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analyze the Finiteness Conjecture and the genus problem for
simple algebraic groups of type F4.
© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a reductive affine algebraic group over a field k. Given a discrete valuation v
of k, we denote by k, the corresponding completion, with valuation ring O, and residue
field k("). We recall that G has good reduction at v if there exists a reductive group
scheme G over O, whose generic fiber § x, k, is isomorphic to G Xy, k,; then the closed
fiber § xo, k) is called the reduction of G at v and will be denoted G (see §2 for
more details, including the uniqueness of reduction, and variations). The focus of the
recent work [14], [15], [16], [67], [68] was on the analysis of k-forms of G that have good
reduction at all valuations in some natural set V of discrete valuations of k. We refer
the reader to the survey [66] for a detailed discussion of this problem and some natu-
ral choices for k and V. One is particularly interested in the case where k is a finitely
generated field and V' is a divisorial set of valuations of k (which means that V consists
of the discrete valuations that correspond to all prime divisors on a model X of k, i.e.
an irreducible separated normal scheme of finite type over Z with function field k —
see [66, 5.3]). In this case, there is the following Finiteness Conjecture (cf. [66, Conjec-

ture 5.7]): the set of k-isomorphism classes of k-forms of G that have good reduction
at all v € V is finite (at least when the characteristic of k is “good”). This conjecture
has been established in a number of cases, but the general case remains the focus of
ongoing work. Its significance for the current effort to develop the arithmetic theory of
algebraic groups over higher-dimensional fields is predicated on deep connections with
other important problems. In particular, the validity of the conjecture for an absolutely
almost simple simply connected k-group G and any divisorial set of places of k would
imply the properness of the global-to-local map H'(k,G) — [[,cy H'(kv, G) in Galois
cohomology for the corresponding adjoint group G (cf. [66, §6]). In the present paper, we
will focus on several other applications of the Finiteness Conjecture, particularly those
related to the genus problem for absolutely almost simple algebraic groups. This includes
a new phenomenon that we have termed “killing the genus by a purely transcendental
extension,” and the investigation of “eigenvalue rigidity” of Zariski-dense subgroups (cf.
[64]) — the latter is related to the analysis of length-commensurable Riemann surfaces
and general locally symmetric spaces in differential geometry (cf. [58], [60]). Finally, we
develop new techniques for tackling the genus problem for some groups of type F4 and
obtain several finiteness results in this case.

To prepare for the discussion of the genus problem, we recall that two semisimple
algebraic groups G; and G5 defined over a field k are said to have the same isomorphism
classes of mazimal k-tori if every maximal k-torus 77 of G is k-isomorphic to some
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maximal k-torus Ty of G, and vice versa. We then define the (k-)genus gen, (G) (resp.,
the extended (k-)genus gen: (G)) of an absolutely almost simple k-group G as the set of
k-isomorphism classes of inner k-forms of G (resp., all k-forms of G) that have the same
isomorphism classes of maximal k-tori as G. (We note that we always have the inclusion
gen, (G) C gen; (G), which, in fact, is an equality whenever k is finitely generated —
see Corollary 3.5.) The analysis of the genus is the subject of the genus problem. In
particular, one expects to prove that the genus is always finite whenever the field k is
finitely generated (of “good” characteristic) and is trivial in some special situations (see
[66, §8]). One of our main results is the following theorem that relates the genus problem
to good reduction.

Theorem 1.1. Let G be an absolutely almost simple linear algebraic group over a field
k and let v be a discrete valuation of k. Assume that the residue field k") is finitely
generated and that char k™) # 2 if G is of type By ({ > 2). If G has good reduction at v,
then any G' € gen,(G) also has good reduction at v. Moreover, the reduction Q’(U) lies
in the genus geny.,(G™) of the reduction G™.

It should be pointed out that the proof of this theorem is based on an entirely new
approach to good reduction of simple algebraic groups that shows that the existence of
good reduction can be characterized in terms of the presence of maximal tori with certain
specific properties — see Theorems 6.2 and 6.6 for precise statements. This approach
enables us to extend to absolutely almost simple groups the techniques developed earlier
in [13], [14], [17], and [65] to analyze the genus of a division algebra. In particular, just
like the finiteness of the n-torsion of the unramified Brauer group ,Br(k)y of a finitely
generated field k with respect to a divisorial set of places V' (provided that n is prime
to char k) implies the finiteness of the genus of any central simple algebra D of degree n
over k (cf. [13], [14]), the above Finiteness Conjecture, in view of the following corollary
of Theorem 1.1, would imply the finiteness of the genus of any absolutely almost simple
algebraic k-group.

Corollary 1.2. Let G be an absolutely almost simple algebraic group over an infinite
finitely generated field k, and let V' be a divisorial set of places of k. Assume that chark #
2 if G is of type By (£ > 2). Then there exists a finite subset S C V' such that every
G’ € gen, (G) has good reduction at allv € V'\ S.

Next, applying Theorem 1.1, in conjunction with the theorem of Raghunathan-
Ramanathan [63], we obtain the following statement concerning the effect of a purely
transcendental base change on the genus.

Theorem 1.3. Let G be an absolutely almost simple algebraic group over a finitely gen-
erated field k of characteristic # 2, and let K = k(x) be the field of rational functions.
Then any H € geny (G X, K) is of the form H = Hy X, K for some Hy € gen,(G).
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In view of [58, Theorem 7.5], the following is an immediate consequence of Theo-
rem 1.3.

Corollary 1.4. Let G be an absolutely almost simple simply connected algebraic group
over a number field k, and let K = k(x1,...,x,) be the field of rational functions in
m = 1 variables. Then the genus geny (G xy, K) is finite, and in fact reduces to a single
element if the type of G is different from Ay (€ > 1), Dapy1 (€ > 1), and Eg.

Theorem 1.3 prompts the question of whether for an absolutely almost simple algebraic
group G over a field k and any G’ € gen,(G), the group G’ x;, K obtained by base
change to the field of rational functions K = k(x) lies in geny (G X K). It turns out
that not only is the answer to this question negative, but in fact one should expect an
opposite phenomenon that we have termed “killing the genus by a purely transcendental
extension.” The nature of this phenomenon reveals itself in the following two statements.

Theorem 1.5. Let A be a central simple algebra of degree n over a finitely generated field
k, and let G = SLy 4. Assume that char k is prime to n, and let K = k(z1,...,%Tn—1)
be the field of rational functions in (n — 1) variables. Then geny (G xx K) consists of
(the isomorphism classes of) groups of the form H xy K, where H = SL1 g and B is
a central simple algebra of degree n such that its class [B] in the Brauer group Br(k)
generates the same subgroup as the class [A].

The proof uses Amitsur’s theorem on generic splitting fields [2], and a result of D. Salt-
man [73], [74] on function fields of Severi-Brauer varieties.

Theorem 1.6. Let G be a group of type Gy over a finitely generated field k of characteristic
# 2,3, and let K = k(x1,...,x6) be the field of rational functions in 6 variables. Then
geny (G xi K) reduces to a single element.

The proof relies on properties of Pfister forms (cf. [40]). These results prompt the
following conjecture.

Conjecture 1.7. Let G be an absolutely almost simple group over a finitely generated field
k. Assume that char k is prime to the order of the Weyl group of G. Then there exists a
purely transcendental extension K = k(x1,...,xy) of transcendence degree m depending
only on the Cartan-Killing type of G such that every H € geny (G Xy, K) is of the form
Hy xy K, where Hy has the property that Hy x F € gen(G X F') for any field extension

In §8.4, we relate this conjecture to the notion of the motivic genus that was proposed
by A.S. Merkurjev.

Next, we will discuss applications of our results to the analysis of weakly commen-
surable Zariski-dense subgroups, which was initiated in [58] in connection with some
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problems in differential geometry. So, let G; and G2 be absolutely almost simple alge-
braic groups over a field F' of characteristic zero, and let I’y C G1(F) and I'ys C G2(F') be
two finitely generated Zariski-dense subgroups. We refer the reader to [58, §1] (see also
§3 of the present paper) for the technical definition of the relation of weak commensura-
bility; here, we only mention that it is a way of matching the eigenvalues of semisimple
elements of I'; and I's. This relation is expected to lead to a new form of rigidity, called
“eigenvalue rigidity,” for arbitrary finitely generated Zariski-dense subgroups, where tra-
ditional forms of rigidity are inapplicable (cf. [64]). In this paper, we will show that one
of the key issues in eigenvalue rigidity can be reduced to the Finiteness Conjecture. To
provide more context, we recall that given a Zariski-dense subgroup I' C G(F'), where G
is an absolutely almost simple algebraic group defined over a field F', the trace field kr is
defined to be the subfield of F' generated by the traces tr(Ad~) of elements v € T" in the
adjoint representation on the Lie algebra g. According to a theorem of E.B. Vinberg [80],
the field k = kr is the minimal field of definition of I'. This means that k is the minimal
subfield of F' with the property that all transformations in Ad I" can be simultaneously
represented by matrices having all entries in &k in a suitable basis of g. If such a basis
is chosen, then the Zariski-closure of AdT" in GL(g) is a simple algebraic k-group G. It
is an F'/k-form of the adjoint group G called the algebraic hull of Ad T. It should be
mentioned that if T' is arithmetic, the pair (k,G) determines the commensurability class
of T'. While for general Zariski-dense subgroups this is no longer the case, the pair (k, §)
remains an important invariant of the commensurability class.

Now let I’y € G1(F') and I's C Ga(F) be finitely generated Zariski-dense subgroups
of absolutely almost simple algebraic groups G; and Gs. Assume that I'; and I’y are
weakly commensurable. Then kr, = kr, =: k (cf. [58, Theorem 2]). Furthermore, G4
and Gy either have the same Cartan-Killing type, or one of them has type B, and the
other type C; for some ¢ > 3. So, apart from the ambiguity between types B and C,
the corresponding algebraic hulls §; and G, are k-forms of one another. The remaining
critical issue is the relationship between G; and Gs. More precisely, if we fix 'y, what
can one say about the set of the forms Go as I's C Go(F) runs through finitely generated
Zariski-dense subgroups that are weakly commensurable to I'; 7 There is a conjecture (cf.
[64, Conjecture 6.1]) that this set consists of finitely many k-isomorphism classes — see
§10 for the precise formulation. If true, this would be a very strong statement® asserting
that the eigenvalues of elements of a Zariski-dense subgroup (which could be, for example,
just a free group on two generators) determine the ambient algebraic group up to finitely
many possibilities. For example, if G = SL; 4, where A is a central simple algebra of
degree n over a field k, and T' C G(k) is a finitely generated Zariski-dense subgroup
with trace field k, then there would be only finitely many choices for a central simple
k-algebra A’ (necessarily of the same degree n) such that for G’ = SL; 4/, the group
G’ (k) contains a finitely generated Zariski-dense subgroup weakly commensurable to T
What we will see in §9 is that this conjecture again can be derived from the Finiteness

1 'Which, in particular, would be stronger than the finiteness of the genus.
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Conjecture with the help of the following result (and in fact, the above statement for
groups of type SL;_4 is already a theorem due to the fact that the Finiteness Conjecture
has been confirmed in this case).

Theorem 1.8. Let G be an absolutely almost simple algebraic group over a finitely gen-
erated field k of characteristic zero, and let V' be a divisorial set of places of k. Given a
finitely generated Zariski-dense subgroup I' C G(k) with trace field k, there exists a finite
subset S(T') C V such that every absolutely almost simple algebraic k-group G' with the
property that there exists a finitely generated Zariski-dense subgroup T C G'(k) that is
weakly commensurable to T’ has good reduction at all v € V' \ S(I').

The results on weakly commensurable arithmetic groups developed in [58] were used to
settle some long-standing problems about isospectral and length-commensurable locally
symmetric spaces. Here we will give only one application of the results on good reduction
to not necessarily arithmetically defined Riemann surfaces. For a Riemannian manifold
M, we denote by L(M) the (weak) length spectrum of M, i.e. the collection of the lengths
of all closed geodesics in M. We then call two Riemannian manifolds M; and My length-
commensurable if Q - L(M;) = Q - L(M3). Consider a Riemann surface M of the form
H/T', where H is the complex upper half-plane and T' C SLs(R) is a discrete subgroup
with torsion-free image in PSLy(R). We will assume that T" is finitely generated and
Zariski-dense in SLo (which is automatically true if M is, for example, compact). Then
one can naturally associate to I' a quaternion algebra Ar whose center is the trace field
of I' — see [42, 3.2] and §9. If T is arithmetic, then Ar is the quaternion algebra required
for its description, and in the general case it is an invariant of the commensurability class
of I'. In §9, we will prove the following result that contains no arithmeticity assumptions.

Theorem 1.9. Let M; = H/T'; (i € I) be a family of length-commensurable Riemann
surfaces, where T'; C SLy(R) is a discrete finitely generated Zariski-dense subgroup with
torsion-free image in PSLa(R). Then the quaternion algebras Ar, (i € I) belong to finitely
many isomorphism classes over the common center (= trace field of all the T';’s).

To the best of our knowledge, this statement is one of the first examples of applications
of techniques from arithmetic geometry to nonarithmetic Riemann surfaces.

We conclude the paper with a series of results on forms with good reduction and the
genus of simple algebraic groups of type F4, which have never been previously analyzed
over fields more general than number fields. The first three results treat those forms that
split over a quadratic extension of the base field (see Appendix 2 for a characterization
of such forms in terms of cohomological invariants). We recall that the Q-forms of type
F4 that have good reduction at all primes were described in [29] and [21], and that for
any simple group G of that type over a number field k, the genus gen, (G) is trivial [58,
Theorem 7.5]. We will prove the following version of the “Stability Theorem” that was
established previously for groups of the form SL; 4, where A is a central simple algebra
of exponent 2 (cf. [13]), and groups of type Ga (cf. [16]).
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Theorem 1.10. Let ko be a number field, and set k = ko(x). Then for any absolutely
simple algebraic k-group G of type Fy that splits over a quadratic extension of k, the
genus geny (G) is trivial.

Next, following Kato [36], we recall that a 2-dimensional global field is defined to be
the function field of either a curve over a number field or a surface over a finite field.

Theorem 1.11. Let k be either a 2-dimensional global field of characteristic # 2,3 or a
purely transcendental extension k = ko(z,y) of transcendence degree 2 of a number field
ko. Then for any absolutely simple k-group G of type Fy that splits over a quadratic
extension of k, the genus gen, (G) is finite.

This is derived by combining Corollary 1.2 with the following theorem.

Theorem 1.12. Let k be either a 2-dimensional global field of characteristic # 2,3 or
a purely transcendental extension k = ko(x,y) of transcendence degree 2 of a number
field ko, and let V' be a divisorial set of discrete valuations of k. Then the set J of k-
isomorphism classes of k-forms of type Fy that split over a quadratic extension of k and
have good reduction at all v € V is finite.

We note that similar results for groups of type Go were obtained in [16] over 2-
dimensional global field and in [67] over purely transcendental extensions of transcen-
dence degree 2 of number fields.

Our final result applies to all forms of type F, and contributes to one of the main
remaining problems in the theory of Jordan algebras. We refer the reader to subsection
A2.1 of Appendix 2 for the definition of the map ¢ that describes forms of type F4 in
terms of the cohomological invariants f3, f5 and gs. J.-P. Serre has raised the problem
of whether ¢ is injective. We will show that, assuming the Finiteness Conjecture, we can
at least confirm that ¢ is proper.

Theorem 1.13. Let k be a finitely generated field of characteristic # 2,3. Assume that the
Finiteness Conjecture holds for k-groups of type Fy with respect to any divisorial set V'
of discrete valuations of k. Then the map ¢ is proper, i.e. the preimage of a finite set is
finite.

Notations and conventions. We use standard notations associated with the Galois co-
homology of algebraic groups (cf. [77]). In particular, given an algebraic group G
defined over a field k and a Galois extension ¢/k, we denote by H'(¢/k,G) the set
H'(Gal(¢/k),G(¢)) of noncommutative continuous Galois cohomology, and we write
H(k,G) for H*(k*? /k,G(k*%P)), where kP is a separable closure of k. Similar con-
ventions are used for the set Z'(¢/k,G) of noncommutative continuous 1-cocycles. We
will slightly abuse notation and use lowercase Greek letters to denote both cocycles and
cohomology classes whenever this does not lead to confusion. However, when we need
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to distinguish between the two, we will write ¢ for a cocycle and [€] for the correspond-
ing cohomology class. We extend these notations also to étale (Cech) cocycles and the
cohomology classes they define.

For an algebraic torus T, we let X (7T) and X, (T') denote the corresponding groups
of characters and cocharacters, respectively. Furthermore, we denote by G,, the one-
dimensional split torus.

Next, given a field k equipped with a discrete valuation v, we denote by k,, and k(*) the
corresponding completion and residue field, respectively. Furthermore, we set O, C k,
and Oy, C k to be the associated valuation rings.

Finally, we recall some definitions and notations pertaining to commutative Galois
cohomology and unramified cohomology, which will be needed mainly in §11 and in
Appendix 2. For a Gal(k*®P /k)-module M, we write H*(k, M) for the Galois cohomology
group H*(Gal(k*P/k), M). Now, if char k(*) is prime to n, then there exists a residue
map

phs H (b, p?) — HH (W), p200),

We say that a class z € H'(k, u®7) is unramified at v if x € ker p¢, and that it is ramified
otherwise. Furthermore, if V is a set of discrete valuations of k such that char k() is
prime to n for all v € V, then one defines the corresponding unramified cohomology of
degree i to be

H' (k, pn7 )y = () ker pl,.
veV

We refer the reader to [25, Ch. IIT and IV] for further details on these constructions.
2. Groups with good reduction
2.1. Good reduction: definition and examples

Even though the definition of good reduction for a reductive algebraic group at a dis-
crete valuation of the base field has already been mentioned in §1, we begin by repeating
it here for the convenience of further references.

Definition 2.1. Let G be a reductive algebraic group over a field k, and let v be a discrete
valuation of k. We say that G has good reduction at v if there exists a reductive group
scheme? G over the valuation ring O, C k, with generic fiber

G X0, ky ~ G Xy ky.

2 Let A be a commutative ring and S = Spec A. A reductive A-group scheme is a smooth affine group
scheme § — S such that the geometric fibers G5 are connected reductive groups for all geometric points §
of S, cf. [22, Exp. XIX, Definition 2.7] or [21, Definition 3.1.1].
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Then the k()-group scheme § X0, k(™) is called the reduction of G at v and will be
denoted G,

(We will see in subsection 2.2 below that the reduction G*) is well-defined.) We now
consider a couple of examples of good reduction that are relevant for the present paper.

Example 2.2. Let G = SL; 4, where A is a central simple algebra of degree n over k, and
let v be a discrete valuation of k. Assume that A is unramified at v, which means that
there exists an Azumaya O,-algebra A such that A @ k, ~ A ®p, k, as k,-algebras
(cf. [69] and references therein). Let § = SLq 4 be the semisimple group scheme over O,
associated with A (cf. [9, 3.5.0.91]). Then

kakuﬁgxo,, kv (1)

as k,-groups, hence G has good reduction at v.

Conversely, suppose G = SLj 4 has good reduction at v, and let G be the corresponding
reductive scheme over O,,. It is known that any inner form of the O,-group scheme SL,,
is of the form SLq 4 for some Azumaya O,-algebra A of degree n (cf. [9, 3.5.0.92]). So,
if we write § as SLq 4, the isomorphism (1) implies that

either A®y ky, ~ A®o, ky or A®y ky ~ AP R0, ky.

In either case, A®yk, comes from an Azumaya O, -algebra, and therefore A is unramified.
Thus, G = SL1 4 has good reduction at v if and only if A is unramified at v.

Example 2.3. Let G = Spin,, (q), where ¢ is a nondegenerate quadratic form of dimension
n > 2 over a field k of characteristic # 2, and let v be a discrete valuation of k with
residue characteristic char k(") # 2. We will show that G has good reduction at v if and
only if ¢ is equivalent over k, to a quadratic form of the shape

Murz? 4 +upr?), with A€ kX and wuy,...,u, € OF. (2)

First, let us assume that q is k,-equivalent to such a form and set qo = w23 +- - - +u,z2.
Then G xy k,, = Spin,,(¢) = Spin,, (go). On the other hand, since qq is a regular quadratic
form on OF, there is a semisimple group scheme § = SPIN,,(¢qo) over O, with generic
fiber G xy, k, (cf. [9, 4.5.2.6, 6.2.0.28, 8.2.0.59]). This means that G has good reduction
at v.

Conversely, suppose G = Spin,, (q) has good reduction at v. When n = 2, the group
G is a 1-dimensional torus whose splitting field is unramified at v, implying that ¢ is
equivalent to a form as in (2). Now suppose n > 2. Let gy be an n-dimensional split
quadratic form, and let G = SPIN,,(qo). Assume that G = Spin,,(¢) has good reduction
at v, i.e. there exists a reductive group O,-scheme G with generic fiber G x k,. Then
G is obtained from Gy by twisting using an étale 1-cocycle & € Z1(0O,, Aut(Gp)). If n
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is odd, then Aut(SGp) = 80,(qo). Then & can be used to twist the quadratic form g
and obtain thereby a regular quadratic form ¢’ over O,, in which case § = SPIN,,(¢).
Passing to the generic fiber, we obtain that Spin,,(¢) ~ Spin,,(¢’) over k, and therefore
q is ky-equivalent to a scalar multiple of ¢’. On the other hand, since char k(*) # 2, the
form ¢', being regular, can be diagonalized over O, as u123 + - - - + u,x2 with u; € OX,
proving our claim.

The same argument works when n is even provided we can show that in this case, the
cohomology class [¢] lies in the image of the map A\: H(O,,0,(q0)) — H'(O,, Aut(Gp))
coming from the canonical morphism v: O, (go) — Aut(Sp). First, we observe that when
n = 8, the group scheme G cannot be a triality form as otherwise the generic fiber G
would also be a triality form, which is not the case. This means that in all cases, [¢] is
represented by a cocycle having values in B = Im v (we note that B is represented by
P80, (qo) X Z/2Z). The exact sequence

1— p2 — On(q0) == B —1
gives rise to the exact sequence
HY(0,,0n(q0)) = HY(O,, B) -5 H2(O,, u3) = 2Br(0,). (3)

We note that 6([¢]) is precisely the class of the Azumaya algebra involved in the descrip-
tion of G. Since the generic fiber of G is the spinor group of a quadratic form, the image
of ([¢]) under the map Br(O0,) — Br(k,) is trivial, and then 0([¢]) is itself trivial since
the latter map is well-known to be injective (cf. [47, Ch. IV, Corollary 2.6]). The exact
sequence (3) then yields that [€] lies in the image of A, as required. O

2.2. The Grothendieck-Serre conjecture and its consequences

The Grothendieck-Serre conjecture predicts that for a reductive group scheme G over
a regular local ring A with fraction field &, the map of nonabelian étale cohomology sets

H'(A,9) — H'(k,G) (where G =G xak)

has trivial kernel. Very significant progress on the conjecture was achieved in [23], where
it was proved under the assumption that R contains an infinite field; the case where A
contains a finite field was treated in [52]. In the present paper, however, we will only need
the case where A is a discrete valuation ring, which goes back to work of Y. Nisnevich
[49], [50] (in fact, we will only need the case of a complete discrete valuation ring).

Theorem 2.4. Let G be a reductive group scheme over a discrete valuation ring A. Then
the map of nonabelian étale cohomology sets

HY(A,8) = H'(k,G) (where G =G xak)
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This is [49, Ch. 2, Theorem 7.1] and [50, Theorem 4.2] in the case where the residue
field of A is perfect. The general case is treated in [30, Theorem 1]. This result has the
following important consequence.

Proposition 2.5. [30, §6, Corollary 3] Let A be a discrete valuation ring, and k be its field
of fractions. Then any reductive k-group has at most one reductive model over A.

For semisimple groups and perfect residue fields, this statement appears as Theorem
5.1 in [50]; the general case is treated in [30, §6], where the argument combines The-
orem 2.4 with a general statement concerning the uniqueness of reductive models over
regular semilocal rings — see [30, §6, Proposition 14| for the details. In the context of
Definition 2.1, Proposition 2.5 yields the uniqueness up to isomorphism of the O,-scheme
of G, implying, in particular, that the reduction G is well-defined.

2.8. A different approach to good reduction

The above definition of good reduction is most convenient for our purposes, in partic-
ular, for investigating connections with local-global principles. We note, however, that
it is more traditional to define good reduction without passing to completions, i.e. by
requiring the existence of a reductive group scheme G over the valuation ring O, C k
with generic fiber § X, , k isomorphic to G. Of course, our definition is less restrictive,
so, a priori, we are considering a more general situation. For the sake of completeness,
however, we will now briefly explain that for tori and absolutely almost simple groups,
the two definitions are equivalent.

If a k-torus T has good reduction at v in the sense of Definition 2.1, then v is unramified
in the minimal splitting field kp (cf. [48]). Let O denote the integral closure of Ok in kr.
Then (5/(9ka is a Galois extension of rings. Let d = dim T', and let £ € Z1(kr/k, GL4(Z))
be a cocycle such that the corresponding twist ¢(GZ,) of the d-dimensional k-split torus
is k-isomorphic to T' (here we identify the automorphism group Aut(GZ,) with GL4(Z)
through the action on the character group X (G¢,) = Z%). Then the Hopf k-algebra k[T
is obtained by Galois descent from kr[T] = kr[Z9] for the action of Gal(kr/k) that
coincides with the standard action on kp and is given by ¢ on Z?. Since (5/ Ok is a
Galois extension of rings, we can likewise carry out Galois descent on (5[Zd] for the same
action. This generates a Hopf Oy, ,-algebra that yields a torus T over O, with generic
fiber T, verifying thereby the traditional definition.

Next, let G be an absolutely almost simple simply connected algebraic k-group that
has good reduction at v in the sense of Definition 2.1, and let £ be the minimal Galois
extension of k over which G becomes an inner form of the split group Gy. The fact
that G has good reduction at v implies that the extension ¢/k is unramified at v. Let
O denote the integral closure of Oy, in ¢; then 5/(9;@71, is a Galois extension of rings.
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Let G be a quasi-split inner k-form of G. Then G is isomorphic to the twist (G for
some £ € ZY({/k,¥), where X is the group of symmetries of the Dynkin diagram of Gy,
naturally considered as a subgroup of the automorphism group Aut(Gp). Recall that
G can be identified with the base change G Xz k of the Chevalley group scheme G
over Z, and that the action of ¥ comes from its action on G. The Hopf algebra k[G1]
is then obtained from ¢[G1] = ¢[Gp] by Galois descent for the action of Gal(¢/k) on
([Gy] = £ ®z Z[G], which coincides with the standard action on ¢ and the action via
the homomorphism ¢&: Gal(¢/k) — ¥ on Z[G]. This action leaves O[Gq] := O @z Z|G]
invariant, and since O / Ok is a Galois extension of rings, we can carry out Galois descent
in this situation. This yields a Hopf Oy ,-algebra that corresponds to a reductive group
scheme G; over Oy, with generic fiber G;. This verifies that G; has good reduction in
the traditional sense. To prove this fact for G, we need a result of Harder, whose proof
ultimately depends on weak approximation.

To give the statement, we first need to introduce some notations that are different
from the ones used elsewhere in this paper. So, let A be a Dedekind domain with fraction
field k. For each maximal ideal p C A, denote by k:p the corresponding completion of k
with valuation ring A - kp Given a flat group scheme G over A, we let G denote its
generlc fiber G x 4k, and set H} (k, G) to be the image of the natural map H}, (A, G) —

fppf (k,G) of flat cohomology. Furthermore, for £ € ijpf (k,G), we denote by &, its
image in prpf (kp, G) under the restriction map.

Proposition 2.6. ([31, Lemma 4.1.3]) Let G be a flat group scheme of finite type over A
whose generic fiber G is a reductive k-group. Then

H)(k,G) = {¢ € H'(k,G) | & € Im(H},,,; (A, G) = Hfp(ky, G))
for all mazimal ideals p C A}.

Next, let k be a field equipped with a discrete valuation v, and set A to be the
corresponding valuation ring O ,. Then it follows from the proposition that for any
reductive group scheme G over O ,, with generic fiber G, we have the following (note that
since G is, by definition, smooth, its flat cohomology coincides with étale cohomology).

Corollary 2.7. The natural diagram of pointed sets

Hélt(ok,va 9) — Hélt(om 9)

HY(k,G) —— H'(ky,G)
s cartesian.

Now let G be the adjoint group for the quasi-split group G considered above, and
let G; be a reductive Op,»-scheme with generic fiber G1. By construction, G is an inner
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twist of G1, so we can choose £ € Zl(k,al) so that G = ¢G1. We then consider the
cartesian diagram from Corollary 2.7 with G and G replaced by G; and G, respectively,
and keeping the notations for the maps. The fact that G has good reduction at v means
that we may assume that 7,([¢]) € im ¢,. We then conclude from the diagram that
[€] = ([¢]) for some ¢ € Z'(Oy.,G1). Then G := Gy is a reductive group scheme over
Ok,» with generic fiber G, as required.

3. Generic tori, generic elements, and applications to weak commensurability
3.1. Generic tori

For an algebraic torus T" defined over a field k, we denote by k7 the minimal splitting
field of T'. It is well-known that the Galois group Gr = Gal(kr/k) acts faithfully on the
group of characters X (T'). Now, let G be a semisimple k-group, T a maximal k-torus of
G, and ®(G,T) the corresponding root system. Then the action of Gy on X (7T') permutes
the roots, yielding a group homomorphism

Or: G — Aut(®(G,T)) (C GL(X(T) @z Q)).

Since ®(G, T') generates a finite index subgroup of X (T'), this homomorphism is injective.
We say that T is generic over k, or k-generic, if the image of 61 contains the Weyl group
W(G,T). It is known that if k is an infinite finitely generated field, then every semisimple
k-group G contains k-generic maximal k-tori. This can be established by first showing
that G possesses a generic torus over a purely transcendental extension of k and then
specializing the parameters in order to obtain a required generic torus defined over k —
see Voskresenskil [83, 4.2] and also [56]; we note that the specialization part is based on
the fact that an infinite finitely generated field is Hilbertian — see [24, Theorem 13.4.2].

A different approach to the construction of generic tori was first developed in [57]
over fields of characteristic zero and then extended to fields of arbitrary characteristic in
[61]. Among other things, this approach demonstrates that to ensure the genericity of a
maximal k-torus, it is enough to prescribe its local behavior at finitely many specially
chosen valuations. More precisely, assuming that char k£ = 0, one can choose r distinct
primes p1, ..., p., where r is the number of conjugacy classes in the Weyl group of G, such
that there exist embeddings ¢;: k — Q,, for ¢ = 1,...,7. Furthermore, letting v; denote
the pullback of the p;-adic valuation under ¢;, for each ¢ = 1,...,r, one can specify
a maximal k, -torus T; of G so that any maximal k-torus 7" of G that is conjugate
to T; by an element of G(k,,) for all ¢ = 1,...,r is necessarily k-generic. For a very
similar statement in the case of positive characteristic, we refer the reader to [61]. This
construction of generic tori yields the following stronger form of the existence theorem.

Theorem 3.1. (cf. [59, Theorem 3.1], [61]) Let G be a semisimple algebraic group over an
infinite finitely generated field k. For any finitely generated extension £ of k, the group
G contains a mazximal k-torus that is generic over {.
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In connection with this local-global construction, we would like to recall the following
approximation statement for maximal tori and derive one consequence needed for our

purposes.

Lemma 3.2. Let G be a reductive algebraic group over a field k, and let V be a finite set
of discrete valuations of k. Suppose that for each v € V|, we are given a mazimal k,-torus
T, of G Xy ky. Then there exists a mazximal k-torus T of G that is conjugate to T, by
an element of G(k,) for allv e V.

This is Corollary 3 in [54, §7.2]; the proof uses the fact that the variety of maximal

tori is rational over k.

Corollary 3.3. Let G be a semisimple algebraic group over a field k, and let v be a discrete
valuation of k. If G’ € geny(G), then G’ Xy k, € geny, (G X} ky).

Indeed, the lemma implies that every maximal k,-torus of G Xy k, (resp., of G' X k)
is k,-isomorphic to a maximal k-torus of G (resp., of G’), and our claim immediately
follows from the definitions.

Proposition 3.4. Let G1 and G5 be absolutely almost simple algebraic groups over a
finitely generated field k, and let £; be the minimal Galois extension of k over which
G becomes an inner form of the split group. Assume that G1 and Go have the same
isogeny classes of maximal k-tori. Then

(i) either G1 and Go are of the same Killing-Cartan type, or one of them is of type By
and the other is of type C; for some £ > 3;

(ii) 41 = Lo, and consequently, if the groups G1 and Gs are of the same Killing-Cartan
type and are both either simply connected or adjoint, then they are inner twists of

one another.

Proof. These statements were proved in the context of the analysis of weakly commen-
surable Zariski-dense subgroups in [58] and [60, §5] — see also Theorem 3.8 below. So,
we will just briefly outline the argument in our present context of absolutely almost
simple algebraic groups with the same tori. Set ¢ = ¢1¢2. Using Theorem 3.1, we can
find a maximal k-torus 77 of Gy which is generic over ¢. By our assumption, there exist
a maximal k-torus T of G5 and a k-defined isogeny v: T3 — T5. We then have the
following commutative diagram
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GL(X(T1) ®z Q)

o7,
Gal(k®eP /k) v

01y

GL(X(Ty) ®z Q),

where k*°P is a fixed separable closure of k, and 7 is the isomorphism induced by v. We
note that for any field extension F' of k contained in k%P, the map 7 gives an isomorphism
between the images of Gal(k*P/F') under 67, and 6r,, hence

|07, (Gal(k*P /F))| = |0z, (Gal(k>P /F))|. (4)
Since both G and G2 are inner forms over ¢, by [58, Lemma 4.1] we have
Or, (Gal(k*P/0)) Cc W(G;,T;) for i=1,2.
Combining this with the fact that 77 was chosen to be generic over ¢, we see that actually
Or, (Gal(k*P /£)) = W (G, Th). (5)

Thus (4) with F' = ¢ yields the inequality |W(G1,T1)| < |W (G2, Tz)|. Starting now with
a maximal k-torus T4 of G5 that is generic over £ and considering a maximal k-torus
T] of Gy that is k-isogenous to T4, we similarly obtain the inequality |W(Ge,Ty)| <
|W(G1,T7)|. Since |W(G;,T;)| = |W(G;,T))| for i = 1,2, we conclude that

W(G1,T1)| = [W(Ga, T2)|. (6)

This already yields assertion (i) as the type of a reduced irreducible root system is
uniquely determined by the order of the corresponding Weyl group except for the ambi-
guity between types By and C; for £ > 3. In addition, (6) also implies that

9T2 (Gal(ksep/gn = W(G27T2). (7)

Now assume that o & £1, i.e. £1 ; {. Since (G; is an inner form already over ¢;, we
conclude from (5) that

0T1 (Gal(k”p/él)) = W(Gl, Tl)

On the other hand, it follows from (7) that 61, (Gal(k®P/¢1)) contains W (Ga, Ts) but
is strictly bigger as Go is not an inner form over ¢;. In view of (6), this contradicts (4)
with F' = ¢;. Thus, ¢35 C ¢1, and by symmetry we conclude that ¢; = {5, as required. It
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is well-known that for absolutely almost simple simply connected or adjoint groups, this
fact implies that the groups are inner twists of one another. O

Corollary 3.5. Let G be an absolutely almost simple algebraic group over a finitely gen-
erated field k. Then gen; (G) = gen,(G).

Proof. Let G’ € gen; (G). Then according to Proposition 3.4, the group G’ is an inner
twist of G, i.e. G’ € gen,(G). O

3.2. Generic elements

Let G be a (connected) absolutely almost simple algebraic group over a field k. A
regular semisimple element v € G(k) of infinite order is called k-generic if the k-torus
T = Cg(7)° (connected component of the centralizer) is k-generic. The following result
yields the existence of generic elements in Zariski-dense subsemigroups under one natural
assumption.

Theorem 3.6. ([61, Theorem 2]) Let G be an absolutely almost simple algebraic group
over a finitely generated field k, and let T' C G(k) be a Zariski-dense subsemigroup that
contains an element of infinite order.®> Then I' contains a reqular semisimple element
v €I of infinite order that is k-generic.

In characteristic zero, the existence of generic elements of infinite order in an arbitrary
Zariski-dense subgroup was established already in [57] for any semisimple G. The case of
positive characteristic (particularly of characteristics 2 and 3) requires a more delicate
argument, which was given in [61] assuming G to be absolutely almost simple. We will
also need the following refined version of Theorem 3.6 over fields of characteristic zero.

Theorem 3.7. (cf. [59, Theorem 3.4]) Let G be a connected absolutely almost simple
algebraic group over a finitely generated field k of characteristic zero, v be a discrete
valuation of k such that the completion k, is locally compact, and T(v) be a maximal
ky-torus of G. Given a finitely generated Zariski-dense subgroup I' C G(k) whose closure
in G(k,) for the v-adic topology is open, there exists a reqular semisimple element v € T
of infinite order such that the corresponding torus T = Cg(7)° is generic over k and is
conjugate to T(v) by an element of G(k,).

3.83. Weak commensurability

(Cf. [58]) Let v1 € GL,,, (F) and 2 € GL,,,(F) be two semisimple matrices over an
infinite field F' with respective eigenvalues

3 We recall that any Zariski-dense subgroup I' C G(k), where G is a semisimple group over a field k of
characteristic zero, automatically contains an element of infinite order.
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Ay ooy Ay and pa, ...y i,

(in an algebraic closure F). We say that v, and 7o are weakly commensurable if there
exist integers ay,...,an, and by, ..., by, such that

AN = e £ L

Next, let Gi € GL,, and Gy C GL,, be two reductive algebraic F-groups, and let
'y € Gi(F) and Ts C G3(F) be Zariski-dense subgroups that contain elements of
infinite order. We say that I'y and I'y are weakly commensurable if every semisimple
element v; € I'1 of infinite order is weakly commensurable to some semisimple element
v2 € I's of infinite order, and vice versa. It is easy to see that this relation does not
depend on the choice of the matrix realizations of G; and Gbs.

The following theorem summarizes the basic results about weakly commensurable
subgroups.

Theorem 3.8. Let G and G2 be absolutely almost simple algebraic groups over a finitely
generated field k, and let ¢; be the minimal Galois extension of k over which G; becomes
an inner form of the split group. Furthermore, letT'y C G1(k) and 'y C Ga(k) be Zariski-
dense subgroups containing elements of infinite order. Assume that I'y and I's are weakly
commensurable. Then

(1) the groups Gy and Gy have the same order of the Weyl groups, or equivalently, they
are either of the same type or one of them is of type By and the other of type C; for
some £ > 3;

(2) if char k =0, then the trace fields of 'y and T's coincide: kr, = kr,;

(3) 41 = 4.

In characteristic zero, part (1) is Theorem 1 in [58]. Its proof in positive characteristic
remains exactly the same due to the existence of generic elements in all characteristics
(Theorem 3.6). The result in part (2) as stated is specific to characteristic zero; in fact, it
is false in positive characteristic. Technically, part (3) was proved in [58, Theorem 6.3(2)]
only when k is a number field, so we will quickly sketch the general argument, which is
similar to the proof of Proposition 3.4. We recall that a k-torus T is called k-irreducible
if it does not contain any proper k-defined subtori; the irreducibility of T is equivalent
to the fact that the Galois group Gal(k®P/k) acts irreducibly on either of the Q-vector
spaces X (T)®z Q or X.(T) ®z Q, where X(T') and X, (T') are, respectively, the groups
of characters and cocharacters of T, hence the terminology. We will need the following
result.

Lemma 3.9. ([58, Lemma 3.6]) Let T be a k-irreducible torus. For any t € T(k) of infinite
order and any nonzero character x € X(T), the Galois conjugates of A = x(t) generate
the splitting field k.
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Proof of Theorem 3.8(3). Set £ = ¢1¢5. It is enough to prove the inclusion ¢; C ¢y as
the opposite inclusion is obtained by a symmetric argument. Assume the contrary, i.e.
¢1 ¢ ¢5. Using Theorem 3.6, we can find a regular semisimple element v; € I'; of infinite
order which is generic over /. By our assumption, v; is weakly commensurable to some
semisimple element v € I'5 of infinite order. Let T; be a maximal k-torus of G; containing
~i. Since T} is f-generic, we have the inclusion 07, (Gal(k*P/¢)) D W(G1,T1). On the
other hand, the fact that GG is an inner form of a split group over ¢ implies the opposite
inclusion (see [58, Lemma 4.1]). Thus,

O, (Gal(k*P/0)) = W(G1,Th),

and in particular, [y, : €] = |W(G1,T1)|.- The condition that 41 and -, are weakly
commensurable means that there exist characters y; € X (T;) for ¢ = 1,2 such that

A= x1(m) = xa(r2) # 1.

It follows from Lemma 3.9 that the Galois conjugates of A generate the splitting field
kr,, yielding, in particular, the inclusion k7, C kr,, hence the inequality

[br, : 4] = [br, €] = [W(G1, Th). (8)

At the same time, again by [58, Lemma 4.1], we have the inclusion 0r,(Gal(k5P/¢)) C
W (G2, Ts), so

[br, : 0] < [W(Ga, T2 (9)

However, by part (1) we have [W(G1,T1)| = |W(G2,T3)|, so comparing (8) and (9), we
obtain that

01, (Gal(K>? /) = W(Ga, Ts).
By our assumption ¢ # {5, so the last equality implies that
|07, (Gal(K>P /£2))| > [W (G2, T2)|.

This, however, contradicts the inclusion Or,(Gal(k*P/¢3)) C W (G2, Tz), which again
follows from [58, Lemma 4.1] as G is an inner form over 5. O

We conclude this section with the following two statements.

Proposition 3.10. (cf. [58, Isogeny Theorem 4.2]) Let Gy and Ga be two connected ab-
solutely almost simple algebraic groups over an infinite field k, and for i = 1,2, let ¢;
be the minimal Galois extension of k over which G; becomes an inner form of the split
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group. Assume that G1 and Go have the same order of the Weyl groups and that €1 = (5.
Furthermore, let T; be a mazimal k-torus of G;, and let v; € T;(k) be an element of
infinite order. If T1 is k-generic and the elements v1 and 72 are weakly commensurable,
then there exists a k-isogeny w: Ty — T5.

Corollary 3.11. Let G1 and G2 be absolutely almost simple algebraic groups over an in-
finite finitely generated field k, and let Ty C G1(k) and Ty C Ga(k) be Zariski-dense
subgroups containing elements of infinite order. Assume that I'y and T’y are weakly com-
mensurable. If a k-generic element v1 € I'1 of infinite order is weakly commensurable
to a semisimple element vo € I'y and T; is a maximal k-torus of G; containing -y;, then
there exists a k-defined isogeny m: Ty — Ts. In particular, the minimal splitting fields of
Ty and Ty coincide: kr, = kr,, and hence the fact that Th is k-generic implies that Ty is
also k-generic.

Proof. According to Theorem 3.8, the fact that I';y and I'y are weakly commensurable
implies that G; and G5 have the same order of the Weyl group and that ¢; = /5. Now,
our assertion follows immediately from Proposition 3.10. O

4. One consequence of a result of Klyachko

We refer to [5, Ch. VI] for the terminology and notations pertaining to root systems.
In particular, for a reduced irreducible root system ® in a Q-vector space V, we let
®V denote the dual root system, Q(®) the sublattice of V' generated by the roots (root
lattice), and P(®) the dual lattice of Q(®V) (weight lattice); recall that Q(®) C P(®).
Furthermore, we denote by W(®) the Weyl group of ®, viewed as a subgroup of the
automorphism group Aut(®). The following result plays an important role in this paper.

Theorem 4.1. Let ® be a reduced irreducible root system. For any subgroup T' C Aut(®)
containing W (®), we have H'(I', P(®)) = 0 if ® is not of the type Ay or Co, and 7. /27
otherwise.

This theorem is a particular case of the computations of H*(I', M) for any I as in the
theorem and any I'-invariant lattice Q(®) C M C P(®) carried out by A. Klyachko [37].
Unfortunately, the result in [37] is false as stated; however, the argument given therein
does work in the situation described in the theorem. Since [37] is not readily available,
we will reproduce the argument in Appendix 1, where we will also present the original
statement and explain the mistake that invalidates the argument in the general case.

Corollary 4.2. Let G be a simple adjoint algebraic group over a field K, and T be a
mazimal K-torus of G which is K-generic. If the type of G is different from A, and By,
(€ > 2), then for the group of cocharacters X.(T), we have H'(Gal(K+=/K), X..(T)) = 0.
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Proof. Let ® = ®(G,T) be the root system of G. Since G is adjoint, the character group
X (T) coincides with Q(®). So, the dual group X.(T') of cocharacters can be identified
with P(®V). By our assumption, the type of ® is different from A; and By, so the type of
the dual system ®V is different from A; and C,. Furthermore, the fact that T is generic

means that the Galois group Gal(K=/K) in its action on X, (T) contains the Weyl group
W(®) — cf. §3.1. Our assertion now follows directly from Theorem 4.1. O

Since the proof of Theorem 4.1 is deferred to Appendix 1, we will now give an example
that, on the one hand, shows a situation where the corollary can be checked by a direct
computation, and on the other hand, demonstrates that the assertion can be false if the
ambient group is not adjoint.

Example 4.3. Let L/K be a separable field extension of degree n > 2 such that the Galois
group Gal(M/K) of the minimal Galois extension M of K that contains L is isomorphic
to Sp. Set G = Gal(M/K) and H = Gal(M/L). Corresponding to the extension L/K, we
have a maximal K-generic K-torus T = Ri/x(Gm)/Gm of the adjoint group G = PGL,
of type A,_1. The group of cocharacters X, (T fits into the following exact sequence of
G-modules

0—>Z — Z|G/H] — X.(T) =0,

leading to the exact sequence in cohomology
0=HYG,Z[G/H]) — H G, X.(T)) — H*(G,Z) > H*(G,Z[G/H]) = H*(H,Z).
In terms of the natural identifications
H*(G,7Z) ~Hom(G,Q/Z) and H*(H,Z) ~ Hom(H,Q/Z),

the map « corresponds to the restriction map

Hom(G,Q/Z) — Hom(H,Q/Z).
It easily follows that a is injective for n > 2, and we obtain H'(G, X.(T)) = 0, in

agreement with Corollary 4.2.
On the other hand, the norm torus T' = R(Ll/)K((Gm ) is a maximal K-generic K-torus in

the simply connected group G = SL,,. The co-character group X. *(f) can be determined
from the following exact sequence of G-modules

0= X.(T) — Z[G/H] -5 Z — 0,

where § is the augmentation map. This induces the exact sequence
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ZIG/H)S > 7 — HYG, X.(T)) — HYG,Z[G/H]) = H (H,Z) = 0.

It follows that H'(G, X,(T)) ~ Z/nZ; in particular, it is nontrivial (including the case
n=2).

We will now discuss a consequence of Corollary 4.2 for unramified cohomology that
will be needed in subsequent sections. Let I be a field complete with respect to a discrete
valuation v. For any algebraic extension £//C, we let O, denote the valuation ring of the
unique extension of v to £. We also denote by K" the maximal unramified extension of
K. Suppose now that T" is a K-torus whose minimal splitting field £ = KCp is unramified
over K. It follows from Hilbert’s Theorem 90 and the inflation-restriction sequence that

HYK,T)=H (K™ /K,T)=H'(L/K,T),
and one also shows that
Hl(lC‘”/IC, T(Oxur)) = HI(E/IC, T(Or)).

The subgroup of unramified cocycles H'(L/K,T),y € H'(L/K,T) is defined as the
image of the natural homomorphism H!(L/K,T(Oz)) — H*(L/K,T).

Proposition 4.4. Let T be a mazximal K-torus of an absolutely simple adjoint algebraic
K-group G of type different from Ay and By. If T is KC-generic with unramified minimal
splitting field £ = Kr, then H'(L/K,T) = H'(L/K,T){y}-

Proof. We will view cocharacters of T as 1-parameter subgroups G,, — 7. Then the
map

X (T) @z L = T(L), x@ar xa),
is an isomorphism of Gal(£/K)-modules. Furthermore, if 7 € K is a uniformizer, then
since £/K is unramified, 7 remains a uniformizer in £, and therefore we have a decom-
position of Gal(£/K)-modules
L* = (r) xU, where U= (0r)*.
It follows that
T(L)~ X.(T)xT(Or)

as X.(T)®@U ~T(O,). In view of our assumptions on T, we have H'(L/K, X.(T)) =0
by Corollary 4.2, and the required fact follows. 0O
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Example 4.5. Let £/k be a finite separable extension of degree n such that the minimal
Galois extension m of k containing ¢ has Galois group S,, over k. Set K = k((z)) and
L = ¢((x)). Then the norm torus T = R(ﬁl/)K(Gm) is a maximal K-torus in the simply
connected group G = SL,,. Furthermore, this torus is K-generic and its splitting field
is unramified over K (with respect to the standard valuation v on the field of Laurent
power series). We have

HY(K,T) = K* [Nz jc(L%) = k* [Neyio () x (z) /(™).

At the same time, the unramified part H*(K, T), is easily seen to be k* [Ngsi(£). Thus,
in this case, H'(K,T) # H'(K, T){vy- So, the assertion of Proposition 4.4 may fail if the
ambient group is not adjoint.

5. Maximal tori with unramified splitting fields

Let I be a field that is complete with respect to a discrete valuation v, with valuation
ring O and residue field k. We also fix a uniformizer w € K. The goal of this section is
to establish the following result, which may be known to some experts, but which does
not seem to have been recorded in the literature.

Theorem 5.1. Let G be a reductive algebraic K-group. Assume that G has good reduction
at v, i.e. there exists a reductive group scheme G over O with generic fiber G. Then given
a mazimal KC-torus S of G whose splitting field Kg is unramified over KC, there exists a
maximal torus 8" of G such that for its generic fiber S’, there exists h € G(K") satisfying
S" = hSh™! and the isomorphism ¢: S — S’, x + hxh™!, is defined over K.

We begin by recalling the well-known parametrization of the conjugacy classes of max-
imal tori in terms of Galois cohomology. So, let G be a (connected) reductive algebraic
group over an arbitrary field K. Fix a maximal K-torus T of G, and let N = Ng(T) de-
note its normalizer in G. Furthermore, let W = N/T denote the Weyl group, §: N — W
the corresponding quotient map, and 6*: H'(K,N) — H'(K,W) the induced map on
Galois cohomology. Given any other maximal K-torus S, we choose g € G(K*°P) so that
S = gTg~*'. Then for any o € Gal(K*P/K), the element £(0) := g1 - 0(g) belongs to
N (K®°P), and the correspondence o — £(0) is a 1-cocycle with values in N (K®P) whose
cohomology class [£] € H!(K, N) is independent of the choice of the conjugating element
g. Furthermore, the correspondence

S = [¢]
sets up a bijection between the G(K)-conjugacy classes of maximal K-tori of G and the

elements of ker(H!(K,N) — HY(K,G)). (More generally, if T splits over an extension
L/K, then the above correspondence sets up a bijection between the G(K)-conjugacy
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classes of maximal K-tori of G that split over L and the elements of ker(H'(L/K, N) —
H'(L/K,G)).) We will need the following version of this fact.

Lemma 5.2. Let Sy and Sy be two mazimal K -tori of G, and let [¢1], [€2] € ker(HY (K, N)
— HY(K,Q)) be the corresponding cohomology classes. Then 0*([&1]) = 01([&2]) if and
only if there exists h € G(K®°P) such that So = hS1h™! and the isomorphism ¢: S —
Sa, © — hxh™, is defined over K.

Proof. Clearly, p=! o o(p): S; — S; is given by z — (h~lo(h))z(h~to(h))™!, and

therefore ¢ is K-defined if and only if s(o) := h=lao(h) € S; for all o € Gal(K*°P/K).
<) Let g1 € G(K®P) be such that S; = g1 Tg; . Then go = hg; satisfies So = g2Tg; ',

and the cocycles & (o) = g; ‘o (gi), i = 1,2, corresponding to S; and S, are related by

(o) = g1 's(0)a(g1) = (g7 's(0)g1)&i (o).

Since gy 's(o)g1 € T, we have 0(&1(0)) = 0(&(0)) for all o, and therefore 6'([¢;]) =
0 ([€2])-

=) Changing & to an equivalent cocycle (which amounts to a different choice of go
for which Sy = g2Tg; '), we may assume that the elements &;(0) = gi_la(gi), 1=1,2,
satisfy 0(&1(0)) = 0(&2(0)), i.e.

& (o) =& (o)t(o) with t(o) €T,

for all o € Gal(K*P/K). Set h = g2g; . It is enough to show that h='a(h) € S; for all
o. We have

h~o(h) = g1&(0)o(g1) " = g1(&(0)t(0))a(gr)
= (91&1(0)o(91)™") - (a(g)t(0)o(g1) ™) =
=o(git(o)gy ") € S1(K™P),

as required. O

Beginning the proof of Theorem 5.1, we pick a maximal torus T of G (cf. [22, Exp. IX,
7.3]); then its generic fiber T is a maximal K-torus of G whose splitting field Kr is
unramified over K. Let N = Ng(T) and N = Ng(T) be the corresponding normalizers.
We denote by O™ the valuation ring of the maximal unramified extension K"*. Then
the Weyl group W = N/T can be identified with

N(KE®)/T(E™) = NO™)/T(O™). (10)

Since by assumption the torus S splits over K", it corresponds to some class [£] €
ker(H* (K™ /K,N) — HY (K™ /K,G)). Since the elements of ker(H (K" /K, N(O™)) —
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HY (K" /K, §(0O")) correspond to the maximal tori of G, it follows from Lemma 5.2 that
it is enough to construct a class [¢/] in this set that satisfies 01([¢]) = 61 ([¢']).

Lemma 5.3. There exists a cocycle &' € Z1 (K" /K, N(O")) such that

(1) 6'(€) = 0" ([¢');
(2) there exists n > 1 such that for K' = K({/7), the image of [¢'] in H*((K')™/K', G)
is trivial.

We will now assume the lemma and complete the proof of Theorem 5.1. In view of
the validity of the Grothendieck-Serre conjecture over discrete valuation rings (cf. §2.2),
the image of [¢/] is trivial in H*((K')"/K’, G(O"™)), where O'" is the valuation ring of
(K")*r. We note that K and K’ have the same residue field k, and that the residue of £’ is
the trivial cocycle with values in §(k°P), where §G is the reduction of §. Applying Hensel’s

Lemma, we conclude that the class [¢/] is trivial in H! (K™ /K, G(O™)), as required.

Proof of Lemma 5.3. Using (10), for each o € Gal(K" /K) we can pick n(c) € N(O™)
so that 6(¢(0)) = 0(n(0)), i.e.

&(o) =n(o)t(o) with t(o) € T(K™). (11)

As in the proof of Proposition 4.4, we have a canonical isomorphism of modules over
I = Gal(K™ /K):

Xo(T) @z (K*) = T(K™), x®a— x(a).
Furthermore, we have the following direct product decomposition of I'-modules:
(™)™ = U x (),
where U = (O")* is the group of units in K. Now, set
A=X,(T)Rz U =T (O") CcT(K™) and B:= X.(T)®z (m) C T(K™),

noting that A and B are invariant under the action of I' as well as under conjugation by
elements of N (") and that

T(K"™)=Ax B as I'-modules.
So, we can write (o) in (11) as

t(o) = a(o)b(o) with a(o) € A, b(o) € B.
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Set &'(0) = n(o)a(o) € N(O™). Using the cocycle condition for £ in conjunction with
the fact that £(o) = £'(0)b(o), we obtain the following relation:

(€'(0) o€ ()€ (or) = (a(n(r)) ™" - b(o) - o (n(7))) - o (b(7)) - boT) "

Clearly, the left-hand side belongs to N(O"), and the right-hand side to B. It follows
that the left-hand side is actually in A, hence both sides are equal to 1. In other words,
¢’ is a cocycle that satisfies 01([¢]) = 01 ([¢/]). Furthermore, we have

b(oT) = ((o(n(7)) " b(o)a(n(7))) - o(b(T)).

Conjugating this relation by {(o7) and using the fact that £ is a cocycle and that
E(o)té(o) ™t = n(o)tn(o)™! for t € T(K™), we see that v(o) = n(o)b(c)n(c)~! defines
a Galois cocycle with values in ¢(T(K"), where ¢TI denotes the twist of T by £. Let £
be the minimal splitting field of (7" (which by construction is unramified over ), and
let n = [£: K]. Set K' = K(/7). We claim that the image of [v] € H*(K™/K,T)
in HY(K™K'/K',¢T) is trivial. Indeed, it follows from Hilbert’s Theorem 90 that every
element in the latter group is annihilated by multiplication by n. Now, the cocycle v has

values in
¢B =X, (1) ®z (m) C T(L).
After base change from K to K, we can consider a similar subgroup
¢B' = X, (T) @z (/™) C ({T(LK).
Since every element of ¢B can be uniquely divided by n in ¢B’, there is a cocycle v/
with values in ¢ B’ C ¢(T(LK’) such that v = n - v/. But then it follows from the remark

above that the image of the class [v] in H'(K"K'/K',¢T) is trivial. This means that
there exists s € (T(LK') such that

n(o)b(e)n(o) ™ =571 (n(o)a(s)n(o) ™).
Then b(o) = (n(o)"ts~In(o)) - o(s), which implies that
(o) =571 -€(0) - 0(s),
for all o € Gal(K™K’/K’). This means that the classes [£] and [¢'] are mapped to the

same element in H1(K"K'/K', G), and therefore the image of [¢'] is in fact trivial, as

required. O
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6. Proof of Theorem 1.1

Theorem 1.1 is an easy consequence of the following result.

Theorem 6.1. Let K be a field complete with respect to a discrete valuation v such that
the residue field k is finitely generated, and let G be an absolutely almost simple K-group
that has good reduction at v. Assume that char k # 2 if G is of type By (¢ > 2). Then
any G' € geng(G) also has good reduction at v.

For the proof, we will consider separately the two cases where the type of G is dif-
ferent from A; and By (¢ > 2) and where it is one of those types. In each case, we will
characterize the existence of good reduction in terms of the presence of maximal tori
with very specific properties — see Theorems 6.2 and 6.6. These characterizations will
also be used in §9 for the analysis of weakly commensurable Zariski-dense subgroups.
We begin with the following sufficient condition for good reduction for types different
from A; and B, (¢ > 2).

Theorem 6.2. Let IC be a field complete with respect to a discrete valuation v, and let G be
an absolutely almost simple algebraic KC-group of type different from Ay and By (£ > 2).
Assume that G contains a mazximal K-torus T which is K-generic and whose minimal
splitting field KCr is unramified over KC. Then G has good reduction at v.

Proof. Let Gy be the quasi-split inner form of G, and let £ be the minimal Galois
extension of K over which G becomes split. Being a subextension of K7 /K, the extension
L/K is unramified, and therefore G and the corresponding adjoint group Go have good
reduction (cf. [34, Corollary 7.9.4]). Let Gy be the corresponding model for G over the
valuation ring O of K. Now, let p: G — G be the isogeny onto the adjoint group, and
T = p(T). Tt follows from Steinberg’s Theorem (cf. [54, Proposition 6.19], [4, 8.6]) that
there exist an embedding ¢: T < Gy and a l-cocycle & € Z'(K,T) such that for the
image £ of ¢ under the natural map Z'(K,T) — Z'(K,Gy), the twisted group Gy is
KC-isomorphic to G. Since Kr /K is unramified, according to Theorem 5.1, there exist
a maximal torus 8 of Gy and an element h € Go(KP) such that the generic fiber S
satisfies S = hTh~! and the morphism ¢: T — S, x — hxh™!, is defined over K; recall
that the latter is equivalent to the fact that s(c) := h™1 - o(h) lies in T(K5P) for all
o € Gal(K*?/K). Let ¢ be the image of ¢ under the map Z' (K, T) — Z*(K, S) induced
by ¢. We have
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defines a cocycle ¢ € Z'(K,S), and we let  denote its image under the map Z*(K, S) —
ZY(K,Gy). Tt follows from (12) that £ = ¢, and hence G ~ ¢Go ~ ¢Go. So, it remains to
show that ;Go has a reductive model over O. Since ¢ is defined over K, we have

Kg = K7 =Kr,
which is unramified over K. In addition, S is generic over K, so by Proposition 4.4
HY(K,S) = H'(Kg/K,S) = H (Kg/K,U),

where U = S(Ox) and O is the valuation ring of Kg. Thus, replacing ¢ with an equiv-
alent cocycle, we may assume that it has values in /. Obviously, the inner automorphisms
corresponding to the elements of U act on G X 0 Ok, and then the corresponding twisted
O-scheme G = 590 is a required reductive model for EGO ~G. O

Proposition 6.3. Let IC be a field complete with respect to a discrete valuation v and
assume that the residue field k = K is infinite and finitely generated. If G is an
absolutely almost simple algebraic KC-group that has good reduction at v, then G possesses
a mazimal IC-torus T that is KC-generic and whose minimal splitting field KCr is unramified
over K.

Proof. Let G be a model of G over O. Then the reduction § is an absolutely almost
simple algebraic k-group of the same type as GG. Since k is infinite and finitely generated,
one can find a maximal k-torus T of G that is generic over k (cf. Theorem 3.1). Let T be
a lift of T to G (cf. [20, Corollary B.3.5]). Then the generic fiber T is a maximal K-torus
of G that is K-generic and whose splitting field K7 is unramified over . O

Corollary 6.4. Let G be an absolutely almost simple algebraic K-group of type different
from Ay and By. Assume that the residue field k is finitely generated and G has good
reduction at v. Then any G' € geny(G) has good reduction at v.

Proof. We first consider the case where k is a finite field. In this case, it is well-known
that the fact that G has good reduction implies that G is quasi-split over K. Let G’ €
geny (G). Then clearly

I‘k}c G/ = I"k;(; G. (13)

On the other hand, according to Tits’ classification [79], the group G’ is quasi-split if
and only if all vertices in the Tits index are distinguished. Since G’ is an inner twist
of G, this is equivalent to (13). Thus, G’ is K-quasi-split, hence K-isomorphic to G. In
particular, it has good reduction at v.

Next, suppose that k is infinite and finitely generated. In this case, our claim fol-
lows directly from the above results. Indeed, according to Proposition 6.3, the group G
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contains a maximal C-torus T that is generic over K and whose splitting field Kp is
unramified over K. Since G’ € geny(G), it contains a maximal K-torus 7" isomorphic to
T. Then of course v = Kp is unramified over K. Furthermore, the assumption that G’
is an inner twist of G implies that the subgroups 07 (Gal(K7/K)) C Aut(®(G,T)) and
O (Gal(Kr/ /K)) C Aut(®(G,T”)) have isomorphic images in the groups of symmetries
of the corresponding Dynkin diagrams. Then the fact that T is K-generic implies the
same for 7. Hence, G’ has good reduction by Theorem 6.2. 0O

We now turn to the second case where the type of G is either Ay or B, (¢ > 2). Let
us first show that Theorem 6.2 may be false in this case.

Example 6.5. Let £ = Q((x)), equipped with the standard valuation v.
-1
(a) Let D be the quaternion algebra <T7x) and G = SLy p. Set £ = Q(v—1)((z)),

and let T = R(Ll/),C(Gm) be the corresponding maximal K-torus of G. Then T is K-generic
and splits over the unramified extension £/K, but the quaternion algebra D ramifies at
v, hence G does not have good reduction according to Example 2.2.

(b) Let £ > 2 and K be as above. Set

qo=1a7 4+ +a3_, +223 and ¢ =qo+ 223,

and let

H = Sping,(q0) C Sping,,,(q) =G.

Since H corresponds to a quadratic form defined over Q, it has good reduction and
contains a K-generic maximal torus T that splits over an extension of the form L/
for some finite extension L of Q, which is obviously unramified. Now, T is also a
maximal torus in G (because G and H have the same rank ¢), and we claim that it
remains K-generic in G. Indeed, the group H is of type Dy, the group G is of type By,
hence |W(G,T)| = 2 - |W(H,T)|. Since T is generic in H, the image of Gal(Kr/K) in
Aut(®(H,T)) contains W(H,T). Furthermore, the (signed) discriminant of go is not a
square, so the image is not entirely contained in W(H,T) (cf. [58, Lemma 4.1]). It follows
that the image is W(G, T'), making T generic in G. On the other hand, both the first and
the second residues (cf. [40, Ch. VI]) of ¢ are nontrivial, and therefore no scalar multiple
of g can be equivalent to a diagonal quadratic form with all coefficients being units. So,
G does not have good reduction at v by Example 2.3.

For types A; and B, we have the following modified condition for good reduction.

Theorem 6.6. Let IC be a field that is complete with respect to a discrete valuation v with
residue field k. Suppose G is an absolutely almost simple algebraic K-group of type either
A1 or By (¢ > 2), and assume that char k # 2 if G is of type B.
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(1) If G contains two mazimal K-tori Ty and Ty that are K-generic and whose splitting
fields Kr, are unramified over K and satisfy Kr, N Kp, = K, then G has good
reduction at v.

(2) Conwversely, if k is infinite and finitely generated, and G has good reduction at v, then
G contains two mazimal KC-tori Ty and T that are K-generic and whose splitting
fields K, and K, are unramified over K and satisfy Kr, N K, = K.

Proof. Without loss of generality, we may assume that G is simply connected.

(1): The argument for type A; is rather simple. Indeed, here G = SL; p, where
D is a quaternion algebra over K, and we need to show that D is unramified at v.
Furthermore, we have T; = R(Lli)/,C(Gm)7 where £; = Kr, is a quadratic subfield of D,
that, by assumption, is unramified. Now, if D were ramified at v, then the residue algebra
D would be a quadratic extension of k. Then

D =L, = L.

This would imply that £; = Lo, contradicting the fact that £; N Lo = K. Thus, D is
unramified, as required.

The argument for type By is similar, but more technical. Here G = Spin,,(¢q), where
n = 20 + 1 and ¢ is a nondegenerate quadratic form on ™. We will use the standard
action of G on the n-dimensional vector space. It is well-known that every maximal K-
torus T of G fixes an anisotropic vector @ € K™, and hence lies in the stabilizer G(a),
which can be identified with H = Spin,,_;(¢’), where ¢’ is the restriction of ¢ to the
orthogonal complement W = (a)*; note that H is a group of type Dy.

So, in our set-up, for each i = 1,2, we can choose an anisotropic vector a; € K"
fixed by T;, and let H; = Spin,,_;(g;), where g; is the restriction of ¢ to the orthogonal
complement W, = (ai)L. Then T; is a maximal /C-torus in H;, which is -generic in H;
and has unramified splitting field. So, it follows from Theorem 6.2 for £ > 3 and from
Lemma 6.7 below for £ = 2 (we note that the order of the Weyl group for type By is
8) that H; has good reduction at v. According to Example 2.3, this means that there
exist an element \; € K* and a basis egi), . .,efﬁl of W; such that in this basis, the
quadratic form A;g; has the following presentation

uad + -+ 2l

where ugi) are units in K for i = 1,2 and j = 1,...,n — 1. Also, by scaling a;, we may
assume that the values of v(\;q(a;)) are either 0 or 1. If it is O for at least one i € {0,1},
then G has good reduction at v (see Example 2.3). So, let us assume that the value is 1

for both i = 1,2, i.e. \jg(a;) = m%") where qu’ is a unit. Then

g =2 4 a2 a2

We have A\1qg = (A1 ;1) (A2q). So, taking determinants and evaluating v, we obtain
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=nv(MAy 1) + 1(mod 2),

which, in view of the fact that n is odd, implies that v(A A5 ') is even. So, after scaling,
we can actually assume that )\1)\ is a unit. Consequently, setting A = A; and replacing
q by Ag, we may assume that

q—ug)xQ—i— S)le —|—7Tu() 2
where uy) are all units. Then the diagonal quadratic forms (ugi)7 .. UE;) 1) over the residue

field k (where the bar denotes taking the residue in k) are both the so-called first residues
of g (we note that the first and second residues were constructed by Springer assuming
that the residue characteristic is # 2). Since the first-residue is well-defined (see [40, Ch.
VI]), we conclude that these residues are equivalent, and then by Hensel’s Lemma, the
quadratic forms ¢; = ug) 2+ S ) 122, for i = 1,2 themselves are equivalent.

Let d; be the (signed) dlscrlmlnant of ¢;. Since T; is generic in G, and the Weyl group
of G contains the Weyl group of H; (with respect to T;) as a subgroup of index 2, we
conclude that H; is an outer form of a split group over K. Furthermore, the minimal
Galois extension of K over which it becomes an inner form is K(v/d;). Since the forms
q1 and ¢o are equivalent, we conclude that

L :=K(/dy) = K(\/ds)

is a quadratic extension of K. However, £ C Kz, for both ¢ = 1,2, contradicting the
assumption that Kr, and Krp, are disjoint over .

(2): Let G be the model of G over O with reduction G, which is an absolutely almost
simple algebraic k-group of the same type as G. Since k is infinite and finitely generated,
we can find a maximal k-torus Ty of G that is generic over k. Next, let T be a maximal
k-torus of G that is generic over the splitting field k7 of T,. Since the Dynkin diagrams
of the types A; and By do not have nontrivial automorphisms, the degrees [kﬁ : k] for
i = 1,2 are equal to the order w of the Weyl group. Besides, the degree [ks k7, : k5 |
also equals w. This implies that

k71 N /sz = k. (14)

Let T; and T5 be the lifts of T; and Ty to G, and let 77 and T, be the corresponding
generic fibers. Then T and T, are maximal K-tori of G that are generic over K and
whose splitting fields K7, are unramified extensions of K with the residue fields ks, for
i =1,2. Then (14) implies that L, N Kp, = K, as required. O

We will now prove the statement about good reduction of spinor groups of 4-
dimensional quadratic forms that was used in the above argument. We recall that given
a nondegenerate quadratic form ¢ over K of dimension four, the spinor group Spin,(q) is
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isomorphic to G = Rz (H), where L is a 2-dimensional étale K-algebra and H = SL; p,
where D is a central quaternion KC-algebra.

Lemma 6.7. Let G be as above. If G possesses a maximal KC-torus such that Kr /K is an
unramified extension of degree 8, then G has good reduction.

Proof. If £ = K x K, then [Kr : K] < 4 for any K-torus T of G. Thus, in our situation,
L/K is a quadratic field extension. It is enough to show that £/K is unramified and
H; = H xx L has good reduction. Indeed, if H is a reductive O-model for H., then
S = Ro, /0. (H) would be a reductive Ox-model for G. Since £ C Kr, we immediately
obtain that £/K is unramified. Furthermore,

GXKE”:HgXHg.

In terms of this L-isomorphism, let T X L ~ Ty x To. We have [Lr : L] = 4, which
means that 77 and T3 are nonisomorphic £-tori of H having unramified splitting fields.
So, the fact that H, has good reduction follows from the first part of the proof of
Theorem 6.6. O

Corollary 6.8. Let G be an absolutely almost simple algebraic K-group of type either A;
or By that has good reduction at v. Assume that k is finitely generated and char k # 2 if
G is of type B. Then any G' € geny(G) also has good reduction at v.

Proof. As in the proof of Corollary 6.4, we consider two cases. First, if the residue field is
finite, the fact that an absolutely almost K-group G of type A; or By has good reduction
means that it actually splits over K. Then G’ also splits, and hence has good reduction.
Next, suppose the residue field is infinite and finitely generated. Then by Theorem 6.6(2),
the group G possesses two maximal K-tori T and T3 that are generic over I and whose
splitting fields are unramified over K and satisfy Kr, N Kp, = K. On the other hand,
G’ contains maximal K-tori T} and Ty that are K-isomorphic to T} and T3, respectively.
Clearly, T] and T4 have properties analogous to those of 77 and T5, so G’ has good
reduction by Theorem 6.6(1). O

Now, Theorem 6.1 follows from Corollaries 6.4 and 6.8. Furthermore, to prove the first
assertion of Theorem 1.1, one needs to use Corollary 3.3 and then apply Theorem 6.1. To
prove the second assertion, we let T be a maximal k(*)-torus of the reduction Q(v). Let §
be the model of G x k, over O, that yields the reduction Q(”). Then according to [20,
Corollary B.3.5], the torus T lifts to a maximal torus T of G; let T' be the corresponding
generic fiber, which is a maximal k,-torus of G X k,. As we already mentioned, G’ €
gen,, ((), so there exists a maximal k,-torus 7" of G’ that is isomorphic to 7. We have
already established that G’ X k, has a model §’ over O,,, and using Theorem 5.1 we may
assume that T is the generic fiber of a torus 7’ of §’. According to Proposition 2.5, the
fact that T ~ T over k,, implies that T ~ T’ over @,,. Then the reduction T’ is a maximal
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k,-torus of the reduction (Q’)(”) that is isomorphic to 7. A symmetric argument shows

that every maximal k,-torus of (Q’)(”) is isomorphic to a maximal k,-torus of Q(”). Thus,
(G")™) € gen,, (G™).

Corollary 6.9. Let G be an absolutely almost simple algebraic group over an infinite
finitely generated field k, and let V' be a divisorial set of places of k. Assume that chark #
2 if G is of type B. Then there exists a finite subset S C V such that every G' € gen,(G)
has good reduction at allv € V'\ S.

Proof. First, we note that the residue field £(*) is finitely generated for all v € V, so we
can apply our previous results. Clearly, we can find a finite subset S C V such that G
has good reduction at all v € V' \ S. Besides, if G is of type B, then by our assumption
char k # 2 and we can include in S all v € V such that v(2) # 0. But then according to
Theorem 1.1, every G’ € gen,(G) also has good reduction at allv € V. O

This corollary shows that the truth of the Finiteness Conjecture for forms G with
good reduction and all divisorial sets of places of the given finitely generated field k
would imply the finiteness of gen (G).

7. The behavior of the genus under a purely transcendental base change: proof of
Theorem 1.3

In order to set the stage for the proof of Theorem 1.3, we would first like to present
an analogous result for division algebras.

7.1. The genus of a division algebra

We recall that two finite-dimensional central division algebras D, and D over a field
K are said to have the same maximal subfields if they have the same degree n and satisfy
the following property: a degree n extension P/K admits a K-embedding P — D, if and
only if it admits a K-embedding P < D,. Given a finite-dimensional central division
algebra D over K, one defines its genus gen(D) as the set of classes [D’] € Br(K) in
the Brauer group corresponding to central division K-algebras D’ that have the same
maximal subfields as D. This concept has been analyzed in detail in [13], [14], [17], [65],
and other publications. Our goal in the present subsection is to prove the following.

Proposition 7.1. Let D be a central division algebra of degree n over a field k, and as-
sume that n is prime to char k. Set K = k(x). Then every element of gen(D ®y, K) is
represented by a division algebra of the form D' @ K, where D' is a central division
algebra over k with [D'] € gen(D).

Proof. For any n that is prime to char k, we have the following exact sequence that goes
back to Faddeev (cf. [25, Example 9.2]):
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0= nBr(k) — »Br(K) - ) Hom(Gal((KP)*?/K#)), 7. /nZ),

p

where p runs through all monic irreducible polynomials in k[z], p is the direct sum of
the corresponding residue maps

pP):  Br(K) — Hom(Gal((K®)*P/KP)) 7 /nZ),

and K® = k[z]/(p(x)) is the residue field at p. Let A € gen(D ®y, K). Since the algebra
D ®j, K is unramified at all p, the latter implies that A is also unramified at all p (cf.
[13], [65]), i.e. p(JA]) = 0. So, it follows from the above exact sequence that A is of the
form A = D’ ®;, K for some central division k-algebra D’ of degree n. It remains to show
that D’ € gen(D). For this, we let v denote the discrete valuation of K corresponding
to the polynomial p(z) = z; then the completion K, is k((z)) and the residue field K ()
is k. Since D' ®j, K € gen(D ®;, K), it follows from [65, Lemma 2.1] that the degree n
division algebras D = D ®; K, and D' = D’ ®; K, have the same maximal subfields.
Since D and D’ are division algebras, the valuation v extends to valuations w and w’
of these algebras, and we let D and D’ denote the corresponding residue algebras. A
standard argument shows that the fact that D and D’ have the same maximal subfields
implies that the residue algebras also have the same maximal subfields. Since D ~ D
and D’ ~ D', we see that D’ € gen(D), as required. 0O

Using the proposition repeatedly, we obtain a similar statement for the field of rational
functions K = k(x1,...,%,) in any number of variables. Our next goal is to prove
Theorem 1.3 that extends the proposition to absolutely almost simple algebraic groups.

7.2. Proof of Theorem 1.3

The argument relies on the following fundamental fact.

Theorem 7.2. (Raghunathan, Ramanathan [63]) Let G be a connected reductive algebraic
group over a field k, and let A} = Spec k[z] be the affine line over k. Let B — A} be
a principal G-bundle on A}, such that the bundle B XAl Aleep on Al., = Spec k5°P[z],
where k*°P is a separable closure of k, is trivial. Then B is constant, i.e. there exists a
principal G-bundle By — Spec k such that B = By Xgpec k Ak.

An alternative proof of this theorem was given in [26]. Later in [12], the theorem was
extended to reductive, but not necessarily connected, groups; see also [1] for a new proof
over fields of characteristic zero that uses buildings. In cohomological language, the theo-
rem means that the natural map from H'(k, G) to Ker (He (A}, G) = Het(Afen, G)) is
a surjection (in fact, a bijection). We will use this interpretation to prove the following.

Proposition 7.3. Let G be a semisimple algebraic group over a field k, let K = k(x),
and let V' be the set of discrete valuations of K associated with the monic irreducible
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polynomials p(x) € kl[z]. If H is an inner K-form of G x K that has good reduction
at all v € V and satisfies H X g k°P(x) ~ G Xy, k°P(x), then H ~ Hy X, K for some
k-form Hy of G.

Proof. The k-group G is an inner twist of a quasi-split k-group Gy. In terms of proving
the proposition, we can replace G by Gy, and hence assume that G itself is quasi-split.
Let G be the corresponding adjoint group. Since G is quasi-split, there exists a k-defined
finite subgroup ¥ C Aut(G) such that Aut(G) = G x X. Let v € V, and denote by O,
the valuation ring of the completion K,. Set § = G x;, O, and § = G x;, O,. We say that
a cohomology class in H'(K, Q) is unramified at v € V if its image under the restriction
map H'(K,G) — H'(K,,G) belongs to Im(H}, (0,,5) — H'(K,,G)).

Suppose now that H is an inner twist of G xj, K that has good reduction at all v € V.
Fix a cocycle ¢ € Z1(K, G) such that H = ¢(G x, K). We will first show that

[€] € Im By, where fBi: HY (A}, G) — H'(K,G) (15)

is the map induced by passage to the generic point. According to Proposition 2.6, it is
enough to show that [€] is unramified at all v € V. So, fix v € V. By our assumption, there
exists a reductive group O,-scheme J with generic fiber H. This scheme is necessarily
an inner form of G, so we can find a cocycle ¢’ € th(ov@) such that 3 = ¢ G. Passing
to the generic point, we obtain H X i K,, ~ ¢(G X, K,). This means that for the image
¢, of & under the restriction map Z'(K,G) — Z'(K,,G), the cohomology classes [&,]
and [¢'] have the same image in H'(K,, Aut(G)). Thus, there exists g € Aut(G)(K:°P)
such that &,(0) = g¢(0)o(g)~? for all o € Gal(K5°P/K,). We can write g = hs with
h € G(K$P) and s € %(K5P) = N(k*°P), and then define ¢ € Z'(K,,G) by & (o) =
s¢'(o)a(s)7t. Clearly, [¢] = [¢,] in HY(K,,G), and by construction [¢”] lies in the image
of H4(0,,5) = HY(K,,G). Thus, [¢] is unramified at v.

Now, using (15), pick [¢] € HL (AL, G) such that [¢] = Bx([¢]). To prove the proposi-
tion, it is enough to show that [¢] is the image of some [£] € H'(k,G), as then one can
take Hy = ¢,G. As we discussed above, this would follow from Theorem 7.2 if we could
show that [¢] € Ker (H}, (A}, G) = HY (Ajer,G)). We have the following commutative
diagram

HL(ALG) —2  HYK,G)

a [

HY Ak, G) 222 HY (k0 (2), G)

The fact that H xx k5P(z) ~ G xx k%P(x) means that [¢] € Ker(HY(K,G) —
H'(k*°P(z), Aut(G)). Since G splits over kP, the map H'(k*P(x),G) — H (kP (z),

Aut(G)) has trivial kernel, and therefore we conclude that actually [¢] € Ker 2. So, it
follows from the diagram that in order to show that [(] € Ker 71, it suffices to prove



V.I. Chernousov et al. / Advances in Mathematics 438 (2024) 109437 35

that Ker Bysep is trivial. According to [50], there is a bijection between Ker fSyser and the
double coset space

cl(G, kP (2), V*) := GA®(V)\G(A(V?)) /G (kP (x))

where V? is the set of discrete valuations of k°P(x) associated with the closed points of
Alp, with G(A(V?)) and G(A>°(V*)) denoting the group of rational adeéles of G asso-
ciated with V*® and its subgroup of integral adeles (cf. [17, §4]). Fix a maximal k-defined
torus T of G. Then T splits over k%P and a standard argument using strong approxima-
tion for the opposite maximal unipotent subgroups associated with T (cf. [17]) shows that
every double coset in cl(G, k*P(z), V*) has a representative in T'(A(V*)). On the other
hand, for the multiplicative group S = G,,, the double coset space cl(T, k*P(z), V*) can
be identified with the Picard group of A}..,, which is trivial. Since T is k*P-split, we
obtain that cl(T, k*°P(x), V*) reduces to a single element. Thus, cl(G, k*P(x),V*) also
reduces to a single element, and the injectivity of Byser follows. This completes the proof
of the proposition. 0O

It is now easy to complete the proof of Theorem 1.3. Let H € geny (G x; K), where
K = k(x). Since G xj, K has good reduction at all v € V', we see from Theorem 1.1 that
the same is true for H. Let T" be any maximal k-torus of G. Then H has a maximal
K-torus isomorphic to T x i K, which splits over kP (z). Thus, both G x; K and H split
over k%P (x), hence G x, k%P (x) ~ H x g k°°P(z). Since H is an inner twist of G xj, K, we
can apply Proposition 7.3 to conclude that H = Hy Xy, K for some inner k-form Hy of G.
Let v be the valuation of K associated with . Then the reductions of G X, K and H at v
coincide with G and Hy, respectively. Consequently, Theorem 1.1 yields Hy € gen(G).
(In fact, applying this argument to all valuations, we see that Hy xj £ € gen,(G xy ¢)
for every finite simple extension ¢/k.)

8. Killing the genus by a purely transcendental extension

As in the previous section, we will first explain the phenomenon of “killing the genus”
in the case of division algebras.

8.1. Killing the genus of a division algebra
It turns out that Proposition 7.1 can be significantly strengthened as follows.

Theorem 8.1. Let D be a central division algebra of degree n over a field k, and assume
that n is prime to char k. Set K = k(z1,...,2,-1). Then gen(D &y K) consists of
(the Brauer classes of) central division K-algebras of the form D' @y K, where D' is
a central division k-algebra of degree n such that the classes [D] and [D'] generate the
same subgroup of Br(k).
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We already know from Proposition 7.1 and the subsequent remark that every element
of gen(D ®; K) is represented by a division algebra of the form D’ ®; K for some
central division algebra D’ over k of degree n. In order to show that the classes [D] and
[D’] generate the same subgroup of Br(k), we will eventually use Amitsur’s Theorem [2].
However, its application requires some preparation. We refer the reader to [74, Ch. 13]
for basic facts about Severi-Brauer varieties and their function fields.

Lemma 8.2. Let D be a central division algebra of degree m over a field k, and let Fp
be the function field of the corresponding Severi-Brauer variety SB(D). Then there exist
elements z1,...,x,—1 € Fp that are algebraically independent over k and such that
Fp/k(xy1,...,2n-1) s an extension of degree n.

Proof. Let W C D be a k-subspace of dimension m. If we fix a k-basis wy, ..., w, € W,
then there exists a homogeneous polynomial vy € k[tq, ..., 1] such that

vw(aa,...,m) = Nrdp /g (cqwi + -+ - + apwy,) forall ai, ..., q, € k.

Set Zw to be the subvariety of the projective space P(W) defined by the equation
vw = 0. It was shown by E. Matzri [44] that for a Zariski-dense set of subspaces W in
the Grassmannian Gr(n+ 1, D), the variety Zy is absolutely irreducible and birationally
k-isomorphic to SB(D). For the purpose of proving our lemma, we pick one such (n+1)-
dimensional subspace W C D and fix a basis w1, ..., w,41. Pick two distinct indices
i,j7€{l,...,n+ 1}, set

p(T) =vw(ty,... tict, Totigr, oy tj—1, L, o tngn),

and then re-denote the variables t1,...,t;i—1,tit1,. .., tj—1,tjq1, -, tng1 BST1, .., T
Then Fp is isomorphic to the extension of k(z1,...,z,—1) obtained by adjoining a root
of p(T). On the other hand, p(T) is irreducible over k(xy,...,z,—1) and its leading term
is Nrdp, g (w;)T", demonstrating that degp = n and completing the argument. O

Proof of Theorem 8.1. As in the lemma, we denote by Fp the function field of the Severi-
Brauer variety SB(D), and pick algebraically independent elements x1,...,2,-1 € Fp
so that Fp is a degree n extension of K = k(z1,...,2,-1). According to Amitsur’s
theorem [2], the kernel of the base change map Br(k) — Br(Fp) coincides with the
cyclic subgroup ([D]) C Br(k). In particular,

Dy Fp ~ Mn(FD) o~ (D@k K) Qi Fp.
Since [Fp : K| = n, the latter means that Fp is K-isomorphic to a maximal subfield of

D ®y, K. By our assumption, D ®; K and D’ ®; K have the same maximal subfields, so
Fp admits a K-embedding as a maximal subfield into D’ ®; K. It follows that
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D' Qi Fp ~ (Dl®k K) QK Fp ’:Mn(FD)

Then Amitsur’s theorem yields the inclusion [D'] € ([D]). A symmetric argument shows
that [D] € ([D']), which completes the argument. O

Thus, no matter what the genus gen(D) is originally, after a suitable purely transcen-
dental base change K/k, the genus gen(D ®; K) becomes finite, and in fact minimal
possible. We call this phenomenon “killing the genus by a purely transcendental exten-
sion.” Later in this section, we will prove Theorems 1.5 and 1.6 that reveal a similar
phenomenon for the norm one groups SL; 4 of central simple algebras A and groups of
type Go, after which we will discuss possible generalizations. But first, we would like to
continue our discussion of this phenomenon in the context of division algebras. As an
immediate consequence of Theorem 8.1, we have

Corollary 8.3. Let D be a quaternion division algebra over a field k of characteristic # 2,
and let K = k(x). Then

gen(D ®; K) = {[D ®; K|}
The above proof of Theorem 8.1 for quaternions yields the following statement:

(o) Let Dy and Dy be two central quaternion division algebras over a field k of charac-
teristic # 2, and let K = k(z). If D1 ®, K and Dy Q) K are in the same genus, then
Dy ~ D5 over k.

It turns out that (e) remains valid if the field of rational functions K = k(x) is replaced
by the function field of any absolutely irreducible curve over k having a k-rational point.

Proposition 8.4. Let Dy and D> be two central quaternion division algebras over a field
k of characteristic # 2, and let C' be a smooth geometrically integral curve over k with
C(k) # 0. If for the function field K = k(C), the algebras D1 @) K and Dy ®y K are in
the same genus (as K-algebras), then Dy ~ Dy over k.

(We note that since C'(k) # 0, the algebras D1 ® K and Ds®y K are division algebras
over K. Indeed, let P € C(k). Since P is nonsingular, we can consider the corresponding
valuation v of K, and then the completion K, can be identified with the field k((¢)) of
formal Laurent series. Then the algebras D, ®; K, and Dy ®; K, are obviously division
algebras, so the algebras Dy ®; K and Dy ® K are also division algebras.)

Proof. Without loss of generality, we may assume that C' is projective. Fix a rational
point P € C(k), and consider the divisor A,, = nP on C for n > 0. It follows from the
Riemann-Roch Theorem (see, for example, [76] for the statement and relevant notations)
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that the dimension ¢(A,) = dimg L(A,) of the space L(A,) associated with A,, for
n > 0 is given by

where g is the genus of C'. Thus, we can find an odd n > 1 prime to chark such that there
exists f € L(A,)\ L(A,_1). Then the divisor of poles of the principal divisor (f) is Ay,
hence has degree precisely n. Thinking of f as a morphism C' — P}, we conclude that
the degree of this map is n, which means that K is a degree n extension of the field of
rational functions k(z). On the other hand, the function field Fp, of the Severi-Brauer
variety of D; can be viewed as a quadratic extension of k(z). (More precisely, K and
Fp, can be embedded into an algebraic closure of the field k(x) so that the images of
these embeddings, for which we keep the same notations, have degrees n and 2 over k(z),
respectively.) We have

D1 ® Fp, ~ My(Fp,) ~ (D1 ® k() @) Fp,,

implying that Fp, admits a k(z)-embedding into D; ®j, k(x) as a maximal subfield (just
as in the proof of Theorem 8.1). Then the composition Fp, K ~ Fp, ®j,) K admits
a K-embedding into (D1 ®p k(7)) ®pz) K ~ D1 ® K as a maximal subfield. By our
assumption, the algebras D; ®; K and D; ®j K are in the same genus, so there is a
K-embedding Fp, K < Dz ®p(,) K. It follows that

(D2 ® Fp,) ®Fp, Fp, K ~ D3 ®; Fp, K ~ (D2 ® K) @k Fp, K ~ Mz(Fp, K).

Thus, the degree n extension Fp, K/Fp, splits the algebra Dy ®j Fp,. Since n is odd,
we conclude that Dy ®j Fp, ~ M3(Fp,). By Amitsur’s theorem, this means that the
quaternion division algebras D and Dy are isomorphic. O

Remark 8.5. The assumption in Proposition 8.4 that C has a k-rational point cannot
be omitted. Indeed, let D; and D5 be two nonisomorphic quaternion division algebras
having a common subfield (e.g., one can take D; = (—1,3) and Dy = (—1,7) over
k= Q). Then D; ® Dy ~ My(D) for the quaternion division algebra D = (—1,21). Let
C' be the Severi-Brauer variety for D (which is a conic without a rational point), and
K = k(C). Since K splits D, the K-algebras D1 ®; K and Dy ®j, K are isomorphic, hence
belong to the same genus. However, by construction, D; and Dy are not isomorphic as
k-algebras.

The result established in Corollary 8.3 prompts the following

Question 8.6. Does there exist a central quaternion division algebra D over the field of
rational functions K = k(z) over some field & having nontrivial genus gen(D)?
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8.2. Proof of Theorem 1.5

While the argument involves some of the same considerations as the proof of The-
orem 8.1, it also contains several new elements. In order to apply Amitsur’s theorem,
we need to match certain maximal subfields of the algebras obtained by a purely tran-
scendental base change, and not just the corresponding maximal tori in the associated
norm one groups. It is well-known that given a central division algebra D of degree n
over a field k, every maximal k-torus 1" of G = SL; p is the norm torus Rg}k((}m) for
some maximal separable subfield F' C D. The problem is that in general, given two
separable degree n extensions F; and F5 of K, the fact that the corresponding norm tori
are K-isomorphic, may not imply that the extensions are isomorphic.* However, as the
following lemma shows, this complication does not arise in the case of generic tori. We
recall that a field extension F'/k of degree n is called generic if it is separable and for its
normal closure F, the Galois group Gal(F /k) is isomorphic to the symmetric group S,.

Lemma 8.7. Let Fy and F» be two degree n extensions of a field k, and let T; = Rgl)/k(Gm)
(i = 1,2) be the corresponding norm tori. If at least one of the extensions F; is generic

over k and Ty ~ Ty as k-tori, then Fy ~ Fy over k.

Proof. It is well-known that the minimal splitting field of T} is the normal closure of F;
over K, which we will denote by Fj. Since Ty and T, are k-isomorphic, we have F; =
F, =: F, and then by our assumption, the Galois group G = Gal(F/K) is isomorphic to
S,. Let H; = Gal(F'/Fi). To prove that Fy ~ Fy, it is enough to show that the subgroups
H, and H, are conjugate in G. When n # 6, this follows from the elementary fact in
group theory that, in this case, .S, has only one conjugacy class of subgroups of index
n; in other words, every subgroup of index n is the stabilizer of some point — see [33,
Kapitel 11, Satz 5.5].

For n = 6, it is well-known that the group of outer automorphisms of G has order
2. Furthermore, if o is an outer automorphism of G and H C G is a fixed subgroup
of index n, then it follows from [33, Kapitel II, Satz 5.5] that any subgroup of index
n is conjugate to either H or o(H). To prove that H; and Hs are conjugate in this
case as well, we observe that a k-isomorphism between T} and T3 yields an isomorphism
of the character groups X (71) ~ X(T2) as Z[G]-modules, hence an isomorphism of
the vector spaces Wi = X(T1) ®z Q and Wy = X (1) ®z Q as Q[G]-modules. The
representation of G afforded by W, can be described as the permutation representation
on Q[G/H;] “minus” the trivial representation (we will refer to this representation as the
standard representation associated with the subgroup H;). So, to complete the argument,
it remains to show that the standard representations p: G — GL(W) and p': G —

4 To construct such an example, it is enough to find a finite group G having two nonconjugate subgroups
H; and H> such that the permutation lattices Z[G/H1] and Z[G/H2] are isomorphic as Z[G]-modules. We
learned from correspondence with R. Guralnick and D. Saltman that the following example of this situation
was found by L. Scott [75]: G = PSLy(Fag9) and Hq, Ho are nonconjugate subgroups isomorphic to As.
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GL(W') associated with H and o(H) are not equivalent. Since p’ = p o o, this follows
from the explicit description of the character of the standard representation and the
fact that o switches the conjugacy classes of 3-cycles and the products of two disjoint
3-cycles. O

Next, we need the following strengthening of Lemma 8.2 that includes the genericity
condition.

Proposition 8.8. Let A be a central simple algebra of degree n over a finitely generated
field k, and let Fy be the function field of the Severi-Brauer variety SB(A). Then there
exist elements x1,...,x,—1 € F4 that are algebraically independent over k and such that
Fa/k(z1,...,2,-1) is a generic field extension of degree n.

Before giving the proof, we first discuss the following auxiliary construction. Let F/k
be a separable field extension of degree n. Fix a basis w; = 1,wo,...,w, of F over k,
and let ¢1,...,t, be variables. Set

ety tn) = [[(olw)ts + - + o(wn)tn), (16)

g

where the product is taken over all distinct embeddings o: F < k. Clearly, Pp/k is
a homogeneous polynomial of degree n in t1,...,t, with coefficients in k. When k is
infinite, pp/; is uniquely characterized by the condition

oo, ..., an) = Np/p(aiws + - - + apwy) forall ag,...,an € k. (17)
Consider the polynomial fr/(T) = ¢p/i(T,ta, ..., tn_1,1) over L :=k(ta,... ,tn_1).

Lemma 8.9. Keeping the preceding notations, let F' be the normal closure of F over k.
Then the splitting field E of fp(T) over L coincides with FL = F(ty,...,tn_1), and
therefore Gal(E/L) ~ Gal(F/k).

Indeed, it follows from (16) that

Fon(T) = [[(T + (o(wa)tz + - + 0 (wn1)tn—1 + o(wn))).

g

This shows that E C F'L. On the other hand, if 7 € Gal(FL/L) = Gal(F/k) fixes the ele-
ment (o(wa)te+- - +0(wp—1)tn—1+0(wy)), then it fixes all the elements o(w2), ..., o(wy).
It follows that if 7 fixes E then 7 = id. So, E = FL, hence Gal(E/L) = Gal(F/k).

Proof of Proposition 8.8. The argument is a refinement of the proof of Lemma 8.2, and
we will freely use the notations introduced therein. Recall that the key point in realizing
Fp as a degree n extension of the rational function field F = k(x1,...,2,-1) was the
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fact that SB(D) is birationally isomorphic to Zy, for a suitable choice of an (n + 1)-
dimensional subspace W C D. While this fact remains valid without any changes for any
central simple algebra A, in order to ensure that the extension F4/F is generic, we need
to specialize the choice of W. First, since k is finitely generated, A contains a maximal
subfield P that is a generic extension of k (this follows immediately, for example, from
Theorem 3.1). It was shown by Saltman [73, 4.2(c)], [74, 13.28] that for a Zariski-dense
set of a € A, the space W := P+ka is (n+1)-dimensional and the corresponding variety
Zyw is birationally isomorphic to SB(A). Fix one such a. Pick a basis w; = 1,...,w, of
P/k; then wy, ..., wy,, wyy1 = a is a basis of W. Take i = 1, j = n as in the proof of
Lemma 8.2 and consider the corresponding polynomial

pw(T) =vw(T,21,...,Tpn-2,1,20_1),

noting that py is monic and has coeflicients in the ring R := k[z1,...,2Z,-1]. As in
Lemma 8.2, the polynomial py (T) is irreducible over F' = k(x1,...,2,_1) and the ex-
tension F4 /F' is obtained by adjoining a root of py . In order to prove that the extension
is generic, we will use specialization. Let E be the splitting field of pyy and G = Gal(E/F)
be the corresponding Galois group. Furthermore, let .S be the integral closure of R in
E, and let p be the prime ideal of R generated by x,_1. Since the restriction of the re-
duced norm map Nrd 4/, to P coincides with the usual norm map Np /., we see from (17)
that vy (t1,. .., tn, tyg1)(modt, 1) coincides with ¢ p /i (t1, ..., ty,), from which it follows
that py (7)) (mod p) coincides with fp/;(T). In particular, since fp;(T) is separable, so
is pw (7). Fix a prime ideal 8 C S lying above p, and let G(*B) be its decomposition
group. Then according to [41, Ch. VII, Proposition 2.5, there is a natural surjective
homomorphism of G() to the automorphism group H of the field of fractions of S/
over L (which is the field of fractions of R/p). On the other hand, it follows from our
construction and Lemma 8.9 that the Galois group of the splitting field of fp/ (7)) is the
symmetric group Sy, so H admits a surjection onto S,,. Thus, a subgroup of G admits a
surjection onto Sy, and therefore |G| > n!. However, G is the Galois group of the split-
ting field of a separable polynomial of degree n, hence must be isomorphic to a subgroup
of S,. Thus, G ~ S,,, as required. 0O

It would be interesting to determine if the conclusion of the proposition remains valid
without assuming that & is finitely generated.

We can now complete the proof of Theorem 1.5 by imitating the proof of Theorem 8.1.
So, let G = SL; 4, where A is a central simple algebra of degree n over a finitely
generated field k. Set F' = k(x1,...,2,_1), and suppose that G’ € genp(G Xy F). Using
Theorem 1.3 repeatedly, we see that G’ = H xj, F for some H € gen, (G). Since H is
an inner twist of G, we have H = SL; p for some central simple algebra B of degree n
over k. It remains to show that the classes [A], [B] € Br(k) generate the same subgroup.

Using Proposition 8.8, we present the function field F4 of the Severi-Brauer variety
SB(A) as a degree n generic extension of F', and then arguing as in the proof of Theo-
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rem 8.1, we conclude that F4 is F-isomorphic to a maximal étale subalgebra of A ®; F.
Let T = jo / 7(Gn) be the corresponding maximal F-torus of G x; F. By our assump-
tion, H X F' € genp(G xi F), so T is F-isomorphic to a maximal F-torus 77 of G’;
the latter is the norm torus Rg} 7(G,) for some maximal étale subalgebra E of B ® F,
which in fact is a field extension as 7" is F-anisotropic. Since the field extension Fu/F
is generic by construction, we can use Lemma 8.7 to conclude that F)4 is F-isomorphic
to E; in other words, F'y admits an F-embedding into B ®;, F'. As in the proof of Theo-
rem 8.1, we observe that then F4 splits B, so invoking Amitsur’s Theorem, we see that
[B] € ([A]). The inclusion [A] € ([B]) is established by a symmetric argument. 0O

8.3. Proof of Theorem 1.6

We recall that an algebraic group G of type Gy over a field k of characteristic # 2 can
be realized as the automorphism group of an octonian algebra O(a,b,c) corresponding
to a triple (a,b,c) € k* x k* x k™. The norm form ¢ of O(a,b,c) is the Pfister form
< a,b,c> in standard notations; we will write it as

q(xo, 1, ., 1) = g +q'(€1,...,w7) where ¢'(z1,...,27) = —ax] —ba +--- .
The following facts are well-known:

(1) for a field extension F/k, the group G is either split or anisotropic over F, cf. [79];

(2) Two K-groups G; and G of type Gy with associated norm forms ¢; and g2 are
F-isomorphic if and only if ¢; and ¢o are equivalent over F, cf. [38, Proposition
33.19];

(3) G is split over F if and only if ¢ is hyperbolic (equivalently, isotropic) over F' — this
follows from (2).

It is enough to show that if G; and Gg are two k-groups of type Gg such that for
P :=k(x1,...,x6) the groups G; := G X P and G5 := G5 X}, P are in the same genus,
then G; ~ G over k. We may assume that G; and G are anisotropic over k, and let ¢;
and ¢o be the corresponding norm forms. Set

L= k(... ) <\/—qg(x1,...,x6,1)) —p <\/—q’1(x1,...,x6,1)>

(the “homogeneous function field” of ¢; in the terminology of [40]). Then ¢; represents

zero over L, so G splits over L. A standard argument shows that §; contains a maximal
P-torus T of the form T = R(Ll/)P(Gm) X R(Ll/)P(Gm) cf. ([54, Lemma 6.17]). By our
assumption, §; and G5 are in the same genus, and in particular, T is P-isomorphic to a
maximal P-torus of Gs, implying that G5 becomes split over L. Thus, the 3-Pfister form

g2 becomes split over the function field of the 3-Pfister form ¢;, and therefore the forms
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q1 and go are equivalent over k (cf. [40, Ch. X, Corollary 4.10]). So, the groups G; and
G5 are k-isomorphic, as required.

8.4. Motivic genus

The following variation of the notion of the genus, proposed by A.S. Merkurjev, pro-
vides a different perspective on the above results. He defined the motivic genus gen,,(G)
of an absolutely almost simple algebraic k-group G to be the set of k-isomorphism classes
of (inner) k-forms G’ of G such that G’ x; F' € genyp(G X F) for all field extensions
F/k. Then Theorem 1.5 implies that for G = SL; 4, where A is a central simple algebra
of degree n, the motivic genus is always finite of size < n — 1, and reduces to a single
element if A has exponent two. In addition, by Theorem 1.6, the motivic genus of a
group of type Gy also reduces to a single element. Furthermore, according to a result of
Izhboldin [32], for given non-degenerate quadratic forms g and ¢’ of odd dimension over
a field k of characteristic # 2, the condition

(t) ¢ and ¢’ have the same Witt index over any extension F/k

implies that g and ¢’ are scalar multiples of each other (this conclusion being false for
even-dimensional forms). It follows that |gen,,(G)| = 1 for G = Spin,, (¢) with n odd.
We note that condition (}) is equivalent to the fact that the motives of ¢ and ¢’ in the
category of Chow motives are isomorphic (cf. Vishik [81], [82, Theorem 4.18], and also
Karpenko [35]), which prompted the choice of terminology for this version of the genus.
One can expect the motivic genus to be finite for all absolutely almost simple groups,
of size bounded by a constant depending only on the type of the group (at least over
fields of “good” characteristic, but not necessarily finitely generated). On the other hand,
Conjecture 1.7 asserts that the genus gets reduced to the motivic genus (i.e., becomes
as small as possible) after a suitable purely transcendental extension of the base field.

9. Weakly commensurable Zariski-dense subgroups

The goal of this section is to prove Theorem 1.8 that relates the presence of a finitely
generated Zariski-dense subgroup weakly commensurable to a given one with good re-
duction. First, let us fix a model X = Spec A for k, i.e. an affine integral normal scheme
of finite type over Z with function field k, and let V' denote the set of discrete valuations
of k associated with the prime divisors on X. We will consider separately the two cases
where dim X = 1 and dim X > 1, respectively.

9.1. Proof of Theorem 1.8 in the case dimX =1

In this case, k is a number field (recall that char & = 0), and V consists of almost
all nonarchimedean valuations of k. The proof here is an adaptation of the argument
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developed in [60, §5] for a different, although related, purpose. By [54, Theorem 6.7],
one can find a finite subset S; C V such that G is quasi-split over the completion k,
for all v € V'\ S;. Furthermore, let £/k be the minimal Galois extension over which G
becomes an inner form of the split group, and choose a finite subset Sy C V so that
£/k is unramified at all v € V' \ S,. Finally, since k coincides with the trace field kr, it
follows from the Strong Approximation Theorem of Weisfeiler [85] that there exists a
finite subset S3 C V such that the closure of T' in G(k,) in the v-adic topology is open
for all v € V'\ S3. Set S(T') = S; U Sy U S;. The fact that this set is as required in
Theorem 1.8 is an immediate consequence of the following.

Proposition 9.1. Let G’ be an absolutely almost simple k-group such that there exists a
finitely generated Zariski-dense subgroup T C G'(k) that is weakly commensurable to T'.
Then G’ is quasi-split over k,, and consequently has good reduction, for allv € V\ S(T').

Proof. Let ¢/ be the minimal Galois extension of k over which G’ becomes an inner form
of the split group. By Theorem 3.8, the existence of I that is weakly commensurable
to T’ implies that either G and G’ have the same type or one of them is of type By, and
the other of type Cy, and also that £ = ¢’. The latter means that when G and G’ are of
the same type, then the corresponding adjoint groups G and G are inner twists of each
other over k, hence over k,. In order to prove that G’ is quasi-split over k,,, it is enough
to show that

rky, G’ > 1k, G. (18)

Indeed, when one of the groups is of type By and the other of type C;, we see that G
is k,-split, and then the inequality shows that G’ is also k,-split. Next, suppose that
G and G’ are of the same type. As we pointed out above, G is an inner twist of G,
and therefore the x-actions of the absolute Galois group of k, on the Tits indices of G
and G’ are identical (cf. [58, Lemma 4.1(a)]). It is well-known that the relative rank of
a semisimple group equals the number of distinguished orbits under the *-action on its
Tits index. By our construction, G is quasi-split over k,, so all x-orbits are distinguished.
Then (18) implies that all x-orbits in the Tits index of G’ are also distinguished, so G’
is k,-quasi-split.

Now, to prove (18), we first use Theorem 3.7 to find a regular semisimple element ~
so that the corresponding torus T = Cg(7)° is generic over k and contains a maximal
k,-split torus of G over k,. By our assumption, v is weakly commensurable to some
semisimple element 7' € I of infinite order. Let 7" be a maximal k-torus of G’ containing
~'. Then it follows from Proposition 3.10 that there exists a k-defined isogeny T — T".
Since rky, T = rky, G by construction, the required inequality (18) follows. Thus, G’ is
quasi-split over k,. Since ¢/ = £, we obtain that ¢ is unramified at v, and therefore G’
has good reduction at v (cf. [34, Corollary 7.9.4]). O
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9.2. Zariski-density of reductions when dimX > 1

In this case, the residue fields k(") of the valuations v € V are infinite finitely generated
fields. The goal of this subsection is to establish a result about the Zariski-density of the
reductions of I' modulo almost all v € V' that will play a crucial role in the proof of
Theorem 1.8. Fix a faithful k-defined representation G — GL,,. By shrinking V', we
may assume without loss of generality that for all v € V', the reduction G™) associated
with this realization is a connected absolutely almost simple algebraic group over the
residue field £(*). We denote by p,: G(O,) — GW (k™) the corresponding reduction
map (where O, is the valuation ring of v in k).

Proposition 9.2. Let I' C G(k) be a finitely generated Zariski-dense subgroup. Then for
almost all v € V', we have the inclusion T C G(O,) and the reduction T*) := p,(T") is
Zariski-dense in G

Proof. The first assertion is obvious. To prove the second one, we observe that since
G is absolutely almost simple and k& has characteristic zero, the adjoint representation
r: G — GL(g) on the Lie algebra g = L(G) is (absolutely) irreducible. Being Zariski-
dense in G, the subgroup I' also acts on g absolutely irreducibly. Then by Burnside’s
Lemma (cf. [39, 7.3]), the image (I") spans End(g). Fix a basis a1, ..., an (m = dimg)
of g(k) C My (k) over k, and let e;; (¢,5 = 1,...,m) be the corresponding standard basis
of Endy(g(k)). Then we can find elements 71,...,74 € I' such that for alli,j =1,...,m
there are expressions

d

eij = Zafjr('yg) with afj €k. (19)
=1

Then for almost all v € V', the following properties hold:

o the elements a1, ..., a, belong to g(Ok ) = g(k) N M, (Ok,) and their reductions
A1y ey G € My (K®) form a k(")-basis of g(“) (™), where g(”) is the Lie algebra
of the reduction G(*);

e all coefficients afj belong to Oy .

We note that for any such v, the endomorphisms e;; leave g(Oy ,) invariant, and their

reductions €;; form the standard basis of End (g(*)(k(*))) associated with the basis
ai,...,am. Reducing (19), we obtain the relations

d
ey =y agr(ps(0)),
=1
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where dfj denotes the image of afj in k(). These relations show that T'") acts on g(”)
absolutely irreducibly. Letting H denote the Zariski-closure of T'*) in Q("), we observe
that the Lie algebra L(H) is a I')-invariant subspace of g(”), and therefore there are
only two possibilities: L(H) = g*) or L(H) = {0}. In the first case, H = G ie TM
is Zariski-dense, as desired. In the second case, H, hence I'")| is finite. So, to complete
the proof of the proposition we need to show that I'") is infinite for almost all v. For
this, we will consider two cases.

CASE 1: char k(") = 0. Tt follows from Jordan’s Theorem (cf. [18]) that there exists an
integer j > 0 (depending on n) such that every finite subgroup ® C GL, (F'), where F'
is any field of characteristic zero, contains an abelian normal subgroup of index dividing
7, and then the commutator subgroup [<I>(j),<I>(j)] of the subgroup ®) generated by
the jth powers is trivial. Now, since I' is Zariski-dense in G C GL,, it follows that
A := [I'W) T0U)] is also Zariski-dense. In particular, we can find a nontrivial element
§ € A; then for almost all v the reduction p,(§) is nontrivial. Then the group I'(*) must
be infinite. Indeed, otherwise Jordan’s Theorem would yield that

[(r(v))(j)’ (F(v))(j)] = pu(A)

is trivial, which is not the case by our construction.

CASE 2: char k(") > 0. We will show that there exists vy € T' such that p,(y) has
infinite order for almost all v at hand. For this, it is enough to make sure that the trace
tr (r(py(7y))) is not a sum of roots of unity. Let ko be the algebraic closure of Q in k; we
note that [kg : Q] < oo as k is finitely generated, and k # kg since dim X > 1. So, as k
is the trace field of T', we can find v € T so that f := tr (r(y)) ¢ ko. We will show that
this v is as required. First, we observe that for any v with char k(*) > 0, the restriction
vg of v to kg is nontrivial, and the residue field kévo) embeds into k(*). Furthermore, the
residue f coincides with tr (7(p,(7))). Now, it is enough to show that f is not algebraic
over k(()vo), which follows from the fact that the following two properties hold for almost
all v:

(1) k" is algebraically closed in k(*);

(2) f ¢ ke,

The proof is based on the following well-known fact: Let X be an irreducible algebraic
variety over a field K ; then X is absolutely irreducible if and only if K is algebraically
closed in the field of rational functions K(X) (see, for example, [28, Proposition 5.50]).
To apply this fact in our situation, we observe that since the model X = Spec A is normal,
it can be viewed as a scheme over the ring of integers Qg of kg. Besides, the kg-variety
X = X Xo, ko is absolutely irreducible. Then it follows from the classical theorem of
Bertini-Noether (cf. [24, Proposition 10.4.2]) that for almost all v, the reduction

i(%) =% Qo, I (vo)
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o) whose field of rational functions coincides

is an absolutely irreducible variety over k(()v
with k(*). Applying the statement mentioned above, we obtain property (1). Further-
more, since f is not constant on X, we can find two points z1, 2o € X (ko) such that
f(z1) # f(x2). Then for almost all v, the points admit the reductions Z;, o with respect
to an extension of vy, and for the reduction f € k), we have f(Z1) # f(Z2). This means

that f ¢ k(()U”), verifying property (2) and completing the argument. 0O
9.8. Proof of Theorem 1.8 in the case dimX > 1

It follows from Proposition 9.2 that there exists a finite subset S(I') C V such that
for any v € V'\ S(I') the following two conditions hold:

(a) G has good reduction at v, so that the G™) is a connected absolutely almost simple
group;

(b) T C G(Oy.,), and for the reduction map p,: G(Or.) = G (k™)) the image 1) =
po(D) is Zariski-dense in G,

Suppose now that G’ is an absolutely almost simple algebraic k-group such that there
exists a finitely generated Zariski-dense subgroup IV C G’(k) that is weakly commensu-
rable to I'. As before, we denote by ¢ (resp., ¢') the minimal Galois extension of k over
which G (resp., G') becomes an inner form of the split group. By Theorem 3.8, the Weyl
groups of G and G’ have the same order w and £ = £'. Fix an extension u of v to £; it
follows from (a) that the extension ¢/k is unramified at v.

Since I'™) is (finitely generated and) Zariski-dense in G*), by Theorem 3.6 there
exists a regular semisimple element 5 € T'(*) that is generic over £(*). Write ¥ = p, ()
with v € T.

Lemma 9.3. (1) v is a regular semisimple element of infinite order.
(2) The maximal k-torus T = Cq(y)° is generic over k, and the extension kr/k is
unramified at v.

Proof. (1): Let ¢(t) be the characteristic polynomial of Ad 4. Then its reduction é(t) is
the characteristic polynomial of Ad#. Since 7 is regular semisimple, the multiplicity of 1
as a root of &(t) equals r = rkG™) = rkG. So, the multiplicity of 1 as a root of ¢(t) is < r,
implying that it is in fact precisely r and hence the element « is regular and semisimple.
(To see the latter, let us consider the Jordan decomposition if v = ~s7y,; then ¢(t) is
also the characteristic polynomial of Ad «s. On the other hand, since char k = 0, the
assumption v, # e would imply the existence of a nontrivial nilpotent element in the
Lie algebra centralized by ~s. But this would clearly make the multiplicity of 1 as a root
of ¢(t) greater than r, a contradiction.)
Furthermore, since 4 has infinite order, so does ~.
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(2): Let E = (ky)r be the splitting field of T over k,. Clearly, E contains ¢, and we
let @ denote the extension of u to E. Since ¢/k is unramified at v, it follows from [58,
Lemma 4.1] that it is enough to prove that

[E:0,] = w=[E® . (W] (20)

Since F contains the splitting field of ¢(t), the residue field E(®) contains the splitting
field of &(t). By our construction, the k(")-torus T := Cgw () is generic over £(*), so
[(™)7 : ("] = w. On the other hand, the roots of &(t) include the values at ¥ of all
roots a € ®(G), T). So, it follows from Lemma 3.9 that (k(*)); = E(® . Thus,

w=[E:£,)]>[E®: W] =) : (W] =w,
and (20) follows. O

First, assume that the type of G is different from A; and By, and let v € V' \ S(I).
It follows from Lemma 9.3 and the discussion preceding it that one can find a regular
semisimple element v € T of infinite order such that the k-torus T' = Cg(7)° is generic
over ¢, and the splitting field kr is unramified at v. By our assumption, v is weakly
commensurable to some semisimple element v’ € TV of infinite order. Let 7" be a maximal
k-torus of G’ containing +'. According to Corollary 3.11, the k-tori T and T” are isogenous
over k. It follows that T’ is generic over ¢, = {,, hence over k,. Then G’ has good
reduction at v by Theorem 6.2.

Next, let G be of one of the types A; or B;. We then first pick a regular semisimple
element 4; € '™ of infinite order that is generic over k(*) (note that here ¢ = k), and let
T, = Cg (71)° denote the corresponding k()-torus. We then pick a regular semisimple
element 7, € ') of infinite order that is generic over the splitting field (k(”))fl, and
let Ty = Cg) (72)°. Note that the Dynkin diagrams of the types at hand do not have
nontrivial automorphisms, so

[(kj(v))ﬁ(k(v))f2 : (k(”))ﬁ] — = [(k(v))T2 k@),
which implies that
(k) g, 0 (k) g, = KO (21)

Now, pick v; € T so that p,(v;) = 75, and let T; = Cg(v;)°, for i = 1, 2. Also, let ¢;(t) be
the characteristic polynomial of Ad~;. Then the reduction ¢;(¢) is the characteristic poly-
nomial of Ad#;. Since T; (resp., T;) is ky- (resp., k(¥)-)generic, it follows from Lemma 3.9
that (k,)7, (resp., (k(”))fi) coincides with the splitting field of ¢; (resp., ¢;), and there-
fore (k:(“))fi is precisely the residue field of (k,)r,. We also know from Lemma 9.3 that
the extension (k,)r,/k, is unramified. Then (21) yields that (k,)r, N (ky)1, = ky. By
our assumption, the elements 7;, 7> are weakly commensurable to semisimple elements
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v, € I of infinite order, respectively. Let T} be a maximal k-torus of G’ containing
~i. Then by Corollary 3.11, the torus 7; is k-isogenous to the torus T for ¢ = 1,2. It
follows that 7} is generic over k,, the extension (k)7 /k, is unramified for i = 1,2, and

(kv)T{ N (kv)TQ’ =ky.

~

So, G’ has good reduction by Theorem 6.6
9.4. Subgroups with the same exceptional set

A smaller Zariski-dense subgroup A C I' may, a priori, require a larger exceptional set
S(A) in Theorem 1.8. We will show in this subsection, however, that our construction of
S(T') produces an exceptional set that works for many subgroups A C I' that are smaller
than I'. To describe precisely the possibilities for A, we will need the following definition.

Definition 9.4. Let I" be an abstract group. The following subgroups will be called prin-
cipal standard subgroups of T':

(1) the commutator subgroup [T, T[;
(2) the subgroups I'™ generated by the nth powers " of elements v € T, for some
n > 1.

Furthermore, a subgroup A of I' is called standard if there exists a (finite) chain of
subgroups

A:FmCFnl_1C"'CF1CFO:F
such that I';;1 contains a principal standard subgroup of T';.

We note that all standard subgroups of a (finitely generated) Zariski-dense subgroup
of a (connected) semisimple algebraic group are automatically Zariski-dense, although
they may not be finitely generated. However, typically this does not create any additional
problems in the analysis of weak commensurability since the statements dealing with the
existence of generic elements having special properties remain valid for those Zariski-
dense subgroups that are contained in a finitely generated subgroup of G(k). Our goal
in this subsection is to present the following strengthening of Theorem 1.8.

Theorem 9.5. Let G be an absolutely almost simple algebraic group over a finitely gen-
erated field k of characteristic zero, and let V' be a divisorial set of places of k. Given a
Zariski-dense subgroup I' C G(k) with trace field k, there exists a finite subset S(I') C V
such that any absolutely almost simple algebraic K-group G' with the property that there
exists a finitely generated Zariski-dense subgroup I'" C G'(K) that is weakly commensu-
rable to some standard subgroup A C T, has good reduction at all v € V' \ S(T).
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Proof. It turns out that the set V(I') we have constructed in the proof of Theorem 1.8
works in this more general setting. To see this, we will revisit our construction separately
in the cases where dimX = 1 and dim X > 1. In the first case, the exceptional set S(T")
was constructed in subsection 9.1 as the union S; U Sy U S3 in the notations introduced
therein. It follows from the definitions that the finite sets S; and Sy are independent of
I'. Now, recall that the finite set S3 is chosen so that the closure of T in G(k,) is open
for all v € V' \ S3. It is easy to see, however, that every principal standard subgroup,
and hence any standard subgroup, of an open subgroup of G(k,) is itself open. This
implies that if the closure of I" in G(k,) is open, then so is the closure of any standard
subgroup A C I'. In other words, if the set S5 is chosen as in section 9.1 for T, then it
also ensures the required property (i.e., the openness of the closure) for any standard
subgroup A C I'. Thus, the set S(T") = 51 U Sy U S3 will serve as an exceptional set for
A as well.

Recall that the exceptional set in the case dimX > 1 was actually constructed in
subsection 9.3 as V(I') = 51 U S, where S; consists of those v € V' for which condition
(a) fails, and So consists of those v € V' \ S} for which condition (b) fails. Clearly, S;
is independent of I'. On the other hand, S5 is chosen to be disjoint from Sy so that for
v € V\ (51 USs), the image p,(I") under the reduction map is a Zariski-dense subgroup
of the connected absolutely almost simple algebraic k(*)-group G™. Then pu(A) is also
Zariski-dense in Q(”) for any standard subgroup A C I'. This means that if we choose
the finite set Sy for T', then condition (b) will hold true for any standard subgroup A C T
and for any v € V'\ (81 U S2). Thus S(I") = S1 U Sz can be taken for an exceptional set
for A, completing the proof. O

10. Application to lattices and length-commensurable Riemann surfaces

As we already mentioned in the introduction, there is a conjecture that predicts the
existence of only finitely many possibilities for the algebraic hull of a finitely generated
Zariski-dense subgroup that is weakly commensurable to a given one ([64, Conjec-
ture 6.1]); this conjecture is a crucial element in the so-called “eigenvalue rigidity.”

Conjecture 10.1. Let Gy and Gy be absolutely simple (adjoint) algebraic groups over a
field F of characteristic zero, and let Ty C G1(F) be a finitely generated Zariski-dense
subgroup with trace field kr, =: k. Then there exists a finite collection 952), cee 9) of
F/k-forms of Go such that any finitely generated Zariski-dense subgroup T's C Ga(F)
that is weakly commensurable to Ty is conjugate in Go(F) to a subgroup of one of the
S (k) (C Go(F)) fori=1,...,r.

Due to Theorem 1.8, this conjecture would follow from the Finiteness Conjecture for
forms with good reduction, and hence is valid in those cases where the Finiteness Con-
jecture has been established. For example, since the truth of the Finiteness Conjecture
is known for inner forms of type A, over all finitely generated fields of characteristic
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zero (cf. [14]), we see that given a central simple algebra A over a finitely generated
field k with char k = 0 and a finitely generated Zariski-dense subgroup I' C G(k), where
G = SLj, 4, with trace field kr = k, there are only finitely many isomorphism classes
of central division k-algebras A’ such that there exists a finitely generated Zariski-dense
subgroup I C G’(k), where G’ = SL; 4/, that is weakly commensurable to I'. Other
available results on the Finiteness Conjecture (cf. [66]) lead to a variety of cases where
Conjecture 10.1 is known. We will not, however, provide a complete list of these cases
here, but rather focus on the case of finitely generated Zariski-dense subgroups weakly
commensurable to lattices (arithmetic or not), where our result (given in Theorem 10.2
below) may have applications to locally symmetric spaces.

10.1. Conjecture 10.1 for lattices

We refer the reader to [43], [62] for basic facts about lattices in semisimple Lie groups.
In the case of simple Lie groups, we have the following finiteness result for weakly com-
mensurable lattices (arithmetic or not).

Theorem 10.2. Let G1 be an absolutely simple (adjoint) real algebraic group, and let
I'y € Gi(R) be a lattice with trace field k = kr,. Given an absolutely simple (adjoint)
algebraic group Ga over an extension F of k, there exists a finite collection 952), cee 52)
of F/k-forms of Gy such that a finitely generated Zariski-dense subgroup T's C Gao(F)
that is weakly commensurable to Ty is necessarily Go(F')-conjugate to a subgroup of one

of the §'% (k)’s (C Go(F)).

(Here we assume that each F/k-form 952) comes with a fized F-isomorphism
;i 952) X F'— G, which then defines an embedding of groups 952)(k) — 952)(F) —
Ga(F).)

Proof. Since I'; is finitely generated, the field k is also finitely generated. Let V be a
divisorial set of places of k. Next, for the algebraic hull (V) of I';, we have the inclusion
Iy € G (k). Now, let Ty C G2(F) be an arbitrary finitely generated Zariski-dense
subgroup weakly commensurable to I'y. Then the trace field kr, coincides with & (cf.
Theorem 3.8(2)). Let Sp, be the algebraic hull of T'g, so that I's C G, (k). According to
Theorem 1.8, we can find a finite subset S(I'y) C V such that all such Gr,’s have good
reduction at any v € V' \ S(I'1). We now recall that unless G; = PGLg, the trace field
k is a field of algebraic numbers (cf. [62, 7.67 and 7.68]), and that if G is isomorphic
to PGLg, then so is G2 (cf. Theorem 3.8(1)). Since the Finiteness Conjecture for forms
with good reduction has already been established in the cases where either k is a number
field (cf. [66, Proposition 5.2]) or the group is isogenous to PGLy (cf. [66, Theorem 7.6]),
it follows that there exists a finite collection §§2), o ,§ff) of F/k-forms of G2 with the
following property: Given a finitely generated Zariski-dense subgroup I's C G2(F'), there
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exist an i € {1,2,...,7} and a k-isomorphism ¢r, ;: Sr, — 552)7 and then of course
or,,i(T2) C ggz)(kz) On the other hand, we have F-isomorphisms

ir,: G, X F 3 G and 72 G0 x4 F — Ga.

Then or,; = 4; © ¢r,; © L1?21 is an F-automorphism of G5, which, in terms of the
embeddings of the groups of k-rational points given by ¢r, and ¢;, has the property
or,,i(I'2) C 92(-2)(16). If or, ; is inner, then it is conjugation by an element of Go(F') as G
is adjoint, giving the required fact. To handle the general case, we need to expand the
collection of forms §§2) and (fixed) F-isomorphisms z;: §; — Go, i = 1,...,7. Namely,
let 8; (j =1,...,t) be a system of representatives of the cosets Aut(Gs2)(F)/Int(G2)(F),
where Aut(Gs2)(F) is the group of F-defined automorphisms of the algebraic F-group
G4 and Int(G2)(F) is the subgroup of inner automorphisms. Then for i = 1,...,7 and
j=1,...,t, we set

g

el -1
i = G; and ¢ ; = Hj 0.

We have already seen that given a finitely generated Zariski-dense subgroup 'y C G5 (F),
we can find i € {1,...,7} such that or,;(I's) C G;(K). Furthermore, we can find j €

{1,...,t} so that or, ; = 0; o T, ;,j, with 7p, ; ; inner. Then
.15 (T2) C 1i5(Gi5(K)),

as required. O

10.2. An application to length-commensurable Riemann surfaces

Let H = {z+iy | y > 0} be the complex upper half-plane equipped with the standard
hyperbolic metric ds? = y% (dm2 + dyQ). The action of SLy(R) on H by fractional linear
transformations is transitive and isometric. Furthermore, the stabilizer of ¢ € H is the
special orthogonal group SO5(R), allowing us to identify H with the symmetric space
SL2(R)/SO2(R). Let 7: SLe — PSLs be the canonical isogeny. Given a discrete sub-
group I' C SLa(R) containing {£7} and having torsion-free image #(I') C PSLy(R), the
quotient M = T'\H is a Riemann surface. It is well-known that every compact Riemann
surface of genus > 1 is of this form. However, in this subsection, we will be interested
in more general Riemann surfaces, where I is only assumed to be finitely generated and
Zariski-dense. It was demonstrated in [42] that some properties of M can be understood
in terms of the associated quaternion algebra Ar, which is constructed as follows.

Let T'® denote the subgroup generated by the squares of all elements, and let Ap be
the Q-subalgebra of My(R) generated by I'®). One shows that Ar is a quaternion algebra
(although not necessarily a division algebra) with center kr = Q(trv | v € T®) (trace
field) — cf. [42, Ch. 3]. If I"; and I'y are commensurable, then Ar, = Ar,; in other words,
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Ar is an invariant of the commensurability class of I'. Moreover, if I' is an arithmetic
Fuchsian group, then kr is a number field and Ar is the quaternion algebra involved in
the description of I' (cf. [42, §8.2]). It follows that if I'y and I'y are arithmetic and the
algebras Ar, and Ar, are isomorphic, then I'; is commensurable with a conjugate of I'y,
and hence the corresponding Riemann surfaces are commensurable, i.e. have a common
finite-sheeted cover. The algebra Ar no longer determines the commensurability class of
T" if the latter is not arithmetic, but it nevertheless remains an important invariant of
the commensurability class.

In differential geometry, one attaches to a Riemannian manifold M various spectra; in
particular, the (weak) length spectrum L(M) is defined as the set of the lengths of closed
geodesics in M. Two Riemannian manifolds M; and M, are called length-commensurable
if Q-L(M;) = Q-L(M>). For arithmetic Riemann surfaces, length-commensurability im-
plies commensurability (cf. [71]). “Most” Riemann surfaces, however, are not arithmetic,
and their investigation presents many challenges. In those cases where we are unable to
characterize the commensurability class in terms of the length spectrum, we would like
to understand at least the properties of the associated quaternion algebras. As we will
see momentarily, the fact that M; = T'1\H and My = I';)\H are length-commensurable
implies that the trace fields are equal: kr, = kr,, i.e. the corresponding algebras Ar, and
Ar, have a common center. We can now state the following finiteness result for families
of length-commensurable surfaces.

Theorem 10.3. Let M; = T;,\H (i € I) be a family of length-commensurable Riemann
surfaces, with T'; C SLo(R) Zariski-dense. Then the associated quaternion algebras Ap,
(i € I) belong to finitely many isomorphism classes (over the common center).

Proof. We first recall that closed geodesics in M = I'\H correspond to hyperbolic ele-
ments in ' different from £, which are precisely the semisimple elements of I' having
infinite order. Furthermore, the length of the closed geodesic ¢, that corresponds to an

t 0
element v € I' which is conjugate to ( (;Y 1 ) is given by
v

2
ey) = — - llog |ty
Y

where n., is a certain integer (“winding number”). It follows that
Q-L(M)=Q-{log|ty| | y €T semisimple of infinite order }. (22)

Suppose now that two Riemann surfaces M; = I';\H (¢ = 1, 2) are length-commensurable.
This means that for any semisimple element v; € T'; of infinite order, there exists a
semisimple element v, € T’y of infinite order such that ¢(c+,)/4(cy,) € Q*, and vice
versa. This translates into the relation
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th =12 # 1 for some ny,ny € Z,

which implies that the subgroups I'; and I's are weakly commensurable. Then applying
Theorem 3.8(2), we conclude that their trace fields are the same: kr, = kr, (we note
that the definitions of the trace field given earlier and in the current subsection produce
the same result). Fix one subgroup I'; and set & = kpr,; then F§2) C Gi1(k), where
G1 = SLy 4, . Since the group I'; is finitely generated, the field k is finitely generated,
and we let V denote a divisorial set of discrete valuations of k. Now let I'; (i € I) be
any other subgroup in the family. Then kr, = k and FZ(-Q) C G,(k), where G; = SLl,Ari-
Since I'; for any j € I is finitely generated, we have [['; : FEQ)} < 00, so the weak

commensurability of I'; and I'; implies that of F(lz) and I‘Z(»Z). Thus, it follows from
Theorem 1.8 that there exists a finite subset S(I'y) C V such that all G; (¢ € I) have
good reduction at every v € V' \ S(I'1). Here the groups G; are all of type A;, and
since the Finiteness Conjecture for forms with good reduction of this type over fields of
characteristic # 2 has already been established (cf. [66, Theorem 7.6]), we conclude that
they belong to finitely many isomorphism classes. Consequently, the quaternion algebras
Ar, also belong to finitely many isomorphism classes. O

Let us point out that this theorem is one of the first examples of the use in differential
geometry of new techniques from arithmetic geometry that involve the notion of good
reduction.

11. The genus problem and good reduction for groups of type F4

In this section we will prove Theorems 1.10-1.13 that address some aspects of the
genus problem and the Finiteness Conjecture for simple algebraic groups of type Fy.
Our considerations will rely on properties of cohomological invariants, which we have
assembled in Appendix 2. We therefore recommend that the reader consult Appendix 2
before continuing with this section. We note that while Theorems 1.10-1.12 deal only
with forms that have trivial gs-invariant, Theorem 1.13 shows that truth of the Finiteness
Conjecture yields the properness of the map ¢, which is expected to classify all forms of
type F4 (cf. Appendix 2).

Proof of Theorem 1.10. Let ky be a number field, set k& = ko(x), and let V be the
set of discrete valuations of k associated with the closed points of A}CO. Let G be a
k-group of type F4 that splits over a quadratic extension of k. We need to show that
any G’ € gen, (G) is k-isomorphic to G. According to Proposition A2.3, the group G
possesses a maximal k-torus T that splits over a quadratic extension of k. Since G and
G’ lie in the same genus, T is k-isomorphic to a maximal k-torus of G’, implying that
G’ splits over the same quadratic extension of k as G, and therefore the invariant g3(G’)
is trivial. Then it follows from Theorem A2.1 that in order to prove the isomorphism
G ~ G’ over k, it is enough to show that
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f3(G) = f3(G") and f5(G) = f5(G").
Recall that for any ¢ > 1 and any v € V, we have a residue map
pi: Hi(k,2)22) — H™ ' (k™W),2/27).

These maps enable us to construct, in each degree ¢ > 1, the following exact sequence
that in the case ¢ = 2 goes back to Faddeev:

0= Hi(ko,2/22) — H'(k,2/22) 2% @D H ' (K, 2/22) 50 (23)
veV

(cf. [25, Theorem 9.3]). In order to prove that f;(G) = f;(G’) for i = 3,5, we will prove
that

P F(G)) = ph(fi(GY)) forall we V. (24)
Assuming this, we obtain from (23) that
fi(G) = fi(G) + oy for some «; € H'(ko,Z/27).

To complete the proof, one shows by a specialization argument that a; = 0 for i = 3, 5.
More precisely, the classes f;(G) and f;(G') are represented by symbols, and we can
choose xy € kg so that for the valuation vy of k corresponding to x — xg, all factors of
these symbols are units with respect to vg. Then k(*0) = kg, the groups G and G’ have
good reduction at vy (cf. Proposition A2.7 in Appendix 2), and the specializations of these
symbols in Hi(ko,Z/2Z) coincide with the invariants f;(G°)) and f;((G")(*)) of the
corresponding reductions (see Theorem A2.5 and the remark at the end of subsection
A2.2). Since G and G’ are in the same genus, their reductions are also in the same
genus — see Theorem 1.1. But the genus of a group of type F4 over a number field
reduces to a single element by [58, Theorem 7.5], so G ~ (G")(*) and therefore
Fi(GP) = £;((G')*9). On the other hand,

Fi(GH")) = £i(G™)) + .

Thus, a; =0 and f;(G) = f;(G'), as required.
In order to prove (24), we will use the following.

Lemma 11.1. Suppose K is an infinite field of characteristic # 2 or 3. Let G be a K-group
of type Fy that splits over a quadratic extension of X, and let G' € genq(G). Then every
extension L/K of degree < 2 that splits f3(G) (resp., f5(G)) also splits f3(G") (resp.,

f5(G)).
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Proof. Let o be a generator of Gal(£/X). Since £ splits f3(G) (resp., f5(G)), the group
G is L-split (resp., L-isotropic), cf. section A2.1 of Appendix 2. Let B (resp., P) be
an L-defined Borel subgroup (resp., a proper L-defined parabolic subgroup). Then the
group H = BN B (resp., H = PN P7) is X-defined. Let T be a maximal X-torus of H
that is also a maximal torus of G (cf. [3, 14.13]). Then T is L-split (resp., L-isotropic).
Being in the same genus as G, the group G’ contains a maximal X-torus isomorphic to
T. Tt follows that G’ is also L-split (resp., L-isotropic), and therefore £ splits f3(G’)

(resp., fS(G/)> O

We will now prove (24) for i = 3. According to (28) in subsection A2.1, we can write
f3(G) = (@)U (b)U(¢) and f3(G") = (a') U (b') U(c),

where (t) € H'(k,Z/2Z) denotes the cohomology class corresponding to tk*> under the
canonical isomorphism H'(k, Z/2Z) ~ k* /k*> (other notations are explained in A2.1).
If all values v(a),...,v(c") are even, then

po(f3(G)) = 0= pu(f3(G")). (25)

Next, suppose that the values v(a),v(b), and v(c) are all even, but among the val-
ues v(a’),v(t'),v(c), there is at least one that is odd; suppose, for example, that
v(c) is odd. We will apply Lemma 11.1 with X = k, and £ = X(v/¢), noting that
G’ € geny(G) by Corollary 3.3. Thus, since £ splits f3(G’) (over X) by Lemma 11.1,
it also splits f5(G). Now, it follows from Hensel’s Lemma that the unramified cohomol-
ogy group H*(X,Z/2Z),, defined as the kernel of the residue map H*(X,Z/27Z) —
H=Y(KXW™) 7Z/27), is canonically isomorphic to H*(X®),Z/2Z) (cf. [25, Proposition
7.7]). We may assume without loss of generality that v(a) = v(b) = v(c) = 0, so that the
symbol (a) U (b) U (¢) is unramified. Since it splits over £, the symbol (@) U (b) U (¢) is
trivial in H3(L™),Z/27) = H3(X") 7Z/27). Tt follows that (a) U (b) U (c) is trivial in
H3(X,Z/2Z), which implies that G is split. Then G’ is also split, and we again obtain
(25).

It remains to consider the case where each set {v(a),v(b),v(c)} and {v(a’),v(t'),v(c')}
contains at least one odd value. Without loss of generality, we may assume that

v(a) = v(a') = v(b) = v(t') =0 and wv(c) = v(c) = 1.
Then
po(f3(G)) = @) U (b) and p,(f3(G")) = (@) U (V).
Identifying H?(k("),Z/27Z) = H?(k"), u5) with the 2-torsion subgroup oBr(k(*)) of the

Brauer group, we see that the residues are represented, respectively, by the classes of the
quaternion algebras
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— a,b — a,v
D (22) wa 7= ().

Since the genus of a quaternion division algebra over a number field reduces to a single
element (cf. [13], [65]), in order to prove that D ~ D', which would yield (24) in this case,
one needs to prove that an extension £/k(®*) of degree < 2 splits D if and only if it splits
D'. Suppose that ¢ splits D, and let £ denote the unramified extension of K = k, with

a,

residue field £. It follows from Hensel’s Lemma that £ splits D = , and therefore

also splits f3(G). By Lemma 11.1, the extension £ also splits f3(G’), and therefore its
residue field ¢ splits p3(f3(G")) = (a’) U ('), i.e. splits D By symmetry, every extension
0/k® of degree < 2 that splits D also splits D, completing the argument.

Next, we will prove (24) for ¢ = 5. Write

f5(G) = (a) U () U () U(d)U(e) and f5(G) = (a") U (B)U () U(d)U ().

As above, in the following two cases: 1) all values v(a),...,v(e’) are even, and 2) all
/

values v(a),...,v(e) are even and among the values v(a’),...,v(e’) there is at least one

that is odd, one proves that

po(f5(G)) = 0= pu(f5(G"))

by repeating basically the same argument. The remaining situations reduce to the case
where

v(a)=-=v(d)=v(a)=---=v(d)=0 and v(e) =v(e') = 1.
Then

po(fs(G)) = (@ U---U(d) and p,(f5(G")) = (@)u---uU(d).

Since k() is a number field, by the Poitou-Tate theorem (cf. [51, 8.6.13(ii)], [77, Ch. II,
§6, Theorem B|), for any j > 3, we have an isomorphism

H (k"W). 2/22) — [] H((6")w, Z/22),
weWw

where W is the set of all archimedean places of k(*). Furthermore, the group
HIi((E™),,,Z/27) is trivial if w is complex, and has order 2 if w is real; in the lat-
ter case, any symbol (a1) U--- U (a;) with all a;’s negative in k(") gives the nontrivial
element, while such a symbol in which at least one a; is positive gives the trivial element.
Thus, if (24) fails, then there exists a real place w of k(") such that, say, p,(f5(G)) gives
the trivial element and p,(f5(G’)) the nontrivial element of H*((k(*),,Z/2Z). This

means that among @, ...,d at least one element, say d, is positive in (k(),,, while all
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elements @, ...,d are negative. Consider the extension £ = K(v/d) of K = k. Then £
obviously splits f5(G). Let © be an extension of v to £. Then

£O = k(D) c (k).

It follows that (£(%))4 for w|w does not split the image of p,(f5(G)) in H*((k™),,
Z./27,), hence £ does not split p,(f5(G")), and £ does not split f5(G’). This contradicts
Lemma 11.1. O

Proof of Theorem 1.12. Let G be the k-split group of type F4. According to Proposi-
tion A2.3, one can view J as a subset of the set H'(k,Gp)y,—0 of cohomology classes
having trivial gs-invariant, and then by Theorem A2.1, the restriction to J of the map

w: HY(k, Go) %) B3k, 2/22) % H(k,2/22)

is injective. On the other hand, it follows from Theorem A2.6 that the fs3- and fs5-
invariants of the forms from J are V-unramified, i.e.

V() c H3(k,Z./2Z)y x H?(k,Z/27)y .

Furthermore, Proposition 4.2 and Corollary 6.2 in [16] yield the finiteness of the groups
H3(k,Z/27)y and H®(k,Z/2Z)y in the case where k is a 2-dimensional global field,
while Theorem 5.1(b) in [67] provides their finiteness over a purely transcendental ex-
tension k = ko(z,y) of transcendence degree 2 of a number field kq. In both cases, we
obtain the finiteness of J. O

Remark 11.2. Let k& be a 2-dimensional global field with a divisorial set of places V.
Fix a Killing-Cartan type 7 € {A;}32, U--- U {Gs}, and consider the set Qv (7) of k-
isomorphism classes of absolutely almost simple k-groups of type 7 that split over a
quadratic extension of k and have good reduction at all v € V. The results of [16] imply
that Qy (7) is finite if 7 is one of the types As, By, C; (¢ > 1) or Gy. Our Theorem 1.12
yields the finiteness of Qv (7) for 7 = F,. The finiteness of Qy (1) for 7 = Dy (£ > 4) was
recently established in [70]. So, over 2-dimensional global fields, it remains to investigate
the finiteness of Qv (7) for 7 € {Eg, E7, Eg}. Of course, this question can be viewed in
the context of the more general problem of classifying absolutely almost simple algebraic
groups that split over a quadratic extension of the base field, considered by Weisfeiler
[84], in terms of certain quadratic/Hermitian forms. It should also be mentioned that
the finiteness of Qv (7) (for all V) has immediate consequences for the finiteness of the
genus of absolutely almost simple algebraic k-groups of type 7 that split over a quadratic
extension of k& — see the derivation of Theorem 1.11 from Theorem 1.12 above.

Proof of Theorem 1.11. If G splits over a quadratic extension ¢/k, then it has a maximal
k-torus T that splits over ¢. Then any G’ € gen,(G) also splits over £. On the other
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hand, according to Corollary 1.2, there exists a divisorial set V of discrete valuations of
k such that every group G’ € gen, (G) has good reduction at all v € V. The finiteness
of gen, (G) now follows from Theorem 1.12. O

The remainder of this section will be devoted to the proof of our last result concern-
ing the properness of the map ¢ (cf. subsection A2.1 of Appendix 2 for the relevant
definitions).

Proof of Theorem 1.13. We need to show that for any k-group G of type Fy, the fiber
»~1(#(Q)) is finite. Choose a divisorial set of places V of k such that

e char k(") #£2 3 forall v € V;
e G has good reduction and the invariant g3(G) is unramified at all v € V.

(We note that if G' has good reduction at v and chark(®) # 3, then g3(G) is automatically
unramified — see Proposition A2.11, but this fact is not used in the argument.) Since
we are assuming that the Finiteness Conjecture holds for all k-forms of type Fy with
respect to V, it is enough to show that every G’ € ¢~1(#(G)) has good reduction at all
v € V. We will derive this fact from the following two propositions.

Proposition 11.3. Assume that char k,(,v) # 2. If a k-form G’ of type F4 does not have
good reduction at v € V, then G’ xy, k, either splits over an unramified Galois extension
L]k, of degree 2% (a > 0) or contains a mazimal k,-torus that is anisotropic over k, and
splits over an unramified cubic Galois extension £/k,.

Proposition 11.4. Let v be a discrete valuation of k such that char k(") # 2.3, and let
G’ be a simple k-group of type Fy such that G' Xy k, has a mazimal k,-torus that is
anisotropic over k, and splits over an unramified cubic Galois extension £/k,. If G’ does
not have good reduction at v, then the invariant g3(G') is ramified at v.

Granting these facts, we will now complete the proof of Theorem 1.13. Assume that
G' € $71(¢(G)) does not have good reduction at some v € V. According to Proposi-
tion 11.3, the group G’ xy k, either splits over an unramified Galois extension ¢/k, of
degree 2% (a > 0) or contains a maximal k,-torus that is anisotropic over k, and splits
over an unramified cubic Galois extension ¢/k,. In the first case, a standard restriction-
corestriction argument yields 2% - g3(G’ x k,) = 0, hence ¢g3(G’ xx k,) = 0 as we
always have 3 - g3(G’ Xy k) = 0. Thus, G’ Xy, k, corresponds to a cohomology class in
H*'(ky, Go) g5—0- But according to Theorem A2.1, the restriction of ¢ to H'(k,, Gp)gs=0
is injective. Thus G’ X k, ~ G X}, k,,, contradicting the fact that G has good reduction
at v and G’ does not.

In the second case, it follows from Proposition 11.4 that the invariant g3(G’ Xy ky) is
ramified, while by construction the invariant g3(G Xy k) is unramified. This contradicts
the fact that ¢(G) = ¢(G’), hence g3(G Xy ky) = 93(G' Xk ky). O
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The proof of Proposition 11.3 relies heavily on Bruhat-Tits theory, for which we refer
the reader to [6], [7], and [8] (see also [34] for a modern exposition). As above, let Go be
the k-split group of type Fy, To be a maximal k,-split torus of Gy, and ® = ®(Gyp,Tp) be
the root system of G with respect to Tp. Fix a system of simple roots IT = {aq,..., a4}
and let & denote the maximal root. We then have the following extended Dynkin diagram

— (65} (65) (6% (7]

whose set of vertices will be denoted II. To each (non-empty) subset Q C II, Bruhat-Tits
theory associates a smooth group scheme Gq over the valuation ring O, of k, with the
following properties:

o the generic fiber §o X, k, is isomorphic to Gy X ky;
o the closed fiber QS’) = Gq %o, kl(,v) is connected (because Gy is simply connected);
¢ the unipotent radical Uq of Qg’) is defined and split over k£(*), and gg’ ) has a unique

Levi subgroup Lg that contains the reduction I(”), and hence is kz(,v)—split.

We note that the Dynkin diagram of the semisimple part of Lq is obtained from the
extended Dynkin diagram of Gg by deleting the vertices belonging to 2 and the edges
having at least one endpoint in Q. Thus, Lg is a kf)v)—split reductive group with central
torus of dimension || — 1 and semisimple part (= commutator subgroup) Hg of rank
5— 9.

Since Ggq is smooth, the natural map

Ao: HY(Oy,80) — H'(KV,85)), €= ¢,
given by reduction is bijective by Hensel’s Lemma (cf. [8, Section 3.4, Lemme 2(2)]).
Furthermore, since ggj ) has a Levi decomposition and its unipotent radical is split, we
have
H' (", 9") = H (k") La). (26)
We say that a class [§] € Hl(kf,v),LQ) is anisotropic if the semisimple part of the
twisted group ¢Lq is kz(,”)—anisotropic. The set of all anisotropic classes will be denoted

Hl(kff’), Lq)an, and its inverse image under \q will be denoted H(O,, 50 )an-

Theorem 11.5. (cf. [8, Theorem 3.12]) The natural map

HH1<O’U) gﬂ)an — Hl(kv; GO)
Q

is a bijection.
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Remark 11.6. It should be noted that this result was established in [8] assuming that the
residue field k&v) is perfect, which is not always the case in our situation. In this regard, we
observe that since char kl(,v) # 2,3, any simple algebraic k,-group G of type F4 splits over
the maximal unramified extension k})*. Indeed, in this case, the cohomological invariants
f3, f5, and g3 vanish, so the desired fact follows from the triviality of the kernel of ¢
(cf. Corollary A2.2). This implies that Bruhat-Tits theory in the sense of Prasad [55] is
available for G over k,. Another consequence is that

HY(ky,,Go) = H (™ /ky, Go).

Then according to Theorem 3.8 in [27], the assertion of Theorem 11.5 remains valid for
a ky-split group Gy of type F4 whenever char k%) # 2, 3.

Proof of Proposition 11.3. Let G’ be a simple k,-group of type F4 that does not have
good reduction at v. Write G’ as a twist ¢/ G for some cocycle ¢’ € Z(k,, Go). According
to Theorem 11.5 and subsequent remarks, there exists a subset  C II such that the class
[¢] is the image under the natural map vq: H'(O,, 9q) — H'(k,, Go) of some class from
HY(Oy,90)an, and we still use & to denote a cocycle representing this class. We note that
for Q = {—a}, the group Gq coincides with the split O,-group scheme Gy of type F4, and
the classes in the image of v correspond precisely to the k,-forms of type F4 that have
good reduction. Since by assumption G’ does not have good reduction, we conclude that
0 # {—a}. So, our task is to show that in all other cases, the group G’ either splits over
an unramified Galois extension £/k, of degree 2% or contains a maximal k,-torus that is
anisotropic over k, and splits over an unramified cubic Galois extension ¢/k,. Viewing
¢ as an element of Z1(0,,9q), we can consider the twist §' = ¢ Ga, which is a smooth
group scheme over O, with generic fiber G’ and closed fiber & 28’ ) in the above notations.
We recall that if ¢ is an unramified extension k, with residue field E(”), then every w)_
split torus of §’' xo, £(*) can be lifted to a split torus of G x, O(f), where O(¢) is the
valuation ring of £ (see [20, Corollary B.3.5]), implying that rk, G’ > rk,w) (§' xo, ().

In view of (26), we may assume that ¢ has values in Lg, so that we can consider
the twisted groups Lg, := & Lq and Hg, := g Hq. We observe that all absolutely simple

components of H{, are defined over kS and are inner forms. Since the central tori in
Lg and L, are ki()v)-isomorphic, hence split, it is clear that if |2] > 3, then rky, G’ >
rkkw G’ > 2. In this case, it follows from the classification of forms of type F4 (cf. [79])
that G’ is k,-split, hence has good reduction, a contradiction. Now, if |2 = 2, then Ly,
has a 1-dimensional central kl(,v)—split torus. If H{, is not absolutely almost simple then
it has a component of type A; which splits over a separable quadratic extension /, / k&”).
Letting ¢ denote the unramified extension of k, with residue field £(*) = ¢, we find as
above that rky G’ > 2, and hence G’ splits over ¢. Now, let H{, be absolutely almost
simple. Then it is of one of the following types: Az, B3, or Cs. Since every simple group
of type B, is isogenous to the special orthogonal group of a nondegenerate quadratic
form (cf. [54, Proposition 2.20]), it obviously splits over a Galois extension of the form
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(= kf,v)(\/a ;- -14/az). Furthermore, every simple group of type C, is isogenous to
the special unitary group of a nondegenerate hermitian form over a central division
algebra with a symplectic involution of the first kind (cf. [54, Proposition 2.19]). By
Merkurjev’s theorem [45], the algebra splits over a Galois extension of the same shape =
kq(,v)(\/ﬁ ,---»1/at), and this extension also splits the group. Picking such an extension
if H, has type Bz or Cs, and letting ¢ be the unramified extension of k, with residue
field £(") = ¢ (which is automatically a Galois extension of k, of degree 2¢) we will have
that rk, G’ > 3, implying that G’ splits over £.

In the remaining case, H{, is an inner form of type Ag, i.e. a group of the form SL; 4

)—algebra A of degree 4. Then it follows from the theorem of

for some central simple kq()v
Merkurjev-Suslin [46] that this group splits over a Galois extension ¢/ kg)) of degree 2¢
(note that one needs to adjoin y/—1 to the base field before applying the Merkurjev-
Suslin theorem), and then arguing as above we find that the unramified extension ¢ of
k, with residue field £(*) = ¢ is as required.

Finally, we consider the case |2] = 1. Here the possible types of Hg, (with the exception
of Fy itself are A; x C3, Ay X Ay, and Aj X B3. The types Ay x C3 and A; x B3 are handled
just as above, so it remains to consider the type As x As. Let H; and Hs be the almost
simple components of H¢,; then H; is isogenous to a group of the form SL; p,, where
D; is a central simple kiq()v)—algebra of degree 3 over kn(,v). Picking a separable maximal
subfield £ of D, and arguing as above, we see that G’ splits over the unramified extension
¢ of k, with residue field £. We note that in this case, the group G’ is automatically k,-
anisotropic. Indeed, it cannot be k,-split because of bad reduction, so the only other
k,-isotropic possibility would have a simple group R of type Cg as its anisotropic kernel.
In the situation at hand, G’ splits over an extension ¢/k, of degree 3, and then R must
also split over ¢. But for the groups of type C, this implies that R splits over k,, a
contradiction.

Next, by Wedderburn’s theorem (cf. [38, Theorem 19.2]), D; contains a maximal
subfield ¢ that is a cubic Galois extension of the center. We note that, as follows from
Hilbert’s Theorem 90, the k" -tori § = R;iﬁ,’”) (G,,) and 8/u3 = Ry (Gm)/Gm are
isomorphic. So, whether H; is simply connected or adjoint, it always contains a torus
isomorphic to 8 as a maximal torus, and we keep the notation 8 for this torus. By [20,
Corollary B.3.5], the torus § lifts to a torus 8 of Gg. Let S C G’ be the generic fiber
of 8. Then S splits over the unramified extension ¢ of k, with residue field ¢. Tt follows
that rk, G’ > 2, and therefore G’ actually splits over £. Now, we consider the centralizer
C = C¢ (S) and write it as an almost direct product SR, where R is a reductive group
of rank 2. The complete list of possibilities for R is as follows:

e a 2-dimensional torus;

e an almost direct product of a 1-dimensional torus and an almost simple group of
type Ag;

e a semisimple group of one of the following types: A; x A1, Ag, B, or Cs.
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Since S and G’ split over £, so does R. Taking into account that G’ is k,-anisotropic and
going through the above list, we find that R can only be either a 2-dimensional torus or
an inner form of type As. In the first case, the almost direct product SR is a required
torus that is anisotropic over k, and splits over £. In the second case, R is k,-isogenous
to a group of the form SLq p, where D is a cubic division algebra (whose residue must
coincide with Ds). Since ¢ splits R, it is isomorphic to a maximal subfield of D, implying
that R contains a maximal k,-torus S’ of the form Ré};@(@m). Then S5’ is a required
maximal torus. 0O

Next, in preparation for the proof of Proposition 11.4, we will set up the necessary
notations and state one result (Proposition 11.7) that will be proved in subsection A2.3
of Appendix 2. Let Gy be a simple k-split group of type Fy, and let £/k be a cubic Galois
extension. We will now construct a special maximal k-torus 7' of Gy whose cohomology
classes yield all k-forms of Gy that contain a maximal k-torus that is anisotropic over
k and splits over ¢. Fix a maximal k-split torus Ty of Gg, and let ® = ®(Gy,Tp) be
the corresponding root system. We will continue using the above labeling of the roots of
the extended Dynkin diagram. Then the subsets {—&, @1} and {as, a4} correspond to
k-subgroups R; and Ry of G that are isomorphic to SL3 and whose intersection is ps
(which is the center of both R; and Ry). Let S = Ré% (G). We consider the embeddings
ti: S = R; (i =1,2) afforded by the regular representation of ¢ over k, and let

T =11(S) - 12(S) C Ry - Rs.
We have an exact sequence
1o s 5 8x8 211,
where a(s) = (s,571) and B(s1,82) = t1(s1)t2(s2). Set
S;={(s,51) | s€ S} and Sy ={(s,1) | s € S},
and let S; = ﬁ(S’Z) for i =1,2. Then T' = S; X S5, so we can consider the homomorphisms

vi: HY(k,T) — H'(k,S;) (i = 1,2) given by the projections. Finally, let §: H'(k, S1) —
H?(k, u3) be the coboundary map associated with the exact sequence

1= s — S 258 =1

Proposition 11.7. (1) Every k-group G of type Fy that contains a mazimal k-torus that
is k-anisotropic and splits over £ is of the form G = Gy with §& = v({) for some
¢ e ZYk,T), where v: Z1(k,T) — Z*(k,Gy) is the natural map.

(2) In the above notations, g3(G) = §(71([¢])) U~2([¢])-

The proof will be given in section A2.3.
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Proof of Proposition 11.4. Applying Proposition 11.7 over k,, we can write G’ X k, =
¢(Go Xy, ky), where £ = v(¢) and ¢ € Z'(k,,T). Suppose that G’ does not have good
reduction at v. We need to show that the gs-invariant g3(G’ x, k,) € H3(k,,Z/37) is
ramified. By Proposition 11.7, we have g3(G’" xj k) = d(71([¢])) U~2([C])- If 6(11([¢]))
is unramified, then by Lemma A2.10 the class of 71 ([¢]) in H!(k,, S1) lies in the image
of the map® H*(O,,81) — H'(k,,S1). If, in addition,

12 (C]) € H' (ko, S2) = kS /Ne, sk, (02)

is unramified, then it lies in the image of the map H'(O,,82) — H'(k,, S2). This implies
that there exists (y € Z1(0,,T) such that the image of [¢y] in H'(k,,T) coincides with
[C]. Set & = vo(¢o) where voHY(O,,T) — H(O,,Go) is the natural map. Then the
twist ¢, 90 is a reductive O,-group scheme with generic fiber G’ Xy, k,, contradicting our
assumptions that G’ does not have good reduction at v.

Next, suppose that §(y1([¢])) is unramified but y2([¢]) is ramified. Then the residue
of the invariant g3(G’ Xy k,) equals

s - (image of 8(v1([¢])) in 3Br(k™)), where s=1,2.

This element is trivial if and only if the element §(y1([¢])) is trivial, in which case
93(G’" Xy, k) is trivial. Since the f3- and fs-invariants of G’ xy, k,, are also trivial as G’
splits over a cubic extension, we conclude that G’ xj, k, splits, hence has good reduction,
a contradiction.

Suppose now that §(v1([¢])) is ramified. It obviously splits over ¢, and therefore is
represented by a cyclic cubic algebra of the form (¢/k,,a) with a € k). Since ¢/k, is
unramified, the valuation v(a) is either 1 or 2. Then g3(G’ xy, k,) can be written in the
form g3(G’ xi ky) = 06(71([€])) U (¢), where ¢ is a unit, so its residue is s - x4 U (¢),
where Y, is the character corresponding to the residue field £(*) of £ and s = 1,2. If
this element is trivial, then the element ¢ U (c) is trivial, and therefore gs(G’ X, k,) is
trivial. So, again G’ Xy, k, splits, hence G’ has good reduction at v, a contradiction. O
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Appendix 1. On a result of A. Klyachko
A1.1. Proof of Theorem /.1

We will freely use the notations introduced in §4. Let (, ) be a W(®)-invariant

2

inner product on V. As usual, for a € ®, we define the dual root a¥ = , and

(a,q)
let @V = {a" |a € ®} denote the corresponding dual root system. Given a subgroup
I’ C Aut(®) containing W (®) and a I'-invariant lattice M in V', we can write the inflation-
restriction exact sequence

0— H'(T/W (@), MW ®) — H' (T, M) — H'(W(®), M)/
— HA(T/W(@), M),
Since MW (®) = 0, we obtain an isomorphism
HYT, M) ~ HYW(®), M)T/W(©®),

It follows that it is enough to prove both assertions of the theorem for I' = W(®), which
we will assume to be the case throughout the rest of the argument.

Now, fix a system of simple roots II C ®. It is well-known that I' is a Coxeter group;
more precisely, it is generated by reflections s, for a € II (where s54(v) = v — (", v)
for v € V) and is defined by the following relations

sa=1, (sasp)"? =1 for a,fell, a#p, (A1)

where n, g is the order of the product s,ss in I'. For a I'-invariant lattice M C V', we let
ZY(T, M) and BY(T', M) denote the corresponding groups of cocycles and coboundaries,
respectively, and for a function f: I' — M set

u(f) = (f(sa) € P M.

a€cll

Lemma A1.1. The map p sets up an isomorphism between Z1(I', M) and @(Qa ﬂ M).
acll
Under this isomorphism, B*(T', M) corresponds to

{((a,m)a) | m € M}.

Proof. Any f € ZY(T', M) is completely determined by its values on any generating set,
making  injective on Z*(T', M). We have

f(l) =0= f(soc) + Saf(sa)7
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implying that f(ss) € Qa. So, u(Z*(T,M)) C @(QaﬂM). To prove that this in-
acll
clusion is actually an equality, take any (m,) in the right-hand side, and let T' be the

free group on s,, a € II. Recall that given a group A and a A-module T, a function
@: A = T is a 1-cocycle iff the map

T AT XA, = (px), )

is a group homomorphism. This allows us to define f € Z'(T', M) by f(sa) = ma, and
observe that f descends to f € Z'(I', M) satisfying f(sq) = mq if and only if f vanishes
Flo2

on the relations (A.1). The equation f(s3) = 0 immediately follows from the fact that

mq € Qa. Furthermore,

F((sas5)"?) = (14 (sa58) + - + (sa55)" ") f(sasp).

Note that the right-hand side is fixed by s,sg. On the other hand, since

f(sas,@) = My + Salp € QOZ + Qﬂv

it belongs to Qo + Q. But s,sg is a nontrivial rotation of this 2-dimensional vector
space, and therefore has no nonzero fixed vectors. So, f((sasﬁ)”ﬂﬁ) = 0, completing the
proof of the first assertion. The second assertion about u(B*(I', M)) follows from the
formula for s,. O

It is now easy to complete the proof of Theorem 4.1. Set M = P(®), which, by defi-
nition, is the dual lattice of the lattice Q(®") generated by the dual root system. Thus,
M has a basis consisting of weights wg (8 € II) satisfying (a¥,wg) = dap (Kronecker
delta). The crucial observation is that unless ® is of type Ay or Cp (£ > 2), for any a € IT
we have

Qa[ M = Za. (A.2)

Indeed, this is obvious if P(®) = Q(®) since II is always a basis of Q(®). This proves
(A.2) if @ is one of the types Eg, F4, or Go. On the other hand, if ® has rank > 1 with all
the roots of the same length (equal to v/2), then for a given o € II, one can pick 8 € II
so that

(0576) =-1= (a76v)'

If \a € M, then —\ = (A, 8Y) € Z, proving (A.2) in this case. Apart from types A;
and C, (¢ > 2), these two cases cover all types except By with ¢ > 2. For this remaining
type, (A.2) follows immediately from the description of P(®) given in [5, Table II]. Thus,
if @ is not of type A; or Cy then
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P@aM) = P za. (A.3)

a€ell acll

For types A; and Cy, one easily finds, using [5, Tables I and II], that the left-hand side
of (A.3) contains the right-hand side as a subgroup of index two. On the other hand, in
all cases

{((@¥,m)a) |m € M} = P Za. (A.4)

a€cll

Indeed, the inclusion C follows from the definition of P(®). On the other hand, for the
weight m = wg with 8 € II, the element ((a¥,m)a)qen has B in the S-slot and 0 in
all other slots. Thus, the left-hand side of (A.4) contains all 5 € I, and (A.4) follows.
Comparing these computations with Lemma A1.1, we obtain Theorem 4.1. 0O

Remark A1.2. Since By = Cy, the type By in Theorem 4.1 should be treated as excep-
tional along with the types A; and Cy (¢ > 2).

A1.2. On the mistake in [37]

In [37], Klyachko made a claim (p. 73, item ¢)) that for any subgroup I C Aut(®) that
contains W(®), and any I'-invariant lattice M C V satisfying Q(®) C M C P(®), one
has H(I', M) = 0 except in the following three cases, where I' coincides with W (®) =
Aut(®): (1) @ = Ay; (2) @ = C, and M = P(®); and (3) & = By and M = Q(P),
where HY(I', M) = Z/2Z. As we already mentioned, this result is false as stated. We
will now indicate where the argument in [37] fails for M = Q(®), and then present a
counter-example based on explicit computations.

For this M, we immediately have

P@aM) = P Zo.

a€cll acll

Then Klyachko observes that if @ is of type different from A;, By, then for each « € II,
the g.c.d. of the integers (o, 8) as 3 varies in II, equals 1, and concludes from this that

{((@”,m)a) |m e M} = €P Zo; (27)

a€cll

in view of Lemma A1.1 this would prove that H'(I', M) = 0. The problem is that this
“argument” proves only that for each a € II, the projection of the left-hand side of (27)
to Za is surjective, but does not fully justify (27). In fact, if we canonically identify the
right-hand side of (27) with Z*, then the left-hand side gets identified with the submodule
spanned by the columns of the Cartan matrix of ®. It follows that H*(W(®),Q(®)) is
always isomorphic to the quotient P(®)/Q(®P), and in particular is nontrivial unless



68 V.I. Chernousov et al. / Advances in Mathematics 438 (2024) 109437

P(®) = Q(®) (in other words, ® has one of the following types Eg, F4, or Gg). We will
now illustrate this by an explicit computation for the root system & of type A,.
Set n = ¢+ 1, and consider the usual realization of ® as the set of vectors

€i — &y, i7j:17"'an7 Z#]a

where €1,...,&, is the standard basis of Q"; then I' := W(®) is identified with the
symmetric group S,, acting by permutation of indices. Let

N = é Z€i~
i=1

Then for M = Q(®P), we have the exact sequence of I'-modules

0-M-—N-27 0,
with 6 (3" aze;) = > a;, which yields the following exact sequence in cohomology
N' %7 — HY(T, M) — HYT, N). (A.5)
We have an isomorphism of I-modules N ~ Z[S,,/Sy—1], so by Shapiro’s lemma
HYT,N)=H"Y(S,_1,Z) = 0.
Then (A.5) implies that
HY(T, M) =7/nZ,

which is consistent with our previous discussion. We note that this computation is an-
other way to interpret the computation given in the second part of Example 4.3.

Appendix 2. On cohomological invariants and good reduction of groups of type F4
A2.1. Cohomological invariants

Let k£ be an infinite field of characteristic # 2,3, and let Gy be the simple k-split
group of type F4 (which is both simply connected and adjoint). Then the k-isomorphism
classes of simple k-groups of this type correspond bijectively to the elements of the Galois
1-cohomology set H'(k,Gp). We recall that J.-P. Serre constructed two cohomological
invariants with coeflicients in the group Z/27Z:

fa: HY(k,Go) — H*(k,Z/27) and fs5: H'(k,Go) — H’(k,Z/27)
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(see [25, Theorems 22.4 and 22.5]). Furthermore, M. Rost [72] defined a cohomological
invariant with coefficients in Z/3Z:

g3: H*(k,Go) — H*(k,Z/37).

(We note that the maps f3, f5, and g3 are natural in the base field k.) Given a cocycle £ €
Z'(k, Go) with corresponding twisted group G = ¢Gy, we will often write f3(G), f5(G),
and g¢3(G) instead of f5([€]), f5([€]), and g3([£]). One assembles these three invariants
into a map

¢: H'(k,Go) 5% H3(k,2./22) x HO(k,7./22) x H*(k,Z./37),

and one of the remaining fundamental open problems in the theory of Jordan algebras
is to determine if ¢ is injective. The following theorem contains a partial result in this
direction. We let H*(k, Gg)g,—0 denote the subset of H'(k, G¢) consisting of cohomology
classes/forms having trivial gs-invariant.

Theorem A2.1. ([78]) The map

H(k, Go)goeo 2% H3(k,2./22) x H (k, 2./22)

18 injective.
Corollary A2.2. The map ¢ has trivial kernel.

In Theorems 1.10-1.12, we deal with forms of type F, that have trivial gs-invariant. It
is well-known (cf. [38, 26.18], [53]) that to each k-group G of type F4, one can associate a
27-dimensional simple exceptional Jordan k-algebra J known as the Albert algebra. Then
the gs-invariant of G vanishes if and only if J is reduced, i.e. has zero divisors. In this
case, J admits a natural construction that involves an octonion algebra O = O(a, b, c¢)
corresponding to a triple a, b, ¢ € k* and two additional parameters d, e € k*. Then the
cohomological invariants of G with coefficients in Z /27 are the following symbols

fs(G) =(a)U (b)U () and [f5(G) = f3(G) U (d) U (e), (28)

where (t) € H'(k,Z/2Z) denotes the cohomology class corresponding to tk** under
the canonical isomorphism H*'(k,Z/2Z) ~ kx/kXQ. A group G of type Fy with trivial
gs-invariant is split over k if and only if the octonion algebra O is split, i.e. the invariant
f3(G) vanishes, and G is k-isotropic if and only if the invariant f5(G) vanishes.

We will now establish an alternative characterization of groups of type F4 having
trivial gs-invariant. Given a (separable) quadratic extension ¢/k, we say that a k-torus
T is £/k-admissible if it is anisotropic over k and is split over ¢, or, equivalently, if the
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nontrivial automorphism o of £/k acts on the character group X (T) as multiplication
by (=1).

Proposition A2.3. Let G be a k-group of type Fy. Then g3(G) = 0 if and only if G becomes
split over some quadratic extension £/k, in which case G possesses a mazximal k-torus T
that is £/k-admissible.

We say that a finite separable extension ¢/k splits x € H'(k,Z/27Z) if the image of
under the restriction map H(k,Z/2Z) — H'({,Z/2Z) is trivial. We have the following
statement.

Lemma A2.4. Let G be a k-group of type Fy for which g3(G) = 0. If £/k is a quadratic
extension that splits f3(G), then it also splits f5(G), and therefore splits G.

Indeed, the first assertion immediately follows from the fact that f5(G) = f3(G)U(d)U
(e). Thus, over ¢, all 3 invariants f3(G), f5(G), and g3(G) become trivial. Then it follows
from Corollary A2.2 (over £) that the cohomology class in H*(k, Gg) that corresponds to
G becomes trivial in H'(¢, Gy), and therefore G is f-isomorphic to Gy, hence is (-split.

Proof of Proposition A2.3. Suppose g3(G) = 0. Since the cohomology class f3(G) is a
symbol, it splits over some quadratic extension ¢/k. By Lemma A2.4, G splits over .
The group G has an ¢-defined Borel subgroup B such that T := BN B? is a maximal
k-torus of G (cf. [54, Lemma 6.17]). If II is the system of positive roots in the root
system ® = ®(G,T) that corresponds to B, then for the action of o on X(7T'), we have
o(IT) = —II. But the only element in Aut(®) that has this property is multiplication by
(=1). Thus, 0 = —1, i.e. T is ¢/k-admissible.

Conversely, if G becomes split over a quadratic extension £/k, then £ splits the invari-
ant g3(G). Using a standard restriction-corestriction argument, we see that 2-g3(G) = 0.
But every element in H3(k,Z/37) satisfies 3 - g3(G) = 0. Thus, g3(G) =0. O

A2.2. An alternative description of invariants and good reduction

First, we recall some basic facts about absolutely almost simple k-groups G that pos-
sess a maximal k-torus T that is admissible with respect to a quadratic extension ¢/k,
assuming that char k # 2. These results were initially obtained in [84] and then system-
atically redeveloped in [10], [11] in the more general situation of groups over regular local
rings (in particular, over discrete valuation rings). This generalization becomes particu-
larly useful when we consider forms with good reduction. We will now review the theory
over fields. Let g = L(G) denote the Lie algebra of G, and let ® = ®(G,T) be the root
system of G with respect to the maximal torus 7. Fix a Chevalley basis

{Hoq PRI HOM‘} U {Xa}a€<1>
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of g(¢) associated with T (where r = dim T is the rank of G and IT = {aq,...,q;}
is a system of simple roots). The key observation is that the action of the nontrivial
automorphism o of ¢/k on the root elements of the Chevalley basis is described by
equations of the form

0(Xa) = caX_o with c, € K*.

These constants ¢, completely determine the k-isomorphism class of G (assuming that
the latter is simply connected). One checks (cf. [11]) that c_, = c; ! and co4p5 = £cacp
(with the sign depending only on « and § as elements of ®). This means that the k-
isomorphism class of G is determined by the quadratic extension £/k and the constants
¢q for only simple roots a.

In the rest of this subsection, G will denote a k-group of type F4 with trivial gs-
invariant. According to Proposition A2.3, the group G has a maximal k-torus that is
admissible over a quadratic extension ¢ = k(y/a). We will use the labeling of the simple
roots aq, . .., a4 introduced in Bourbaki [5].

Theorem A2.5. ([11, Theorems 6.1 and 6.6]) Let G be a simple algebraic k-group of
type Fy that has a maximal k-torus T that is admissible over a quadratic extension
¢ = k(y/a). Fiz a system of simple roots II = {aq,...,aq4} in the root system ®(G,T),
and let coy, ..., Ca, be the constants defined above for some choice of root vectors in a
Chevalley basis. Then

f3(G) = (a) U (cay) U(Cay) and [5(G) = (a) U (cay) U (Cas) U (Cas) U (Cas)-

We will now use this description of the invariants f3 and f5; to prove that they are
unramified if the group G has good reduction at a discrete valuation v of k (see subsection
A2.4 below for a more general result).

Theorem A2.6. Let G be a k-group of type Fq with trivial gs-invariant that has good
reduction at a discrete valuation v of k with char k") # 2. Then the invariants f3(G)
and f5(G) are unramified at v.

The proof will involve an application of the results from [11] over discrete valuation
rings. So, suppose that our base field k is equipped with a discrete valuation v, and let
Ok,» C k be the corresponding valuation ring. Let G' be a simple algebraic k-group of
type F4 that splits over a quadratic extension ¢ = k(y/a). It follows from the description
of f3(G) as a symbol (see (28)) that, without loss of generality, we can always assume
that one of the elements is a unit, and we take this element for a. Then ¢ = k(y/a) is
unramified over k at v, and therefore O := Ok.»(v/a) is an étale extension of Oy ,.

Proof of Theorem A2.6. Suppose that G has good reduction at v, i.e. there exists a
reductive group scheme § over Oy, ,, with generic fiber G (see the discussion in §2.3). Then
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Gxo,., O is a reductive group scheme with generic fiber G x £. Applying Proposition 2.5
in this situation and taking into account that G' xj, £ is split, we see that § xo, , O is
split. Then one shows that § contains a maximal torus T whose generic fiber T is an £/k-
admissible torus. Furthermore, one verifies that the constants c,, (i = 1,...,4) belong
to Oy, (see [11, Remark 44]). Combining this with the formulas for f3(G) and f5(G)
given in Theorem A2.5 completes the proof of Theorem A2.6. O

We conclude this subsection with the following, which in some sense provides a con-
verse to Theorem A2.6.

Proposition A2.7. Let G be a simple algebraic k-group of type Fy that has a mazimal
k-torus T that is /k-admissible for a quadratic extension £/k. Assume that £/k is un-
ramified at v and the constants cq,, .. .,Ca, are v-units. Then G has good reduction at
.

Proof. Let Gy (resp., go) be the split group scheme (resp., split Lie algebra) of type Fy
over Oy ,, and let O be the integral closure of Oy, in £. It is enough to construct a Lie
algebra g over Oy , such that

g ®Ok,u 0 ~go ®Ok,v O and g ®Ok,u k ~ L(G)k7

where L(G) is the Lie algebra of G. Indeed, it is well-known that the automorphism
group of a split Lie algebra of type F4 is a simple split algebraic group of type Fy,
which is both adjoint and simply connected. So, g can be obtained from gg by twisting
using an ¢/k-cocycle with values in 90((9). Then twisting Gy by the same cocycle, we
obtain the required reductive group Oy ,-scheme G with generic fiber G (since its Lie
algebra coincides with that of G by construction). On the other hand, the Lie algebra g
with the above properties is constructed from go ®o, , O by Galois descent (which can
be implemented due to the fact that £/k is unramified at v) using the automorphism
defined by

H,— —H, and X, — c,X_qo
for all simple roots « (recall that ¢, € O}, by assumption). O

We note that the reduction G*) possesses a maximal £(*) /k()-admissible torus for
which the corresponding constants are the reductions cqy, - .., Ca,-

A2.3. Two results about forms of type Fy that split over a cubic extension

We will keep the notations introduced in §11 prior to the proof of Proposition 11.4.
First, we will prove Proposition 11.7.
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Proof of Proposition 11.7. (1): We begin with the following general fact.

Lemma A2.8. Let G be a k-group of type Fy, and let £/k be a cubic Galois extension.
Given two mazimal k-tori Ty and Ty of G that are anisotropic over k and split over ¢,
there exists g € G(£) such that the restriction of the inner automorphism Int g induces a
k-defined isomorphism Ty — Ts.

Proof. Let us return to the notations introduced immediately before the statement of
Proposition 11.7. The Weyl group W (R;, ¢;(S)) is isomorphic to the symmetric group X3,
and we let V; C W(R;,1;(5)) be its Sylow 3-subgroup. Then V = V1Vo C W(Gy,T) has
order 9, and therefore is a Sylow 3-subgroup of W (G, T'). It follows from this description
that W(Go, T) has a unique conjugacy class of elements w of order 3 such that X (T)* =
{0}. Let 6: Gal(¢/k) — W(G,T;) for i = 1,2 be the natural homomorphism (cf.
subsection 3.1), and fix a generator o € Gal(¢/k). Pick an arbitrary g € G(¢) such that
for the inner automorphism ¢, = Int g, we have ¢4(71) = T, and let ¢j: X(T3) — X (T1)
be the corresponding comorphism. Considering W (G, T;) as a subgroup of GL(X (T;)),
we can define an isomorphism W (G,T1) — W(G,Tz) by w + (15)~! o w o 1}. Since
w; = 0% (o) € W(G,T;) is an element of order 3 such that X (7;)* = {0}, it follows
from the above remark that by replacing g with gn for an appropriate n € Ng(T1), we
can assume that

0 (o) o Ly =150 0 (o).
This means that the restriction ¢4|T} is defined over k, as required. O

Corollary A2.9. With notations and conventions as in Lemma A2.8, the maps H(¢/k,T;)
— HY({/k,G) fori= 1,2 have the same image.

Proof. By the lemma, we can find g € G(¢) such that the restriction of ¢ := Int g induces
a k-defined isomorphism 77 — T%. Then for any o € Gal(¢/k), we have g-o(g)~! € Tx(¥).
It follows that an arbitrary cocycle £(o) on Gal(¢/k) with values in T3 ({) is equivalent
in H'(¢/k,G) to the cocycle

g8(a)a(g)" = (9¢(0)g™") - (g-o(9) ™)
which has values in T5(¢), and vice versa. O

It is now easy to conclude the proof of part (1) of Proposition 11.7. Let ¢ € Z1(k, Go)
be a cocycle such that G = (G contains a maximal k-torus 73 that is anisotropic over
k and splits over £. It follows from Steinberg’s theorem (cf. [54, Prop. 6.19]) that there
exists a k-embedding 71 — Gy such that [¢] lies in the image of the corresponding map
HY(k,T1) — H'(k,Gp). But according to Corollary A2.9, the image of this map coincides
with the image of the map H'(k,T) — H'(k,Gp), and the required fact follows.
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Turning now to part (2) of Proposition 11.7, we recall that for S = Ré}?ﬂ(@m), we
have H'(k,S) = k* /Ny, (£*); in particular, we can write y2([¢]) = bNy/,(£*) for some
b € k*. On the other hand, §(v1([¢])) corresponds to a Brauer class [A] € H?(k, u3) =
3Br(k). The algebra A splits over £, so that the corresponding division algebra has degree
dividing 3. According to [25, 7.4], we have g3(G) = [A] U (b), as required. (We note that
since £ splits A, the cup-product does not depend on the choice of b in the coset modulo
the norm subgroup N/, (£*).)

The second result of this subsection is the following.

Lemma A2.10.

(1) 9§ is injective.

(2) Assume that k is complete with respect to a discrete valuation v with char kW) £ 3,
and let O, be the valuation ring in k = k,. Furthermore, assume that the extension
L/k is unramified, so that there is an O,-torus 81 with generic fiber Sy. If x €
H(k,,S1) is such that the image §(x) € H%(k,u3) is unramified, then x belongs to
the image of the map H'(O,,81) — H'(k,, S1).

Proof. (1): We have the following long exact sequence
1 @ 1. & 1 J 2
H (k,pg) — H (k, Sl) — H (k, Sl) — H (k,pg)

Since « is surjective, § is injective.
(2): Let 81 be an O,-torus with generic fiber 5. We first show that the map

H%*(0,,8,) = H?(k,,S1)

is injective. Consider the k,-tori Ty = G, and T' = R;/,(G), and let Ty and T be the
O,-tori with generic fibers Ty and T'. The exact sequence

158 —17%71 51,

where N is the norm map associated with the extension ¢/k, induces the following
commutative diagram with exact rows

HY(0O,,Ty) —— H?*(0,,8,) —— H?*(0,,T)

PlJ/ El pzl
Hl(kvyTO) —_— H2(kvagl) B Hz(kvaT)
But H'(k,,Ty) = {1} by Hilbert’s Theorem 90, and H*(O,,Ty) = Pic O, = {1}. On

the other hand, by Shapiro’s Lemma, the homomorphism ps can be identified with the
homomorphism
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H?*(O(0), Ty xo0, O(£)) — H*(£, Ty x4 ),

where O(¢) is the valuation ring of ¢. So, the injectivity of py immediately follows from
the injectivity of the canonical map of the Brauer group of a discrete valuation ring
to the Brauer group of its field of fractions (cf. [19, 3.6], [47, Ch. IV, §2]). Now, the
injectivity of € follows from the above commutative diagram.

Next, we have the following commutative diagram with exact rows

HY(0,,8)) —— H?*(O,,u3) —— H?(0,,81)

| | |
HY(ky,S1) —2— H2(ky,p3) — H?(ky, 51)

It is well-known that Imw coincides with the subgroup of unramified cohomology classes.
Then the required assertion follows from the injectivity of § and € by a diagram chase. O

A2.4. Cohomological invariant gs of forms with good reduction

The goal of this section is to prove the following.

Proposition A2.11. Let k be a field with a discrete valuation v such that char k(*) # 3.
If G is a k-form of type Fy that has good reduction at v, then the invariant gs3(G) is
unramified at v.

Proof. Without loss of generality, we may suppose that k is complete with respect to v,
and let O, be the valuation ring of k. By assumption, there exists a reductive group O,,-
scheme G with generic fiber G. Then the reduction Q(v) =Gxo, k™) is the automorphism
group of a simple exceptional Jordan k()-algebra J®). It follows from [53, Theorem
58] that there exists a quadratic extension ¢/k(*) such that the algebra J*) @) £ is
isomorphic to the Albert algebra (A, i) obtained by Tits’ first construction from a
central cubic k(*)-algebra A() and some i € £*. Let ¢ be the unramified extension of k
with residue field £(*) = £, and let O(f) be the valuation ring of £. We now consider an
Azumaya O(f)-algebra A with residue algebra A®), and let u € O(£)* be an element
with residue ii. Applying Tits’ first construction with these A and p, we obtain a Jordan
O(f)-algebra J. It follows from Hensel’s Lemma that the reductive group O(f)-scheme G
corresponding to J is isomorphic to § X, O(¢). In particular, the generic fiber G of Gis
isomorphic to G xj, £ and corresponds to the Albert algebra (A, u), where A = A®g () L.
Let resy/;, denote the restriction map in cohomology. Then it follows from the definition
of g5 (see [72]) that

TeSz/k(gi%(G)) = 93(G xx £) = [A]U () € H3(€7Z/3Z),

where [A] denotes the class of A in 3Br(¢) = H?(¢, u3). Since by construction A comes
from an Azumaya algebra and p € O(€)*, we conclude that res, /. (93(G)) € H*(¢,Z/3Z)
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is unramified. On the other hand, since ¢/k is unramified, we have the following commu-
tative diagram

H3(k,2/32) —2— H*(k™), u3)

resukl lreSZ/k(v)

Hs(&Z/SZ) L} Hz(énuf?»)

where pj and p, are the corresponding residue maps. We have

pg(reSg/k<g3(G))) =0= TeS7/k(v) (pr(g3(G)))-

But since [¢ : k()] = 2, a standard restriction-corestriction argument shows that 2 -
pr(93(G)) = 0. On the other hand, 3- H?(k™), u3) = 0, so pr(g3(G)) = 0, as required. O
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