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The goal of this note is to give an explicit formula for the residues of twists of the 
matrix algebra in terms of the twisting cocycle. Combined with the Fixed Point 
Theorem for actions of finite groups on affine buildings, this leads to a quick proof 
of the well-known characterization of unramified algebras in terms of Azumaya 
algebras.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Let K be a field complete with respect to a discrete valuation v. Suppose L/K is a finite unramified 
Galois extension of degree n ≥ 1 with Galois group Gal(L/K) and let w be the extension of v to L. One 
then defines a residue map in Galois cohomology1:

ρ : H2(L/K, L×) −→ H1(L/K,Q/Z)

(see, e.g., [14, §3]). We note that the target of ρ is typically denoted H1(�/k, Q/Z), where �/k is the 
corresponding extension of residue fields; however, in our situation, Gal(�/k) � Gal(L/K) since L/K is 
unramified. Furthermore, composing ρ with the classical isomorphism ε : Br(L/K) → H2(L/K, L×) for the 
relative Brauer group based on factor sets (cf. [4, Theorem 4.13], [10, §4]), we obtain the usual residue map
r : Br(L/K) → H1(L/K, Q/Z) — see §3. The elements of Br(L/K), however, can be described not only in 
terms of factor sets, but also as the Brauer classes [A(c)] of central simple K-algebras obtained from the 
matrix algebra Mn(K) by twisting using 1-cocycles c ∈ Z1(L/K, PGLn), cf. [6, §4.4]. The goal of this note 
is to give an explicit description of the residue r([A(c)]) in terms of the cocycle c that does not seem to 

E-mail address: rapinchu@msu.edu.
1 We use the standard notations associated with Galois cohomology — cf. [13]; in particular, for a finite Galois extension L/K

with Galois group Γ = Gal(L/K) and a commutative Γ-module M , the cohomology groups Hi(Γ, M) will be denoted Hi(L/K, M), 
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have ever been recorded in the literature. To formulate the result, we let θ : GLn(L) → PGLn(L) denote 
the canonical homomorphism. Given a cocycle c = (cσ) ∈ Z1(L/K, PGLn(L)), we pick c̃σ ∈ θ−1(cσ).

Theorem 1. r([A(c)]) is represented by b = (bσ) ∈ Z1(L/K, Q/Z) with

bσ = −w(det c̃σ)
n

(mod Z).

Next, we recall that a class [A] ∈ Br(L/K) (or the corresponding algebra A) is said to be unramified if 
r([A]) = 0. Combining Theorem 1 with the Fixed Point Theorem for the actions of finite groups on buildings 
we obtain a new quick proof of the following well-known characterization of unramified algebras.

Theorem 2. A central simple K-algebra A such that [A] ∈ Br(L/K) is unramified if and only if there exists 
an Azumaya algebra A over the valuation ring O of K such that A ⊗O K � A.

2. Coboundary map and factor sets

Let L/K be a finite Galois extension of degree n ≥ 2. We consider the following exact sequence of 
Gal(L/K)-groups

1 → L× −→ GLn(L) θ−→ PGLn(L) → 1,

and let

Δ: H1(L/K, PGLn(L)) −→ H2(L/K, L×)

denote the corresponding coboundary map. Thus, if c ∈ H1(L/K, PGLn(L)) is represented by a cocycle 
(cσ) ∈ Z1(L/K, PGLn(L)), then picking arbitrary lifts c̃σ ∈ θ−1(cσ), the element d = Δ(c) is represented 
by the 2-cocycle (dσ,τ ) with

dσ,τ In = c̃σ · σ(c̃τ ) · c̃−1
στ . (1)

We note that a standard argument using twisting and Hilbert’s Theorem 90 shows that Δ is injective (cf. 
[9, §2.2.3]).

On the other hand, one can consider the central simple K-algebra A(c) obtained by twisting the matrix 
algebra Mn(K) using the cocycle c. We recall that A(c) can be described as the fixed subalgebra of the 
twisted action of Γ = Gal(L/K) on Mn(L), i.e.

A(c) = {x ∈ Mn(L) | cσ(σ(x)) = x for all σ ∈ Γ} , (2)

where for x = (xij) ∈ Mn(L), we set σ(x) = (σ(xij)) and consider the natural action of PGLn(L) on Mn(L)
by (inner) automorphisms (thus, cσ is identified with Int c̃σ in the previous notations). Then A(c) ⊗K L �
Mn(L), so one can consider the Brauer class [A(c)] ∈ Br(L/K) and the corresponding 2-cohomology class 
a = ε([A(c)]) ∈ H2(L/K, L×) given by the associated factor set. We will need a relation between the 
cohomology classes a and d. This relation is described in Exercise 2 in Ch. X, §5 of [12]; however, to the 
best of our knowledge, the details have never been published, so we include a complete argument.

Proposition 1. We have d = a−1.



I.A. Rapinchuk / Journal of Pure and Applied Algebra 228 (2024) 107701 3
Proof. We will interpret Ln as an L-vector space equipped with the (canonical) basis eσ indexed by σ ∈
Γ, and consider the action of Γ on Ln that fixes these basic elements, as well as the induced action on 
GLn(L) = AutL(Ln). Define p̃σ ∈ GLn(L) by

p̃σ(eτ ) = dσ,τ eστ . (3)

We claim that

p̃σ · σ(p̃τ ) · p̃−1
στ = dσ,τ In for all σ, τ ∈ Γ. (4)

Indeed, for any γ ∈ Γ, we have

(p̃σσ(p̃τ ))(eγ) = p̃σ(σ(dτ,γ)eτγ) = σ(dτ,γ)dσ,τγeσ(τγ).

On the other hand,

dσ,τ p̃στ (eγ) = dσ,τ dστ,γe(στ)γ .

Then (4) follows from the 2-cocycle condition

σ(dτ,γ)dσ,τγ = dσ,τ dστ,γ for all σ, τ, and γ ∈ Γ. (5)

Equation (4) implies that (pσ := θ(p̃σ))σ∈Γ is a cocycle in Z1(L/K, PGLn) such that for the corresponding 
cohomology class p ∈ H1(L/K, PGLn), we have Δ(p) = d. Then the injectivity of Δ yields p = c, hence 
A(p) � A(c) and a = ε([A(c)]) = ε([A(p)]).

Using (2) with c replaced by p, we obtain the following description:

A(p) = {x ∈ Mn(L) | p̃σσ(x)p̃−1
σ = x for all σ ∈ Γ}.

Rewriting the defining conditions in the form xp̃σ = p̃σσ(x) and labelling the entries of x as xρ,τ so that 
x(eτ ) =

∑
ρ xρ,τ eρ, one easily checks that

A(p) = {x = (xρ,τ ) ∈ Mn(L) | dσ,τ xσρ,στ = dσ,ρσ(xρ,τ ) for all σ ∈ Γ}.

Using this description, one deduces from the cocycle condition (5) that the elements qρ ∈ GLn(L) for ρ ∈ Γ
defined by

qρ(eσ) = dσ,ρeσρ

(compare with (3)) lie in A(p), hence so do their inverses rρ := q−1
ρ . For � ∈ L, we let

ϕ(�) = diag(σ(�))σ∈Γ.

It is straightforward to check that ϕ defines a K-embedding L ↪→ A(p) and that

rσϕ(�)r−1
σ = ϕ(σ(�)) for all σ ∈ Γ and � ∈ L. (6)

Set Λ = ϕ(L). Then a standard argument using (6) shows that the elements rσ for σ ∈ Γ are linearly 
independent over Λ, hence
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A(p) =
⊕
σ∈Γ

Λrσ

(see, for example, [10, Lemma 6]). It follows from the definition of the factor set (bσ,τ ∈ L×)σ,τ∈Γ for A(p)
associated with the extension Λ/K together with our choice of the elements rσ that

rσrτ = ϕ(bσ,τ )rστ ,

or equivalently

qτ qσ = qστ ϕ(bσ,τ )−1.

Applying both sides to eι, where ι is the identity element of Γ, we obtain

(qτ qσ)(eι) = qτ (dι,σeσ) = dι,σdσ,τ eστ

and

(qστ ϕ(bσ,τ )−1)(eι) = qστ (b−1
σ,τ eι) = b−1

σ,τ dι,στ eστ .

Thus,

bσ,τ = dι,στ

dι,σdσ,τ
= dι,στ

dσ,τ dι,στ
= d−1

σ,τ

in view of the cocycle condition (5) for (dσ,τ ). Then the corresponding cohomology class b ∈ H2(L/K, L×), 
which coincides with a since ε is well-defined, equals d−1, as required. �
3. Residue maps: proof of Theorem 1

Let K be a field that is complete with respect to a discrete valuation v. Suppose L is an unramified Galois 
extension of K of (finite) degree n with Galois group Γ = Gal(L/K), and let w be the extension of v to L. 
We now recall the construction of the residue map

ρ : H2(L/K, L×) −→ H1(L/K,Q/Z),

where Q/Z is equipped with the trivial Γ-action. The valuation w can be regarded as a Γ-homomorphism 
L× → Z (where Γ acts trivially on Z), hence induces a group homomorphism

ρ̃ : H2(L/K, L×) −→ H2(L/K,Z).

Then the residue map ρ is given by ρ = ν−1 ◦ ρ̃ where

ν : H1(L/K,Q/Z) −→ H2(L/K,Z)

is the isomorphism induced by the coboundary map arising from the following exact sequence of trivial 
Γ-modules:

0 → Z −→ Q
π−→ Q/Z → 0.
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So, if a ∈ H2(L/K, L×) is represented by a 2-cocycle (aσ,τ )σ,τ∈Γ ∈ Z2(L/K, L×), then for b = ρ(a) ∈
H1(L/K, Q/Z), the class ν(b) is represented by the cocycle (w(aσ,τ ))σ,τ∈Γ. This means that b is represented 
by a cocycle (bσ)σ∈Γ ∈ Z1(L/K, Q/Z) such that for some lifts b̃σ ∈ π−1(bσ), we have the identity

b̃σ + σ(b̃τ ) − b̃στ = b̃σ + b̃τ − b̃στ = w(aσ,τ ) for all σ, τ ∈ Γ. (7)

We then define the residue map r : Br(L/K) → H1(L/K, Q/Z) as the composition of ρ with the isomorphism 
ε : Br(L/K) → H2(L/K, L×) given by factor sets.

Now suppose that a cohomology class c ∈ H1(L/K, PGLn) is represented by

(cσ)σ∈Γ ∈ Z1(L/K, PGLn(L)).

As in §2, we pick arbitrary lifts c̃σ ∈ θ−1(cσ), so that d = Δ(c) is represented by (dσ,τ ) ∈ Z2(L/K, L×)
satisfying (1). Set

fσ = w(det c̃σ)
n

∈ Q.

Taking determinants in (1) and applying w, we obtain

w(dσ,τ ) = fσ + fτ − fστ . (8)

According to Proposition 1, the class ε([A(c)]) ∈ H2(L/K, L×) is represented by the cocycle aσ,τ := d−1
σ,τ . 

Then it follows from (8) that (7) is satisfied with

b̃σ = −fσ.

Then r([A(c)]) is represented by the cocycle (−fσ(mod Z)), which proves Theorem 1.

4. Azumaya algebras and buildings: proof of Theorem 2

We continue with the notations and conventions of the previous section. In particular, L/K is an unrami-
fied extension of degree n with Galois group Γ = Gal(L/K). Furthermore, we let O = OK (resp., OL) denote 
the valuation ring of K (resp., L). Let B be the Bruhat-Tits building associated with the group PGLn(L). 
We recall that B is a simplicial complex whose vertices correspond to homothety classes of OL-lattices in 
the vector space Ln, referring the reader to [9, §3.4] and [5, Chapter 19] for an explicit description of other 
attributes of B. We now introduce the following subgroup of GLn(L):

H̃ = {h ∈ GLn(L) | w(det h) ≡ 0(mod n)},

and let H denote the image of H̃ is PGLn(L). Then H is precisely the subgroup of PGLn(L) of type-
preserving projective transformations of B (see [1, A.1.3] and [2, 2.5] for a discussion of type-preserving 
automorphisms of buildings). We now point out that the natural action of Γ = Gal(L/K) on B is also type-
preserving. Indeed, let e1, . . . , en be the standard basis of Ln, and let p0 be the vertex of B corresponding 
to the lattice OLe1 + · · · + OLen. Let p be any other vertex of B. Since the group PGLn(L) obviously acts 
transitively on the vertices of B, we can find g ∈ PGLn(L) such that p = g(p0). Then any σ ∈ Γ fixes p0, and 
consequently σ(p) = h(p) where h = σ(g)g−1. But if g̃ ∈ GLn(L) is a lift of g, then w(det(σ(g̃)g̃−1)) = 0. 
Thus, h ∈ H and our claim follows from the fact that H acts by type-preserving transformations. Thus, we 
have a natural action of the group PGLn(L) � Γ on B, with the subgroup H � Γ acting by type-preserving 
transformations.
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Next, we recall the following formalism. Given a finite group Δ and a Δ-group G, a map c : Δ → G is a 
1-cocycle if and only if the map

fc : Δ −→ G � Δ, fc(δ) = (c(δ), δ),

is a group homomorphism, and furthermore two cocycles c1, c2 ∈ Z1(Δ, G) are cohomologous if and only 
if the corresponding group homomorphisms fc1 and fc2 are conjugate by an element of G (cf. [2, Lemma 
3.1]). We will apply this to Δ = Γ and G = PGLn(L). So, for a given c ∈ Z1(L/K, PGLn), we let 
fc : Γ → PGLn(L) � Γ denote the corresponding homomorphism as well as the c-twisted action of Γ on B
obtained by composing fc with the standard action of PGLn(L) � Γ on B introduced above.

Starting the proof of Theorem 2, we first note that since the field K discretely valued, it follows from [11, 
Lemma 9.5] that if B is a central simple K-algebra such that [B] ∈ Br(K) is in the image of the natural map 
Br(O) → Br(K), then any maximal O-order of B is an Azumaya algebra over O. From this, it easily follows 
that for two Brauer-equivalent central simple K-algebras A1 and A2, an Azumaya O-algebra Ai such that 
Ai ⊗O K � Ai exists for i = 1 if and only if it exists for i = 2. Consequently, it suffices to prove Theorem 2
for an algebra of the form A(c) for some c ∈ Z1(L/K, PGLn).

Assume that the algebra A(c) is unramified. Applying Theorem 1, we conclude that cσ ∈ H for all 
σ ∈ Γ in the above notations. Thus, the image of the group homomorphism fc is contained in H � Γ, and 
consequently, the c-twisted action of Γ on B is type-preserving. The latter fact, in conjunction with the 
Fixed Point Theorem for actions of finite groups on affine Bruhat-Tits buildings (cf. [1, Theorem 11.23]) 
implies the existence of a fixed vertex in B for this action (cf. [2, Lemma 2.9]). As PGLn(L) acts on vertices 
transitively, replacing fc by a PGLn(L)-conjugate homomorphism, which amounts to passing from c to an 
equivalent cocycle, we may assume that fc(Γ) fixes p0. Explicitly, this means that

cσ(σ(p0)) = p0 for all σ ∈ Γ.

But the (usual) action of Γ fixes p0, so this condition yields that cσ lies in the stabilizer of p0 in PGLn(L), 
which is PGLn(OL) for all σ ∈ Γ. The natural action of PGLn(OL) on Mn(OL) enables us to consider the 
c-twisted action of Γ, and we let A(c) denote the O-subalgebra of fixed elements. Since L/K is unramified, 
the discriminant of the ring extension OL/O is a unit, which implies that A(c) ⊗O OL � Mn(OL) (cf. [3, 
Lemma C.1]; more generally, this follows from the existence of descent for the Galois ring extension OL/O, 
cf. [7, Proposition 5.1.12]). We conclude that A(c) is an Azumaya O-algebra such that A(c) ⊗O K � A(c), 
as required.

Conversely, suppose A is a central simple K-algebra such that [A] ∈ Br(L/K) and there exists an Azumaya 
O-algebra A such that A ⊗O K � A. Without loss of generality, we may assume that A has degree n. Then

(A ⊗O OL) ⊗OL L � (A ⊗O K) ⊗K L � Mn(L),

implying that A ⊗O OL � Mn(OL) (since the natural map Br(OL) → Br(L) is injective — cf. [8, Ch. IV, 
Corollary 2.6]). It follows that A can be obtained from Mn(O), and hence A can be obtained from Mn(K), 
by twisting using a 1-cocycle on Γ with values in PGLn(OL) (which is the automorphism group of the 
Azumaya OL-algebra Mn(OL)). Then it immediately follows from Theorem 1 that A is unramified.
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