = 0, in 
agreement with Corollary 4.2.

On the other hand, the norm torus T̃ = R(1)
L/K(Gm) is a maximal K-generic K-torus in 

the simply connected group G̃ = SLn. The co-character group X∗(T̃ ) can be determined 
from the following exact sequence of G-modules

0 → X∗(T̃ ) −→ Z[G/H] δ−→ Z → 0,

where δ is the augmentation map. This induces the exact sequence
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Z[G/H]G δ−→ Z −→ H1(G, X∗(T̃ )) −→ H1(G,Z[G/H]) = H1(H,Z) = 0.

It follows that H1(G, X∗(T̃ )) � Z/nZ; in particular, it is nontrivial (including the case 
n = 2).

We will now discuss a consequence of Corollary 4.2 for unramified cohomology that 
will be needed in subsequent sections. Let K be a field complete with respect to a discrete 
valuation v. For any algebraic extension L/K, we let OL denote the valuation ring of the 
unique extension of v to L. We also denote by Kur the maximal unramified extension of 
K. Suppose now that T is a K-torus whose minimal splitting field L = KT is unramified 
over K. It follows from Hilbert’s Theorem 90 and the inflation-restriction sequence that

H1(K, T ) = H1(Kur/K, T ) = H1(L/K, T ),

and one also shows that

H1(Kur/K, T (OKur)) = H1(L/K, T (OL)).

The subgroup of unramified cocycles H1(L/K, T ){v} ⊂ H1(L/K, T ) is defined as the 
image of the natural homomorphism H1(L/K, T (OL)) → H1(L/K, T ).

Proposition 4.4. Let T be a maximal K-torus of an absolutely simple adjoint algebraic 
K-group G of type different from A1 and B�. If T is K-generic with unramified minimal 
splitting field L = KT , then H1(L/K, T ) = H1(L/K, T ){v}.

Proof. We will view cocharacters of T as 1-parameter subgroups Gm → T . Then the 
map

X∗(T ) ⊗Z L× → T (L), χ ⊗ a �→ χ(a),

is an isomorphism of Gal(L/K)-modules. Furthermore, if π ∈ K is a uniformizer, then 
since L/K is unramified, π remains a uniformizer in L, and therefore we have a decom-
position of Gal(L/K)-modules

L× = 〈π〉 × U , where U = (OL)×.

It follows that

T (L) � X∗(T ) × T (OL)

as X∗(T ) ⊗ U � T (OL). In view of our assumptions on T , we have H1(L/K, X∗(T )) = 0
by Corollary 4.2, and the required fact follows. �
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Example 4.5. Let �/k be a finite separable extension of degree n such that the minimal 
Galois extension m of k containing � has Galois group Sn over k. Set K = k((x)) and 
L = �((x)). Then the norm torus T = R(1)

L/K(Gm) is a maximal K-torus in the simply 
connected group G = SLn. Furthermore, this torus is K-generic and its splitting field 
is unramified over K (with respect to the standard valuation v on the field of Laurent 
power series). We have

H1(K, T ) = K×/NL/K(L×) = k×/N�/k(�×) × 〈x〉/〈xn〉.

At the same time, the unramified part H1(K, T )v is easily seen to be k×/N�/k(�×). Thus, 
in this case, H1(K, T ) �= H1(K, T ){v}. So, the assertion of Proposition 4.4 may fail if the 
ambient group is not adjoint.

5. Maximal tori with unramified splitting fields

Let K be a field that is complete with respect to a discrete valuation v, with valuation 
ring O and residue field k. We also fix a uniformizer π ∈ K. The goal of this section is 
to establish the following result, which may be known to some experts, but which does 
not seem to have been recorded in the literature.

Theorem 5.1. Let G be a reductive algebraic K-group. Assume that G has good reduction 
at v, i.e. there exists a reductive group scheme G over O with generic fiber G. Then given 
a maximal K-torus S of G whose splitting field KS is unramified over K, there exists a 
maximal torus S′ of G such that for its generic fiber S′, there exists h ∈ G(Kur) satisfying 
S′ = hSh−1 and the isomorphism ϕ : S → S′, x �→ hxh−1, is defined over K.

We begin by recalling the well-known parametrization of the conjugacy classes of max-
imal tori in terms of Galois cohomology. So, let G be a (connected) reductive algebraic 
group over an arbitrary field K. Fix a maximal K-torus T of G, and let N = NG(T ) de-
note its normalizer in G. Furthermore, let W = N/T denote the Weyl group, θ : N → W

the corresponding quotient map, and θ1 : H1(K, N) → H1(K, W ) the induced map on 
Galois cohomology. Given any other maximal K-torus S, we choose g ∈ G(Ksep) so that 
S = gTg−1. Then for any σ ∈ Gal(Ksep/K), the element ξ(σ) := g−1 · σ(g) belongs to 
N(Ksep), and the correspondence σ �→ ξ(σ) is a 1-cocycle with values in N(Ksep) whose 
cohomology class [ξ] ∈ H1(K, N) is independent of the choice of the conjugating element 
g. Furthermore, the correspondence

S �→ [ξ]

sets up a bijection between the G(K)-conjugacy classes of maximal K-tori of G and the 
elements of ker(H1(K, N) → H1(K, G)). (More generally, if T splits over an extension 
L/K, then the above correspondence sets up a bijection between the G(K)-conjugacy 
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classes of maximal K-tori of G that split over L and the elements of ker(H1(L/K, N) →
H1(L/K, G)).) We will need the following version of this fact.

Lemma 5.2. Let S1 and S2 be two maximal K-tori of G, and let [ξ1], [ξ2] ∈ ker(H1(K, N)
→ H1(K, G)) be the corresponding cohomology classes. Then θ1([ξ1]) = θ1([ξ2]) if and 
only if there exists h ∈ G(Ksep) such that S2 = hS1h−1 and the isomorphism ϕ : S1 →
S2, x �→ hxh−1, is defined over K.

Proof. Clearly, ϕ−1 ◦ σ(ϕ) : S1 → S1 is given by x �→ (h−1σ(h))x(h−1σ(h))−1, and 
therefore ϕ is K-defined if and only if s(σ) := h−1σ(h) ∈ S1 for all σ ∈ Gal(Ksep/K).

⇐) Let g1 ∈ G(Ksep) be such that S1 = g1Tg−1
1 . Then g2 = hg1 satisfies S2 = g2Tg−1

2 , 
and the cocycles ξi(σ) = g−1

i σ(gi), i = 1, 2, corresponding to S1 and S2, are related by

ξ2(σ) = g−1
1 s(σ)σ(g1) = (g−1

1 s(σ)g1)ξ1(σ).

Since g−1
1 s(σ)g1 ∈ T , we have θ(ξ1(σ)) = θ(ξ2(σ)) for all σ, and therefore θ1([ξ1]) =

θ1([ξ2]).
⇒) Changing ξ2 to an equivalent cocycle (which amounts to a different choice of g2

for which S2 = g2Tg−1
2 ), we may assume that the elements ξi(σ) = g−1

i σ(gi), i = 1, 2, 
satisfy θ(ξ1(σ)) = θ(ξ2(σ)), i.e.

ξ2(σ) = ξ1(σ)t(σ) with t(σ) ∈ T,

for all σ ∈ Gal(Ksep/K). Set h = g2g−1
1 . It is enough to show that h−1σ(h) ∈ S1 for all 

σ. We have

h−1σ(h) = g1ξ2(σ)σ(g1)−1 = g1(ξ1(σ)t(σ))σ(g1)−1

= (g1ξ1(σ)σ(g1)−1) · (σ(g1)t(σ)σ(g1)−1) =

= σ(g1t(σ)g−1
1 ) ∈ S1(Ksep),

as required. �
Beginning the proof of Theorem 5.1, we pick a maximal torus T of G (cf. [22, Exp. IX, 

7.3]); then its generic fiber T is a maximal K-torus of G whose splitting field KT is 
unramified over K. Let N = NG(T ) and N = NG(T) be the corresponding normalizers. 
We denote by Our the valuation ring of the maximal unramified extension Kur. Then 
the Weyl group W = N/T can be identified with

N(Kur)/T (Kur) = N(Our)/T(Our). (10)

Since by assumption the torus S splits over Kur, it corresponds to some class [ξ] ∈
ker(H1(Kur/K, N) → H1(Kur/K, G)). Since the elements of ker(H1(Kur/K, N(Our)) →
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H1(Kur/K, G(Our)) correspond to the maximal tori of G, it follows from Lemma 5.2 that 
it is enough to construct a class [ξ′] in this set that satisfies θ1([ξ]) = θ1([ξ′]).

Lemma 5.3. There exists a cocycle ξ′ ∈ Z1(Kur/K, N(Our)) such that

(1) θ1([ξ]) = θ1([ξ′]);
(2) there exists n ≥ 1 such that for K′ = K( n

√
π), the image of [ξ′] in H1((K′)ur/K′, G)

is trivial.

We will now assume the lemma and complete the proof of Theorem 5.1. In view of 
the validity of the Grothendieck-Serre conjecture over discrete valuation rings (cf. §2.2), 
the image of [ξ′] is trivial in H1((K′)ur/K′, G(O′ur)), where O′ur is the valuation ring of 
(K′)ur. We note that K and K′ have the same residue field k, and that the residue of ξ′ is 
the trivial cocycle with values in G(ksep), where G is the reduction of G. Applying Hensel’s 
Lemma, we conclude that the class [ξ′] is trivial in H1(Kur/K, G(Our)), as required.

Proof of Lemma 5.3. Using (10), for each σ ∈ Gal(Kur/K) we can pick n(σ) ∈ N(Our)
so that θ(ξ(σ)) = θ(n(σ)), i.e.

ξ(σ) = n(σ)t(σ) with t(σ) ∈ T (Kur). (11)

As in the proof of Proposition 4.4, we have a canonical isomorphism of modules over 
Γ = Gal(Kur/K):

X∗(T ) ⊗Z (Kur)× → T (Kur), χ ⊗ a �→ χ(a).

Furthermore, we have the following direct product decomposition of Γ-modules:

(Kur)× = U × 〈π〉,

where U = (Our)× is the group of units in Kur. Now, set

A := X∗(T ) ⊗Z U � T (Our) ⊂ T (Kur) and B := X∗(T ) ⊗Z 〈π〉 ⊂ T (Kur),

noting that A and B are invariant under the action of Γ as well as under conjugation by 
elements of N(Kur) and that

T (Kur) = A × B as Γ-modules.

So, we can write t(σ) in (11) as

t(σ) = a(σ)b(σ) with a(σ) ∈ A, b(σ) ∈ B.
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Set ξ′(σ) = n(σ)a(σ) ∈ N(Our). Using the cocycle condition for ξ in conjunction with 
the fact that ξ(σ) = ξ′(σ)b(σ), we obtain the following relation:

(ξ′(σ) · σ(ξ′(τ)))−1 · ξ′(στ) = (σ(n(τ))−1 · b(σ) · σ(n(τ))) · σ(b(τ)) · b(στ)−1.

Clearly, the left-hand side belongs to N(Our), and the right-hand side to B. It follows 
that the left-hand side is actually in A, hence both sides are equal to 1. In other words, 
ξ′ is a cocycle that satisfies θ1([ξ]) = θ1([ξ′]). Furthermore, we have

b(στ) = ((σ(n(τ)))−1b(σ)σ(n(τ))) · σ(b(τ)).

Conjugating this relation by ξ(στ) and using the fact that ξ is a cocycle and that 
ξ(σ)tξ(σ)−1 = n(σ)tn(σ)−1 for t ∈ T (Kur), we see that ν(σ) = n(σ)b(σ)n(σ)−1 defines 
a Galois cocycle with values in ξT (Kur), where ξT denotes the twist of T by ξ. Let L
be the minimal splitting field of ξT (which by construction is unramified over K), and 
let n = [L : K]. Set K ′ = K( n

√
π). We claim that the image of [ν] ∈ H1(Kur/K, ξT )

in H1(KurK′/K′, ξT ) is trivial. Indeed, it follows from Hilbert’s Theorem 90 that every 
element in the latter group is annihilated by multiplication by n. Now, the cocycle ν has 
values in

ξB := X∗(ξT ) ⊗Z 〈π〉 ⊂ ξT (L).

After base change from K to K′, we can consider a similar subgroup

ξB′ = X∗(ξT ) ⊗Z 〈π1/n〉 ⊂ ξT (LK′).

Since every element of ξB can be uniquely divided by n in ξB′, there is a cocycle ν′

with values in ξB′ ⊂ ξT (LK′) such that ν = n · ν′. But then it follows from the remark 
above that the image of the class [ν] in H1(KurK′/K′, ξT ) is trivial. This means that 
there exists s ∈ ξT (LK′) such that

n(σ)b(σ)n(σ)−1 = s−1 · (n(σ)σ(s)n(σ)−1).

Then b(σ) = (n(σ)−1s−1n(σ)) · σ(s), which implies that

ξ(σ) = s−1 · ξ′(σ) · σ(s),

for all σ ∈ Gal(KurK′/K′). This means that the classes [ξ] and [ξ′] are mapped to the 
same element in H1(KurK′/K′, G), and therefore the image of [ξ′] is in fact trivial, as 
required. �
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6. Proof of Theorem 1.1

Theorem 1.1 is an easy consequence of the following result.

Theorem 6.1. Let K be a field complete with respect to a discrete valuation v such that 
the residue field k is finitely generated, and let G be an absolutely almost simple K-group 
that has good reduction at v. Assume that char k �= 2 if G is of type B� (� ≥ 2). Then 
any G′ ∈ genK(G) also has good reduction at v.

For the proof, we will consider separately the two cases where the type of G is dif-
ferent from A1 and B� (� ≥ 2) and where it is one of those types. In each case, we will 
characterize the existence of good reduction in terms of the presence of maximal tori 
with very specific properties — see Theorems 6.2 and 6.6. These characterizations will 
also be used in §9 for the analysis of weakly commensurable Zariski-dense subgroups. 
We begin with the following sufficient condition for good reduction for types different 
from A1 and B� (� ≥ 2).

Theorem 6.2. Let K be a field complete with respect to a discrete valuation v, and let G be 
an absolutely almost simple algebraic K-group of type different from A1 and B� (� ≥ 2). 
Assume that G contains a maximal K-torus T which is K-generic and whose minimal 
splitting field KT is unramified over K. Then G has good reduction at v.

Proof. Let G0 be the quasi-split inner form of G, and let L be the minimal Galois 
extension of K over which G0 becomes split. Being a subextension of KT /K, the extension 
L/K is unramified, and therefore G0 and the corresponding adjoint group G0 have good 
reduction (cf. [34, Corollary 7.9.4]). Let G0 be the corresponding model for G0 over the 
valuation ring O of K. Now, let ρ : G → G be the isogeny onto the adjoint group, and 
T = ρ(T ). It follows from Steinberg’s Theorem (cf. [54, Proposition 6.19], [4, 8.6]) that 
there exist an embedding ι : T ↪→ G0 and a 1-cocycle ξ ∈ Z1(K, T ) such that for the 
image ξ̄ of ξ under the natural map Z1(K, T ) → Z1(K, G0), the twisted group ξ̄G0 is 
K-isomorphic to G. Since KT /K is unramified, according to Theorem 5.1, there exist 
a maximal torus S of G0 and an element h ∈ G0(Ksep) such that the generic fiber S

satisfies S = hTh−1 and the morphism ϕ : T → S, x �→ hxh−1, is defined over K; recall 
that the latter is equivalent to the fact that s(σ) := h−1 · σ(h) lies in T (Ksep) for all 
σ ∈ Gal(Ksep/K). Let ξ′ be the image of ξ under the map Z1(K, T ) → Z1(K, S) induced 
by ϕ. We have

ξ(σ) = h−1ξ′(σ)h = h−1(ξ′(σ) · (hσ(h)−1))σ(h). (12)

Next, the equation

ζ(σ) := ξ′(σ) · (hσ(h)−1) = ξ′(σ) · (hs(σ)−1h−1) = h(ξ(σ) · s(σ)−1)h−1,
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defines a cocycle ζ ∈ Z1(K, S), and we let ζ̄ denote its image under the map Z1(K, S) →
Z1(K, G0). It follows from (12) that ξ̄ = ζ̄, and hence G � ξ̄G0 � ζ̄G0. So, it remains to 
show that ζ̄G0 has a reductive model over O. Since ϕ is defined over K, we have

KS = KT = KT ,

which is unramified over K. In addition, S is generic over K, so by Proposition 4.4

H1(K, S) = H1(KS/K, S) = H1(KS/K, U),

where U = S(OKS
) and OKS

is the valuation ring of KS. Thus, replacing ζ with an equiv-
alent cocycle, we may assume that it has values in U . Obviously, the inner automorphisms 
corresponding to the elements of U act on G0×OOKS

, and then the corresponding twisted 
O-scheme G = ζ̄G0 is a required reductive model for ζ̄G0 � G. �
Proposition 6.3. Let K be a field complete with respect to a discrete valuation v and 
assume that the residue field k = K(v) is infinite and finitely generated. If G is an 
absolutely almost simple algebraic K-group that has good reduction at v, then G possesses 
a maximal K-torus T that is K-generic and whose minimal splitting field KT is unramified 
over K.

Proof. Let G be a model of G over O. Then the reduction G is an absolutely almost 
simple algebraic k-group of the same type as G. Since k is infinite and finitely generated, 
one can find a maximal k-torus T of G that is generic over k (cf. Theorem 3.1). Let T be 
a lift of T to G (cf. [20, Corollary B.3.5]). Then the generic fiber T is a maximal K-torus 
of G that is K-generic and whose splitting field KT is unramified over K. �
Corollary 6.4. Let G be an absolutely almost simple algebraic K-group of type different 
from A1 and B�. Assume that the residue field k is finitely generated and G has good 
reduction at v. Then any G′ ∈ genK(G) has good reduction at v.

Proof. We first consider the case where k is a finite field. In this case, it is well-known 
that the fact that G has good reduction implies that G is quasi-split over K. Let G′ ∈
genK(G). Then clearly

rkK G′ = rkK G. (13)

On the other hand, according to Tits’ classification [79], the group G′ is quasi-split if 
and only if all vertices in the Tits index are distinguished. Since G′ is an inner twist 
of G, this is equivalent to (13). Thus, G′ is K-quasi-split, hence K-isomorphic to G. In 
particular, it has good reduction at v.

Next, suppose that k is infinite and finitely generated. In this case, our claim fol-
lows directly from the above results. Indeed, according to Proposition 6.3, the group G
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contains a maximal K-torus T that is generic over K and whose splitting field KT is 
unramified over K. Since G′ ∈ genK(G), it contains a maximal K-torus T ′ isomorphic to 
T . Then of course KT ′ = KT is unramified over K. Furthermore, the assumption that G′

is an inner twist of G implies that the subgroups θT (Gal(KT /K)) ⊂ Aut(Φ(G, T )) and 
θT ′(Gal(KT ′/K)) ⊂ Aut(Φ(G, T ′)) have isomorphic images in the groups of symmetries 
of the corresponding Dynkin diagrams. Then the fact that T is K-generic implies the 
same for T ′. Hence, G′ has good reduction by Theorem 6.2. �

We now turn to the second case where the type of G is either A1 or B� (� ≥ 2). Let 
us first show that Theorem 6.2 may be false in this case.

Example 6.5. Let K = Q( (x) ), equipped with the standard valuation v.

(a) Let D be the quaternion algebra 
(

−1, x

K

)
and G = SL1,D. Set L = Q(

√
−1)( (x) ), 

and let T = R(1)
L/K(Gm) be the corresponding maximal K-torus of G. Then T is K-generic 

and splits over the unramified extension L/K, but the quaternion algebra D ramifies at 
v, hence G does not have good reduction according to Example 2.2.

(b) Let � ≥ 2 and K be as above. Set

q0 = x2
1 + · · · + x2

2�−1 + 2x2
2� and q = q0 + xx2

2�+1,

and let

H = Spin2�(q0) ⊂ Spin2�+1(q) = G.

Since H corresponds to a quadratic form defined over Q, it has good reduction and 
contains a K-generic maximal torus T that splits over an extension of the form LK
for some finite extension L of Q, which is obviously unramified. Now, T is also a 
maximal torus in G (because G and H have the same rank �), and we claim that it 
remains K-generic in G. Indeed, the group H is of type D�, the group G is of type B�, 
hence |W (G, T )| = 2 · |W (H, T )|. Since T is generic in H, the image of Gal(KT /K) in 
Aut(Φ(H, T )) contains W (H, T ). Furthermore, the (signed) discriminant of q0 is not a 
square, so the image is not entirely contained in W (H, T ) (cf. [58, Lemma 4.1]). It follows 
that the image is W (G, T ), making T generic in G. On the other hand, both the first and 
the second residues (cf. [40, Ch. VI]) of q are nontrivial, and therefore no scalar multiple 
of q can be equivalent to a diagonal quadratic form with all coefficients being units. So, 
G does not have good reduction at v by Example 2.3.

For types A1 and B� we have the following modified condition for good reduction.

Theorem 6.6. Let K be a field that is complete with respect to a discrete valuation v with 
residue field k. Suppose G is an absolutely almost simple algebraic K-group of type either 
A1 or B� (� ≥ 2), and assume that char k �= 2 if G is of type B.
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(1) If G contains two maximal K-tori T1 and T2 that are K-generic and whose splitting 
fields KTi

are unramified over K and satisfy KT1 ∩ KT2 = K, then G has good 
reduction at v.

(2) Conversely, if k is infinite and finitely generated, and G has good reduction at v, then 
G contains two maximal K-tori T1 and T2 that are K-generic and whose splitting 
fields KT1 and KT2 are unramified over K and satisfy KT1 ∩ KT2 = K.

Proof. Without loss of generality, we may assume that G is simply connected.
(1): The argument for type A1 is rather simple. Indeed, here G = SL1,D, where 

D is a quaternion algebra over K, and we need to show that D is unramified at v. 
Furthermore, we have Ti = R(1)

Li/K(Gm), where Li = KTi
is a quadratic subfield of D, 

that, by assumption, is unramified. Now, if D were ramified at v, then the residue algebra 
D would be a quadratic extension of k. Then

D = L1 = L2.

This would imply that L1 = L2, contradicting the fact that L1 ∩ L2 = K. Thus, D is 
unramified, as required.

The argument for type B� is similar, but more technical. Here G = Spinn(q), where 
n = 2� + 1 and q is a nondegenerate quadratic form on Kn. We will use the standard 
action of G on the n-dimensional vector space. It is well-known that every maximal K-
torus T of G fixes an anisotropic vector a ∈ Kn, and hence lies in the stabilizer G(a), 
which can be identified with H = Spinn−1(q′), where q′ is the restriction of q to the 
orthogonal complement W = 〈a〉⊥; note that H is a group of type D�.

So, in our set-up, for each i = 1, 2, we can choose an anisotropic vector ai ∈ Kn

fixed by Ti, and let Hi = Spinn−1(qi), where qi is the restriction of q to the orthogonal 
complement Wi = 〈ai〉⊥. Then Ti is a maximal K-torus in Hi, which is K-generic in Hi

and has unramified splitting field. So, it follows from Theorem 6.2 for � ≥ 3 and from 
Lemma 6.7 below for � = 2 (we note that the order of the Weyl group for type B2 is 
8) that Hi has good reduction at v. According to Example 2.3, this means that there 
exist an element λi ∈ K× and a basis e(i)

1 , . . . , e(i)
n−1 of Wi such that in this basis, the 

quadratic form λiqi has the following presentation

u
(i)
1 x2

1 + · · · + u
(i)
n−1x2

n−1,

where u(i)
j are units in K for i = 1, 2 and j = 1, . . . , n − 1. Also, by scaling ai, we may 

assume that the values of v(λiq(ai)) are either 0 or 1. If it is 0 for at least one i ∈ {0, 1}, 
then G has good reduction at v (see Example 2.3). So, let us assume that the value is 1
for both i = 1, 2, i.e. λiq(ai) = πu

(i)
n where u(i)

n is a unit. Then

λiq = u
(i)
1 x2

1 + · · · + u
(i)
n−1x2

n−1 + πu(i)
n x2

n.

We have λ1q = (λ1λ−1
2 )(λ2q). So, taking determinants and evaluating v, we obtain
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1 ≡ nv(λ1λ−1
2 ) + 1(mod 2),

which, in view of the fact that n is odd, implies that v(λ1λ−1
2 ) is even. So, after scaling, 

we can actually assume that λ1λ−1
2 is a unit. Consequently, setting λ = λ1 and replacing 

q by λq, we may assume that

q = u
(i)
1 x2

1 + · · · + u
(i)
n−1x2

n−1 + πu(i)
n x2

n,

where u(i)
j are all units. Then the diagonal quadratic forms 〈u(i)

1 , . . . u
(i)
n−1〉 over the residue 

field k (where the bar denotes taking the residue in k) are both the so-called first residues 
of q (we note that the first and second residues were constructed by Springer assuming 
that the residue characteristic is �= 2). Since the first-residue is well-defined (see [40, Ch. 
VI]), we conclude that these residues are equivalent, and then by Hensel’s Lemma, the 
quadratic forms qi = u

(i)
1 x2

1 + · · · + u
(i)
n−1x2

n−1 for i = 1, 2 themselves are equivalent.
Let di be the (signed) discriminant of qi. Since Ti is generic in G, and the Weyl group 

of G contains the Weyl group of Hi (with respect to Ti) as a subgroup of index 2, we 
conclude that Hi is an outer form of a split group over K. Furthermore, the minimal 
Galois extension of K over which it becomes an inner form is K(

√
di). Since the forms 

q1 and q2 are equivalent, we conclude that

L := K(
√

d1) = K(
√

d2)

is a quadratic extension of K. However, L ⊂ KTi
for both i = 1, 2, contradicting the 

assumption that KT1 and KT2 are disjoint over K.
(2): Let G be the model of G over O with reduction G, which is an absolutely almost 

simple algebraic k-group of the same type as G. Since k is infinite and finitely generated, 
we can find a maximal k-torus T1 of G that is generic over k. Next, let T2 be a maximal 
k-torus of G that is generic over the splitting field kT1

of T1. Since the Dynkin diagrams 
of the types A1 and B� do not have nontrivial automorphisms, the degrees [kTi

: k] for 
i = 1, 2 are equal to the order w of the Weyl group. Besides, the degree [kT1

kT2
: kT1

]
also equals w. This implies that

kT1
∩ kT2

= k. (14)

Let T1 and T2 be the lifts of T1 and T2 to G, and let T1 and T2 be the corresponding 
generic fibers. Then T1 and T2 are maximal K-tori of G that are generic over K and 
whose splitting fields KTi

are unramified extensions of K with the residue fields kTi
for 

i = 1, 2. Then (14) implies that KT1 ∩ KT2 = K, as required. �
We will now prove the statement about good reduction of spinor groups of 4-

dimensional quadratic forms that was used in the above argument. We recall that given 
a nondegenerate quadratic form q over K of dimension four, the spinor group Spin4(q) is 
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isomorphic to G = RL/K(H), where L is a 2-dimensional étale K-algebra and H = SL1,D, 
where D is a central quaternion K-algebra.

Lemma 6.7. Let G be as above. If G possesses a maximal K-torus such that KT /K is an 
unramified extension of degree 8, then G has good reduction.

Proof. If L = K × K, then [KT : K] ≤ 4 for any K-torus T of G. Thus, in our situation, 
L/K is a quadratic field extension. It is enough to show that L/K is unramified and 
HL = H ×K L has good reduction. Indeed, if H is a reductive OL-model for HL, then 
G = ROL/OK(H) would be a reductive OK-model for G. Since L ⊂ KT , we immediately 
obtain that L/K is unramified. Furthermore,

G ×K L � HL × HL.

In terms of this L-isomorphism, let T ×K L � T1 × T2. We have [LT : L] = 4, which 
means that T1 and T2 are nonisomorphic L-tori of HL having unramified splitting fields. 
So, the fact that HL has good reduction follows from the first part of the proof of 
Theorem 6.6. �
Corollary 6.8. Let G be an absolutely almost simple algebraic K-group of type either A1
or B� that has good reduction at v. Assume that k is finitely generated and char k �= 2 if 
G is of type B. Then any G′ ∈ genK(G) also has good reduction at v.

Proof. As in the proof of Corollary 6.4, we consider two cases. First, if the residue field is 
finite, the fact that an absolutely almost K-group G of type A1 or B� has good reduction 
means that it actually splits over K. Then G′ also splits, and hence has good reduction. 
Next, suppose the residue field is infinite and finitely generated. Then by Theorem 6.6(2), 
the group G possesses two maximal K-tori T1 and T2 that are generic over K and whose 
splitting fields are unramified over K and satisfy KT1 ∩ KT2 = K. On the other hand, 
G′ contains maximal K-tori T ′

1 and T ′
2 that are K-isomorphic to T1 and T2, respectively. 

Clearly, T ′
1 and T ′

2 have properties analogous to those of T1 and T2, so G′ has good 
reduction by Theorem 6.6(1). �

Now, Theorem 6.1 follows from Corollaries 6.4 and 6.8. Furthermore, to prove the first 
assertion of Theorem 1.1, one needs to use Corollary 3.3 and then apply Theorem 6.1. To 
prove the second assertion, we let T be a maximal k(v)-torus of the reduction G(v). Let G
be the model of G ×k kv over Ov that yields the reduction G(v). Then according to [20, 
Corollary B.3.5], the torus T lifts to a maximal torus T of G; let T be the corresponding 
generic fiber, which is a maximal kv-torus of G ×k kv. As we already mentioned, G′ ∈
genkv

(G), so there exists a maximal kv-torus T ′ of G′ that is isomorphic to T . We have 
already established that G′ ×k kv has a model G′ over Ov, and using Theorem 5.1 we may 
assume that T ′ is the generic fiber of a torus T′ of G′. According to Proposition 2.5, the 
fact that T � T ′ over kv implies that T � T′ over Ov. Then the reduction T′ is a maximal 



32 V.I. Chernousov et al. / Advances in Mathematics 438 (2024) 109437
kv-torus of the reduction (G′)(v) that is isomorphic to T . A symmetric argument shows 
that every maximal kv-torus of (G′)(v) is isomorphic to a maximal kv-torus of G(v). Thus, 
(G′)(v) ∈ genkv

(G(v)).

Corollary 6.9. Let G be an absolutely almost simple algebraic group over an infinite 
finitely generated field k, and let V be a divisorial set of places of k. Assume that chark �=
2 if G is of type B. Then there exists a finite subset S ⊂ V such that every G′ ∈ genk(G)
has good reduction at all v ∈ V \ S.

Proof. First, we note that the residue field k(v) is finitely generated for all v ∈ V , so we 
can apply our previous results. Clearly, we can find a finite subset S ⊂ V such that G
has good reduction at all v ∈ V \ S. Besides, if G is of type B, then by our assumption 
char k �= 2 and we can include in S all v ∈ V such that v(2) �= 0. But then according to 
Theorem 1.1, every G′ ∈ genk(G) also has good reduction at all v ∈ V . �

This corollary shows that the truth of the Finiteness Conjecture for forms G with 
good reduction and all divisorial sets of places of the given finitely generated field k

would imply the finiteness of genk(G).

7. The behavior of the genus under a purely transcendental base change: proof of 
Theorem 1.3

In order to set the stage for the proof of Theorem 1.3, we would first like to present 
an analogous result for division algebras.

7.1. The genus of a division algebra

We recall that two finite-dimensional central division algebras D1 and D2 over a field 
K are said to have the same maximal subfields if they have the same degree n and satisfy 
the following property: a degree n extension P/K admits a K-embedding P ↪→ D1 if and 
only if it admits a K-embedding P ↪→ D2. Given a finite-dimensional central division 
algebra D over K, one defines its genus gen(D) as the set of classes [D′] ∈ Br(K) in 
the Brauer group corresponding to central division K-algebras D′ that have the same 
maximal subfields as D. This concept has been analyzed in detail in [13], [14], [17], [65], 
and other publications. Our goal in the present subsection is to prove the following.

Proposition 7.1. Let D be a central division algebra of degree n over a field k, and as-
sume that n is prime to char k. Set K = k(x). Then every element of gen(D ⊗k K) is 
represented by a division algebra of the form D′ ⊗k K, where D′ is a central division 
algebra over k with [D′] ∈ gen(D).

Proof. For any n that is prime to char k, we have the following exact sequence that goes 
back to Faddeev (cf. [25, Example 9.2]):
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0 → nBr(k) −→ nBr(K) ρ−→
⊕

p

Hom(Gal((K(p))sep/K(p)),Z/nZ),

where p runs through all monic irreducible polynomials in k[x], ρ is the direct sum of 
the corresponding residue maps

ρ(p) : nBr(K) −→ Hom(Gal((K(p))sep/K(p)),Z/nZ),

and K(p) = k[x]/(p(x)) is the residue field at p. Let Δ ∈ gen(D ⊗k K). Since the algebra 
D ⊗k K is unramified at all p, the latter implies that Δ is also unramified at all p (cf. 
[13], [65]), i.e. ρ([Δ]) = 0. So, it follows from the above exact sequence that Δ is of the 
form Δ = D′ ⊗k K for some central division k-algebra D′ of degree n. It remains to show 
that D′ ∈ gen(D). For this, we let v denote the discrete valuation of K corresponding 
to the polynomial p(x) = x; then the completion Kv is k( (x) ) and the residue field K(v)

is k. Since D′ ⊗k K ∈ gen(D ⊗k K), it follows from [65, Lemma 2.1] that the degree n
division algebras D = D ⊗k Kv and D′ = D′ ⊗k Kv have the same maximal subfields. 
Since D and D′ are division algebras, the valuation v extends to valuations w and w′

of these algebras, and we let D and D′ denote the corresponding residue algebras. A 
standard argument shows that the fact that D and D′ have the same maximal subfields 
implies that the residue algebras also have the same maximal subfields. Since D � D

and D′ � D′, we see that D′ ∈ gen(D), as required. �
Using the proposition repeatedly, we obtain a similar statement for the field of rational 

functions K = k(x1, . . . , xm) in any number of variables. Our next goal is to prove 
Theorem 1.3 that extends the proposition to absolutely almost simple algebraic groups.

7.2. Proof of Theorem 1.3

The argument relies on the following fundamental fact.

Theorem 7.2. (Raghunathan, Ramanathan [63]) Let G be a connected reductive algebraic 
group over a field k, and let A1

k = Spec k[x] be the affine line over k. Let B → A1
k be 

a principal G-bundle on A1
k such that the bundle B ×A1

k
A1

ksep on A1
ksep = Spec ksep[x], 

where ksep is a separable closure of k, is trivial. Then B is constant, i.e. there exists a 
principal G-bundle B0 → Spec k such that B = B0 ×Spec k A1

k.

An alternative proof of this theorem was given in [26]. Later in [12], the theorem was 
extended to reductive, but not necessarily connected, groups; see also [1] for a new proof 
over fields of characteristic zero that uses buildings. In cohomological language, the theo-
rem means that the natural map from H1(k, G) to Ker

(
Hét(A1

k, G) → Hét(A1
ksep , G)

)
is 

a surjection (in fact, a bijection). We will use this interpretation to prove the following.

Proposition 7.3. Let G be a semisimple algebraic group over a field k, let K = k(x), 
and let V be the set of discrete valuations of K associated with the monic irreducible 
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polynomials p(x) ∈ k[x]. If H is an inner K-form of G ×k K that has good reduction 
at all v ∈ V and satisfies H ×K ksep(x) � G ×k ksep(x), then H � H0 ×k K for some 
k-form H0 of G.

Proof. The k-group G is an inner twist of a quasi-split k-group G0. In terms of proving 
the proposition, we can replace G by G0, and hence assume that G itself is quasi-split. 
Let G be the corresponding adjoint group. Since G is quasi-split, there exists a k-defined 
finite subgroup Σ ⊂ Aut(G) such that Aut(G) = G � Σ. Let v ∈ V , and denote by Ov

the valuation ring of the completion Kv. Set G = G ×k Ov and G = G×k Ov. We say that 
a cohomology class in H1(K, G) is unramified at v ∈ V if its image under the restriction 
map H1(K, G) → H1(Kv, G) belongs to Im(H1

ét(Ov, G) → H1(Kv, G)).
Suppose now that H is an inner twist of G ×k K that has good reduction at all v ∈ V . 

Fix a cocycle ξ ∈ Z1(K, G) such that H = ξ(G ×k K). We will first show that

[ξ] ∈ Im βk, where βk : H1
ét(A1

k, G) → H1(K, G) (15)

is the map induced by passage to the generic point. According to Proposition 2.6, it is 
enough to show that [ξ] is unramified at all v ∈ V . So, fix v ∈ V . By our assumption, there 
exists a reductive group Ov-scheme H with generic fiber H. This scheme is necessarily 
an inner form of G, so we can find a cocycle ξ′ ∈ Z1

ét(Ov, G) such that H = ξ′G. Passing 
to the generic point, we obtain H ×K Kv � ξ′(G ×k Kv). This means that for the image 
ξv of ξ under the restriction map Z1(K, G) → Z1(Kv, G), the cohomology classes [ξv]
and [ξ′] have the same image in H1(Kv, Aut(G)). Thus, there exists g ∈ Aut(G)(Ksep

v )
such that ξv(σ) = gξ′(σ)σ(g)−1 for all σ ∈ Gal(Ksep

v /Kv). We can write g = hs with 
h ∈ G(Ksep

v ) and s ∈ Σ(Ksep
v ) = Σ(ksep), and then define ξ′′ ∈ Z1(Kv, G) by ξ′′(σ) :=

sξ′(σ)σ(s)−1. Clearly, [ξ′′] = [ξv] in H1(Kv, G), and by construction [ξ′′] lies in the image 
of H1

ét(Ov, G) → H1(Kv, G). Thus, [ξ] is unramified at v.
Now, using (15), pick [ζ] ∈ H1

ét(A1
k, G) such that [ξ] = βk([ζ]). To prove the proposi-

tion, it is enough to show that [ξ] is the image of some [ξ0] ∈ H1(k, G), as then one can 
take H0 = ξ0G. As we discussed above, this would follow from Theorem 7.2 if we could 
show that [ζ] ∈ Ker

(
H1

ét(A1
k, G) → H1

ét(A1
ksep , G)

)
. We have the following commutative 

diagram

H1
ét(A1

k, G) βk−−−−→ H1(K, G)

γ1

⏐⏐
 ⏐⏐
γ2

H1
ét(A1

ksep , G) βksep−−−−→ H1(ksep(x), G)

.

The fact that H ×K ksep(x) � G ×K ksep(x) means that [ξ] ∈ Ker(H1(K, G) →
H1(ksep(x), Aut(G)). Since G splits over ksep, the map H1(ksep(x), G) → H1(ksep(x),
Aut(G)) has trivial kernel, and therefore we conclude that actually [ξ] ∈ Ker γ2. So, it 
follows from the diagram that in order to show that [ζ] ∈ Ker γ1, it suffices to prove 
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that Ker βksep is trivial. According to [50], there is a bijection between Ker βksep and the 
double coset space

cl(G, ksep(x), V s) := G(A∞(V s))\G(A(V s))/G(ksep(x))

where V s is the set of discrete valuations of ksep(x) associated with the closed points of 
A1

ksep , with G(A(V s)) and G(A∞(V s)) denoting the group of rational adèles of G asso-
ciated with V s and its subgroup of integral adèles (cf. [17, §4]). Fix a maximal k-defined 
torus T of G. Then T splits over ksep and a standard argument using strong approxima-
tion for the opposite maximal unipotent subgroups associated with T (cf. [17]) shows that 
every double coset in cl(G, ksep(x), V s) has a representative in T (A(V s)). On the other 
hand, for the multiplicative group S = Gm, the double coset space cl(T, ksep(x), V s) can 
be identified with the Picard group of A1

ksep , which is trivial. Since T is ksep-split, we 
obtain that cl(T, ksep(x), V s) reduces to a single element. Thus, cl(G, ksep(x), V s) also 
reduces to a single element, and the injectivity of βksep follows. This completes the proof 
of the proposition. �

It is now easy to complete the proof of Theorem 1.3. Let H ∈ genK(G ×k K), where 
K = k(x). Since G ×k K has good reduction at all v ∈ V , we see from Theorem 1.1 that 
the same is true for H. Let T be any maximal k-torus of G. Then H has a maximal 
K-torus isomorphic to T ×k K, which splits over ksep(x). Thus, both G ×k K and H split 
over ksep(x), hence G ×k ksep(x) � H ×K ksep(x). Since H is an inner twist of G ×k K, we 
can apply Proposition 7.3 to conclude that H = H0 ×k K for some inner k-form H0 of G. 
Let v be the valuation of K associated with x. Then the reductions of G ×k K and H at v
coincide with G and H0, respectively. Consequently, Theorem 1.1 yields H0 ∈ genk(G). 
(In fact, applying this argument to all valuations, we see that H0 ×k � ∈ gen�(G ×k �)
for every finite simple extension �/k.)

8. Killing the genus by a purely transcendental extension

As in the previous section, we will first explain the phenomenon of “killing the genus” 
in the case of division algebras.

8.1. Killing the genus of a division algebra

It turns out that Proposition 7.1 can be significantly strengthened as follows.

Theorem 8.1. Let D be a central division algebra of degree n over a field k, and assume 
that n is prime to char k. Set K = k(x1, . . . , xn−1). Then gen(D ⊗k K) consists of 
(the Brauer classes of) central division K-algebras of the form D′ ⊗k K, where D′ is 
a central division k-algebra of degree n such that the classes [D] and [D′] generate the 
same subgroup of Br(k).
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We already know from Proposition 7.1 and the subsequent remark that every element 
of gen(D ⊗k K) is represented by a division algebra of the form D′ ⊗k K for some 
central division algebra D′ over k of degree n. In order to show that the classes [D] and 
[D′] generate the same subgroup of Br(k), we will eventually use Amitsur’s Theorem [2]. 
However, its application requires some preparation. We refer the reader to [74, Ch. 13]
for basic facts about Severi-Brauer varieties and their function fields.

Lemma 8.2. Let D be a central division algebra of degree n over a field k, and let FD

be the function field of the corresponding Severi-Brauer variety SB(D). Then there exist 
elements x1, . . . , xn−1 ∈ FD that are algebraically independent over k and such that 
FD/k(x1, . . . , xn−1) is an extension of degree n.

Proof. Let W ⊂ D be a k-subspace of dimension m. If we fix a k-basis w1, . . . , wm ∈ W , 
then there exists a homogeneous polynomial νW ∈ k[t1, . . . , tm] such that

νW (α1, . . . , αm) = NrdD/K(α1w1 + · · · + αmwm) for all α1, . . . , αm ∈ k.

Set ZW to be the subvariety of the projective space P (W ) defined by the equation 
νW = 0. It was shown by E. Matzri [44] that for a Zariski-dense set of subspaces W in 
the Grassmannian Gr(n +1, D), the variety ZW is absolutely irreducible and birationally 
k-isomorphic to SB(D). For the purpose of proving our lemma, we pick one such (n +1)-
dimensional subspace W ⊂ D and fix a basis w1, . . . , wn+1. Pick two distinct indices 
i, j ∈ {1, . . . , n + 1}, set

p(T ) = νW (t1, . . . , ti−1, T, ti+1, . . . , tj−1, 1, tj+1, . . . , tn+1),

and then re-denote the variables t1, . . . , ti−1, ti+1, . . . , tj−1, tj+1, . . . , tn+1 as x1, . . . , xn−1. 
Then FD is isomorphic to the extension of k(x1, . . . , xn−1) obtained by adjoining a root 
of p(T ). On the other hand, p(T ) is irreducible over k(x1, . . . , xn−1) and its leading term 
is NrdD/K(wi)T n, demonstrating that deg p = n and completing the argument. �
Proof of Theorem 8.1. As in the lemma, we denote by FD the function field of the Severi-
Brauer variety SB(D), and pick algebraically independent elements x1, . . . , xn−1 ∈ FD

so that FD is a degree n extension of K = k(x1, . . . , xn−1). According to Amitsur’s 
theorem [2], the kernel of the base change map Br(k) → Br(FD) coincides with the 
cyclic subgroup 〈[D]〉 ⊂ Br(k). In particular,

D ⊗k FD � Mn(FD) � (D ⊗k K) ⊗K FD.

Since [FD : K] = n, the latter means that FD is K-isomorphic to a maximal subfield of 
D ⊗k K. By our assumption, D ⊗k K and D′ ⊗k K have the same maximal subfields, so 
FD admits a K-embedding as a maximal subfield into D′ ⊗k K. It follows that
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D′ ⊗k FD � (D′ ⊗k K) ⊗K FD � Mn(FD).

Then Amitsur’s theorem yields the inclusion [D′] ∈ 〈[D]〉. A symmetric argument shows 
that [D] ∈ 〈[D′]〉, which completes the argument. �

Thus, no matter what the genus gen(D) is originally, after a suitable purely transcen-
dental base change K/k, the genus gen(D ⊗k K) becomes finite, and in fact minimal 
possible. We call this phenomenon “killing the genus by a purely transcendental exten-
sion.” Later in this section, we will prove Theorems 1.5 and 1.6 that reveal a similar 
phenomenon for the norm one groups SL1,A of central simple algebras A and groups of 
type G2, after which we will discuss possible generalizations. But first, we would like to 
continue our discussion of this phenomenon in the context of division algebras. As an 
immediate consequence of Theorem 8.1, we have

Corollary 8.3. Let D be a quaternion division algebra over a field k of characteristic �= 2, 
and let K = k(x). Then

gen(D ⊗k K) = {[D ⊗k K]}.

The above proof of Theorem 8.1 for quaternions yields the following statement:

(•) Let D1 and D2 be two central quaternion division algebras over a field k of charac-
teristic �= 2, and let K = k(x). If D1 ⊗k K and D2 ⊗k K are in the same genus, then 
D1 � D2 over k.

It turns out that (•) remains valid if the field of rational functions K = k(x) is replaced 
by the function field of any absolutely irreducible curve over k having a k-rational point.

Proposition 8.4. Let D1 and D2 be two central quaternion division algebras over a field 
k of characteristic �= 2, and let C be a smooth geometrically integral curve over k with 
C(k) �= ∅. If for the function field K = k(C), the algebras D1 ⊗k K and D2 ⊗k K are in 
the same genus (as K-algebras), then D1 � D2 over k.

(We note that since C(k) �= ∅, the algebras D1 ⊗k K and D2 ⊗k K are division algebras 
over K. Indeed, let P ∈ C(k). Since P is nonsingular, we can consider the corresponding 
valuation v of K, and then the completion Kv can be identified with the field k( (t) ) of 
formal Laurent series. Then the algebras D1 ⊗k Kv and D2 ⊗k Kv are obviously division 
algebras, so the algebras D1 ⊗k K and D2 ⊗k K are also division algebras.)

Proof. Without loss of generality, we may assume that C is projective. Fix a rational 
point P ∈ C(k), and consider the divisor Δn = nP on C for n > 0. It follows from the 
Riemann-Roch Theorem (see, for example, [76] for the statement and relevant notations) 
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that the dimension �(Δn) = dimk L(Δn) of the space L(Δn) associated with Δn for 
n � 0 is given by

�(Δn) = n + 1 − g,

where g is the genus of C. Thus, we can find an odd n ≥ 1 prime to chark such that there 
exists f ∈ L(Δn) \ L(Δn−1). Then the divisor of poles of the principal divisor (f) is Δn, 
hence has degree precisely n. Thinking of f as a morphism C → P 1

k , we conclude that 
the degree of this map is n, which means that K is a degree n extension of the field of 
rational functions k(x). On the other hand, the function field FD1 of the Severi-Brauer 
variety of D1 can be viewed as a quadratic extension of k(x). (More precisely, K and 
FD1 can be embedded into an algebraic closure of the field k(x) so that the images of 
these embeddings, for which we keep the same notations, have degrees n and 2 over k(x), 
respectively.) We have

D1 ⊗k FD1 � M2(FD1) � (D1 ⊗k k(x)) ⊗k(x) FD1 ,

implying that FD1 admits a k(x)-embedding into D1 ⊗k k(x) as a maximal subfield (just 
as in the proof of Theorem 8.1). Then the composition FD1K � FD1 ⊗k(x) K admits 
a K-embedding into (D1 ⊗k k(x)) ⊗k(x) K � D1 ⊗k K as a maximal subfield. By our 
assumption, the algebras D1 ⊗k K and D2 ⊗k K are in the same genus, so there is a 
K-embedding FD1K ↪→ D2 ⊗k(x) K. It follows that

(D2 ⊗k FD1) ⊗FD1
FD1K � D2 ⊗k FD1K � (D2 ⊗k K) ⊗K FD1K � M2(FD1K).

Thus, the degree n extension FD1K/FD1 splits the algebra D2 ⊗k FD1 . Since n is odd, 
we conclude that D2 ⊗k FD1 � M2(FD1). By Amitsur’s theorem, this means that the 
quaternion division algebras D1 and D2 are isomorphic. �
Remark 8.5. The assumption in Proposition 8.4 that C has a k-rational point cannot 
be omitted. Indeed, let D1 and D2 be two nonisomorphic quaternion division algebras 
having a common subfield (e.g., one can take D1 = (−1, 3) and D2 = (−1, 7) over 
k = Q). Then D1 ⊗K D2 � M2(D) for the quaternion division algebra D = (−1, 21). Let 
C be the Severi-Brauer variety for D (which is a conic without a rational point), and 
K = k(C). Since K splits D, the K-algebras D1 ⊗k K and D2 ⊗k K are isomorphic, hence 
belong to the same genus. However, by construction, D1 and D2 are not isomorphic as 
k-algebras.

The result established in Corollary 8.3 prompts the following

Question 8.6. Does there exist a central quaternion division algebra D over the field of 
rational functions K = k(x) over some field k having nontrivial genus gen(D)?
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8.2. Proof of Theorem 1.5

While the argument involves some of the same considerations as the proof of The-
orem 8.1, it also contains several new elements. In order to apply Amitsur’s theorem, 
we need to match certain maximal subfields of the algebras obtained by a purely tran-
scendental base change, and not just the corresponding maximal tori in the associated 
norm one groups. It is well-known that given a central division algebra D of degree n
over a field k, every maximal k-torus T of G = SL1,D is the norm torus R(1)

F/k(Gm) for 
some maximal separable subfield F ⊂ D. The problem is that in general, given two 
separable degree n extensions F1 and F2 of K, the fact that the corresponding norm tori 
are K-isomorphic, may not imply that the extensions are isomorphic.4 However, as the 
following lemma shows, this complication does not arise in the case of generic tori. We 
recall that a field extension F/k of degree n is called generic if it is separable and for its 
normal closure F̃ , the Galois group Gal(F̃ /k) is isomorphic to the symmetric group Sn.

Lemma 8.7. Let F1 and F2 be two degree n extensions of a field k, and let Ti = R(1)
F1/k(Gm)

(i = 1, 2) be the corresponding norm tori. If at least one of the extensions Fi is generic 
over k and T1 � T2 as k-tori, then F1 � F2 over k.

Proof. It is well-known that the minimal splitting field of Ti is the normal closure of Fi

over K, which we will denote by F̃i. Since T1 and T2 are k-isomorphic, we have F̃1 =
F̃2 =: F̃ , and then by our assumption, the Galois group G = Gal(F̃ /K) is isomorphic to 
Sn. Let Hi = Gal(F̃ /Fi). To prove that F1 � F2, it is enough to show that the subgroups 
H1 and H2 are conjugate in G. When n �= 6, this follows from the elementary fact in 
group theory that, in this case, Sn has only one conjugacy class of subgroups of index 
n; in other words, every subgroup of index n is the stabilizer of some point — see [33, 
Kapitel II, Satz 5.5].

For n = 6, it is well-known that the group of outer automorphisms of G has order 
2. Furthermore, if σ is an outer automorphism of G and H ⊂ G is a fixed subgroup 
of index n, then it follows from [33, Kapitel II, Satz 5.5] that any subgroup of index 
n is conjugate to either H or σ(H). To prove that H1 and H2 are conjugate in this 
case as well, we observe that a k-isomorphism between T1 and T2 yields an isomorphism 
of the character groups X(T1) � X(T2) as Z[G]-modules, hence an isomorphism of 
the vector spaces W1 = X(T1) ⊗Z Q and W2 = X(T2) ⊗Z Q as Q[G]-modules. The 
representation of G afforded by Wi can be described as the permutation representation 
on Q[G/Hi] “minus” the trivial representation (we will refer to this representation as the 
standard representation associated with the subgroup Hi). So, to complete the argument, 
it remains to show that the standard representations ρ : G → GL(W ) and ρ′ : G →

4 To construct such an example, it is enough to find a finite group G having two nonconjugate subgroups 
H1 and H2 such that the permutation lattices Z[G/H1] and Z[G/H2] are isomorphic as Z[G]-modules. We 
learned from correspondence with R. Guralnick and D. Saltman that the following example of this situation 
was found by L. Scott [75]: G = PSL2(F29) and H1, H2 are nonconjugate subgroups isomorphic to A5.
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GL(W ′) associated with H and σ(H) are not equivalent. Since ρ′ = ρ ◦ σ, this follows 
from the explicit description of the character of the standard representation and the 
fact that σ switches the conjugacy classes of 3-cycles and the products of two disjoint 
3-cycles. �

Next, we need the following strengthening of Lemma 8.2 that includes the genericity 
condition.

Proposition 8.8. Let A be a central simple algebra of degree n over a finitely generated 
field k, and let FA be the function field of the Severi-Brauer variety SB(A). Then there 
exist elements x1, . . . , xn−1 ∈ FA that are algebraically independent over k and such that 
FA/k(x1, . . . , xn−1) is a generic field extension of degree n.

Before giving the proof, we first discuss the following auxiliary construction. Let F/k

be a separable field extension of degree n. Fix a basis ω1 = 1, ω2, . . . , ωn of F over k, 
and let t1, . . . , tn be variables. Set

ϕF/k(t1, . . . , tn) =
∏

σ

(σ(ω1)t1 + · · · + σ(ωn)tn), (16)

where the product is taken over all distinct embeddings σ : F ↪→ k. Clearly, ϕF/k is 
a homogeneous polynomial of degree n in t1, . . . , tn with coefficients in k. When k is 
infinite, ϕF/k is uniquely characterized by the condition

ϕF/k(α1, . . . , αn) = NF/k(α1ω1 + · · · + αnωn) for all α1, . . . , αn ∈ k. (17)

Consider the polynomial fF/k(T ) = ϕF/k(T, t2, . . . , tn−1, 1) over L := k(t2, . . . , tn−1).

Lemma 8.9. Keeping the preceding notations, let F̃ be the normal closure of F over k. 
Then the splitting field E of fF/k(T ) over L coincides with F̃L = F̃ (t2, . . . , tn−1), and 
therefore Gal(E/L) � Gal(F̃ /k).

Indeed, it follows from (16) that

fF/k(T ) =
∏

σ

(T + (σ(ω2)t2 + · · · + σ(ωn−1)tn−1 + σ(ωn))).

This shows that E ⊂ F̃L. On the other hand, if τ ∈ Gal(F̃L/L) = Gal(F̃ /k) fixes the ele-
ment (σ(ω2)t2+· · ·+σ(ωn−1)tn−1+σ(ωn)), then it fixes all the elements σ(ω2), . . . , σ(ωn). 
It follows that if τ fixes E then τ = id. So, E = F̃L, hence Gal(E/L) = Gal(F̃ /k).

Proof of Proposition 8.8. The argument is a refinement of the proof of Lemma 8.2, and 
we will freely use the notations introduced therein. Recall that the key point in realizing 
FD as a degree n extension of the rational function field F = k(x1, . . . , xn−1) was the 
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fact that SB(D) is birationally isomorphic to ZW for a suitable choice of an (n + 1)-
dimensional subspace W ⊂ D. While this fact remains valid without any changes for any 
central simple algebra A, in order to ensure that the extension FA/F is generic, we need 
to specialize the choice of W . First, since k is finitely generated, A contains a maximal 
subfield P that is a generic extension of k (this follows immediately, for example, from 
Theorem 3.1). It was shown by Saltman [73, 4.2(c)], [74, 13.28] that for a Zariski-dense 
set of a ∈ A, the space W := P +ka is (n +1)-dimensional and the corresponding variety 
ZW is birationally isomorphic to SB(A). Fix one such a. Pick a basis w1 = 1, . . . , wn of 
P/k; then w1, . . . , wn, wn+1 := a is a basis of W . Take i = 1, j = n as in the proof of 
Lemma 8.2 and consider the corresponding polynomial

pW (T ) = νW (T, x1, . . . , xn−2, 1, xn−1),

noting that pW is monic and has coefficients in the ring R := k[x1, . . . , xn−1]. As in 
Lemma 8.2, the polynomial pW (T ) is irreducible over F = k(x1, . . . , xn−1) and the ex-
tension FA/F is obtained by adjoining a root of pW . In order to prove that the extension 
is generic, we will use specialization. Let E be the splitting field of pW and G = Gal(E/F )
be the corresponding Galois group. Furthermore, let S be the integral closure of R in 
E, and let p be the prime ideal of R generated by xn−1. Since the restriction of the re-
duced norm map NrdA/k to P coincides with the usual norm map NP/k, we see from (17)
that νW (t1, . . . , tn, tn+1)(modtn+1) coincides with ϕP/k(t1, . . . , tn), from which it follows 
that pW (T )(mod p) coincides with fP/k(T ). In particular, since fP/k(T ) is separable, so 
is pW (T ). Fix a prime ideal P ⊂ S lying above p, and let G(P) be its decomposition 
group. Then according to [41, Ch. VII, Proposition 2.5], there is a natural surjective 
homomorphism of G(P) to the automorphism group H of the field of fractions of S/P

over L (which is the field of fractions of R/p). On the other hand, it follows from our 
construction and Lemma 8.9 that the Galois group of the splitting field of fP/k(T ) is the 
symmetric group Sn, so H admits a surjection onto Sn. Thus, a subgroup of G admits a 
surjection onto Sn, and therefore |G| � n!. However, G is the Galois group of the split-
ting field of a separable polynomial of degree n, hence must be isomorphic to a subgroup 
of Sn. Thus, G � Sn, as required. �

It would be interesting to determine if the conclusion of the proposition remains valid 
without assuming that k is finitely generated.

We can now complete the proof of Theorem 1.5 by imitating the proof of Theorem 8.1. 
So, let G = SL1,A, where A is a central simple algebra of degree n over a finitely 
generated field k. Set F = k(x1, . . . , xn−1), and suppose that G′ ∈ genF (G ×k F ). Using 
Theorem 1.3 repeatedly, we see that G′ = H ×k F for some H ∈ genk(G). Since H is 
an inner twist of G, we have H = SL1,B for some central simple algebra B of degree n
over k. It remains to show that the classes [A], [B] ∈ Br(k) generate the same subgroup.

Using Proposition 8.8, we present the function field FA of the Severi-Brauer variety 
SB(A) as a degree n generic extension of F , and then arguing as in the proof of Theo-



42 V.I. Chernousov et al. / Advances in Mathematics 438 (2024) 109437
rem 8.1, we conclude that FA is F -isomorphic to a maximal étale subalgebra of A ⊗k F . 
Let T = R(1)

FA/F (Gm) be the corresponding maximal F -torus of G ×k F . By our assump-
tion, H ×k F ∈ genF (G ×k F ), so T is F -isomorphic to a maximal F -torus T ′ of G′; 
the latter is the norm torus R(1)

E/F (Gm) for some maximal étale subalgebra E of B ⊗k F , 
which in fact is a field extension as T ′ is F -anisotropic. Since the field extension FA/F

is generic by construction, we can use Lemma 8.7 to conclude that FA is F -isomorphic 
to E; in other words, FA admits an F -embedding into B ⊗k F . As in the proof of Theo-
rem 8.1, we observe that then FA splits B, so invoking Amitsur’s Theorem, we see that 
[B] ∈ 〈[A]〉. The inclusion [A] ∈ 〈[B]〉 is established by a symmetric argument. �
8.3. Proof of Theorem 1.6

We recall that an algebraic group G of type G2 over a field k of characteristic �= 2 can 
be realized as the automorphism group of an octonian algebra O(a, b, c) corresponding 
to a triple (a, b, c) ∈ k× × k× × k×. The norm form q of O(a, b, c) is the Pfister form 
� a, b, c � in standard notations; we will write it as

q(x0, x1, . . . , x7) = x2
0 + q′(x1, . . . , x7) where q′(x1, . . . , x7) = −ax2

1 − bx2
2 + · · · .

The following facts are well-known:

(1) for a field extension F/k, the group G is either split or anisotropic over F , cf. [79];
(2) Two K-groups G1 and G2 of type G2 with associated norm forms q1 and q2 are 

F -isomorphic if and only if q1 and q2 are equivalent over F , cf. [38, Proposition 
33.19];

(3) G is split over F if and only if q is hyperbolic (equivalently, isotropic) over F — this 
follows from (2).

It is enough to show that if G1 and G2 are two k-groups of type G2 such that for 
P := k(x1, . . . , x6) the groups G1 := G1 ×k P and G2 := G2 ×k P are in the same genus, 
then G1 � G2 over k. We may assume that G1 and G2 are anisotropic over k, and let q1
and q2 be the corresponding norm forms. Set

L = k(x1, . . . , x6)
(√

−q′
1(x1, . . . , x6, 1)

)
= P

(√
−q′

1(x1, . . . , x6, 1)
)

(the “homogeneous function field” of q1 in the terminology of [40]). Then q1 represents 
zero over L, so G1 splits over L. A standard argument shows that G1 contains a maximal 
P -torus T of the form T = R(1)

L/P (Gm) × R(1)
L/P (Gm) cf. ([54, Lemma 6.17]). By our 

assumption, G1 and G2 are in the same genus, and in particular, T is P -isomorphic to a 
maximal P -torus of G2, implying that G2 becomes split over L. Thus, the 3-Pfister form 
q2 becomes split over the function field of the 3-Pfister form q1, and therefore the forms 
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q1 and q2 are equivalent over k (cf. [40, Ch. X, Corollary 4.10]). So, the groups G1 and 
G2 are k-isomorphic, as required.

8.4. Motivic genus

The following variation of the notion of the genus, proposed by A.S. Merkurjev, pro-
vides a different perspective on the above results. He defined the motivic genus genm(G)
of an absolutely almost simple algebraic k-group G to be the set of k-isomorphism classes 
of (inner) k-forms G′ of G such that G′ ×k F ∈ genF (G ×k F ) for all field extensions 
F/k. Then Theorem 1.5 implies that for G = SL1,A, where A is a central simple algebra 
of degree n, the motivic genus is always finite of size ≤ n − 1, and reduces to a single 
element if A has exponent two. In addition, by Theorem 1.6, the motivic genus of a 
group of type G2 also reduces to a single element. Furthermore, according to a result of 
Izhboldin [32], for given non-degenerate quadratic forms q and q′ of odd dimension over 
a field k of characteristic �= 2, the condition

(†) q and q′ have the same Witt index over any extension F/k

implies that q and q′ are scalar multiples of each other (this conclusion being false for 
even-dimensional forms). It follows that |genm(G)| = 1 for G = Spinn(q) with n odd. 
We note that condition (†) is equivalent to the fact that the motives of q and q′ in the 
category of Chow motives are isomorphic (cf. Vishik [81], [82, Theorem 4.18], and also 
Karpenko [35]), which prompted the choice of terminology for this version of the genus. 
One can expect the motivic genus to be finite for all absolutely almost simple groups, 
of size bounded by a constant depending only on the type of the group (at least over 
fields of “good” characteristic, but not necessarily finitely generated). On the other hand, 
Conjecture 1.7 asserts that the genus gets reduced to the motivic genus (i.e., becomes 
as small as possible) after a suitable purely transcendental extension of the base field.

9. Weakly commensurable Zariski-dense subgroups

The goal of this section is to prove Theorem 1.8 that relates the presence of a finitely 
generated Zariski-dense subgroup weakly commensurable to a given one with good re-
duction. First, let us fix a model X = Spec A for k, i.e. an affine integral normal scheme 
of finite type over Z with function field k, and let V denote the set of discrete valuations 
of k associated with the prime divisors on X. We will consider separately the two cases 
where dimX = 1 and dimX > 1, respectively.

9.1. Proof of Theorem 1.8 in the case dimX = 1

In this case, k is a number field (recall that char k = 0), and V consists of almost 
all nonarchimedean valuations of k. The proof here is an adaptation of the argument 
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developed in [60, §5] for a different, although related, purpose. By [54, Theorem 6.7], 
one can find a finite subset S1 ⊂ V such that G is quasi-split over the completion kv

for all v ∈ V \ S1. Furthermore, let �/k be the minimal Galois extension over which G
becomes an inner form of the split group, and choose a finite subset S2 ⊂ V so that 
�/k is unramified at all v ∈ V \ S2. Finally, since k coincides with the trace field kΓ, it 
follows from the Strong Approximation Theorem of Weisfeiler [85] that there exists a 
finite subset S3 ⊂ V such that the closure of Γ in G(kv) in the v-adic topology is open 
for all v ∈ V \ S3. Set S(Γ) = S1 ∪ S2 ∪ S3. The fact that this set is as required in 
Theorem 1.8 is an immediate consequence of the following.

Proposition 9.1. Let G′ be an absolutely almost simple k-group such that there exists a 
finitely generated Zariski-dense subgroup Γ′ ⊂ G′(k) that is weakly commensurable to Γ. 
Then G′ is quasi-split over kv, and consequently has good reduction, for all v ∈ V \S(Γ).

Proof. Let �′ be the minimal Galois extension of k over which G′ becomes an inner form 
of the split group. By Theorem 3.8, the existence of Γ′ that is weakly commensurable 
to Γ implies that either G and G′ have the same type or one of them is of type B� and 
the other of type C�, and also that � = �′. The latter means that when G and G′ are of 
the same type, then the corresponding adjoint groups G′ and G are inner twists of each 
other over k, hence over kv. In order to prove that G′ is quasi-split over kv, it is enough 
to show that

rkkv
G′ � rkkv

G. (18)

Indeed, when one of the groups is of type B� and the other of type C�, we see that G
is kv-split, and then the inequality shows that G′ is also kv-split. Next, suppose that 
G and G′ are of the same type. As we pointed out above, G

′ is an inner twist of G, 
and therefore the ∗-actions of the absolute Galois group of kv on the Tits indices of G
and G′ are identical (cf. [58, Lemma 4.1(a)]). It is well-known that the relative rank of 
a semisimple group equals the number of distinguished orbits under the ∗-action on its 
Tits index. By our construction, G is quasi-split over kv, so all ∗-orbits are distinguished. 
Then (18) implies that all ∗-orbits in the Tits index of G′ are also distinguished, so G′

is kv-quasi-split.
Now, to prove (18), we first use Theorem 3.7 to find a regular semisimple element γ

so that the corresponding torus T = CG(γ)◦ is generic over k and contains a maximal 
kv-split torus of G over kv. By our assumption, γ is weakly commensurable to some 
semisimple element γ′ ∈ Γ′ of infinite order. Let T ′ be a maximal k-torus of G′ containing 
γ′. Then it follows from Proposition 3.10 that there exists a k-defined isogeny T → T ′. 
Since rkkv

T = rkkv
G by construction, the required inequality (18) follows. Thus, G′ is 

quasi-split over kv. Since �′ = �, we obtain that �′ is unramified at v, and therefore G′

has good reduction at v (cf. [34, Corollary 7.9.4]). �
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9.2. Zariski-density of reductions when dimX > 1

In this case, the residue fields k(v) of the valuations v ∈ V are infinite finitely generated 
fields. The goal of this subsection is to establish a result about the Zariski-density of the 
reductions of Γ modulo almost all v ∈ V that will play a crucial role in the proof of 
Theorem 1.8. Fix a faithful k-defined representation G ↪→ GLn. By shrinking V , we 
may assume without loss of generality that for all v ∈ V , the reduction G(v) associated 
with this realization is a connected absolutely almost simple algebraic group over the 
residue field k(v). We denote by ρv : G(Ok,v) → G(v)(k(v)) the corresponding reduction 
map (where Ok,v is the valuation ring of v in k).

Proposition 9.2. Let Γ ⊂ G(k) be a finitely generated Zariski-dense subgroup. Then for 
almost all v ∈ V , we have the inclusion Γ ⊂ G(Ov) and the reduction Γ(v) := ρv(Γ) is 
Zariski-dense in G(v).

Proof. The first assertion is obvious. To prove the second one, we observe that since 
G is absolutely almost simple and k has characteristic zero, the adjoint representation 
r : G → GL(g) on the Lie algebra g = L(G) is (absolutely) irreducible. Being Zariski-
dense in G, the subgroup Γ also acts on g absolutely irreducibly. Then by Burnside’s 
Lemma (cf. [39, 7.3]), the image r(Γ) spans End(g). Fix a basis a1, . . . , am (m = dim g)
of g(k) ⊂ Mn(k) over k, and let eij (i, j = 1, . . . , m) be the corresponding standard basis 
of Endk(g(k)). Then we can find elements γ1, . . . , γd ∈ Γ such that for all i, j = 1, . . . , m
there are expressions

eij =
d∑

�=1

α�
ijr(γ�) with α�

ij ∈ k. (19)

Then for almost all v ∈ V , the following properties hold:

• the elements a1, . . . , am belong to g(Ok,v) = g(k) ∩ Mn(Ok,v) and their reductions 
ā1, . . . , ̄am ∈ Mn(K(v)) form a k(v)-basis of g(v)(k(v)), where g(v) is the Lie algebra 

of the reduction G(v);
• all coefficients α�

ij belong to Ok,v.

We note that for any such v, the endomorphisms eij leave g(Ok,v) invariant, and their 
reductions ēij form the standard basis of Endk(v)(g(v)(k(v))) associated with the basis 
ā1, . . . , ̄am. Reducing (19), we obtain the relations

ēij =
d∑

ᾱ�
ijr(ρv(γ�)),
�=1
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where ᾱ�
ij denotes the image of α�

ij in k(v). These relations show that Γ(v) acts on g(v)

absolutely irreducibly. Letting H denote the Zariski-closure of Γ(v) in G(v), we observe 
that the Lie algebra L(H) is a Γ(v)-invariant subspace of g(v), and therefore there are 

only two possibilities: L(H) = g(v) or L(H) = {0}. In the first case, H = G(v), i.e. Γ(v)

is Zariski-dense, as desired. In the second case, H, hence Γ(v), is finite. So, to complete 
the proof of the proposition we need to show that Γ(v) is infinite for almost all v. For 
this, we will consider two cases.

Case 1: char k(v) = 0. It follows from Jordan’s Theorem (cf. [18]) that there exists an 
integer j > 0 (depending on n) such that every finite subgroup Φ ⊂ GLn(F ), where F
is any field of characteristic zero, contains an abelian normal subgroup of index dividing 
j, and then the commutator subgroup [Φ(j), Φ(j)] of the subgroup Φ(j) generated by 
the jth powers is trivial. Now, since Γ is Zariski-dense in G ⊂ GLn, it follows that 
Δ := [Γ(j), Γ(j)] is also Zariski-dense. In particular, we can find a nontrivial element 
δ ∈ Δ; then for almost all v the reduction ρv(δ) is nontrivial. Then the group Γ(v) must 
be infinite. Indeed, otherwise Jordan’s Theorem would yield that

[(Γ(v))(j), (Γ(v))(j)] = ρv(Δ)

is trivial, which is not the case by our construction.

Case 2: char k(v) > 0. We will show that there exists γ ∈ Γ such that ρv(γ) has 
infinite order for almost all v at hand. For this, it is enough to make sure that the trace 
tr (r(ρv(γ))) is not a sum of roots of unity. Let k0 be the algebraic closure of Q in k; we 
note that [k0 : Q] < ∞ as k is finitely generated, and k �= k0 since dimX > 1. So, as k
is the trace field of Γ, we can find γ ∈ Γ so that f := tr (r(γ)) /∈ k0. We will show that 
this γ is as required. First, we observe that for any v with char k(v) > 0, the restriction 
v0 of v to k0 is nontrivial, and the residue field k(v0)

0 embeds into k(v). Furthermore, the 
residue f̄ coincides with tr (r(ρv(γ))). Now, it is enough to show that f̄ is not algebraic 
over k(v0)

0 , which follows from the fact that the following two properties hold for almost 
all v:
(1) k(v0)

0 is algebraically closed in k(v);
(2) f̄ /∈ k

(v0)
0 .

The proof is based on the following well-known fact: Let X be an irreducible algebraic 
variety over a field K; then X is absolutely irreducible if and only if K is algebraically 
closed in the field of rational functions K(X) (see, for example, [28, Proposition 5.50]). 
To apply this fact in our situation, we observe that since the model X = SpecA is normal, 
it can be viewed as a scheme over the ring of integers O0 of k0. Besides, the k0-variety 
X = X ×O0 k0 is absolutely irreducible. Then it follows from the classical theorem of 
Bertini-Noether (cf. [24, Proposition 10.4.2]) that for almost all v, the reduction

X
(v0) = X ⊗O0 k(v0)
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is an absolutely irreducible variety over k(v0)
0 whose field of rational functions coincides 

with k(v). Applying the statement mentioned above, we obtain property (1). Further-
more, since f is not constant on X, we can find two points x1, x2 ∈ X(k0) such that 
f(x1) �= f(x2). Then for almost all v, the points admit the reductions x̄1, x̄2 with respect 
to an extension of v0, and for the reduction f̄ ∈ k(v), we have f̄(x̄1) �= f̄(x̄2). This means 
that f̄ /∈ k

(v0)
0 , verifying property (2) and completing the argument. �

9.3. Proof of Theorem 1.8 in the case dimX > 1

It follows from Proposition 9.2 that there exists a finite subset S(Γ) ⊂ V such that 
for any v ∈ V \ S(Γ) the following two conditions hold:

(a) G has good reduction at v, so that the G(v) is a connected absolutely almost simple 
group;

(b) Γ ⊂ G(Ok,v), and for the reduction map ρv : G(Ok,v) → G(v)(k(v)), the image Γ(v) =
ρv(Γ) is Zariski-dense in G(v).

Suppose now that G′ is an absolutely almost simple algebraic k-group such that there 
exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(k) that is weakly commensu-
rable to Γ. As before, we denote by � (resp., �′) the minimal Galois extension of k over 
which G (resp., G′) becomes an inner form of the split group. By Theorem 3.8, the Weyl 
groups of G and G′ have the same order w and � = �′. Fix an extension u of v to �; it 
follows from (a) that the extension �/k is unramified at v.

Since Γ(v) is (finitely generated and) Zariski-dense in G(v), by Theorem 3.6 there 
exists a regular semisimple element γ̄ ∈ Γ(v) that is generic over �(u). Write γ̄ = ρv(γ)
with γ ∈ Γ.

Lemma 9.3. (1) γ is a regular semisimple element of infinite order.
(2) The maximal k-torus T = CG(γ)◦ is generic over kv and the extension kT /k is 
unramified at v.

Proof. (1): Let c(t) be the characteristic polynomial of Ad γ. Then its reduction c̄(t) is 
the characteristic polynomial of Ad γ̄. Since γ̄ is regular semisimple, the multiplicity of 1
as a root of c̄(t) equals r = rkG(v) = rkG. So, the multiplicity of 1 as a root of c(t) is ≤ r, 
implying that it is in fact precisely r and hence the element γ is regular and semisimple. 
(To see the latter, let us consider the Jordan decomposition if γ = γsγu; then c(t) is 
also the characteristic polynomial of Ad γs. On the other hand, since char k = 0, the 
assumption γu �= e would imply the existence of a nontrivial nilpotent element in the 
Lie algebra centralized by γs. But this would clearly make the multiplicity of 1 as a root 
of c(t) greater than r, a contradiction.)

Furthermore, since γ̄ has infinite order, so does γ.
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(2): Let E = (kv)T be the splitting field of T over kv. Clearly, E contains �u, and we 
let ũ denote the extension of u to E. Since �/k is unramified at v, it follows from [58, 
Lemma 4.1] that it is enough to prove that

[E : �u] =: w = [E(ũ) : �(u)]. (20)

Since E contains the splitting field of c(t), the residue field E(ũ) contains the splitting 
field of c̄(t). By our construction, the k(v)-torus T̄ := CG(v)(γ̄) is generic over �(u), so 
[(k(v))T̄ : �(u)] = w. On the other hand, the roots of c̄(t) include the values at γ̄ of all 
roots α ∈ Φ(G(v), T̄ ). So, it follows from Lemma 3.9 that (k(v))T̄ = E(ũ). Thus,

w = [E : �u] ≥ [E(ũ) : �(u)] = [(k(v))T̄ : �(u)] = w,

and (20) follows. �
First, assume that the type of G is different from A1 and B�, and let v ∈ V \ S(Γ). 

It follows from Lemma 9.3 and the discussion preceding it that one can find a regular 
semisimple element γ ∈ Γ of infinite order such that the k-torus T = CG(γ)◦ is generic 
over �u and the splitting field kT is unramified at v. By our assumption, γ is weakly 
commensurable to some semisimple element γ′ ∈ Γ′ of infinite order. Let T ′ be a maximal 
k-torus of G′ containing γ′. According to Corollary 3.11, the k-tori T and T ′ are isogenous 
over k. It follows that T ′ is generic over �u = �′

u, hence over kv. Then G′ has good 
reduction at v by Theorem 6.2.

Next, let G be of one of the types A1 or B�. We then first pick a regular semisimple 
element γ̄1 ∈ Γ(v) of infinite order that is generic over k(v) (note that here � = k), and let 
T̄1 = CG(v)(γ̄1)◦ denote the corresponding k(v)-torus. We then pick a regular semisimple 
element γ̄2 ∈ Γ(v) of infinite order that is generic over the splitting field (k(v))T̄1

, and 
let T̄2 = CG(v)(γ̄2)◦. Note that the Dynkin diagrams of the types at hand do not have 
nontrivial automorphisms, so

[(k(v))T̄1
(k(v))T̄2

: (k(v))T̄1
] = w = [(k(v))T̄2

: k(v)],

which implies that

(k(v))T̄1
∩ (k(v))T̄2

= k(v). (21)

Now, pick γi ∈ Γ so that ρv(γi) = γ̄i, and let Ti = CG(γi)◦, for i = 1, 2. Also, let ci(t) be 
the characteristic polynomial of Adγi. Then the reduction c̄i(t) is the characteristic poly-
nomial of Ad γ̄i. Since Ti (resp., T̄i) is kv- (resp., k(v)-)generic, it follows from Lemma 3.9
that (kv)Ti

(resp., (k(v))T̄i
) coincides with the splitting field of ci (resp., c̄i), and there-

fore (k(v))T̄i
is precisely the residue field of (kv)Ti

. We also know from Lemma 9.3 that 
the extension (kv)Ti

/kv is unramified. Then (21) yields that (kv)T1 ∩ (kv)T2 = kv. By 
our assumption, the elements γ1, γ2 are weakly commensurable to semisimple elements 
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γ′
1, γ′

2 ∈ Γ′ of infinite order, respectively. Let T ′
i be a maximal k-torus of G′ containing 

γ′
i. Then by Corollary 3.11, the torus Ti is k-isogenous to the torus T ′

i for i = 1, 2. It 
follows that T ′

i is generic over kv, the extension (kv)T ′
i
/kv is unramified for i = 1, 2, and

(kv)T ′
1

∩ (kv)T ′
2

= kv.

So, G′ has good reduction by Theorem 6.6.

9.4. Subgroups with the same exceptional set

A smaller Zariski-dense subgroup Δ ⊂ Γ may, a priori, require a larger exceptional set 
S(Δ) in Theorem 1.8. We will show in this subsection, however, that our construction of 
S(Γ) produces an exceptional set that works for many subgroups Δ ⊂ Γ that are smaller 
than Γ. To describe precisely the possibilities for Δ, we will need the following definition.

Definition 9.4. Let Γ be an abstract group. The following subgroups will be called prin-
cipal standard subgroups of Γ:

(1) the commutator subgroup [Γ, Γ];
(2) the subgroups Γ(n) generated by the nth powers γn of elements γ ∈ Γ, for some 

n � 1.

Furthermore, a subgroup Δ of Γ is called standard if there exists a (finite) chain of 
subgroups

Δ = Γm ⊂ Γm−1 ⊂ · · · ⊂ Γ1 ⊂ Γ0 = Γ

such that Γi+1 contains a principal standard subgroup of Γi.

We note that all standard subgroups of a (finitely generated) Zariski-dense subgroup 
of a (connected) semisimple algebraic group are automatically Zariski-dense, although 
they may not be finitely generated. However, typically this does not create any additional 
problems in the analysis of weak commensurability since the statements dealing with the 
existence of generic elements having special properties remain valid for those Zariski-
dense subgroups that are contained in a finitely generated subgroup of G(k). Our goal 
in this subsection is to present the following strengthening of Theorem 1.8.

Theorem 9.5. Let G be an absolutely almost simple algebraic group over a finitely gen-
erated field k of characteristic zero, and let V be a divisorial set of places of k. Given a 
Zariski-dense subgroup Γ ⊂ G(k) with trace field k, there exists a finite subset S(Γ) ⊂ V

such that any absolutely almost simple algebraic K-group G′ with the property that there 
exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) that is weakly commensu-
rable to some standard subgroup Δ ⊂ Γ, has good reduction at all v ∈ V \ S(Γ).
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Proof. It turns out that the set V (Γ) we have constructed in the proof of Theorem 1.8
works in this more general setting. To see this, we will revisit our construction separately 
in the cases where dimX = 1 and dimX > 1. In the first case, the exceptional set S(Γ)
was constructed in subsection 9.1 as the union S1 ∪ S2 ∪ S3 in the notations introduced 
therein. It follows from the definitions that the finite sets S1 and S2 are independent of 
Γ. Now, recall that the finite set S3 is chosen so that the closure of Γ in G(kv) is open 
for all v ∈ V \ S3. It is easy to see, however, that every principal standard subgroup, 
and hence any standard subgroup, of an open subgroup of G(kv) is itself open. This 
implies that if the closure of Γ in G(kv) is open, then so is the closure of any standard 
subgroup Δ ⊂ Γ. In other words, if the set S3 is chosen as in section 9.1 for Γ, then it 
also ensures the required property (i.e., the openness of the closure) for any standard 
subgroup Δ ⊂ Γ. Thus, the set S(Γ) = S1 ∪ S2 ∪ S3 will serve as an exceptional set for 
Δ as well.

Recall that the exceptional set in the case dimX > 1 was actually constructed in 
subsection 9.3 as V (Γ) = S1 ∪ S2, where S1 consists of those v ∈ V for which condition 
(a) fails, and S2 consists of those v ∈ V \ S1 for which condition (b) fails. Clearly, S1
is independent of Γ. On the other hand, S2 is chosen to be disjoint from S1 so that for 
v ∈ V \ (S1 ∪ S2), the image ρv(Γ) under the reduction map is a Zariski-dense subgroup 
of the connected absolutely almost simple algebraic k(v)-group G(v). Then ρv(Δ) is also 
Zariski-dense in G(v) for any standard subgroup Δ ⊂ Γ. This means that if we choose 
the finite set S2 for Γ, then condition (b) will hold true for any standard subgroup Δ ⊂ Γ
and for any v ∈ V \ (S1 ∪ S2). Thus S(Γ) = S1 ∪ S2 can be taken for an exceptional set 
for Δ, completing the proof. �
10. Application to lattices and length-commensurable Riemann surfaces

As we already mentioned in the introduction, there is a conjecture that predicts the 
existence of only finitely many possibilities for the algebraic hull of a finitely generated 
Zariski-dense subgroup that is weakly commensurable to a given one ([64, Conjec-
ture 6.1]); this conjecture is a crucial element in the so-called “eigenvalue rigidity.”

Conjecture 10.1. Let G1 and G2 be absolutely simple (adjoint) algebraic groups over a 
field F of characteristic zero, and let Γ1 ⊂ G1(F ) be a finitely generated Zariski-dense 
subgroup with trace field kΓ1 =: k. Then there exists a finite collection G(2)

1 , . . . , G(2)
r of 

F/k-forms of G2 such that any finitely generated Zariski-dense subgroup Γ2 ⊂ G2(F )
that is weakly commensurable to Γ1 is conjugate in G2(F ) to a subgroup of one of the 
G

(2)
i (k) (⊂ G2(F )) for i = 1, . . . , r.

Due to Theorem 1.8, this conjecture would follow from the Finiteness Conjecture for 
forms with good reduction, and hence is valid in those cases where the Finiteness Con-
jecture has been established. For example, since the truth of the Finiteness Conjecture 
is known for inner forms of type An over all finitely generated fields of characteristic 
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zero (cf. [14]), we see that given a central simple algebra A over a finitely generated 
field k with char k = 0 and a finitely generated Zariski-dense subgroup Γ ⊂ G(k), where 
G = SL1,A, with trace field kΓ = k, there are only finitely many isomorphism classes 
of central division k-algebras A′ such that there exists a finitely generated Zariski-dense 
subgroup Γ′ ⊂ G′(k), where G′ = SL1,A′ , that is weakly commensurable to Γ. Other 
available results on the Finiteness Conjecture (cf. [66]) lead to a variety of cases where 
Conjecture 10.1 is known. We will not, however, provide a complete list of these cases 
here, but rather focus on the case of finitely generated Zariski-dense subgroups weakly 
commensurable to lattices (arithmetic or not), where our result (given in Theorem 10.2
below) may have applications to locally symmetric spaces.

10.1. Conjecture 10.1 for lattices

We refer the reader to [43], [62] for basic facts about lattices in semisimple Lie groups. 
In the case of simple Lie groups, we have the following finiteness result for weakly com-
mensurable lattices (arithmetic or not).

Theorem 10.2. Let G1 be an absolutely simple (adjoint) real algebraic group, and let 
Γ1 ⊂ G1(R) be a lattice with trace field k = kΓ1 . Given an absolutely simple (adjoint) 
algebraic group G2 over an extension F of k, there exists a finite collection G(2)

1 , . . . , G(2)
r

of F/k-forms of G2 such that a finitely generated Zariski-dense subgroup Γ2 ⊂ G2(F )
that is weakly commensurable to Γ1 is necessarily G2(F )-conjugate to a subgroup of one 
of the G(2)

i (k)’s (⊂ G2(F )).

(Here we assume that each F/k-form G(2)
i comes with a fixed F -isomorphism 

φi : G(2)
i ×k F → G2, which then defines an embedding of groups G(2)

i (k) ↪→ G
(2)
i (F ) ↪→

G2(F ).)

Proof. Since Γ1 is finitely generated, the field k is also finitely generated. Let V be a 
divisorial set of places of k. Next, for the algebraic hull G(1) of Γ1, we have the inclusion 
Γ1 ⊂ G(1)(k). Now, let Γ2 ⊂ G2(F ) be an arbitrary finitely generated Zariski-dense 
subgroup weakly commensurable to Γ1. Then the trace field kΓ2 coincides with k (cf. 
Theorem 3.8(2)). Let GΓ2 be the algebraic hull of Γ2, so that Γ2 ⊂ GΓ2(k). According to 
Theorem 1.8, we can find a finite subset S(Γ1) ⊂ V such that all such GΓ2 ’s have good 
reduction at any v ∈ V \ S(Γ1). We now recall that unless G1 = PGL2, the trace field 
k is a field of algebraic numbers (cf. [62, 7.67 and 7.68]), and that if G1 is isomorphic 
to PGL2, then so is G2 (cf. Theorem 3.8(1)). Since the Finiteness Conjecture for forms 
with good reduction has already been established in the cases where either k is a number 
field (cf. [66, Proposition 5.2]) or the group is isogenous to PGL2 (cf. [66, Theorem 7.6]), 
it follows that there exists a finite collection G

(2)
1 , . . . , G

(2)
r̄ of F/k-forms of G2 with the 

following property: Given a finitely generated Zariski-dense subgroup Γ2 ⊂ G2(F ), there 
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exist an i ∈ {1, 2, . . . , ̄r} and a k-isomorphism ϕΓ2,i : GΓ2 → G
(2)
i , and then of course 

ϕΓ2,i(Γ2) ⊂ G
(2)
i (k). On the other hand, we have F -isomorphisms

ιΓ2 : GΓ2 ×k F → G2 and ῑi : G(2)
i ×k F → G2.

Then σΓ2,i := ῑi ◦ ϕΓ2,i ◦ ι−1
Γ2

is an F -automorphism of G2, which, in terms of the 
embeddings of the groups of k-rational points given by ιΓ2 and ιi, has the property 
σΓ2,i(Γ2) ⊂ G

(2)
i (k). If σΓ2,i is inner, then it is conjugation by an element of G2(F ) as G2

is adjoint, giving the required fact. To handle the general case, we need to expand the 

collection of forms G(2)
i and (fixed) F -isomorphisms ῑi : Gi → G2, i = 1, . . . , ̄r. Namely, 

let θj (j = 1, . . . , t) be a system of representatives of the cosets Aut(G2)(F )/Int(G2)(F ), 
where Aut(G2)(F ) is the group of F -defined automorphisms of the algebraic F -group 
G2 and Int(G2)(F ) is the subgroup of inner automorphisms. Then for i = 1, . . . , ̄r and 
j = 1, . . . , t, we set

G
(2)
i,j = Gi and ιi,j = θ−1

j ◦ ιi.

We have already seen that given a finitely generated Zariski-dense subgroup Γ2 ⊂ G2(F ), 
we can find i ∈ {1, . . . , ̄r} such that σΓ2,i(Γ2) ⊂ Gi(K). Furthermore, we can find j ∈
{1, . . . , t} so that σΓ2,i = θj ◦ τΓ2,i,j , with τΓ2,i,j inner. Then

τΓ2,i,j(Γ2) ⊂ ιi,j(Gi,j(k)),

as required. �
10.2. An application to length-commensurable Riemann surfaces

Let H = {x + iy | y > 0} be the complex upper half-plane equipped with the standard 
hyperbolic metric ds2 = 1

y2

(
dx2 + dy2)

. The action of SL2(R) on H by fractional linear 
transformations is transitive and isometric. Furthermore, the stabilizer of i ∈ H is the 
special orthogonal group SO2(R), allowing us to identify H with the symmetric space 
SL2(R)/SO2(R). Let π : SL2 → PSL2 be the canonical isogeny. Given a discrete sub-
group Γ ⊂ SL2(R) containing {±I} and having torsion-free image π(Γ) ⊂ PSL2(R), the 
quotient M = Γ\H is a Riemann surface. It is well-known that every compact Riemann 
surface of genus > 1 is of this form. However, in this subsection, we will be interested 
in more general Riemann surfaces, where Γ is only assumed to be finitely generated and 
Zariski-dense. It was demonstrated in [42] that some properties of M can be understood 
in terms of the associated quaternion algebra AΓ, which is constructed as follows.

Let Γ(2) denote the subgroup generated by the squares of all elements, and let AΓ be 
the Q-subalgebra of M2(R) generated by Γ(2). One shows that AΓ is a quaternion algebra 
(although not necessarily a division algebra) with center kΓ = Q(tr γ | γ ∈ Γ(2)) (trace 
field) — cf. [42, Ch. 3]. If Γ1 and Γ2 are commensurable, then AΓ1 = AΓ2 ; in other words, 
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AΓ is an invariant of the commensurability class of Γ. Moreover, if Γ is an arithmetic
Fuchsian group, then kΓ is a number field and AΓ is the quaternion algebra involved in 
the description of Γ (cf. [42, §8.2]). It follows that if Γ1 and Γ2 are arithmetic and the 
algebras AΓ1 and AΓ2 are isomorphic, then Γ1 is commensurable with a conjugate of Γ2, 
and hence the corresponding Riemann surfaces are commensurable, i.e. have a common 
finite-sheeted cover. The algebra AΓ no longer determines the commensurability class of 
Γ if the latter is not arithmetic, but it nevertheless remains an important invariant of 
the commensurability class.

In differential geometry, one attaches to a Riemannian manifold M various spectra; in 
particular, the (weak) length spectrum L(M) is defined as the set of the lengths of closed 
geodesics in M . Two Riemannian manifolds M1 and M2 are called length-commensurable
if Q ·L(M1) = Q ·L(M2). For arithmetic Riemann surfaces, length-commensurability im-
plies commensurability (cf. [71]). “Most” Riemann surfaces, however, are not arithmetic, 
and their investigation presents many challenges. In those cases where we are unable to 
characterize the commensurability class in terms of the length spectrum, we would like 
to understand at least the properties of the associated quaternion algebras. As we will 
see momentarily, the fact that M1 = Γ1\H and M2 = Γ2\H are length-commensurable 
implies that the trace fields are equal: kΓ1 = kΓ2 , i.e. the corresponding algebras AΓ1 and 
AΓ2 have a common center. We can now state the following finiteness result for families 
of length-commensurable surfaces.

Theorem 10.3. Let Mi = Γi\H (i ∈ I) be a family of length-commensurable Riemann 
surfaces, with Γi ⊂ SL2(R) Zariski-dense. Then the associated quaternion algebras AΓi

(i ∈ I) belong to finitely many isomorphism classes (over the common center).

Proof. We first recall that closed geodesics in M = Γ\H correspond to hyperbolic ele-
ments in Γ different from ±I, which are precisely the semisimple elements of Γ having 
infinite order. Furthermore, the length of the closed geodesic cγ that corresponds to an 

element γ ∈ Γ which is conjugate to 

(
tγ 0
0 t−1

γ

)
is given by

�(cγ) = 2
nγ

· | log |tγ ||,

where nγ is a certain integer (“winding number”). It follows that

Q · L(M) = Q · { log |tγ | | γ ∈ Γ semisimple of infinite order }. (22)

Suppose now that two Riemann surfaces Mi = Γi\H (i = 1, 2) are length-commensurable. 
This means that for any semisimple element γ1 ∈ Γ1 of infinite order, there exists a 
semisimple element γ2 ∈ Γ2 of infinite order such that �(cγ1)/�(cγ2) ∈ Q×, and vice 
versa. This translates into the relation
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tn1
γ1

= tn2
γ2

�= 1 for some n1, n2 ∈ Z,

which implies that the subgroups Γ1 and Γ2 are weakly commensurable. Then applying 
Theorem 3.8(2), we conclude that their trace fields are the same: kΓ1 = kΓ2 (we note 
that the definitions of the trace field given earlier and in the current subsection produce 
the same result). Fix one subgroup Γ1 and set k = kΓ1 ; then Γ(2)

1 ⊂ G1(k), where 
G1 = SL1,AΓ1

. Since the group Γ1 is finitely generated, the field k is finitely generated, 
and we let V denote a divisorial set of discrete valuations of k. Now let Γi (i ∈ I) be 
any other subgroup in the family. Then kΓi

= k and Γ(2)
i ⊂ Gi(k), where Gi = SL1,AΓi

. 
Since Γj for any j ∈ I is finitely generated, we have [Γj : Γ(2)

j ] < ∞, so the weak 

commensurability of Γ1 and Γi implies that of Γ(2)
1 and Γ(2)

i . Thus, it follows from 
Theorem 1.8 that there exists a finite subset S(Γ1) ⊂ V such that all Gi (i ∈ I) have 
good reduction at every v ∈ V \ S(Γ1). Here the groups Gi are all of type A1, and 
since the Finiteness Conjecture for forms with good reduction of this type over fields of 
characteristic �= 2 has already been established (cf. [66, Theorem 7.6]), we conclude that 
they belong to finitely many isomorphism classes. Consequently, the quaternion algebras 
AΓi

also belong to finitely many isomorphism classes. �
Let us point out that this theorem is one of the first examples of the use in differential 

geometry of new techniques from arithmetic geometry that involve the notion of good 
reduction.

11. The genus problem and good reduction for groups of type F4

In this section we will prove Theorems 1.10-1.13 that address some aspects of the 
genus problem and the Finiteness Conjecture for simple algebraic groups of type F4. 
Our considerations will rely on properties of cohomological invariants, which we have 
assembled in Appendix 2. We therefore recommend that the reader consult Appendix 2
before continuing with this section. We note that while Theorems 1.10-1.12 deal only 
with forms that have trivial g3-invariant, Theorem 1.13 shows that truth of the Finiteness 
Conjecture yields the properness of the map φ, which is expected to classify all forms of 
type F4 (cf. Appendix 2).

Proof of Theorem 1.10. Let k0 be a number field, set k = k0(x), and let V be the 
set of discrete valuations of k associated with the closed points of A1

k0
. Let G be a 

k-group of type F4 that splits over a quadratic extension of k. We need to show that 
any G′ ∈ genk(G) is k-isomorphic to G. According to Proposition A2.3, the group G
possesses a maximal k-torus T that splits over a quadratic extension of k. Since G and 
G′ lie in the same genus, T is k-isomorphic to a maximal k-torus of G′, implying that 
G′ splits over the same quadratic extension of k as G, and therefore the invariant g3(G′)
is trivial. Then it follows from Theorem A2.1 that in order to prove the isomorphism 
G � G′ over k, it is enough to show that
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f3(G) = f3(G′) and f5(G) = f5(G′).

Recall that for any i ≥ 1 and any v ∈ V , we have a residue map

ρi
v : Hi(k,Z/2Z) −→ Hi−1(k(v),Z/2Z).

These maps enable us to construct, in each degree i ≥ 1, the following exact sequence 
that in the case i = 2 goes back to Faddeev:

0 → Hi(k0,Z/2Z) −→ Hi(k,Z/2Z) ⊕ρi
v−→

⊕
v∈V

Hi−1(k(v),Z/2Z) → 0 (23)

(cf. [25, Theorem 9.3]). In order to prove that fi(G) = fi(G′) for i = 3, 5, we will prove 
that

ρi
v(fi(G)) = ρi

v(fi(G′)) for all v ∈ V. (24)

Assuming this, we obtain from (23) that

fi(G′) = fi(G) + αi for some αi ∈ Hi(k0,Z/2Z).

To complete the proof, one shows by a specialization argument that αi = 0 for i = 3, 5. 
More precisely, the classes fi(G) and fi(G′) are represented by symbols, and we can 
choose x0 ∈ k0 so that for the valuation v0 of k corresponding to x − x0, all factors of 
these symbols are units with respect to v0. Then k(v0) = k0, the groups G and G′ have 
good reduction at v0 (cf. Proposition A2.7 in Appendix 2), and the specializations of these 
symbols in Hi(k0, Z/2Z) coincide with the invariants fi(G(v0)) and fi((G′)(v0)) of the 
corresponding reductions (see Theorem A2.5 and the remark at the end of subsection 
A2.2). Since G and G′ are in the same genus, their reductions are also in the same 
genus — see Theorem 1.1. But the genus of a group of type F4 over a number field 
reduces to a single element by [58, Theorem 7.5], so G(v0) � (G′)(v0) and therefore 
fi(G(v0)) = fi((G′)(v0)). On the other hand,

fi((G′)(v0)) = fi(G(v0)) + αi.

Thus, αi = 0 and fi(G) = fi(G′), as required.
In order to prove (24), we will use the following.

Lemma 11.1. Suppose K is an infinite field of characteristic �= 2 or 3. Let G be a K-group 
of type F4 that splits over a quadratic extension of K, and let G′ ∈ genK(G). Then every 
extension L/K of degree ≤ 2 that splits f3(G) (resp., f5(G)) also splits f3(G′) (resp., 
f5(G)).
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Proof. Let σ be a generator of Gal(L/K). Since L splits f3(G) (resp., f5(G)), the group 
G is L-split (resp., L-isotropic), cf. section A2.1 of Appendix 2. Let B (resp., P ) be 
an L-defined Borel subgroup (resp., a proper L-defined parabolic subgroup). Then the 
group H = B ∩ Bσ (resp., H = P ∩ P σ) is K-defined. Let T be a maximal K-torus of H
that is also a maximal torus of G (cf. [3, 14.13]). Then T is L-split (resp., L-isotropic). 
Being in the same genus as G, the group G′ contains a maximal K-torus isomorphic to 
T . It follows that G′ is also L-split (resp., L-isotropic), and therefore L splits f3(G′)
(resp., f5(G′)). �

We will now prove (24) for i = 3. According to (28) in subsection A2.1, we can write

f3(G) = (a) ∪ (b) ∪ (c) and f3(G′) = (a′) ∪ (b′) ∪ (c′),

where (t) ∈ H1(k, Z/2Z) denotes the cohomology class corresponding to tk×2 under the 
canonical isomorphism H1(k, Z/2Z) � k×/k×2 (other notations are explained in A2.1). 
If all values v(a), . . . , v(c′) are even, then

ρv(f3(G)) = 0 = ρv(f3(G′)). (25)

Next, suppose that the values v(a), v(b), and v(c) are all even, but among the val-
ues v(a′), v(b′), v(c′), there is at least one that is odd; suppose, for example, that 
v(c′) is odd. We will apply Lemma 11.1 with K = kv and L = K(

√
c′), noting that 

G′ ∈ genK(G) by Corollary 3.3. Thus, since L splits f3(G′) (over K) by Lemma 11.1, 
it also splits f3(G). Now, it follows from Hensel’s Lemma that the unramified cohomol-
ogy group Hi(K, Z/2Z)v, defined as the kernel of the residue map Hi(K, Z/2Z) →
Hi−1(K(v), Z/2Z), is canonically isomorphic to Hi(K(v), Z/2Z) (cf. [25, Proposition 
7.7]). We may assume without loss of generality that v(a) = v(b) = v(c) = 0, so that the 
symbol (a) ∪ (b) ∪ (c) is unramified. Since it splits over L, the symbol (ā) ∪ (b̄) ∪ (c̄) is 
trivial in H3(L(v), Z/2Z) = H3(K(v), Z/2Z). It follows that (a) ∪ (b) ∪ (c) is trivial in 
H3(K, Z/2Z), which implies that G is split. Then G′ is also split, and we again obtain 
(25).

It remains to consider the case where each set {v(a), v(b), v(c)} and {v(a′), v(b′), v(c′)}
contains at least one odd value. Without loss of generality, we may assume that

v(a) = v(a′) = v(b) = v(b′) = 0 and v(c) = v(c′) = 1.

Then

ρv(f3(G)) = (ā) ∪ (b̄) and ρv(f3(G′)) = (ā′) ∪ (b̄′).

Identifying H2(k(v), Z/2Z) = H2(k(v), μ2) with the 2-torsion subgroup 2Br(k(v)) of the 
Brauer group, we see that the residues are represented, respectively, by the classes of the 
quaternion algebras
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D =
(

ā, b̄

k(v)

)
and D

′ =
(

ā′, b̄′

k(v)

)
.

Since the genus of a quaternion division algebra over a number field reduces to a single 
element (cf. [13], [65]), in order to prove that D � D

′, which would yield (24) in this case, 
one needs to prove that an extension �/k(v) of degree ≤ 2 splits D if and only if it splits 
D

′. Suppose that � splits D, and let L denote the unramified extension of K = kv with 

residue field �. It follows from Hensel’s Lemma that L splits D =
(

a, b

K

)
, and therefore 

also splits f3(G). By Lemma 11.1, the extension L also splits f3(G′), and therefore its 
residue field � splits ρ3

v(f3(G′)) = (ā′) ∪ (b̄′), i.e. splits D′. By symmetry, every extension 
�/k(v) of degree ≤ 2 that splits D′ also splits D, completing the argument.

Next, we will prove (24) for i = 5. Write

f5(G) = (a) ∪ (b) ∪ (c) ∪ (d) ∪ (e) and f5(G′) = (a′) ∪ (b′) ∪ (c′) ∪ (d′) ∪ (e′).

As above, in the following two cases: 1) all values v(a), . . . , v(e′) are even, and 2) all 
values v(a), . . . , v(e) are even and among the values v(a′), . . . , v(e′) there is at least one 
that is odd, one proves that

ρv(f5(G)) = 0 = ρv(f5(G′))

by repeating basically the same argument. The remaining situations reduce to the case 
where

v(a) = · · · = v(d) = v(a′) = · · · = v(d′) = 0 and v(e) = v(e′) = 1.

Then

ρv(f5(G)) = (ā) ∪ · · · ∪ (d̄) and ρv(f5(G′)) = (ā′) ∪ · · · ∪ (d̄′).

Since k(v) is a number field, by the Poitou-Tate theorem (cf. [51, 8.6.13(ii)], [77, Ch. II, 
§6, Theorem B]), for any j ≥ 3, we have an isomorphism

Hj(k(v),Z/2Z) −→
∏

w∈W

Hj((k(v))w,Z/2Z),

where W is the set of all archimedean places of k(v). Furthermore, the group 
Hj((k(v))w, Z/2Z) is trivial if w is complex, and has order 2 if w is real; in the lat-
ter case, any symbol (a1) ∪ · · · ∪ (aj) with all ai’s negative in k(v) gives the nontrivial 
element, while such a symbol in which at least one ai is positive gives the trivial element. 
Thus, if (24) fails, then there exists a real place w of k(v) such that, say, ρv(f5(G)) gives 
the trivial element and ρv(f5(G′)) the nontrivial element of H4((k(v))w, Z/2Z). This 
means that among ā, . . . , d̄ at least one element, say d̄, is positive in (k(v))w, while all 
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elements ā′, . . . , d̄′ are negative. Consider the extension L = K(
√

d) of K = k. Then L
obviously splits f5(G). Let ṽ be an extension of v to L. Then

L(ṽ) = k(v)(
√

d̄) ⊂ (k(v))w.

It follows that (L(ṽ))w̃ for w̃|w does not split the image of ρv(f5(G′)) in H4((k(v))w,

Z/2Z), hence L(ṽ) does not split ρv(f5(G′)), and L does not split f5(G′). This contradicts 
Lemma 11.1. �
Proof of Theorem 1.12. Let G0 be the k-split group of type F4. According to Proposi-
tion A2.3, one can view I as a subset of the set H1(k, G0)g3=0 of cohomology classes 
having trivial g3-invariant, and then by Theorem A2.1, the restriction to I of the map

ψ : H1(k, G0) (f3,f5)−→ H3(k,Z/2Z) × H5(k,Z/2Z)

is injective. On the other hand, it follows from Theorem A2.6 that the f3- and f5-
invariants of the forms from I are V -unramified, i.e.

ψ(J) ⊂ H3(k,Z/2Z)V × H5(k,Z/2Z)V .

Furthermore, Proposition 4.2 and Corollary 6.2 in [16] yield the finiteness of the groups 
H3(k, Z/2Z)V and H5(k, Z/2Z)V in the case where k is a 2-dimensional global field, 
while Theorem 5.1(b) in [67] provides their finiteness over a purely transcendental ex-
tension k = k0(x, y) of transcendence degree 2 of a number field k0. In both cases, we 
obtain the finiteness of I. �
Remark 11.2. Let k be a 2-dimensional global field with a divisorial set of places V . 
Fix a Killing-Cartan type τ ∈ {A�}∞

�=1 ∪ · · · ∪ {G2}, and consider the set QV (τ) of k-
isomorphism classes of absolutely almost simple k-groups of type τ that split over a 
quadratic extension of k and have good reduction at all v ∈ V . The results of [16] imply 
that QV (τ) is finite if τ is one of the types A�, B�, C� (� ≥ 1) or G2. Our Theorem 1.12
yields the finiteness of QV (τ) for τ = F4. The finiteness of QV (τ) for τ = D� (� ≥ 4) was 
recently established in [70]. So, over 2-dimensional global fields, it remains to investigate 
the finiteness of QV (τ) for τ ∈ {E6, E7, E8}. Of course, this question can be viewed in 
the context of the more general problem of classifying absolutely almost simple algebraic 
groups that split over a quadratic extension of the base field, considered by Weisfeiler 
[84], in terms of certain quadratic/Hermitian forms. It should also be mentioned that 
the finiteness of QV (τ) (for all V ) has immediate consequences for the finiteness of the 
genus of absolutely almost simple algebraic k-groups of type τ that split over a quadratic 
extension of k — see the derivation of Theorem 1.11 from Theorem 1.12 above.

Proof of Theorem 1.11. If G splits over a quadratic extension �/k, then it has a maximal 
k-torus T that splits over �. Then any G′ ∈ genk(G) also splits over �. On the other 
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hand, according to Corollary 1.2, there exists a divisorial set V of discrete valuations of 
k such that every group G′ ∈ genk(G) has good reduction at all v ∈ V . The finiteness 
of genk(G) now follows from Theorem 1.12. �

The remainder of this section will be devoted to the proof of our last result concern-
ing the properness of the map φ (cf. subsection A2.1 of Appendix 2 for the relevant 
definitions).

Proof of Theorem 1.13. We need to show that for any k-group G of type F4, the fiber 
φ−1(φ(G)) is finite. Choose a divisorial set of places V of k such that

• char k(v) �= 2, 3 for all v ∈ V ;
• G has good reduction and the invariant g3(G) is unramified at all v ∈ V .

(We note that if G has good reduction at v and chark(v) �= 3, then g3(G) is automatically
unramified — see Proposition A2.11, but this fact is not used in the argument.) Since 
we are assuming that the Finiteness Conjecture holds for all k-forms of type F4 with 
respect to V , it is enough to show that every G′ ∈ φ−1(φ(G)) has good reduction at all 
v ∈ V . We will derive this fact from the following two propositions.

Proposition 11.3. Assume that char k
(v)
v �= 2. If a k-form G′ of type F4 does not have 

good reduction at v ∈ V , then G′ ×k kv either splits over an unramified Galois extension 
�/kv of degree 2a (a ≥ 0) or contains a maximal kv-torus that is anisotropic over kv and 
splits over an unramified cubic Galois extension �/kv.

Proposition 11.4. Let v be a discrete valuation of k such that char k(v) �= 2, 3, and let 
G′ be a simple k-group of type F4 such that G′ ×k kv has a maximal kv-torus that is 
anisotropic over kv and splits over an unramified cubic Galois extension �/kv. If G′ does 
not have good reduction at v, then the invariant g3(G′) is ramified at v.

Granting these facts, we will now complete the proof of Theorem 1.13. Assume that 
G′ ∈ φ−1(φ(G)) does not have good reduction at some v ∈ V . According to Proposi-
tion 11.3, the group G′ ×k kv either splits over an unramified Galois extension �/kv of 
degree 2a (a ≥ 0) or contains a maximal kv-torus that is anisotropic over kv and splits 
over an unramified cubic Galois extension �/kv. In the first case, a standard restriction-
corestriction argument yields 2a · g3(G′ ×k kv) = 0, hence g3(G′ ×k kv) = 0 as we 
always have 3 · g3(G′ ×k kv) = 0. Thus, G′ ×k kv corresponds to a cohomology class in 
H1(kv, G0)g3=0. But according to Theorem A2.1, the restriction of φ to H1(kv, G0)g3=0
is injective. Thus G′ ×k kv � G ×k kv, contradicting the fact that G has good reduction 
at v and G′ does not.

In the second case, it follows from Proposition 11.4 that the invariant g3(G′ ×k kv) is 
ramified, while by construction the invariant g3(G ×k kv) is unramified. This contradicts 
the fact that φ(G) = φ(G′), hence g3(G ×k kv) = g3(G′ ×k kv). �
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The proof of Proposition 11.3 relies heavily on Bruhat-Tits theory, for which we refer 
the reader to [6], [7], and [8] (see also [34] for a modern exposition). As above, let G0 be 
the k-split group of type F4, T0 be a maximal kv-split torus of G0, and Φ = Φ(G0, T0) be 
the root system of G0 with respect to T0. Fix a system of simple roots Π = {α1, . . . , α4}
and let α̃ denote the maximal root. We then have the following extended Dynkin diagram

>� � � � �

−α̃ α1 α2 α3 α4
,

whose set of vertices will be denoted Π̃. To each (non-empty) subset Ω ⊂ Π̃, Bruhat-Tits 
theory associates a smooth group scheme GΩ over the valuation ring Ov of kv with the 
following properties:

• the generic fiber GΩ ×Ov
kv is isomorphic to G0 ×k kv;

• the closed fiber G(v)
Ω = GΩ ×Ov

k
(v)
v is connected (because G0 is simply connected);

• the unipotent radical UΩ of G(v)
Ω is defined and split over k(v), and G(v)

Ω has a unique 

Levi subgroup LΩ that contains the reduction T (v), and hence is k(v)
v -split.

We note that the Dynkin diagram of the semisimple part of LΩ is obtained from the 
extended Dynkin diagram of G0 by deleting the vertices belonging to Ω and the edges 
having at least one endpoint in Ω. Thus, LΩ is a k(v)

v -split reductive group with central 
torus of dimension |Ω| − 1 and semisimple part (= commutator subgroup) HΩ of rank 
5 − |Ω|.

Since GΩ is smooth, the natural map

λΩ : H1(Ov,GΩ) −→ H1(k(v)
v ,G(v)

Ω ), ξ �→ ξ̄,

given by reduction is bijective by Hensel’s Lemma (cf. [8, Section 3.4, Lemme 2(2)]). 
Furthermore, since G(v)

Ω has a Levi decomposition and its unipotent radical is split, we 
have

H1(k(v)
v ,G(v)

Ω ) = H1(k(v)
v , LΩ). (26)

We say that a class [ξ] ∈ H1(k(v)
v , LΩ) is anisotropic if the semisimple part of the 

twisted group ξLΩ is k(v)
v -anisotropic. The set of all anisotropic classes will be denoted 

H1(k(v)
v , LΩ)an, and its inverse image under λΩ will be denoted H1(Ov, GΩ)an.

Theorem 11.5. (cf. [8, Theorem 3.12]) The natural map∐
Ω

H1(Ov,GΩ)an → H1(kv, G0)

is a bijection.
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Remark 11.6. It should be noted that this result was established in [8] assuming that the 
residue field k(v)

v is perfect, which is not always the case in our situation. In this regard, we 
observe that since chark

(v)
v �= 2, 3, any simple algebraic kv-group G of type F4 splits over 

the maximal unramified extension kur
v . Indeed, in this case, the cohomological invariants 

f3, f5, and g3 vanish, so the desired fact follows from the triviality of the kernel of φ

(cf. Corollary A2.2). This implies that Bruhat-Tits theory in the sense of Prasad [55] is 
available for G over kv. Another consequence is that

H1(kv, G0) = H1(kur
v /kv, G0).

Then according to Theorem 3.8 in [27], the assertion of Theorem 11.5 remains valid for 
a kv-split group G0 of type F4 whenever char k

(v)
v �= 2, 3.

Proof of Proposition 11.3. Let G′ be a simple kv-group of type F4 that does not have 
good reduction at v. Write G′ as a twist ξ′G0 for some cocycle ξ′ ∈ Z1(kv, G0). According 
to Theorem 11.5 and subsequent remarks, there exists a subset Ω ⊂ Π̃ such that the class 
[ξ′] is the image under the natural map νΩ : H1(Ov, GΩ) → H1(kv, G0) of some class from 
H1(Ov, GΩ)an, and we still use ξ′ to denote a cocycle representing this class. We note that 
for Ω = {−α̃}, the group GΩ coincides with the split Ov-group scheme G0 of type F4, and 
the classes in the image of νΩ correspond precisely to the kv-forms of type F4 that have 
good reduction. Since by assumption G′ does not have good reduction, we conclude that 
Ω �= {−α̃}. So, our task is to show that in all other cases, the group G′ either splits over 
an unramified Galois extension �/kv of degree 2a or contains a maximal kv-torus that is 
anisotropic over kv and splits over an unramified cubic Galois extension �/kv. Viewing 
ξ′ as an element of Z1(Ov, GΩ), we can consider the twist G′ = ξ′GΩ, which is a smooth 
group scheme over Ov with generic fiber G′ and closed fiber ξ̄′G

(v)
Ω in the above notations. 

We recall that if � is an unramified extension kv with residue field �(v), then every �(v)-
split torus of G′ ×Ov

�(v) can be lifted to a split torus of G ×Ov
O(�), where O(�) is the 

valuation ring of � (see [20, Corollary B.3.5]), implying that rk� G′ ≥ rk�(v) (G′ ×Ov
�(v)).

In view of (26), we may assume that ξ̄′ has values in LΩ, so that we can consider 
the twisted groups L′

Ω := ξ̄′LΩ and H ′
Ω := ξ̄′HΩ. We observe that all absolutely simple 

components of H ′
Ω are defined over k(v)

v and are inner forms. Since the central tori in 
LΩ and L′

Ω are k(v)
v -isomorphic, hence split, it is clear that if |Ω| ≥ 3, then rkkv

G′ ≥
rk

k
(v)
v

G′ ≥ 2. In this case, it follows from the classification of forms of type F4 (cf. [79]) 
that G′ is kv-split, hence has good reduction, a contradiction. Now, if |Ω| = 2, then L′

Ω
has a 1-dimensional central k(v)

v -split torus. If H ′
Ω is not absolutely almost simple then 

it has a component of type A1 which splits over a separable quadratic extension �̄/k
(v)
v . 

Letting � denote the unramified extension of kv with residue field �(v) = �̄, we find as 
above that rk� G′ ≥ 2, and hence G′ splits over �. Now, let H ′

Ω be absolutely almost 
simple. Then it is of one of the following types: A3, B3, or C3. Since every simple group 
of type Br is isogenous to the special orthogonal group of a nondegenerate quadratic 
form (cf. [54, Proposition 2.20]), it obviously splits over a Galois extension of the form 



62 V.I. Chernousov et al. / Advances in Mathematics 438 (2024) 109437
�̄ = k
(v)
v (√a1, . . . , 

√
at). Furthermore, every simple group of type Cr is isogenous to 

the special unitary group of a nondegenerate hermitian form over a central division 
algebra with a symplectic involution of the first kind (cf. [54, Proposition 2.19]). By 
Merkurjev’s theorem [45], the algebra splits over a Galois extension of the same shape �̄ =
k

(v)
v (√a1, . . . , 

√
at), and this extension also splits the group. Picking such an extension 

if H ′
Ω has type B3 or C3, and letting � be the unramified extension of kv with residue 

field �(v) = �̄ (which is automatically a Galois extension of kv of degree 2a) we will have 
that rk� G′ ≥ 3, implying that G′ splits over �.

In the remaining case, H ′
Ω is an inner form of type A3, i.e. a group of the form SL1,A

for some central simple k(v)
v -algebra A of degree 4. Then it follows from the theorem of 

Merkurjev-Suslin [46] that this group splits over a Galois extension �̄/k
(v)
v of degree 2a

(note that one needs to adjoin 
√

−1 to the base field before applying the Merkurjev-
Suslin theorem), and then arguing as above we find that the unramified extension � of 
kv with residue field �(v) = �̄ is as required.

Finally, we consider the case |Ω| = 1. Here the possible types of HΩ (with the exception 
of F4 itself are A1 ×C3, A2 ×A2, and A1 ×B3. The types A1 ×C3 and A1 ×B3 are handled 
just as above, so it remains to consider the type A2 × A2. Let H1 and H2 be the almost 
simple components of H ′

Ω; then Hi is isogenous to a group of the form SL1,Di
, where 

Di is a central simple k(v)
v -algebra of degree 3 over k(v)

v . Picking a separable maximal 
subfield �̄ of D1 and arguing as above, we see that G′ splits over the unramified extension 
� of kv with residue field �̄. We note that in this case, the group G′ is automatically kv-
anisotropic. Indeed, it cannot be kv-split because of bad reduction, so the only other 
kv-isotropic possibility would have a simple group R of type C3 as its anisotropic kernel. 
In the situation at hand, G′ splits over an extension �/kv of degree 3, and then R must 
also split over �. But for the groups of type C, this implies that R splits over kv, a 
contradiction.

Next, by Wedderburn’s theorem (cf. [38, Theorem 19.2]), D1 contains a maximal 
subfield �̄ that is a cubic Galois extension of the center. We note that, as follows from 
Hilbert’s Theorem 90, the k(v)

v -tori S̄ = R(1)
�̄/k

(v)
v

(Gm) and S̄/μ3 = R�̄/k(v)(Gm)/Gm are 

isomorphic. So, whether H1 is simply connected or adjoint, it always contains a torus 
isomorphic to S̄ as a maximal torus, and we keep the notation S̄ for this torus. By [20, 
Corollary B.3.5], the torus S̄ lifts to a torus S of GΩ. Let S ⊂ G′ be the generic fiber 
of S. Then S splits over the unramified extension � of kv with residue field �̄. It follows 
that rk� G′ ≥ 2, and therefore G′ actually splits over �. Now, we consider the centralizer 
C = CG′(S) and write it as an almost direct product SR, where R is a reductive group 
of rank 2. The complete list of possibilities for R is as follows:

• a 2-dimensional torus;
• an almost direct product of a 1-dimensional torus and an almost simple group of 

type A1;
• a semisimple group of one of the following types: A1 × A1, A2, B2, or C2.
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Since S and G′ split over �, so does R. Taking into account that G′ is kv-anisotropic and 
going through the above list, we find that R can only be either a 2-dimensional torus or 
an inner form of type A2. In the first case, the almost direct product SR is a required 
torus that is anisotropic over kv and splits over �. In the second case, R is kv-isogenous 
to a group of the form SL1,D, where D is a cubic division algebra (whose residue must 
coincide with D2). Since � splits R, it is isomorphic to a maximal subfield of D, implying 
that R contains a maximal kv-torus S′ of the form R(1)

�/k(Gm). Then SS′ is a required 
maximal torus. �

Next, in preparation for the proof of Proposition 11.4, we will set up the necessary 
notations and state one result (Proposition 11.7) that will be proved in subsection A2.3
of Appendix 2. Let G0 be a simple k-split group of type F4, and let �/k be a cubic Galois 
extension. We will now construct a special maximal k-torus T of G0 whose cohomology 
classes yield all k-forms of G0 that contain a maximal k-torus that is anisotropic over 
k and splits over �. Fix a maximal k-split torus T0 of G0, and let Φ = Φ(G0, T0) be 
the corresponding root system. We will continue using the above labeling of the roots of 
the extended Dynkin diagram. Then the subsets {−α̃, α1} and {α3, α4} correspond to 
k-subgroups R1 and R2 of G0 that are isomorphic to SL3 and whose intersection is μ3
(which is the center of both R1 and R2). Let S = R(1)

�/k(Gm). We consider the embeddings 
ιi : S ↪→ Ri (i = 1, 2) afforded by the regular representation of � over k, and let

T = ι1(S) · ι2(S) ⊂ R1 · R2.

We have an exact sequence

1 → μ3
α−→ S × S

β−→ T → 1,

where α(s) = (s, s−1) and β(s1, s2) = ι1(s1)ι2(s2). Set

S̃1 = {(s, s−1) | s ∈ S} and S̃2 = {(s, 1) | s ∈ S},

and let Si = β(S̃i) for i = 1, 2. Then T = S1×S2, so we can consider the homomorphisms 
γi : H1(k, T ) → H1(k, Si) (i = 1, 2) given by the projections. Finally, let δ : H1(k, S1) →
H2(k, μ3) be the coboundary map associated with the exact sequence

1 → μ3 −→ S̃1
β−→ S1 → 1.

Proposition 11.7. (1) Every k-group G of type F4 that contains a maximal k-torus that 
is k-anisotropic and splits over � is of the form G = ξG0 with ξ = ν(ζ) for some 
ζ ∈ Z1(k, T ), where ν : Z1(k, T ) → Z1(k, G0) is the natural map.

(2) In the above notations, g3(G) = δ(γ1([ζ])) ∪ γ2([ζ]).

The proof will be given in section A2.3.
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Proof of Proposition 11.4. Applying Proposition 11.7 over kv, we can write G′ ×k kv =
ξ(G0 ×k kv), where ξ = ν(ζ) and ζ ∈ Z1(kv, T ). Suppose that G′ does not have good 
reduction at v. We need to show that the g3-invariant g3(G′ ×k kv) ∈ H3(kv, Z/3Z) is 
ramified. By Proposition 11.7, we have g3(G′ ×k kv) = δ(γ1([ζ])) ∪ γ2([ζ]). If δ(γ1([ζ]))
is unramified, then by Lemma A2.10 the class of γ1([ζ]) in H1(kv, S1) lies in the image 
of the map5 H1(Ov, S1) → H1(kv, S1). If, in addition,

γ2([ζ]) ∈ H1(kv, S2) = k×
v /N�w/kv

(�×
w)

is unramified, then it lies in the image of the map H1(Ov, S2) → H1(kv, S2). This implies 
that there exists ζ0 ∈ Z1(Ov, T) such that the image of [ζ0] in H1(kv, T ) coincides with 
[ζ]. Set ξ0 = ν0(ζ0) where ν0H1(Ov, T) → H1(Ov, G0) is the natural map. Then the 
twist ξ0G0 is a reductive Ov-group scheme with generic fiber G′ ×k kv, contradicting our 
assumptions that G′ does not have good reduction at v.

Next, suppose that δ(γ1([ζ])) is unramified but γ2([ζ]) is ramified. Then the residue 
of the invariant g3(G′ ×k kv) equals

s · (image of δ(γ1([ζ])) in 3Br(k(v))), where s = 1, 2.

This element is trivial if and only if the element δ(γ1([ζ])) is trivial, in which case 
g3(G′ ×k kv) is trivial. Since the f3- and f5-invariants of G′ ×k kv are also trivial as G′

splits over a cubic extension, we conclude that G′ ×k kv splits, hence has good reduction, 
a contradiction.

Suppose now that δ(γ1([ζ])) is ramified. It obviously splits over �, and therefore is 
represented by a cyclic cubic algebra of the form (�/kv, a) with a ∈ k×

v . Since �/kv is 
unramified, the valuation v(a) is either 1 or 2. Then g3(G′ ×k kv) can be written in the 
form g3(G′ ×k kv) = δ(γ1([ξ])) ∪ (c), where c is a unit, so its residue is s · χ�(v) ∪ (c̄), 
where χ�(v) is the character corresponding to the residue field �(v) of � and s = 1, 2. If 
this element is trivial, then the element χ� ∪ (c) is trivial, and therefore g3(G′ ×k kv) is 
trivial. So, again G′ ×k kv splits, hence G′ has good reduction at v, a contradiction. �
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Appendix 1. On a result of A. Klyachko

A1.1. Proof of Theorem 4.1

We will freely use the notations introduced in §4. Let ( , ) be a W (Φ)-invariant 
inner product on V . As usual, for α ∈ Φ, we define the dual root α∨ = 2α

(α, α) , and 

let Φ∨ = {α∨ | α ∈ Φ} denote the corresponding dual root system. Given a subgroup 
Γ ⊂ Aut(Φ) containing W (Φ) and a Γ-invariant lattice M in V , we can write the inflation-
restriction exact sequence

0 → H1(Γ/W (Φ), MW (Φ)) −→ H1(Γ, M) −→ H1(W (Φ), M)Γ/W (Φ)

−→ H2(Γ/W (Φ), MW (Φ)).

Since MW (Φ) = 0, we obtain an isomorphism

H1(Γ, M) � H1(W (Φ), M)Γ/W (Φ).

It follows that it is enough to prove both assertions of the theorem for Γ = W (Φ), which 
we will assume to be the case throughout the rest of the argument.

Now, fix a system of simple roots Π ⊂ Φ. It is well-known that Γ is a Coxeter group; 
more precisely, it is generated by reflections sα for α ∈ Π (where sα(v) = v − (α∨, v)α
for v ∈ V ) and is defined by the following relations

s2
α = 1 , (sαsβ)nα,β = 1 for α , β ∈ Π, α �= β, (A.1)

where nα,β is the order of the product sαsβ in Γ. For a Γ-invariant lattice M ⊂ V , we let 
Z1(Γ, M) and B1(Γ, M) denote the corresponding groups of cocycles and coboundaries, 
respectively, and for a function f : Γ → M set

μ(f) = (f(sα)) ∈
⊕
α∈Π

M.

Lemma A1.1. The map μ sets up an isomorphism between Z1(Γ, M) and 
⊕
α∈Π

(Qα
⋂

M). 

Under this isomorphism, B1(Γ, M) corresponds to

{((α∨, m)α) | m ∈ M}.

Proof. Any f ∈ Z1(Γ, M) is completely determined by its values on any generating set, 
making μ injective on Z1(Γ, M). We have

f(1) = 0 = f(sα) + sαf(sα),
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implying that f(sα) ∈ Qα. So, μ(Z1(Γ, M)) ⊂
⊕
α∈Π

(Qα
⋂

M). To prove that this in-

clusion is actually an equality, take any (mα) in the right-hand side, and let Γ̃ be the 
free group on sα, α ∈ Π. Recall that given a group Δ and a Δ-module T , a function 
ϕ : Δ → T is a 1-cocycle iff the map

ϕ+ : Δ → T � Δ, x �→ (ϕ(x) , x)

is a group homomorphism. This allows us to define f̃ ∈ Z1(Γ̃, M) by f̃(sα) = mα, and 
observe that f̃ descends to f ∈ Z1(Γ, M) satisfying f(sα) = mα if and only if f̃ vanishes 
on the relations (A.1). The equation f̃(s2

α) = 0 immediately follows from the fact that 
mα ∈ Qα. Furthermore,

f̃((sαsβ)nα,β ) = (1 + (sαsβ) + · · · + (sαsβ)nα,β−1)f̃(sαsβ).

Note that the right-hand side is fixed by sαsβ . On the other hand, since

f̃(sαsβ) = mα + sαmβ ∈ Qα + Qβ,

it belongs to Qα + Qβ. But sαsβ is a nontrivial rotation of this 2-dimensional vector 
space, and therefore has no nonzero fixed vectors. So, f̃((sαsβ)nα,β ) = 0, completing the 
proof of the first assertion. The second assertion about μ(B1(Γ, M)) follows from the 
formula for sα. �

It is now easy to complete the proof of Theorem 4.1. Set M = P (Φ), which, by defi-
nition, is the dual lattice of the lattice Q(Φ∨) generated by the dual root system. Thus, 
M has a basis consisting of weights ωβ (β ∈ Π) satisfying (α∨, ωβ) = δαβ (Kronecker 
delta). The crucial observation is that unless Φ is of type A1 or C� (� ≥ 2), for any α ∈ Π
we have

Qα
⋂

M = Zα. (A.2)

Indeed, this is obvious if P (Φ) = Q(Φ) since Π is always a basis of Q(Φ). This proves 
(A.2) if Φ is one of the types E8, F4, or G2. On the other hand, if Φ has rank > 1 with all 
the roots of the same length (equal to 

√
2), then for a given α ∈ Π, one can pick β ∈ Π

so that

(α, β) = −1 = (α, β∨).

If λα ∈ M , then −λ = (λα, β∨) ∈ Z, proving (A.2) in this case. Apart from types A1
and C� (� ≥ 2), these two cases cover all types except B� with � > 2. For this remaining 
type, (A.2) follows immediately from the description of P (Φ) given in [5, Table II]. Thus, 
if Φ is not of type A1 or C� then
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⊕
α∈Π

(Qα
⋂

M) =
⊕
α∈Π

Zα. (A.3)

For types A1 and C�, one easily finds, using [5, Tables I and II], that the left-hand side 
of (A.3) contains the right-hand side as a subgroup of index two. On the other hand, in 
all cases

{((α∨, m)α) | m ∈ M} =
⊕
α∈Π

Zα. (A.4)

Indeed, the inclusion ⊂ follows from the definition of P (Φ). On the other hand, for the 
weight m = ωβ with β ∈ Π, the element ((α∨, m)α)α∈Π has β in the β-slot and 0 in 
all other slots. Thus, the left-hand side of (A.4) contains all β ∈ Π, and (A.4) follows. 
Comparing these computations with Lemma A1.1, we obtain Theorem 4.1. �
Remark A1.2. Since B2 = C2, the type B2 in Theorem 4.1 should be treated as excep-
tional along with the types A1 and C� (� ≥ 2).

A1.2. On the mistake in [37]

In [37], Klyachko made a claim (p. 73, item c)) that for any subgroup Γ ⊂ Aut(Φ) that 
contains W (Φ), and any Γ-invariant lattice M ⊂ V satisfying Q(Φ) ⊂ M ⊂ P (Φ), one 
has H1(Γ, M) = 0 except in the following three cases, where Γ coincides with W (Φ) =
Aut(Φ): (1) Φ = A1; (2) Φ = C� and M = P (Φ); and (3) Φ = B� and M = Q(Φ), 
where H1(Γ, M) = Z/2Z. As we already mentioned, this result is false as stated. We 
will now indicate where the argument in [37] fails for M = Q(Φ), and then present a 
counter-example based on explicit computations.

For this M , we immediately have⊕
α∈Π

(Qα
⋂

M) =
⊕
α∈Π

Zα.

Then Klyachko observes that if Φ is of type different from A1, B�, then for each α ∈ Π, 
the g.c.d. of the integers (α∨, β) as β varies in Π, equals 1, and concludes from this that

{((α∨, m)α) | m ∈ M} =
⊕
α∈Π

Zα; (27)

in view of Lemma A1.1 this would prove that H1(Γ, M) = 0. The problem is that this 
“argument” proves only that for each α ∈ Π, the projection of the left-hand side of (27)
to Zα is surjective, but does not fully justify (27). In fact, if we canonically identify the 
right-hand side of (27) with Z�, then the left-hand side gets identified with the submodule 
spanned by the columns of the Cartan matrix of Φ. It follows that H1(W (Φ), Q(Φ)) is 
always isomorphic to the quotient P (Φ)/Q(Φ), and in particular is nontrivial unless 
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P (Φ) = Q(Φ) (in other words, Φ has one of the following types E8, F4, or G2). We will 
now illustrate this by an explicit computation for the root system Φ of type A�.

Set n = � + 1, and consider the usual realization of Φ as the set of vectors

εi − εj , i, j = 1, . . . , n, i �= j,

where ε1, . . . , εn is the standard basis of Qn; then Γ := W (Φ) is identified with the 
symmetric group Sn acting by permutation of indices. Let

N =
n⊕

i=1
Zεi.

Then for M = Q(Φ), we have the exact sequence of Γ-modules

0 → M −→ N
δ−→ Z → 0,

with δ (
∑

aiei) =
∑

ai, which yields the following exact sequence in cohomology

NΓ δ−→ Z −→ H1(Γ, M) −→ H1(Γ, N). (A.5)

We have an isomorphism of Γ-modules N � Z[Sn/Sn−1], so by Shapiro’s lemma

H1(Γ, N) = H1(Sn−1,Z) = 0.

Then (A.5) implies that

H1(Γ, M) = Z/nZ,

which is consistent with our previous discussion. We note that this computation is an-
other way to interpret the computation given in the second part of Example 4.3.

Appendix 2. On cohomological invariants and good reduction of groups of type F4

A2.1. Cohomological invariants

Let k be an infinite field of characteristic �= 2, 3, and let G0 be the simple k-split 
group of type F4 (which is both simply connected and adjoint). Then the k-isomorphism 
classes of simple k-groups of this type correspond bijectively to the elements of the Galois 
1-cohomology set H1(k, G0). We recall that J.-P. Serre constructed two cohomological 
invariants with coefficients in the group Z/2Z:

f3 : H1(k, G0) −→ H3(k,Z/2Z) and f5 : H1(k, G0) −→ H5(k,Z/2Z)
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(see [25, Theorems 22.4 and 22.5]). Furthermore, M. Rost [72] defined a cohomological 
invariant with coefficients in Z/3Z:

g3 : H1(k, G0) −→ H3(k,Z/3Z).

(We note that the maps f3, f5, and g3 are natural in the base field k.) Given a cocycle ξ ∈
Z1(k, G0) with corresponding twisted group G = ξG0, we will often write f3(G), f5(G), 
and g3(G) instead of f3([ξ]), f5([ξ]), and g3([ξ]). One assembles these three invariants 
into a map

φ : H1(k, G0) (f3,f5,g3)−→ H3(k,Z/2Z) × H5(k,Z/2Z) × H3(k,Z/3Z),

and one of the remaining fundamental open problems in the theory of Jordan algebras 
is to determine if φ is injective. The following theorem contains a partial result in this 
direction. We let H1(k, G0)g3=0 denote the subset of H1(k, G0) consisting of cohomology 
classes/forms having trivial g3-invariant.

Theorem A2.1. ([78]) The map

H1(k, G0)g3=0
(f3,f5)−→ H3(k,Z/2Z) × H5(k,Z/2Z)

is injective.

Corollary A2.2. The map φ has trivial kernel.

In Theorems 1.10-1.12, we deal with forms of type F4 that have trivial g3-invariant. It 
is well-known (cf. [38, 26.18], [53]) that to each k-group G of type F4, one can associate a 
27-dimensional simple exceptional Jordan k-algebra J known as the Albert algebra. Then 
the g3-invariant of G vanishes if and only if J is reduced, i.e. has zero divisors. In this 
case, J admits a natural construction that involves an octonion algebra O = O(a, b, c)
corresponding to a triple a, b, c ∈ k× and two additional parameters d, e ∈ k×. Then the 
cohomological invariants of G with coefficients in Z/2Z are the following symbols

f3(G) = (a) ∪ (b) ∪ (c) and f5(G) = f3(G) ∪ (d) ∪ (e), (28)

where (t) ∈ H1(k, Z/2Z) denotes the cohomology class corresponding to tk×2 under 
the canonical isomorphism H1(k, Z/2Z) � k×/k×2. A group G of type F4 with trivial 
g3-invariant is split over k if and only if the octonion algebra O is split, i.e. the invariant 
f3(G) vanishes, and G is k-isotropic if and only if the invariant f5(G) vanishes.

We will now establish an alternative characterization of groups of type F4 having 
trivial g3-invariant. Given a (separable) quadratic extension �/k, we say that a k-torus 
T is �/k-admissible if it is anisotropic over k and is split over �, or, equivalently, if the 
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nontrivial automorphism σ of �/k acts on the character group X(T ) as multiplication 
by (−1).

Proposition A2.3. Let G be a k-group of type F4. Then g3(G) = 0 if and only if G becomes 
split over some quadratic extension �/k, in which case G possesses a maximal k-torus T
that is �/k-admissible.

We say that a finite separable extension �/k splits x ∈ Hi(k, Z/2Z) if the image of x
under the restriction map Hi(k, Z/2Z) → Hi(�, Z/2Z) is trivial. We have the following 
statement.

Lemma A2.4. Let G be a k-group of type F4 for which g3(G) = 0. If �/k is a quadratic 
extension that splits f3(G), then it also splits f5(G), and therefore splits G.

Indeed, the first assertion immediately follows from the fact that f5(G) = f3(G) ∪(d) ∪
(e). Thus, over �, all 3 invariants f3(G), f5(G), and g3(G) become trivial. Then it follows 
from Corollary A2.2 (over �) that the cohomology class in H1(k, G0) that corresponds to 
G becomes trivial in H1(�, G0), and therefore G is �-isomorphic to G0, hence is �-split.

Proof of Proposition A2.3. Suppose g3(G) = 0. Since the cohomology class f3(G) is a 
symbol, it splits over some quadratic extension �/k. By Lemma A2.4, G splits over �. 
The group G has an �-defined Borel subgroup B such that T := B ∩ Bσ is a maximal 
k-torus of G (cf. [54, Lemma 6.17]). If Π is the system of positive roots in the root 
system Φ = Φ(G, T ) that corresponds to B, then for the action of σ on X(T ), we have 
σ(Π) = −Π. But the only element in Aut(Φ) that has this property is multiplication by 
(−1). Thus, σ = −1, i.e. T is �/k-admissible.

Conversely, if G becomes split over a quadratic extension �/k, then � splits the invari-
ant g3(G). Using a standard restriction-corestriction argument, we see that 2 ·g3(G) = 0. 
But every element in H3(k, Z/3Z) satisfies 3 · g3(G) = 0. Thus, g3(G) = 0. �
A2.2. An alternative description of invariants and good reduction

First, we recall some basic facts about absolutely almost simple k-groups G that pos-
sess a maximal k-torus T that is admissible with respect to a quadratic extension �/k, 
assuming that char k �= 2. These results were initially obtained in [84] and then system-
atically redeveloped in [10], [11] in the more general situation of groups over regular local 
rings (in particular, over discrete valuation rings). This generalization becomes particu-
larly useful when we consider forms with good reduction. We will now review the theory 
over fields. Let g = L(G) denote the Lie algebra of G, and let Φ = Φ(G, T ) be the root 
system of G with respect to the maximal torus T . Fix a Chevalley basis

{Hα1 , . . . , Hαr
} ∪ {Xα}α∈Φ
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of g(�) associated with T (where r = dim T is the rank of G and Π = {α1, . . . , αr}
is a system of simple roots). The key observation is that the action of the nontrivial 
automorphism σ of �/k on the root elements of the Chevalley basis is described by 
equations of the form

σ(Xα) = cαX−α with cα ∈ k×.

These constants cα completely determine the k-isomorphism class of G (assuming that 
the latter is simply connected). One checks (cf. [11]) that c−α = c−1

α and cα+β = ±cαcβ

(with the sign depending only on α and β as elements of Φ). This means that the k-
isomorphism class of G is determined by the quadratic extension �/k and the constants 
cα for only simple roots α.

In the rest of this subsection, G will denote a k-group of type F4 with trivial g3-
invariant. According to Proposition A2.3, the group G has a maximal k-torus that is 
admissible over a quadratic extension � = k(

√
a). We will use the labeling of the simple 

roots α1, . . . , α4 introduced in Bourbaki [5].

Theorem A2.5. ([11, Theorems 6.1 and 6.6]) Let G be a simple algebraic k-group of 
type F4 that has a maximal k-torus T that is admissible over a quadratic extension 
� = k(

√
a). Fix a system of simple roots Π = {α1, . . . , α4} in the root system Φ(G, T ), 

and let cα1 , . . . , cα4 be the constants defined above for some choice of root vectors in a 
Chevalley basis. Then

f3(G) = (a) ∪ (cα1) ∪ (cα2) and f5(G) = (a) ∪ (cα1) ∪ (cα2) ∪ (cα3) ∪ (cα4).

We will now use this description of the invariants f3 and f5 to prove that they are 
unramified if the group G has good reduction at a discrete valuation v of k (see subsection 
A2.4 below for a more general result).

Theorem A2.6. Let G be a k-group of type F4 with trivial g3-invariant that has good 
reduction at a discrete valuation v of k with char k(v) �= 2. Then the invariants f3(G)
and f5(G) are unramified at v.

The proof will involve an application of the results from [11] over discrete valuation 
rings. So, suppose that our base field k is equipped with a discrete valuation v, and let 
Ok,v ⊂ k be the corresponding valuation ring. Let G be a simple algebraic k-group of 
type F4 that splits over a quadratic extension � = k(

√
a). It follows from the description 

of f3(G) as a symbol (see (28)) that, without loss of generality, we can always assume 
that one of the elements is a unit, and we take this element for a. Then � = k(

√
a) is 

unramified over k at v, and therefore Õ := Ok,v(
√

a) is an étale extension of Ok,v.

Proof of Theorem A2.6. Suppose that G has good reduction at v, i.e. there exists a 
reductive group scheme G over Ok,v with generic fiber G (see the discussion in §2.3). Then 
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G ×Ok,v
Õ is a reductive group scheme with generic fiber G ×k �. Applying Proposition 2.5

in this situation and taking into account that G ×k � is split, we see that G ×Ok,v
Õ is 

split. Then one shows that G contains a maximal torus T whose generic fiber T is an �/k-
admissible torus. Furthermore, one verifies that the constants cαi

(i = 1, . . . , 4) belong 
to O×

k,v (see [11, Remark 44]). Combining this with the formulas for f3(G) and f5(G)
given in Theorem A2.5 completes the proof of Theorem A2.6. �

We conclude this subsection with the following, which in some sense provides a con-
verse to Theorem A2.6.

Proposition A2.7. Let G be a simple algebraic k-group of type F4 that has a maximal 
k-torus T that is �/k-admissible for a quadratic extension �/k. Assume that �/k is un-
ramified at v and the constants cα1 , . . . , cα4 are v-units. Then G has good reduction at 
v.

Proof. Let G0 (resp., g0) be the split group scheme (resp., split Lie algebra) of type F4
over Ok,v, and let Õ be the integral closure of Ok,v in �. It is enough to construct a Lie 
algebra g over Ok,v such that

g ⊗Ok,v
Õ � g0 ⊗Ok,v

Õ and g ⊗Ok,v
k � L(G)k,

where L(G) is the Lie algebra of G. Indeed, it is well-known that the automorphism 
group of a split Lie algebra of type F4 is a simple split algebraic group of type F4, 
which is both adjoint and simply connected. So, g can be obtained from g0 by twisting 
using an �/k-cocycle with values in G0(Õ). Then twisting G0 by the same cocycle, we 
obtain the required reductive group Ok,v-scheme G with generic fiber G (since its Lie 
algebra coincides with that of G by construction). On the other hand, the Lie algebra g
with the above properties is constructed from g0 ⊗Ok,v

Õ by Galois descent (which can 
be implemented due to the fact that �/k is unramified at v) using the automorphism 
defined by

Hα �→ −Hα and Xα �→ cαX−α

for all simple roots α (recall that cα ∈ O×
k,v by assumption). �

We note that the reduction G(v) possesses a maximal �(v)/k(v)-admissible torus for 
which the corresponding constants are the reductions c̄α1 , . . . , ̄cα4 .

A2.3. Two results about forms of type F4 that split over a cubic extension

We will keep the notations introduced in §11 prior to the proof of Proposition 11.4. 
First, we will prove Proposition 11.7.
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Proof of Proposition 11.7. (1): We begin with the following general fact.

Lemma A2.8. Let G be a k-group of type F4, and let �/k be a cubic Galois extension. 
Given two maximal k-tori T1 and T2 of G that are anisotropic over k and split over �, 
there exists g ∈ G(�) such that the restriction of the inner automorphism Int g induces a 
k-defined isomorphism T1 → T2.

Proof. Let us return to the notations introduced immediately before the statement of 
Proposition 11.7. The Weyl group W (Ri, ιi(S)) is isomorphic to the symmetric group Σ3, 
and we let Vi ⊂ W (Ri, ιi(S)) be its Sylow 3-subgroup. Then V = V1V2 ⊂ W (G0, T ) has 
order 9, and therefore is a Sylow 3-subgroup of W (G0, T ). It follows from this description 
that W (G0, T ) has a unique conjugacy class of elements w of order 3 such that X(T )w =
{0}. Let θ(i) : Gal(�/k) → W (G, Ti) for i = 1, 2 be the natural homomorphism (cf. 
subsection 3.1), and fix a generator σ ∈ Gal(�/k). Pick an arbitrary g ∈ G(�) such that 
for the inner automorphism ιg = Int g, we have ιg(T1) = T2, and let ι∗

g : X(T2) → X(T1)
be the corresponding comorphism. Considering W (G, Ti) as a subgroup of GL(X(Ti)), 
we can define an isomorphism W (G, T1) → W (G, T2) by w �→ (ι∗

g)−1 ◦ w ◦ ι∗
g. Since 

wi = θ(i)(σ) ∈ W (G, Ti) is an element of order 3 such that X(Ti)wi = {0}, it follows 
from the above remark that by replacing g with gn for an appropriate n ∈ NG(T1), we 
can assume that

θ(1)(σ) ◦ ι∗
g = ι∗

g ◦ θ(2)(σ).

This means that the restriction ιg|T1 is defined over k, as required. �
Corollary A2.9. With notations and conventions as in Lemma A2.8, the maps H1(�/k, Ti)
→ H1(�/k, G) for i = 1, 2 have the same image.

Proof. By the lemma, we can find g ∈ G(�) such that the restriction of ι := Intg induces 
a k-defined isomorphism T1 → T2. Then for any σ ∈ Gal(�/k), we have g ·σ(g)−1 ∈ T2(�). 
It follows that an arbitrary cocycle ξ(σ) on Gal(�/k) with values in T1(�) is equivalent 
in H1(�/k, G) to the cocycle

gξ(σ)σ(g)−1 = (gξ(σ)g−1) · (g · σ(g)−1)

which has values in T2(�), and vice versa. �
It is now easy to conclude the proof of part (1) of Proposition 11.7. Let ξ ∈ Z1(k, G0)

be a cocycle such that G = ξG0 contains a maximal k-torus T1 that is anisotropic over 
k and splits over �. It follows from Steinberg’s theorem (cf. [54, Prop. 6.19]) that there 
exists a k-embedding T1 ↪→ G0 such that [ξ] lies in the image of the corresponding map 
H1(k, T1) → H1(k, G0). But according to Corollary A2.9, the image of this map coincides 
with the image of the map H1(k, T ) → H1(k, G0), and the required fact follows.
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Turning now to part (2) of Proposition 11.7, we recall that for S = R(1)
�/k(Gm), we 

have H1(k, S) = k×/N�/k(�×); in particular, we can write γ2([ζ]) = bN�/k(�×) for some 
b ∈ k×. On the other hand, δ(γ1([ζ])) corresponds to a Brauer class [A] ∈ H2(k, μ3) =
3Br(k). The algebra A splits over �, so that the corresponding division algebra has degree 
dividing 3. According to [25, 7.4], we have g3(G) = [A] ∪ (b), as required. (We note that 
since � splits A, the cup-product does not depend on the choice of b in the coset modulo 
the norm subgroup N�/k(�×).)

The second result of this subsection is the following.

Lemma A2.10.

(1) δ is injective.
(2) Assume that k is complete with respect to a discrete valuation v with char k(v) �= 3, 

and let Ov be the valuation ring in k = kv. Furthermore, assume that the extension 
�/k is unramified, so that there is an Ov-torus S1 with generic fiber S1. If x ∈
H1(kv, S1) is such that the image δ(x) ∈ H2(k, μ3) is unramified, then x belongs to 
the image of the map H1(Ov, S1) → H1(kv, S1).

Proof. (1): We have the following long exact sequence

H1(k, μ3) α−→ H1(k, S̃1) −→ H1(k, S1) δ−→ H2(k, μ3).

Since α is surjective, δ is injective.
(2): Let S̃1 be an Ov-torus with generic fiber S̃1. We first show that the map

H2(Ov, S̃1) ε−→ H2(kv, S̃1)

is injective. Consider the kv-tori T0 = Gm and T = R�/k(Gm), and let T0 and T be the 
Ov-tori with generic fibers T0 and T . The exact sequence

1 → S̃1 −→ T
N−→ T0 → 1,

where N is the norm map associated with the extension �/k, induces the following 
commutative diagram with exact rows

H1(Ov,T0) −−−−→ H2(Ov, S̃1) −−−−→ H2(Ov,T)

ρ1

⏐⏐
 ε

⏐⏐
 ρ2

⏐⏐

H1(kv, T0) −−−−→ H2(kv, S̃1) −−−−→ H2(kv, T )

.

But H1(kv, T0) = {1} by Hilbert’s Theorem 90, and H1(Ov, T0) = Pic Ov = {1}. On 
the other hand, by Shapiro’s Lemma, the homomorphism ρ2 can be identified with the 
homomorphism
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H2(O(�),T0 ×Ov
O(�)) → H2(�,T0 ×k �),

where O(�) is the valuation ring of �. So, the injectivity of ρ2 immediately follows from 
the injectivity of the canonical map of the Brauer group of a discrete valuation ring 
to the Brauer group of its field of fractions (cf. [19, 3.6], [47, Ch. IV, §2]). Now, the 
injectivity of ε follows from the above commutative diagram.

Next, we have the following commutative diagram with exact rows

H1(Ov, S1) −−−−→ H2(Ov, μ3) −−−−→ H2(Ov, S̃1)⏐⏐
 ω

⏐⏐
 ε

⏐⏐

H1(kv, S1) δ−−−−→ H2(kv, μ3) −−−−→ H2(kv, S̃1)

.

It is well-known that Imω coincides with the subgroup of unramified cohomology classes. 
Then the required assertion follows from the injectivity of δ and ε by a diagram chase. �
A2.4. Cohomological invariant g3 of forms with good reduction

The goal of this section is to prove the following.

Proposition A2.11. Let k be a field with a discrete valuation v such that char k(v) �= 3. 
If G is a k-form of type F4 that has good reduction at v, then the invariant g3(G) is 
unramified at v.

Proof. Without loss of generality, we may suppose that k is complete with respect to v, 
and let Ov be the valuation ring of k. By assumption, there exists a reductive group Ov-
scheme G with generic fiber G. Then the reduction G(v) = G ×Ov

k(v) is the automorphism 
group of a simple exceptional Jordan k(v)-algebra J (v). It follows from [53, Theorem 
58] that there exists a quadratic extension �̄/k(v) such that the algebra J (v) ⊗k(v) �̄ is 
isomorphic to the Albert algebra (A(v), μ̄) obtained by Tits’ first construction from a 
central cubic k(v)-algebra A(v) and some μ̄ ∈ �̄×. Let � be the unramified extension of k
with residue field �(v) = �̄, and let O(�) be the valuation ring of �. We now consider an 
Azumaya O(�)-algebra A with residue algebra A(v), and let μ ∈ O(�)× be an element 
with residue μ̄. Applying Tits’ first construction with these A and μ, we obtain a Jordan 
O(�)-algebra J. It follows from Hensel’s Lemma that the reductive group O(�)-scheme G̃
corresponding to J is isomorphic to G ×Ov

O(�). In particular, the generic fiber G̃ of G̃ is 
isomorphic to G ×k � and corresponds to the Albert algebra (A, μ), where A = A ⊗O(�) �. 
Let res�/k denote the restriction map in cohomology. Then it follows from the definition 
of g3 (see [72]) that

res�/k(g3(G)) = g3(G ×k �) = [A] ∪ (μ) ∈ H3(�,Z/3Z),

where [A] denotes the class of A in 3Br(�) = H2(�, μ3). Since by construction A comes 
from an Azumaya algebra and μ ∈ O(�)×, we conclude that res�/k(g3(G)) ∈ H3(�, Z/3Z)
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is unramified. On the other hand, since �/k is unramified, we have the following commu-
tative diagram

H3(k,Z/3Z) ρk−−−−→ H2(k(v), μ3)

res�/k

⏐⏐
 ⏐⏐
res
�̄/k(v)

H3(�,Z/3Z) ρ�−−−−→ H2(�̄, μ3)

where ρk and ρ� are the corresponding residue maps. We have

ρ�(res�/k(g3(G))) = 0 = res�̄/k(v)(ρk(g3(G))).

But since [�̄ : k(v)] = 2, a standard restriction-corestriction argument shows that 2 ·
ρk(g3(G)) = 0. On the other hand, 3 ·H2(k(v), μ3) = 0, so ρk(g3(G)) = 0, as required. �
References

[1] P. Abramenko, A.S. Rapinchuk, I.A. Rapinchuk, Applications of the Fixed Point Theorem for 
group actions on buildings to algebraic groups over polynomial rings, J. Algebra (2023), https://
doi .org /10 .1016 /j .jalgebra .2023 .05 .023.

[2] S. Amitsur, Generic splitting fields of central simple algebras, Ann. Math. (2) 62 (1) (1955) 8–43.
[3] A. Borel, Linear Algebraic Groups, GTM, vol. 126, Springer, 1991.
[4] A. Borel, T.A. Springer, Rationality properties of linear algebraic groups II, Tohoku Math. J. 20 

(1968) 443–497.
[5] N. Bourbaki, Groupes and algèbres de Lie, ch. IV-VI, Hermann, 1968.
[6] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. I. Données radicielles valuées, Publ. Math. 

IHES 41 (1972) 5–251.
[7] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une 

donnée radicielle valuée, Publ. Math. IHES 60 (1984) 5–184.
[8] F. Bruhat, J. Tits, Groupes algébriques sur un corps local. Chapitre III. Compléments et applications 

à la cohomologie galoisienne, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 34 (1987) 671–698.
[9] B. Calmès, J. Fasel, Groupes classiques, Autour des schémas en groupes, vol. II, Panoramas et 

Synthèses, vol. 46, Soc. math. de France, 2015, pp. 1–133.
[10] V. Chernousov, The kernel of the Rost invariant, Serre’s Conjecture II and the Hasse principle for 

quasi-split groups 3,6D4, E6 and E7, Math. Ann. 326 (2003) 297–330.
[11] V. Chernousov, Variations on a theme of groups splitting by a quadratic extension and Grothendieck-

Serre conjecture for group schemes F4 with trivial g3 invariant, Extra vol.: Andrei A. Suslin sixtieth 
birthday, Doc. Math. (2010) 147–169.

[12] V. Chernousov, P. Gille, A. Pianzola, Torsors over the punctured affine line, Am. J. Math. 134 (6) 
(2012) 1541–1583.

[13] V.I. Chernousov, A.S. Rapinchuk, I.A. Rapinchuk, The genus of a division algebra and the unram-
ified Brauer group, Bull. Math. Sci. 3 (2013) 211–240.

[14] V.I. Chernousov, A.S. Rapinchuk, I.A. Rapinchuk, On the size of the genus of a division algebra, 
Proc. Steklov Inst. Math. 292 (1) (2016) 63–93.

[15] V.I. Chernousov, A.S. Rapinchuk, I.A. Rapinchuk, On some finiteness properties of algebraic groups 
over finitely generated fields, C. R. Acad. Sci. Paris, Ser. I 354 (2016) 869–873.

[16] V.I. Chernousov, A.S. Rapinchuk, I.A. Rapinchuk, Spinor groups with good reduction, Compos. 
Math. 155 (2019) 484–527.

[17] V.I. Chernousov, A.S. Rapinchuk, I.A. Rapinchuk, The finiteness of the genus of a finite-dimensional 
division algebras, and some generalizations, Isr. J. Math. 236 (2) (2020) 747–799.

[18] M. Collins, On Jordan’s theorem for complex linear groups, J. Group Theory 10 (4) (2007) 411–423.
[19] J.-L. Colliot-Thélène, Birational Invariants, Purity, and the Gersten Conjecture, Proc. Symp. Pure 

Math., vol. 58, part 1, AMS, 1995, pp. 1–64.

https://doi.org/10.1016/j.jalgebra.2023.05.023
https://doi.org/10.1016/j.jalgebra.2023.05.023
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib93DDB8A4D794C52B08C2DEE698580F41s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibA86710DB0F0CA2035C999269B8F4543Ds1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib44347E13B46060436725402359D15418s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib44347E13B46060436725402359D15418s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib256AB2FE846191D30F8E8FC140CCE49Bs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib85F42C01C9182C8B26C7F8F59FEE21F9s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib85F42C01C9182C8B26C7F8F59FEE21F9s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib108C1696065F8E04D934BF0E2A0B1630s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib108C1696065F8E04D934BF0E2A0B1630s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib23710BCA9222CAAF6F40BF496CA94DE9s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib23710BCA9222CAAF6F40BF496CA94DE9s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib417F04C5EDADE520BCCA862611F613ABs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib417F04C5EDADE520BCCA862611F613ABs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib237D19E3A6BFECBBDFFBEE5B3554AD28s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib237D19E3A6BFECBBDFFBEE5B3554AD28s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib6F0C293BD03EA164F534ACA0A0E24191s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib6F0C293BD03EA164F534ACA0A0E24191s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib6F0C293BD03EA164F534ACA0A0E24191s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibEC578974F98617ABE5A1DB487DB20C0Ds1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibEC578974F98617ABE5A1DB487DB20C0Ds1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibC530DE02377B8D25E1DAE09FDC0D81F7s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibC530DE02377B8D25E1DAE09FDC0D81F7s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibB3E2C148BD36880C46431382A200AA8Cs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibB3E2C148BD36880C46431382A200AA8Cs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibEFA8B5FCB05E857FA8C5974D8BC97E06s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibEFA8B5FCB05E857FA8C5974D8BC97E06s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib71E84544FE7E68DFE4566491E81C9C93s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib71E84544FE7E68DFE4566491E81C9C93s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib3B6CE8A8F553E03C99DA3432AE56C1FFs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib3B6CE8A8F553E03C99DA3432AE56C1FFs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib43D3FAB02BC348E1D75070C98BE1EFE4s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib237C4C1E2540BFA1745D7244AA0FB8CAs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib237C4C1E2540BFA1745D7244AA0FB8CAs1


V.I. Chernousov et al. / Advances in Mathematics 438 (2024) 109437 77
[20] B. Conrad, Reductive group schemes, in: Autour des schémas en groupes, École d’été “Schémas en 
groupes” [Group schemes, a celebration of SGA3] vol. I (Luminy 2011), in: Panoramas et Synthèses, 
vol. 42/43, Soc. math. de France, 2014, pp. 93–444.

[21] B. Conrad, Non-split reductive groups over Z, in: Autour des schémas en groupes, École d’été 
“Schémas en groupes” [Group schemes, a celebration of SGA3] vol. II (Luminy 2011), in: Panoramas 
et Synthèses, vol. 46, Soc. math. de France, 2015, pp. 193–253.

[22] M. Demazure, A. Grothendieck (Eds.), Schémas en groupes, vol. III: Structure des schémas en 
groupes réductifs (SGA3), Lect. Notes Math., vol. 153, Springer, 1970.

[23] R. Fedorov, I. Panin, A proof of the Grothendieck-Serre conjecture on principal bundles over regular 
local rings containing infinite fields, Publ. Math. IHES 122 (2015) 169–193.

[24] M.D. Fried, M. Jarden, Field Arithmetic, 2nd edition, Springer, 2005.
[25] S. Garibaldi, A. Merkurjev, J.-P. Serre, Cohomological Invariants in Galois Cohomology, University 

Lecture Series, vol. 28, AMS, 2003.
[26] P. Gille, Torseurs sur la droite affine, Transform. Groups 7 (3) (2002) 231–245, Transform. Groups 

10 (2005) 267–269, errata.
[27] P. Gille, S. Gosavi, Bruhat-Tits decomposition, preprint, 2021.
[28] U. Görtz, T. Wedhorn, Algebraic Geometry I. Schemes – with Examples and Exercises, 2nd edition, 

Springer, 2020.
[29] B.H. Gross, Groups over Z, Invent. Math. 124 (1996) 263–279.
[30] N. Guo, The Grothendieck-Serre conjecture over semilocal Dedekind rings, Transform. Groups 27 (3) 

(2022) 897–917.
[31] G. Harder, Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math. 4 (1967) 165–191.
[32] O.T. Izhboldin, Motivic equivalence of quadratic forms, Doc. Math. 3 (1998) 341–351.
[33] B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, vol. 134, 

Springer, Berlin-New York, 1967.
[34] T. Kaletha, G. Prasad, Bruhat-Tits Theory: a New Approach, Cambridge Univ. Press, 2023.
[35] N.A. Karpenko, Criteria of motivic equivalence for quadratic forms and central simple algebras, 

Math. Ann. 317 (3) (2000) 585–611.
[36] K. Kato, A Hasse principle for two dimensional global fields, with an appendix by J.-L. Colliot-

Thélène, J. Reine Angew. Math. 366 (1986) 142–183.
[37] A.A. Klyachko, Tori without affect in semisimple groups, in: Arithmetic and Geometry of Varieties, 

Kuibyshev, 1989, pp. 67–78 (in Russian).
[38] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, AMS, 1998.
[39] T.-Y. Lam, A First Course in Noncommutative Rings, 2nd edition, GTM, vol. 131, Springer, 2001.
[40] T.Y. Lam, Introduction to Quadratic Forms over Fields, GSM, vol. 67, AMS, 2005.
[41] S. Lang, Algebra, revised third edition, GTM, vol. 211, Springer, 2002.
[42] C. Maclachlan, A.W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, GTM, vol. 219, Springer, 

2003.
[43] G.A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer, 1991.
[44] E. Matzri, A birational interpretation of Severi-Brauer varieties, Commun. Algebra 48 (2) (2020) 

484–489.
[45] A.S. Merkurjev, On the norm residue symbol of degree 2, Dokl. Akad. Nauk SSSR 261 (3) (1981) 

542–547.
[46] A.S. Merkurjev, A.A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homo-

morphism, Izv. Akad. Nauk SSSR, Ser. Mat. 46 (5) (1982) 1011–1046.
[47] J.S. Milne, Étale cohomology, Princeton Univ. Press, 1980.
[48] E. Nart, X. Xarles, Additive reduction of algebraic tori, Arch. Math. (Basel) 57 (5) (1991) 460–466.
[49] Y.A. Nisnevich, Étale cohomology and Arithmetic of Semisimple Groups, Thesis (Ph.D.), Harvard 

University, ProQuest LLC, Ann Arbor, MI, 1982.
[50] Y.A. Nisnevich, Espaces homogènes principaux rationnellement triviaux et arithmètique des sché-

mas en groupes réductifs sur les anneaux de Dedekind, C. R. Acad. Sci. Paris, Ser. I, Math. 299 (1) 
(1984) 5–8.

[51] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Springer, 2000.
[52] I. Panin, Proof of Grothendieck-Serre’s conjecture on principle bundles over regular local rings 

containing a finite field, arXiv :1707 .01767.
[53] H. Petersson, A survey on Albert algebras, Transform. Groups 24 (1) (2019) 219–278.
[54] V.P. Platonov, A.S. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, 1993.
[55] G. Prasad, A new approach to unramified descent in Bruhat-Tits theory, Am. J. Math. 142 (2020) 

215–253.

http://refhub.elsevier.com/S0001-8708(23)00580-7/bib8442DBF8110557212E11922C19C352BCs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib8442DBF8110557212E11922C19C352BCs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib8442DBF8110557212E11922C19C352BCs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib123FE1F9EE37A8D704F0B2D2DBD18A1Bs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib123FE1F9EE37A8D704F0B2D2DBD18A1Bs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib123FE1F9EE37A8D704F0B2D2DBD18A1Bs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib16B5D5B1929FD1E33568682B1C8BCD8Es1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib16B5D5B1929FD1E33568682B1C8BCD8Es1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib7777EA174C22DCBEE39CDD67CF7A0AAAs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib7777EA174C22DCBEE39CDD67CF7A0AAAs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibDE605309747F6B020BD7D039CBD3F576s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib34770578C6602AA852110C0ABC5EFD07s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib34770578C6602AA852110C0ABC5EFD07s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib88B87EF3F99DF162DB0348D079B82713s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib88B87EF3F99DF162DB0348D079B82713s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibC17D19F7520BE36ADDBEB5D2C76AB7CFs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibC17D19F7520BE36ADDBEB5D2C76AB7CFs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib526664EC12DC5105F2C3171CA0909570s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibAFDAAD028F3B7AD542BA5ED3D4D92FC5s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibAFDAAD028F3B7AD542BA5ED3D4D92FC5s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibC6AD8B5C4DF40D2F69EE833A8A56681Es1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib9A39738DDB8C590BB8624E58E2EAA527s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib37731D2165F6CE5D0C07BC34A40571BBs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib37731D2165F6CE5D0C07BC34A40571BBs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibFBD04A3F2FE2C6DB756750E0C4F90AC0s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib85F8264B3A9DC8FF8D29355A6DCBC85Ds1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib85F8264B3A9DC8FF8D29355A6DCBC85Ds1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib87380C6485A2E8E6C7C9F0D9726BEE41s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib87380C6485A2E8E6C7C9F0D9726BEE41s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib4976AE42D88DBFFD7FB0B0071F1B7E9As1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib4976AE42D88DBFFD7FB0B0071F1B7E9As1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibAEEAB200C9463CEF8DE230377395E236s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibE56994434FA94D237631FF9E3015E901s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib36B73508D151B2FC641E0C0265D3D360s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib3E674E1FAF0D2E712072F818B2409FD0s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib038AAD0CF758A833E339EF47BD4720D2s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib038AAD0CF758A833E339EF47BD4720D2s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib78EED7D2BF2FBCBA3C717E24973F81A1s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib32A42E932FAC16D426BF6564BB91CF90s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib32A42E932FAC16D426BF6564BB91CF90s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib3878A304AB75EA7CE0089F72350ED66Ds1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib3878A304AB75EA7CE0089F72350ED66Ds1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibED9E610A7529D1EC1A4AA60A4A36F5C2s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibED9E610A7529D1EC1A4AA60A4A36F5C2s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib97A9F142CE10B8D730976BAE152AFC8Bs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib973FD64B3B915BCCDEE598A385EE39E1s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib9B0616569E291F8AA8F2954B369D38A8s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib9B0616569E291F8AA8F2954B369D38A8s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibD2118018BC8AEF2DAE03059E2A38B8FEs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibD2118018BC8AEF2DAE03059E2A38B8FEs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibD2118018BC8AEF2DAE03059E2A38B8FEs1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib7FD51C89695B098A88A38F57AE4BFB2Ds1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibF6D4A17B27DA35C2D90CE13801F36782s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibF6D4A17B27DA35C2D90CE13801F36782s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bibD8A56C23D23FBCEE62F052E23F70FC25s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib0FE75A5189C2EA3F123621D098DDD03Es1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib2C80132E8250445C2E0CDF2161DEC6A4s1
http://refhub.elsevier.com/S0001-8708(23)00580-7/bib2C80132E8250445C2E0CDF2161DEC6A4s1


78 V.I. Chernousov et al. / Advances in Mathematics 438 (2024) 109437
[56] G. Prasad, A.S. Rapinchuk, Irreducible tori in semisimple groups, Int. Math. Res. Not. 32 (2001) 
1229–1242.

[57] G. Prasad, A.S. Rapinchuk, Existence of irreducible R-regular elements in Zariski-dense subgroups, 
Math. Res. Lett. 10 (1) (2003) 21–32.

[58] G. Prasad, A.S. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally sym-
metric spaces, Publ. Math. IHES 109 (2009) 113–184.

[59] G. Prasad, A.S. Rapinchuk, On the fields generated by the lengths of closed geodesics in locally 
symmetric spaces, Geom. Dedic. 172 (2014) 79–120.

[60] G. Prasad, A.S. Rapinchuk, Weakly commensurable groups, with applications to differential ge-
ometry, in: Handbook of Group Actions. Vol. I, in: Adv. Lect. Math. (ALM), vol. 31, Int. Press, 
Somerville, MA, 2015, pp. 495–524.

[61] G. Prasad, A.S. Rapinchuk, Generic elements of a Zariski-dense subgroup form an open subset, 
Trans. Mosc. Math. Soc. 78 (2017) 299–314.

[62] M.S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, 1972.
[63] M.S. Raghunathan, A. Ramanathan, Principal bundles on the affine line, Proc. Indian Acad. Sci. 

Math. Sci. 93 (2–3) (1984) 137–145.
[64] A.S. Rapinchuk, Towards the eigenvalue rigidity of Zariski-dense subgroups, in: Proc. ICM-2014 

(Seoul), vol. II, 2014, pp. 247–269.
[65] A.S. Rapinchuk, I.A. Rapinchuk, On division algebras having the same maximal subfields, Manuscr. 

Math. 132 (2010) 273–293.
[66] A.S. Rapinchuk, I.A. Rapinchuk, Linear algebraic groups with good reduction, Res. Math. Sci. 7 (3) 

(2020) 28, 66pp.
[67] A.S. Rapinchuk, I.A. Rapinchuk, Some finiteness results for algebraic groups and unramified coho-

mology over higher-dimensional fields, J. Number Theory 233 (2022) 228–260.
[68] A.S. Rapinchuk, I.A. Rapinchuk, Properness of the global-to-local map for algebraic groups with 

toric connected component and other finiteness properties, Math. Res. Lett. 30 (3) (2023) 913–943.
[69] I. Rapinchuk, Residue maps, Azumaya algebras, and buildings, arXiv :2303 .03175.
[70] I. Rapinchuk, Finiteness results for the unramified cohomology of conics and applications, in prepa-

ration.
[71] A. Reid, Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds, Duke 

Math. J. 65 (1992) 215–228.
[72] M. Rost, A (mod 3) invariant for exceptional Jordan algebras, C. R. Acad. Sci. Paris, Ser. I 313 

(1991) 823–827.
[73] D. Saltman, Norm polynomials and algebras, J. Algebra 62 (1980) 333–345.
[74] D. Saltman, Lectures on Division Algebras, CBMS Regional Conference Series in Mathematics, 

vol. 94, AMS, 1999.
[75] L. Scott, Integral equivalence of permutation representations, in: Group Theory, Granville, OH, 

1992, World Scientific Publishing Co., 1993, pp. 262–274.
[76] J.-P. Serre, Algebraic Groups and Class Fields, GTM, vol. 117, Springer, 1988.
[77] J.-P. Serre, Galois Cohomology, Springer, 1997.
[78] T.A. Springer, The classification of reduced exceptional simple Jordan algebras, Indag. Math. 22 

(1960) 414–422.
[79] J. Tits, Classification of algebraic semisimple groups, in: Algebraic Groups and Discontinuous Sub-

groups, in: Proc. Symp. Pure Math., vol. 9, AMS, 1966, pp. 33–62.
[80] E.B. Vinberg, Rings of definition of dense subgroups of semisimple linear groups, Izv. Akad. Nauk 

SSSR, Ser. Math. 35 (1971) 45–55.
[81] A. Vishik, Integral Motives of Quadrics, preprint MPI-1998-13 Max Planck Institute für Mathe-

matik, Bonn, 1998, 82 pp., http://www .mpim -bonn .mpg .de /node /263.
[82] A. Vishik, Motives of quadrics with applications to the theory of quadratic forms, in: Geomet-

ric Methods in the Algebraic Theory of Quadratic Forms, in: Lecture Notes in Math., vol. 1835, 
Springer, Berlin, 2004, pp. 25–101.
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