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Turbulent boundary layers are dominated by large-scale motions (LSMs) of streamwise momentum surplus and deficit
that contribute significantly to the statistics of the flow. In particular, the high-momentum LSMs residing in the outer
region of the boundary layer have the potential to re-energize the flow and delay separation if brought closer to the wall.
This work explores the effect of selectively manipulating LSMs in a moderate Reynolds number turbulent boundary
layer for separation delay via well-resolved large-eddy simulations. Toward that goal, a model predictive control scheme
is developed based on a reduced-order model of the flow that directs LSMs of interest closer to the wall in an optimal
way via a body force-induced downwash. The performance improvement achieved by targeting LSMs for separation
delay, compared to a naive actuation scheme that does not account for the presence of LSMs, is demonstrated.

I. INTRODUCTION

Studies on the structure of wall-bounded turbulent flows
have led to the observation of large-scale and very-large-scale
motions (LSMs/VLSMs) that exhibit long temporal and spa-
tial coherence of the streamwise velocity fluctuations in the
order of the boundary layer thickness. These large coher-
ent structures are commonly found in the log and outer re-
gion of zero pressure gradient (ZPG) turbulent boundary lay-
ers (TBLs)1–5, as well as pipe6,7 and channel flows8,9 and are
typically formed by the coherent alignment of hairpin vortices
in the streamwise direction into groups of hairpins10.

These LSMs are typically encountered as regions of mo-
mentum deficit, surrounded by regions of momentum surplus,
extending a few times the boundary layer thickness δ in the
streamwise direction. The fast and slow LSMs are critical in
producing and transporting turbulent kinetic energy and con-
tribute significantly to the Reynolds shear stresses.

In TBLs subject to adverse pressure gradients (APG),
which are often encountered in real engineering applications,
such as airfoils, turbine blades, and diffusers, the prevail-
ing contribution of LSMs on the flow statistics has also been
reported11–14. Studies have found that the length of LSMs
tends to increase with increasing APG up until a point where a
continuing increase of APG suppresses the formation of hair-
pin packets, leading to a decrease in the streamwise but an
increase in the spanwise coherence of LSMs15.

Considering the significant role that LSMs play in turbulent
flows, the present study proposes a novel flow control strategy
in which separation delay is achieved by manipulating natu-
rally occurring LSMs in a turbulent boundary layer. While
previous studies have attempted to manipulate both near-wall
structures16–19 and LSMs in the logarithmic region20,21 for
drag reduction, the potential of targeting LSMs – especially
the high-momentum LSMs – for separation delay has only re-
cently been explored22,23. Increasing the near-wall momen-

a)Department of Aerospace Engineering and Engineering Mechanics, The
University of Texas at Austin
b)Department of Mechanical Engineering, The University of Akron

tum just before the separation point can be beneficial to de-
laying or preventing separation, and selectively directing these
high-momentum LSMs toward the wall has the potential to in-
crease wall shear stress, as well as mixing near the wall22,24.
The present study aims to manipulate high-momentum LSMs
in an APG TBL by bringing them closer to the wall to re-
energize the near-wall boundary layer and prevent separation.
This is in contrast to recent separation delay studies using,
for instance, synthetic jet actuators25 and dielectric barrier
discharge actuators26 that do not account for the presence of
LSMs in the flow.

Such an active control scheme requires 1) detecting the
LSMs of interest (e.g., using wall shear stress or pressure
measurements27–29) and 2) deciding whether and when to ac-
tuate on the oncoming LSMs.

The present work is the first numerical study that explores
the effect that manipulating LSMs has on separation delay in
an adverse pressure gradient turbulent boundary layer. It em-
ploys well-resolved large-eddy simulations (LES) of a moder-
ate Reynolds number APG TBL of Reθ = 1551 based on the
momentum thickness θ at the inlet. Actuation is performed
using a near-wall jet modeled as a body force field with a
Gamma distribution in the streamwise direction and a Gaus-
sian distribution in the wall-normal and spanwise directions,
inspired by the effect that dielectric barrier plasma actuators30

and jet-assisted surface mounted actuators31 have on entrain-
ing flow toward the wall. In the interest of simplicity, the
LSMs are detected upstream of the actuator via box-filtering
of the 3-dimensional streamwise velocity fluctuations within
an off-wall observation grid. That is, in the present work,
the more difficult problem of detecting low/high-momentum
LSMs using wall measurements, such as in Refs. 27–29, is
sidestepped.

The decision of whether to actuate on an oncoming LSM
is made via a model predictive control (MPC) policy that: 1)
predicts how an LSM that has been detected upstream will
move downstream toward the actuator using Taylor’s hypoth-

esis1,32–34 and 2) solves an optimal output tracking control
problem for a binary on/off input to the actuator that maxi-
mizes the downwash experienced by an LSM of interest (here,
fast-moving LSMs) while avoiding the opposite (i.e., low-
momentum) LSMs and minimizing actuation cost. Since this
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is a model-based control scheme, the wall-normal velocity
field that the jet creates is modeled using total least squares

dynamic mode decomposition35, extended here to systems
with control inputs. This is in contrast to Ref. 21, where a
wall-normal jet operated by a heuristics-based control policy
was used to push fast-moving LSMs away from the wall with
the goal of reducing drag in an experimental ZPG TBL.

The choice to selectively target high-speed LSMs for in-
creasing near-wall momentum instead of utilizing blind actu-
ation schemes, such as periodic blowing, is driven by two key
factors. First, there is a need for an optimal control scheme
that conserves energy by operating only when required. Sec-
ond, a blind actuation scheme would bring both high and low-
momentum LSMs toward the wall, which could contribute ad-
versely to the desired momentum increase. The proposed con-
trol scheme not only re-energizes the flow near the wall with
the momentum introduced by the actuator but also “reaps the
whirlwind” of high-momentum LSMs that exist in the outer
regions of the boundary layer, therefore supplementing the ef-
fect that a potentially weak actuator has on the flow.

The proposed actuation scheme is evaluated on its ability
to increase near-wall momentum downstream of the actuator
and at locations on the verge of or actually experiencing sep-
aration. For the APG LES, the prescribed wall-normal veloc-
ity at the top of the domain follows a blowing-suction pro-
file that leads to an adverse-to-favorable pressure gradient and
creates a separation bubble. The control scheme is extensively
tested for its effectiveness in reducing the size of the separa-
tion bubble and delaying separation. The evaluation primarily
focuses on the advantage of targeting high-momentum LSMs
and pushing them toward the wall, compared to targeting low-
momentum LSMs or employing random or continuous actua-
tion strategies.

The paper is structured as follows: Section II presents the
computational setup for the large-eddy simulation of a turbu-
lent boundary layer with a separation bubble, as well as the
actuator model. Section III details the proposed model predic-
tive control scheme for targeting LSMs. Section IV showcases
a series of numerical experiments that highlight the effective-
ness of the proposed control scheme. Finally, conclusions and
potential future directions for this work are discussed in Sec-
tion V.

II. NUMERICAL SETUP

A. Large-Eddy Simulations

This study employs well-resolved large-eddy simulations
(LES) of the turbulent flow over a flat plate. The incompress-
ible Navier-Stokes and continuity equations

∂u

∂t
+ (u · ∇)u = −∇p+

1
Reδin

∇ · (∇u)+ f (1)

∇ ·u = 0 (2)

are non-dimensionalized by the free-stream velocity, U∞, and
the nominal 99% boundary layer thickness δin at the inlet. The

TABLE I: Nomenclature.

Symbol Description

U∞ free-stream velocity
δin 99% boundary layer thickness at the inlet
θ momentum thickness
(·)1 quantity in the streamwise direction
(·)2 quantity in the wall-normal direction
(·)3 quantity in the spanwise direction
xi coordinate in the i-th direction
Li length of computational domain in the i-th direction
Ni number of elements in the i-th direction
ui velocity in the i-th direction
u′

i
velocity fluctuation in the i-th direction

ũ′
i

filtered velocity fluctuation in the i-th direction
uτ friction velocity
ν kinematic viscosity
Vbleed constant wall-normal velocity at the top of the domain
Vtop(x1) wall-normal velocity at the top of the domain and at x1
xb center of the Vtop velocity profile
σb standard deviation of the Vtop velocity profile
eϕ direction of the jet force field
f jet body force field
g̃(·) spatial distribution of jet force field
G jet power input
xi,J center of the jet force field distribution in the i-th direction
σi,J standard deviation of the jet force field in the i-th direction
ϕ pitch angle of the jet force field
p(t) control input at time step t
y(t) u′2 at the control grid at time step t (vectorized)
z(t) reduced-order state at time step t
m number of snapshots
np number of control inputs
ny number of control grid points
nz number of reduced-order model states
dt LES timestep
Nmpc MPC horizon in number of ROM timesteps
Nmeas LSM measurement frequency, in number of ROM timesteps
Trom number of LES timesteps corresponding to one ROM timestep
ydes(t) desired u′2 at the control grid at time step t (vectorized)
π∗t optimal control policy computed at time step t

position x = [x1, x2, x3] and velocity u = [u1, u2, u3] vectors
consist of their streamwise, wall-normal, and spanwise com-
ponents, respectively. The Reynolds number based on δin is
Reδin = 13191 and corresponds to a momentum thickness θ-
based Reynolds number of Reθ = 1551. In addition, the accel-
eration term f is included and subsequently used to model the
desired behavior of the actuator.

The streamwise length of the domain is L1 = 80δin, the
height is L2 = 10δin and the spanwise extent is L3 = 8δin. The
governing equations are solved using the high-order spectral
element solver Nek500036,37. The domain is decomposed into
N1 = 260, N2 = 26, and N3 = 40 elements in the streamwise,
wall-normal, and spanwise directions. Within each element,
both the velocity and pressure fields are expressed as Legen-
dre polynomials of order N = 7 (PN −PN formulation). Time
integration is performed via an implicit-explicit second-order
backward difference (BDF) scheme with extrapolation for the
nonlinear terms, with a time step of dt = 0.005δin/U∞.
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The LES scheme uses a relaxation-term filter to dissi-
pate the smallest, unresolved turbulent scales38. This high-
order filter acts directly on the resolved velocity components,
u, affecting only the small scales in the flow while leaving
the larger scales unaffected39. The resolution of the grid in
the streamwise and spanwise directions is δx+1 ≈ 27.5 and
δx+3 ≈ 16.5, respectively, while the distance of the first (Gauss-
Lobatto-Legendre) node from the wall is δx+2,w ≈ 1.0. Hence,
the resolution corresponds to a well-resolved LES, similar
to40. The superscript “+” denotes quantities scaled in terms of
the viscous length l = ν/uτ, where ν is the kinematic viscosity,
uτ =

√

τw/ρ the friction velocity, τw the wall shear stress at
the inlet, and ρ is the density of the flow.

1. Boundary Conditions

There are several ways to specify or generate the inlet con-
ditions for a turbulent boundary layer in direct numerical sim-
ulations or large-eddy simulations. One possibility is to have
a laminar inflow and then ‘trip’ the boundary layer41 using
a roughness strip or a random force field. Such a proce-
dure however leads to a long transition zone and thus is not
the most efficient use of the computational domain. An al-
ternate approach involves re-scaling turbulence from down-
stream and/or using an auxiliary simulation to generate suit-
able turbulent inflow conditions42. A third possibility is to
employ a synthetic turbulence generator (STG) to provide ap-
propriate conditions at the inlet. A turbulent inflow profile
generated using the synthetic turbulence generator (STG) de-
scribed in Shur et al. 43 is adopted in the present work with
the statistics of a ZPG TBL at the desired Reynolds number
of Reθ = 1551 obtained from Jiménez et al. 44 . The STG of
Shur et al. 43 can be described as follows. The velocity at the
inlet is first decomposed into a mean and fluctuating compo-
nent

u(x, t) = Umean(x)+u′(x, t), (3)

where Umean(x) is the mean velocity profile and u′(x, t) is
the synthetic turbulent fluctuation that is defined such that
the second-moment tensor ⟨u′

i
u′

j
⟩ at the inlet is equal to the

Reynolds stress tensor at Reθ = 1551. The fluctuating com-
ponent is generated by superimposing N = 285 Fourier modes
such that the power spectrum of the kinetic energy of the re-
sulting vector follows a modified von Karman spectrum. For
more details regarding the implementation of the STG, the
reader is referred to Ref. 43.

To obtain the desired adverse-to-favorable pressure gradi-
ent, the top boundary condition is specified similarly to Ref.
45 as

u2(x1,L2, x3, t) = Vtop(x1), (4)

∂u1

∂x2

∣

∣

∣

∣

∣

x1,L2,x3,t

=
dVtop(x1)

dx1
, (5)

∂u3

∂x2

∣

∣

∣

∣

∣

x1,L2,x3,t

= 0, (6)

where the top wall-normal velocity is prescribed and the
streamwise and spanwise velocities adjust themselves by im-
posing a zero-vorticity condition, to avoid numerical oscilla-
tions. Following Ref. 46, the prescribed wall-normal velocity
Vtop(x1) follows a suction-blowing distribution described by

Vtop(x1) = −Vmax

x1− xb

σ2
b

exp















−
1
2

(x1− xb)2

σ2
b















+Vbleed. (7)

The strength of the pressure gradient is controlled by Vmax,
the streamwise extent of the separation bubble by σb, and the
streamwise location of the peak of the adverse-to-favorable
pressure gradient by xb. In addition, a small bleed velocity
Vbleed is imposed to ensure that the pressure gradient before
and after the separation bubble remains close to zero.

Furthermore, a no-slip boundary condition is imposed at
the wall (x2 = 0), periodic boundary conditions at x3 = 0 and
x3 = L3, and a stress-free boundary condition at the outlet
(x1 = L1), in order to allow the turbulent structures to leave
the computational domain smoothly.

B. Actuator

Since the goal of this work is to move high-momentum
LSMs toward the wall, it is essential to use an actuator that
can generate on-demand regions of downwash with sizes on
the order of the boundary layer thickness. Practical imple-
mentations of wall-mounted actuators that can actively gen-
erate downwash include active vortex generators47, dielectric
barrier discharge plasma actuators48 and jet-assisted surface-
mounted actuators31.

In the numerical simulations, the actuator is modeled as a
near-wall body force field (force per unit mass, i.e. accelera-
tion, in Eq. (1)) described by

f(x, t) = eϕg̃(x) f̃ (t). (8)

In the above:

• eϕ =
[

cos(ϕ) sin(ϕ) 0
]

is the direction of the force field,
which has a pitch angle toward the wall of ϕ = −π/3.
The angle is empirically chosen to create both near-wall
acceleration and flow toward the wall.

• g̃(x) is the spatial distribution of the force field, which
follows a Gamma distribution in the streamwise direc-
tion and a Gaussian distribution in the wall-normal and
spanwise directions, and is given by

g̃(x) =















g(x) if g(x) > 0.01,
0 otherwise,

(9)

where

g(x) =
x1− x1,J

σ1,J
· exp

(

1−
x1− x1,J

σ1,J

)

·

exp















−
1
2

x2
2

σ2
2,J















· exp















−
1
2

(x3− x3,J)2

σ2
3,J















, (10)
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force field, which is approximately 4δin, is chosen to corre-
spond to a typical length of an LSM. However, the stream-
wise length of the created downwash region can also be con-
trolled by the time the jet remains on, making the exact value
of σ1,J less critical. In the spanwise direction, σ3,J is cho-
sen to create downwash in a span of approximately δin. The
jet parameter with the most notable contribution to the perfor-
mance of the scheme is the power input, G, to the jet when
it is on (p(t) = G), which directly determines the strength of
the jet force field. The effect of the parameter G on the flow
reattachment is further studied in Section IV.

III. CONTROL SCHEME

A. Overview

The primary objective for separation delay is to increase
the near-wall momentum at the area where separation occurs.
One could formulate an optimal control problem where the
objective is to maximize the streamwise momentum at a loca-
tion downstream of the actuator. However, such a formulation
would not ensure that LSMs are considered when determining
the optimal control input, as the interaction of LSMs with the
actuator-induced flow field and the resulting streamwise mo-
mentum increase can be highly nonlinear and challenging to
model.

Since the present study aims to extract additional perfor-
mance gains by exploiting the energy contained in LSMs, a
surrogate optimal control problem is formulated. To render
the above control problem tractable using linear reduced-order
models, the objective of the surrogate optimal control problem
is defined as the maximization of the jet-induced downwash
experienced by the LSMs of interest (i.e., high-momentum
LSMs), along with the minimization of power consumption
(i.e., the amount of time the actuator is on). Specifically, the
controller is designed as a model predictive control scheme
with three main components: 1) detection of the LSMs of in-
terest, 2) prediction of LSM trajectories using Taylor’s hy-
pothesis, and 3) maximization of the downwash encountered
by the LSMs of interest along their predicted trajectory.

LSMs of interest are detected upstream of the actuator
within a measurement grid. The jet-induced wall-normal ve-
locity field near the actuator is modeled in a control grid using
a linear reduced-order model. With LSM measurements from
the measurement grid, LSMs in the control grid are predicted
using Taylor’s hypothesis. Then, the control input that solves
the surrogate optimal control problem is determined through
a binary optimization problem.

B. Measurement Grid

The first step of the control scheme is to detect the regions
of large-scale streamwise velocity fluctuations u′1 upstream of
the actuator. In the present work, the raw velocity fluctuations
u′1 are directly measured on a sub-sampled orthogonal grid lo-
cated directly upstream of the jet force field. This choice is

made to simplify the detection scheme and avoid potential er-
rors that could arise from estimating the location of LSMs in-
directly from wall shear stress or pressure measurements (e.g.,
Refs. 27 and 28). This measurement grid has 51×17×26 grid
points in the streamwise, wall-normal, and spanwise direc-
tions, respectively, and spans 5δin ×1.6δin ×2.5δin (Fig. 4). It
is centered at x3 = x3,J and spans from x1 = 27δin to x1 = 32δin.
Furthermore, the first grid point from the wall is located at
x2 = 0.2δin, such that only the logarithmic and outer layers
of the boundary layer contribute to the fluctuation measure-
ments. This is an important choice for prioritizing moving
high-momentum regions from the outer parts of the boundary
layer toward the wall rather than expending control efforts on
high-momentum regions already close to the wall.

1. Box Filtering

Once the velocity fluctuations u′1 at the measurement grid
have been obtained at a given time step, a box filter is applied
to the 3D measurement, such that the smaller scales are fil-
tered out, and only the largest scales remain. Here, the filter
of choice is the 7×7×7 uniform convolution kernel that is ap-
plied to the measurement u′1(t)[i, j,k] at each grid point [i, j,k]
as

ũ′1(t)[i, j,k] =
1
73

3
∑

m1=−3

3
∑

m2=−3

3
∑

m3=−3

u′1(t)[i+m1, j+m2,k+m3]

(15)

for i = 0, . . . ,100, j = 0, . . . ,16, and k = 0, . . . ,25. An exam-
ple of a 3D measurement of u′1 sub-sampled from the LES
grid to the measurement grid before and after applying the
box filter is given in Fig. 5. It can be seen that the filter-
ing operation leads to a u′1 velocity field where the large-scale
high and low momentum regions are clearly visible, while the
smaller scales, which are not of interest in the proposed con-
trol scheme, are eliminated.

An alternative filtering method for isolating the largest
scales in a flowfield snapshot is Gaussian filtering, which has
been used in works such as Refs. 33 and 49. However, a sim-
ple box filter like the one used in this work is deemed appro-
priate here due to its simplicity (only one parameter to tune,
i.e. the box size) and effectiveness in filtering out small-scale
structures.

C. Control Grid

The second part of the control setup is the control grid. The
control grid has the same size and number of grid points as
the measurement grid but is translated by 5δin downstream
relative to it. As a result, the control grid begins at x1 = 32δin,
i.e. where the measurement grid ends and the jet force field
begins, and both grids share the nodes at x1 = 32δin (Fig. 4).

The control grid is strategically placed to cover the imme-
diate neighborhood of the actuator, where the downwash is
created. The purpose of this grid is twofold. First, the LSMs
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FIG. 4: Control setup. The location and size of the measurement and control grids, along with an isosurface of the jet force
field distribution (g(x) = 0.01), are illustrated.

mean streamwise velocity at the given streamwise and wall-
normal location, i.e. Uc = Uc(x1, x2). This approximation has
been observed to be accurate for boundary layers, as long as
the velocity fluctuations u′ are relatively small33. Although
the convection velocity is typically assumed to be the mean
velocity profile, it has been observed through space-time cor-
relations of experimental flowfield measurements that the con-
vection velocity tends to be higher than the local mean near
the wall (up to the logarithmic layer) and smaller than the
mean in the outer logarithmic and wake regions50. Similar ob-
servations have also been made for channel flows34. However,
it is also expected that the actuator will induce an acceleration
in the streamwise component that will counteract the slower
convection of the outer LSMs. Therefore, the convection ve-
locity in this study is taken to be equal to the mean, before
actuation.

In practice, the proposed control scheme needs to take into
account the velocity fluctuations at the control grid over the
next few time steps, starting from the current time step, t. Let
u′1,M be the streamwise velocity fluctuations measured at the
measurement grid and u′1,C the predicted streamwise velocity
fluctuations at the control grid. The predicted value of u′1,C at
some future time step t+ k according to Taylor’s hypothesis
and using measurements up to time step t is

u′1,C(x1, x2, x3, t+ k) = u′1,M(x1−UcτTrom, x2, x3, t+ k−τ),
(17)

where the time delay τ is chosen such that

27δin ≤ x1−UcτTrom ≤ 32δin, (18)

t+ k−τ ≤ t, (19)

i.e. the measurement is coming from within the measurement
grid and has already been obtained. Furthermore, it is de-
sired that the most recent measurement is used, i.e. t+ k−τ is

maximized while still corresponding to an integer time step at
which a measurement was obtained. Note that the above time
steps correspond to reduced-order model timesteps.

An important aspect that needs to be considered is the influ-
ence of the filtering of streamwise velocity fluctuations on the
validity of Taylor’s hypothesis. Assuming that the actuator is
off, the correlation of the predicted streamwise velocity fluc-
tuations with the actual measurements obtained in the control
grid can be computed as

Ru′1u′1,C
(x1, x2,k) =

u′1u′1,C
√

(

u′1

)2
√

(

u′1,C

)2

, (20)

where u′1 is a sample of the exact streamwise velocity fluctua-
tions measured at the control grid at a timestep t+k and u′1,C a
sample of the velocity fluctuations predicted via Taylor’s hy-
pothesis using measurements up to timestep t. The operator
(·) denotes the time and spanwise average of the underlying
quantity. A similar correlation metric can be derived for the
filtered velocity components ũ′1 and ũ′1,C .

Figure 6 presents the correlation between the streamwise
velocity fluctuations measured at the control grid with those
predicted by applying Taylor’s hypothesis. This is done for
both the raw and filtered fluctuations from the measurement
grid, taking into account various distances from the wall (x2)
and prediction horizons. In every case, the correlation be-
tween the box-filtered u′1 at the control grid and the predictions
using the filtered u′1 from the measurement grid is consistently
higher than the predictions utilizing the raw u′1. Note that the
correlation at x1 = 32 tends to be lower than one the further
ahead in time (i.e., larger k) the prediction is made.

The correlations are calculated by averaging spanwise and
across a sample of 2000 different measurements for various
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E. Actuator Reduced-Order Model

After predicting the streamwise velocity fluctuations within
the control grid, the next step is to determine whether turning
the actuator on (p(t) = G) will create enough downwash at
high-momentum regions while avoiding low-momentum ones
and, at the same time, minimizing actuation effort. To ad-
dress this optimal control problem, a reduced-order model is
employed for the dynamics of the wall-normal velocity fluc-
tuations induced by the jet force field.

The u′2 dynamics within the control grid are modeled us-
ing total least squares dynamic mode decomposition with con-
trol (tlsDMDc). Dynamic Mode Decomposition (DMD)51,52

is a widely-used algorithm for analyzing and modeling the dy-
namics of fluid flows. The algorithm decomposes a complex,
high-dimensional system into a set of simple, linear, and dy-
namically evolving modes that describe the underlying struc-
ture and behavior of the system. This can provide insight
into the underlying physics of the system and facilitate the
development of predictive models that are useful for control
design53, among other tasks. The linear nature of DMD mod-
els makes them well-suited for linear optimal control tech-
niques, which can be implemented efficiently due to the low
order of the resulting system.

Since the jet force field is located within the turbulent
boundary layer, ensemble averaging of the training data is per-
formed to accurately separate the jet-induced wall-normal ve-
locity fluctuations from the background turbulence. The con-
trol input signal used to generate the jet response is repeated
multiple times and the resulting average of the wall-normal
velocity fluctuations is obtained. Averaging is also carried out
symmetrically across the spanwise-normal plane at x3 = 4δin
due to the symmetry of the jet force field.

However, performing LES multiple times to gather ensem-
ble responses is cost-prohibitive. As a result, only a limited
number of ensembles is collected, leading to a cleaner but still
noisy dataset for the jet-induced u′2. Throughout this study,
a total of 10 ensembles are used to compute a reduced-order
model for each of the presented control configurations. If the
remaining small-scale turbulence is treated as noise, then a
dynamic mode decomposition model that can handle noisy
datasets is needed.

In order to account for the presence of measurement and
process noise in the snapshot data, total least squares DMD
(tlsDMD) was proposed in Ref. 35, while a similar method,
named total DMD (TDMD), was proposed in Ref. 54. The
robustness to measurement and process noise of these noise-
aware variants of DMD makes them an attractive choice for
modeling a turbulent flow. However, neither of the above
methods can handle systems with control inputs. In this work,
tlsDMD is extended to systems with control inputs, follow-
ing a similar approach to Ref. 53. A reduced-order state-
space model of the actuator dynamics is obtained using the
“noisy” (turbulent) snapshots of wall-normal velocity fluctua-
tions within the control grid. The details of extending tlsDMD
to systems with control inputs are provided in Appendix A.

The training data for the present study consist of the wall-
normal velocity fluctuations at the control grid collected over

10 distinct LES, where the training input signal is repeated,
albeit with different background turbulence each time. The
snapshots are sampled every Trom = 10 LES time steps, or
∆t = 0.05δin/U∞, and the background turbulence is smoothed
by ensemble-averaging the 10 different sets of measurements,
as well as averaging around the symmetry plane x3 = 4δin.

It is important to note that the high computational cost of
LES, combined with the necessity to ensemble average snap-
shots to discern the actuator’s impact on the turbulent flow,
can make using a lengthy training input signal prohibitive. As
a result, the training input must be strategically selected to
extract the dominant modes the actuator is anticipated to dis-
play during operation. Specifically, since the jet will target
LSMs with spatial coherence on the order of the boundary
layer thickness δin, the actuator is expected to remain active
for periods on the order of δin/U∞. For that reason, the train-
ing input is chosen to consist of three pulses with durations
of 2δin/U∞, 4δin/U∞, and 6δin/U∞, ensuring sufficient time
between each pulse for the jet-induced flowfield to subside.

The control input used to generate the training data is
shown in Fig. 7a. An additional validation dataset is ob-
tained using a control input consisting of a different set of
three random-width pulses, also shown in Fig. 7a. Both
datasets contain 560 snapshots. The ability of the computed
tlsDMDc models to predict the wall-normal velocity fluctu-
ations at the control grid is evaluated on both the training
and validation data. Specifically, using the control input of
each dataset (training and validation), a 560-time-step predic-
tion is made using the linear reduced-order model and a zero
initial condition, and the average error between the predicted
flowfield, ypred(k), and the exact flowfield, yexact, obtained by
ensemble-averaging, is computed and normalized by the av-
erage snapshot in each dataset. The errors are given in Fig.
7b. Even though the relative errors appear to be large due to
the unmodeled small-scale structures that are present in the
snapshots, qualitatively, the predictions appear to agree with
the large-scale influence of the jet. This is demonstrated in
Fig. 8, where the predicted velocity field u′2 (which does
not include small-scale turbulence) compares favorably with
an ensemble-averaged snapshot, where small scales are still
present, despite the ensemble-averaging. Due to the need for
computational efficiency when executing the proposed control
algorithm, a model with nz = 7 modes is selected as a compro-
mise between prediction accuracy and model order.

F. Optimal Output Tracking Controller

With both the streamwise velocity fluctuations and the dy-
namics of the wall-normal velocity induced by the jet on the
control grid nodes known, finding the control input that max-
imizes the downwash encountered by high-momentum LSMs
can be expressed as follows.
Problem Formulation: Among the admissible control poli-
cies πt =

{

p(t), · · · , p(t+Nmpc−1)
}

, such that p(k) ∈ {0,G}
for all k = t, . . . , t + Nmpc − 1, find an optimal control policy
π∗t =

{

p∗(t), · · · , p∗(t+Nmpc−1)
}

that solves the optimization
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The optimized control input is then applied to the system, and
the process is repeated at frequent time steps.

In the proposed scheme, the two quantities of interest
within the control grid are: the streamwise velocity fluctua-
tions, which are predicted using Taylor’s hypothesis, and the
jet-induced wall-normal velocity, which is estimated using the
tlsDMDc reduced-order model. To solve the optimal out-
put tracking control problem, these predictions are utilized to
identify the optimal input that maximizes the overlap between
downwash and LSM within the control grid. The optimization
process yields the optimal input, which is then implemented in
the LES until new measurements are obtained, at which point
the procedure is repeated. The MPC algorithm for targeting
LSMs is given in Algorithm 1.

The optimal control problem is solved over a horizon of
Nmpc = 50 ROM time steps, which corresponds to a time
horizon of ∆t = 2.5δin/U∞. However, new measurements
are taken into account every Nmeas = 5 ROM time steps, or
∆t = 0.25δin/U∞. As a result, the optimal input from each op-
timization step is applied only for the first ∆t = 0.25δin/U∞
before the optimal control problem is resolved using the up-
dated measurements. Figure 9 provides a visual representa-
tion of the distinct timelines involved in the MPC algorithm.

The rationale behind selecting the aforementioned time
steps is twofold. First, the MPC horizon is chosen to be suf-
ficiently long to accommodate any actuation delays, as the jet
force field does not generate downwash instantaneously. Sec-
ond, the frequency at which new LSM measurements are con-
sidered, and consequently, the optimal input is updated, is de-
termined to be frequent enough to account for medium-scale
motions (e.g., with streamwise lengths of less than δin) but not
so frequent that the computational cost becomes prohibitively
high. Comprehensive investigations on the impact of these
two time scales have led to the adoption of the specified time
horizons.

IV. RESULTS

The control scheme presented in Section III is implemented
in the LES of Section II. The focus is on targeting high-

momentum LSMs to increase the near-wall momentum and
reduce the size of the separation bubble. To evaluate the per-
formance of the proposed scheme, four control schemes are
considered, as shown in Table III.

TABLE III: Actuation schemes being compared in the
present study.

Scheme Targets Power Input Duty Cycle

Targeting fast LSMs ũ′1 > 0 G 0.5±0.01
Targeting slow LSMs ũ′1 < 0 G 0.5±0.01
Random actuation ũ′1 > 0 and ũ′1 < 0 G 0.5±0.02
Constant actuation ũ′1 > 0 and ũ′1 < 0 0.5×G 1.0

The control inputs for the fast and slow LSM targeting cases
are denoted by p∗

F
and p∗

S
, respectively, where the superscript

∗ indicates optimality with respect to Problem (21). For the

Algorithm 1 Model Predictive Control of LSMs

1: procedure MpcOfLsms(Nmpc, Nmeas, Trom, A,B,C,r,Q)
2: z̃(0)← 0
3: for i = 0, 1, . . . do

4: t← ⌊i/Trom⌋ ▷ Integer division of i by Trom

5: if i mod (Nmeas ∗Trom) == 0 then

6: ▷ Detect LSMs
7: Measure u′1 on Measurement Grid
8: ũ′1← filtered u′1
9:

10: ▷ Predict LSMs on Control Grid
11: for j = 1, . . . ,Nmpc do

12: ũ′1,T (t+ j)← Taylor’s hypothesis on ũ′1 for j steps
13: end for

14:
15: ▷Map predicted fluctuations to desired ROM output
16: for j = 1, . . . ,Nmpc do

17: ydes(t+ j)←−λũ′1,T (t+ j)
18: end for

19:
20: ▷ Solve optimal output tracking control problem
21: p∗(t), . . . , p∗(t+Nmpc −1)←OTC

(

A,B,C,r,Q, z̃(t),ydes

)

22:
23: ▷ Propagate ROM by Nmeas time steps
24: for j = 0, . . . ,Nmeas −1 do

25: z̃(t+ j+1)← Az̃(t+ j)+Bp∗(t+ j)
26: end for

27: end if

28: Apply control input p∗(t) in Large Eddy Simulation
29: end for

30: end procedure

random and continuous actuation cases, the control inputs are
denoted as pR and pC , respectively.

In all cases, the synthetic turbulent inflow condition is the
same, meaning that all cases are expected to encounter the
“same” turbulence – at least up to the proximity of the con-
trol jet, near which the flow structures are affected by the jet.
Targeting slow LSMs is considered the “opposite” of target-
ing fast LSMs. The control inputs for the two cases tend to be
the opposite of each another, as one would expect: when the
jet is on in one case, the jet in the other case is off. Switching
to slow targets from fast ones can be done by setting λ < 0 in
(22). In both of these cases, if the control scheme is applied
for long enough (e.g., > 500δin/U∞), the average optimal con-
trol input converges to 0.5G. This is expected since about half
of the domain should contain fast LSMs and the other half
slow LSMs.

For the random actuation case, a random binary signal with
an average value of 0.5G is used. To generate an input that
is qualitatively similar to the fast and slow targeting cases but
not correlated with the presence of LSMs in the control grid,
a random signal is generated using the power spectral density
(PSD) of p∗

F
and p∗

S
. Since both control inputs have (approxi-

mately) the same frequency content, Welch’s method56 is used
to compute the PSD of p∗

F
and p∗

S
. Then, a random continuous

signal p̃R is generated using the computed PSD. Finally, p̃R is
converted to a binary signal by setting pR = G if p̃R > 0 and
pR = 0 otherwise. This leads to a control input that is qualita-
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Time
Run MPC

NresTromdt= 0.25 in/U
Apply *

NmpcTromdt= 2.5 in/UMPC Horizon

FIG. 9: The MPC horizon compared to the frequency with which the MPC problem is resolved.

tively similar to the optimal inputs p∗
F

and p∗
S

but with a low
correlation to either of the two signals.

The final case considered is a continuously actuated jet, i.e.,
a jet that is constantly on, albeit at 50% the strength of the
other three cases. In other words, pC = 0.5G for all time steps
t. The reduction of the continuous jet strength by 50% is moti-
vated by the fact that in all other cases, the duty cycle is 50%,
whereas the continuous jet is always on. The control inputs
for each case over a total test time of 800δin/U∞ (i.e. 10 flow-
through times) are given in Fig. 10

In addition to the control input, another important parame-
ter that is explored is the power input G, which controls the
overall strength of the jet. Three power input values are con-
sidered, as shown in Table IV.

TABLE IV: Power inputs considered in the present study.

Case Power Input G

Weak Jet 0.01
Baseline Jet 0.02
Strong Jet 0.03

For each power input, all four actuation schemes are imple-
mented, resulting in a total of 12 cases in addition to the case
with no actuation. Each case is run for a total of 800δin/U∞,
corresponding to 10 flow-through times, with each simulation
consuming approximately 100000 CPU hours.

A. Validation of the Control Scheme

In order to ensure that the control scheme is indeed tar-
geting high-momentum LSMs, a separate simulation is run,
where the streamwise velocity fluctuations, u′1, are condition-
ally averaged only when p∗

F
> 0, i.e., when fast LSMs are tar-

geted. However, no actuation occurs in order to avoid pol-
luting the conditionally-averaged flowfield with the effects of
the jet. This conditional average, ⟨u′1⟩p>0, is illustrated in Fig.
11. It can be seen that upstream and close to the center of
the jet, the average velocity fluctuations are positive, i.e., they
correspond to fast LSMs. Conversely, slow LSMs are seen on
the sides of the jet. The presence of fast LSMs upstream of
the location of the jet force field also indicates that the con-
trol scheme is taking into account the delay between the jet
turning on and downwash being created. This confirms that,
indeed, the control scheme targets high-momentum LSMs, as
expected.

B. Mean Effect on Separation

While the flow is homogeneous when no actuation is
present, the introduction of the jet in the middle (spanwise) of
the domain breaks the homogeneity in the x3 direction due to
the inhomogeneity of the body force field but introduces sym-
metry around the x3 = 4δin plane. Therefore, in order to cap-
ture the mean effect that the actuation scheme has on the flow,
the time and symmetry averaged flow is considered, leading
to a total time horizon for averaging of 1600δ/U∞.

First, the reduction of the time-average separation bubble
is considered. For each case, both the volume of the reverse
flow,

V =

∫

V

I(⟨u1⟩ < 0)dV (24)

and the area of negative streamwise wall shear stress on the
wall

A =

∫

Aw

(

∂⟨u1⟩

∂x2

∣

∣

∣

∣

∣

x2=0
< 0

)

dAw (25)

are computed, in δin2 and δin3 units, respectively. In the above,
V is the computational (3D) volume,Aw is the surface of the
2D wall and I(a) is the indicator function such that,

I(a) =















1, if a is true
0, otherwise.

(26)

The results of the above values for each case are given in
Fig. 12. The mean and standard deviation values presented are
the statistics of a windowed-average approach, where mean
values are obtained for two cases: a window from t = 0 to t =

560δin/U∞ and another from t = 240δin/U∞ to t = 800δin/U∞.
The window length is long enough (7 flow-through times) to
ensure that the average duty cycle in all cases is 50%. How-
ever, due to the large computational cost of the simulations,
obtaining statistics for a larger number of windows is imprac-
tical.

For the baseline case, targeting fast LSMs leads to the
biggest decrease in both the separation volume and area. In
particular, there is an approximately 42% decrease in the av-
erage separation volume and 38% in the separation area, com-
pared to 28% and 25.0% for the slow targets, respectively. De-
creasing the strength of the jet G leads to targeting fast LSMs
performing better than the other actuation schemes in decreas-
ing the volume of separation, but the decrease in the separated





















Separation Delay in Turbulent Boundary Layers via Model Predictive Control of Large-Scale Motions 22

Eqs. (A2a) - (A2b) are also reduced as

Z = UT
PODY, Z′ = UT

PODY′,

where Z,Z′ are the POD mode amplitude matrices for the
training data in Eqs. (A2a) and (A2b).

Like DMDc53, it is assumed that the dynamics of the high-
dimensional system are linear. Hence, the POD mode ampli-
tudes z(k) also follow a linear state-space model, as the POD
projection is linear. The reduced-order model has the form

z(k+1) = Az(k)+Bp(k)+ e(z(k),p(k),w(k)), (A4)

where A ∈Rnz×nz and B ∈Rnz×np are the state and control tran-
sition matrices and e(·) represents the error from the unmod-
eled nonlinear dynamics and process noise.

Following Ref. 35, in order to account for the noise in the
data, it is assumed that the snapshots (Eqs. (A2a) and (A2b))
can be decomposed in a mean and noise part as

Y = Ȳ +EY , Y′ = Ȳ′+EY′

where Ȳ , Ȳ′ are the mean snapshots and EY , EY′ are the noise
terms. After projection on the POD modes, the reduced-order
snapshots become

Z = Z̄+EZ , Z′ = Z̄′+EZ′ .

According to Ref. 35, the least-squares minimization ap-
proach typically used in DMD (and, consequently, DMDc)
accounts only for the noise EZ′ in the plus-one time step data
Z′, leading to a bias in the estimate of the dynamics that de-
pends on EZ . Alternatively, one can use total least-squares
DMD to account for the noise in both Z and Z′. The approxi-
mation of the dynamics can be expressed as

Z̄′+EZ′ = A(Z̄+EZ)+BP (A5)

and the error in both components can be minimized simulta-
neously by solving the least-squares minimization problem

min
A,B

∥

∥

∥

∥

[

EZ EZ′

]

∥

∥

∥

∥

2

F
. (A6)

Equation (A5) can be reformulated as

[

A B −I
]



















Z̄+EZ

P

Z̄′+E′
Z



















= 0 (A7)

and the solution to Eq. (A6) can be computed using the trun-
cated SVD



















Z̄+EZ

P

Z̄′+E′
Z



















= UΣnz+1V∗ =

[

U11 U12
U21 U22

] [

Σ1 0
0 0

] [

V1
V2

]

where only the first nz +1 singular values are kept, leading to
an unbiased estimate of A and B

[

A B
]

= U21U−1
11 . (A8)

The final outcome of tlsDMDc is a reduced-order state-space
model of the form

z(k+1) = Az(k)+Bp(k) (A9a)

y(k) =Cz(k) (A9b)

where z(k) is the reduced-order state, p(k) the control input,
and y(k) the original, high-dimensional state (e.g., the flow-
field), with C = UPOD.

Notice that in the above total least-squares optimization,
only the noise in Z and Z′ is minimized, since the control in-
put matrix P is noise-free (e.g. a sequence of zeros and ones).
The above is an extension of tlsDMD to systems with control
inputs (tlsDMDc).

Appendix B: Formulating the Optimal Output Tracking

Controller as a Semi-Definite Program

Since the reduced-order system of Eq. (A9) is time-
invariant, without loss of generality, consider t = 0. The goal
of the optimal tracking control problem is to find the sequence
of inputs π∗0 = {p

∗(0), . . . , p∗(N −1)} that solves the optimiza-
tion problem (21).

Instead of minimizing the cost function of Problem (21),
alternatively, one can minimize

J1(π) = πTRπ+υTQυ−2υTφ (B1)

where

π :=

























p(0)
...

p(N −1)

























, υ :=

























y(1)
...

y(N)

























, φ :=

























Qydes(1)
...

Qydes(N)

























,

R := bdiag{R, . . . ,R}, Q := bdiag{Q, . . . ,Q},

and bdiag{A1, . . . ,Ap} denotes the block diagonal matrix with
the matrices Ai as its diagonal blocks.

From Eqs. (A9a) and (A9b), and with initial condition
z(0) = z0, the sequence of outputs can be written as

y(1) =Cz(1)

=CAz0+Cp(0)

y(2) =Cz(2)

=CA2z0+CABp(0)+CBp(1)

...

y(N) =Cz(N)

=CANz0+CAN−1Bp(0)+ · · ·+CBp(N −1)

or, more compactly, as

υ =Ωz0+Γπ, (B2)

with Ω,Γ defined as

Ω :=

























CA
...

CAN

























, Γ :=

























CB · · · 0
...

. . . 0
CAN−1B · · · CB

























.
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Eq. (B2) can now be used to replace υ in Eq. (B1) and derive
a cost function that depends only on the input vector π,

J(π) = πT
[

Γ
TQΓ+R

]

π+2πT
Γ

T (QΩz0−φ) , (B3)

where the factors that are independent of π have been omitted.
The output tracking problem with input constraints can

now be expressed as the following unconstrained binary

quadratic program (BQP):

minimize
π

πTHπ+πTf

subject to π ∈ {0, 1}N
(B4)

where

H = ΓTQΓ+R, f = 2ΓT (QΩz0−φ) .

The problem of solving a BQP like (B4) is known to be
NP-hard55, meaning it is computationally difficult to find an
optimal solution. However, various optimization algorithms
and heuristics have been developed to solve BQPs, including
branch and bound, simulated annealing, genetic algorithms,
and semi-definite programming66.

If π ∈ RN , then problem (B4) can be relaxed to a quadrat-
ically constrained quadratic program (QCQP) with the addi-
tion of the constraint p(k) = p2(k), or

minimize
π

πTHπ+πTf

subject to π = diag(ππT).
(B5)

If Π = ππT, further relaxation to a semi-definite program of
the form

minimize
π

trace(HΠ)+πTf

subject to π = diag(Π)
(

1 πT

π Π

)

≽ 0.

(B6)

can be achieved using the Schur complement. The above
problem can then be solved efficiently using, for instance, in-
terior point methods.
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