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Turbulent boundary layers are dominated by large-scale motions (LSMs) of streamwise momentum surplus and deficit
that contribute significantly to the statistics of the flow. In particular, the high-momentum LSMs residing in the outer
region of the boundary layer have the potential to re-energize the flow and delay separation if brought closer to the wall.
This work explores the effect of selectively manipulating LSMs in a moderate Reynolds number turbulent boundary
layer for separation delay via well-resolved large-eddy simulations. Toward that goal, a model predictive control scheme
is developed based on a reduced-order model of the flow that directs LSMs of interest closer to the wall in an optimal
way via a body force-induced downwash. The performance improvement achieved by targeting LSMs for separation
delay, compared to a naive actuation scheme that does not account for the presence of LSMs, is demonstrated.

l. INTRODUCTION

Studies on the structure of wall-bounded turbulent flows
have led to the observation of large-scale and very-large-scale
motions (LSMs/VLSMs) that exhibit long temporal and spa-
tial coherence of the streamwise velocity fluctuations in the
order of the boundary layer thickness. These large coher-
ent structures are commonly found in the log and outer re-
gion of zero pressure gradient (ZPG) turbulent boundary lay-
ers (TBLs)'=, as well as pipe®’ and channel flows®® and are
typically formed by the coherent alignment of hairpin vortices
in the streamwise direction into groups of hairpins'”.

These LSMs are typically encountered as regions of mo-
mentum deficit, surrounded by regions of momentum surplus,
extending a few times the boundary layer thickness § in the
streamwise direction. The fast and slow LSMs are critical in
producing and transporting turbulent kinetic energy and con-
tribute significantly to the Reynolds shear stresses.

In TBLs subject to adverse pressure gradients (APG),
which are often encountered in real engineering applications,
such as airfoils, turbine blades, and diffusers, the prevail-
ing contribution of LSMs on the flow statistics has also been
reported!'~'*.  Studies have found that the length of LSMs
tends to increase with increasing APG up until a point where a
continuing increase of APG suppresses the formation of hair-
pin packets, leading to a decrease in the streamwise but an
increase in the spanwise coherence of LSMs!>.

Considering the significant role that LSMs play in turbulent
flows, the present study proposes a novel flow control strategy
in which separation delay is achieved by manipulating natu-
rally occurring LSMs in a turbulent boundary layer. While
previous studies have attempted to manipulate both near-wall
structures'®!° and LSMs in the logarithmic region?>?! for
drag reduction, the potential of targeting LSMs — especially
the high-momentum LSMs — for separation delay has only re-
cently been explored???3. Increasing the near-wall momen-
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tum just before the separation point can be beneficial to de-
laying or preventing separation, and selectively directing these
high-momentum LSMs toward the wall has the potential to in-
crease wall shear stress, as well as mixing near the wall?>?*,
The present study aims to manipulate high-momentum LSMs
in an APG TBL by bringing them closer to the wall to re-
energize the near-wall boundary layer and prevent separation.
This is in contrast to recent separation delay studies using,
for instance, synthetic jet actuators> and dielectric barrier
discharge actuators®® that do not account for the presence of
LSMs in the flow.

Such an active control scheme requires 1) detecting the
LSMs of interest (e.g., using wall shear stress or pressure
measurementsZ’~2?) and 2) deciding whether and when to ac-
tuate on the oncoming LSMs.

The present work is the first numerical study that explores
the effect that manipulating LSMs has on separation delay in
an adverse pressure gradient turbulent boundary layer. It em-
ploys well-resolved large-eddy simulations (LES) of a moder-
ate Reynolds number APG TBL of Rey = 1551 based on the
momentum thickness 6 at the inlet. Actuation is performed
using a near-wall jet modeled as a body force field with a
Gamma distribution in the streamwise direction and a Gaus-
sian distribution in the wall-normal and spanwise directions,
inspired by the effect that dielectric barrier plasma actuators>?
and jet-assisted surface mounted actuators®>' have on entrain-
ing flow toward the wall. In the interest of simplicity, the
LSMs are detected upstream of the actuator via box-filtering
of the 3-dimensional streamwise velocity fluctuations within
an oftf-wall observation grid. That is, in the present work,
the more difficult problem of detecting low/high-momentum
LSMs using wall measurements, such as in Refs. 27-29, is
sidestepped.

The decision of whether to actuate on an oncoming LSM
is made via a model predictive control (MPC) policy that: 1)
predicts how an LSM that has been detected upstream will
move downstream toward the actuator using Taylor’s hypoth-
esis'3273% and 2) solves an optimal output tracking control
problem for a binary on/off input to the actuator that maxi-
mizes the downwash experienced by an LSM of interest (here,
fast-moving LSMs) while avoiding the opposite (i.e., low-
momentum) LSMs and minimizing actuation cost. Since this
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is a model-based control scheme, the wall-normal velocity
field that the jet creates is modeled using total least squares
dynamic mode decomposition®, extended here to systems
with control inputs. This is in contrast to Ref. 21, where a
wall-normal jet operated by a heuristics-based control policy
was used to push fast-moving LSMs away from the wall with
the goal of reducing drag in an experimental ZPG TBL.

The choice to selectively target high-speed LSMs for in-
creasing near-wall momentum instead of utilizing blind actu-
ation schemes, such as periodic blowing, is driven by two key
factors. First, there is a need for an optimal control scheme
that conserves energy by operating only when required. Sec-
ond, a blind actuation scheme would bring both high and low-
momentum LSMs toward the wall, which could contribute ad-
versely to the desired momentum increase. The proposed con-
trol scheme not only re-energizes the flow near the wall with
the momentum introduced by the actuator but also “reaps the
whirlwind” of high-momentum LSMs that exist in the outer
regions of the boundary layer, therefore supplementing the ef-
fect that a potentially weak actuator has on the flow.

The proposed actuation scheme is evaluated on its ability
to increase near-wall momentum downstream of the actuator
and at locations on the verge of or actually experiencing sep-
aration. For the APG LES, the prescribed wall-normal veloc-
ity at the top of the domain follows a blowing-suction pro-
file that leads to an adverse-to-favorable pressure gradient and
creates a separation bubble. The control scheme is extensively
tested for its effectiveness in reducing the size of the separa-
tion bubble and delaying separation. The evaluation primarily
focuses on the advantage of targeting high-momentum LSMs
and pushing them toward the wall, compared to targeting low-
momentum LSMs or employing random or continuous actua-
tion strategies.

The paper is structured as follows: Section II presents the
computational setup for the large-eddy simulation of a turbu-
lent boundary layer with a separation bubble, as well as the
actuator model. Section III details the proposed model predic-
tive control scheme for targeting LSMs. Section IV showcases
a series of numerical experiments that highlight the effective-
ness of the proposed control scheme. Finally, conclusions and
potential future directions for this work are discussed in Sec-
tion V.

Il. NUMERICAL SETUP
A. Large-Eddy Simulations

This study employs well-resolved large-eddy simulations
(LES) of the turbulent flow over a flat plate. The incompress-
ible Navier-Stokes and continuity equations

du
- . -_V
” +(u-V)u p+ Res

in

V-u=0 2)

V- (Va)+f (1

are non-dimensionalized by the free-stream velocity, U, and
the nominal 99% boundary layer thickness dj, at the inlet. The

TABLE I: Nomenclature.

Symbol [ Description

Us free-stream velocity

Oin 99% boundary layer thickness at the inlet

% momentum thickness

N quantity in the streamwise direction

)2 quantity in the wall-normal direction

)3 quantity in the spanwise direction

X; coordinate in the i-th direction

L; length of computational domain in the i-th direction
N; number of elements in the i-th direction

u; velocity in the i-th direction

u; velocity fluctuation in the i-th direction

i filtered velocity fluctuation in the i-th direction

Ur friction velocity

v kinematic viscosity

Viieea | constant wall-normal velocity at the top of the domain
Viop(x1) | wall-normal velocity at the top of the domain and at x;
Xp center of the Vy,, velocity profile

ap standard deviation of the V,, velocity profile

ey direction of the jet force field

f jet body force field

g@) spatial distribution of jet force field

G jet power input

XiJ center of the jet force field distribution in the i-th direction
o standard deviation of the jet force field in the i-th direction
¢ pitch angle of the jet force field

p(?) control input at time step t

y(?) u’2 at the control grid at time step t (vectorized)

z(1t) reduced-order state at time step t

m number of snapshots

np number of control inputs

ny number of control grid points

n; number of reduced-order model states

dt LES timestep

Nimpe MPC horizon in number of ROM timesteps

Nieas |LSM measurement frequency, in number of ROM timesteps

Trom number of LES timesteps corresponding to one ROM timestep

Ydes(t) |desired u} at the control grid at time step t (vectorized)

iy optimal control policy computed at time step t

position X = [x;, x2, x3] and velocity u = [u], up, uz] vectors
consist of their streamwise, wall-normal, and spanwise com-
ponents, respectively. The Reynolds number based on d;, is
Res, = 13191 and corresponds to a momentum thickness 6-
based Reynolds number of Rey = 1551. In addition, the accel-
eration term f is included and subsequently used to model the
desired behavior of the actuator.

The streamwise length of the domain is L; = 80di,, the
height is L, = 100;, and the spanwise extent is L3z = 8di,. The
governing equations are solved using the high-order spectral
element solver Nek50003%37. The domain is decomposed into
N; =260, N, =26, and N3 = 40 elements in the streamwise,
wall-normal, and spanwise directions. Within each element,
both the velocity and pressure fields are expressed as Legen-
dre polynomials of order N =7 (Py — Py formulation). Time
integration is performed via an implicit-explicit second-order
backward difference (BDF) scheme with extrapolation for the
nonlinear terms, with a time step of df = 0.0056i,/Uc.
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The LES scheme uses a relaxation-term filter to dissi-
pate the smallest, unresolved turbulent scales3. This high-
order filter acts directly on the resolved velocity components,
u, affecting only the small scales in the flow while leaving
the larger scales unaffected®. The resolution of the grid in
the streamwise and spanwise directions is x| ~ 27.5 and
6xj ~ 16.5, respectively, while the distance of the first (Gauss-
Lobatto-Legendre) node from the wall is 6x£w ~ 1.0. Hence,
the resolution corresponds to a well-resolved LES, similar
to*?. The superscript “+” denotes quantities scaled in terms of
the viscous length [ = v/u;, where v is the kinematic viscosity,
ur: = +/7y/p the friction velocity, 7,, the wall shear stress at
the inlet, and p is the density of the flow.

1. Boundary Conditions

There are several ways to specify or generate the inlet con-
ditions for a turbulent boundary layer in direct numerical sim-
ulations or large-eddy simulations. One possibility is to have
a laminar inflow and then ‘trip’ the boundary layer*' using
a roughness strip or a random force field. Such a proce-
dure however leads to a long transition zone and thus is not
the most efficient use of the computational domain. An al-
ternate approach involves re-scaling turbulence from down-
stream and/or using an auxiliary simulation to generate suit-
able turbulent inflow conditions*?. A third possibility is to
employ a synthetic turbulence generator (STG) to provide ap-
propriate conditions at the inlet. A turbulent inflow profile
generated using the synthetic turbulence generator (STG) de-
scribed in Shur er al.*3 is adopted in the present work with
the statistics of a ZPG TBL at the desired Reynolds number
of Rey = 1551 obtained from Jiménez et al.**. The STG of
Shur et al. ** can be described as follows. The velocity at the
inlet is first decomposed into a mean and fluctuating compo-
nent

u(x, 1) = Upean(x) +0'(X, 1), 3)

where U,,eqn(X) is the mean velocity profile and u’(x,f) is
the synthetic turbulent fluctuation that is defined such that
the second-moment tensor (ulfu;.) at the inlet is equal to the
Reynolds stress tensor at Rey = 1551. The fluctuating com-
ponent is generated by superimposing N = 285 Fourier modes
such that the power spectrum of the kinetic energy of the re-
sulting vector follows a modified von Karman spectrum. For
more details regarding the implementation of the STG, the
reader is referred to Ref. 43.

To obtain the desired adverse-to-favorable pressure gradi-
ent, the top boundary condition is specified similarly to Ref.
45 as

ur(x1, L2, x3,1) = Vigp(x1), 4
% _ dvtop(xl)’ (5)
0x2 | x) 1p.33.0 dx
0
= =0, (©6)

X2 lxy,Ly,x3,1

where the top wall-normal velocity is prescribed and the
streamwise and spanwise velocities adjust themselves by im-
posing a zero-vorticity condition, to avoid numerical oscilla-
tions. Following Ref. 46, the prescribed wall-normal velocity
Viop(x1) follows a suction-blowing distribution described by

Vtop(xl) = —Vinax

o2 2 o2

X1 —Xp [ 1 (x1 —xp)?
exp| —= ————
b b

)+ Vioteea-  (7)

The strength of the pressure gradient is controlled by V,,4x,
the streamwise extent of the separation bubble by o7, and the
streamwise location of the peak of the adverse-to-favorable
pressure gradient by x;. In addition, a small bleed velocity
Viiced 15 imposed to ensure that the pressure gradient before
and after the separation bubble remains close to zero.

Furthermore, a no-slip boundary condition is imposed at
the wall (x, = 0), periodic boundary conditions at x3 = 0 and
x3 = L3, and a stress-free boundary condition at the outlet
(x1 = Ly), in order to allow the turbulent structures to leave
the computational domain smoothly.

B. Actuator

Since the goal of this work is to move high-momentum
LSMs toward the wall, it is essential to use an actuator that
can generate on-demand regions of downwash with sizes on
the order of the boundary layer thickness. Practical imple-
mentations of wall-mounted actuators that can actively gen-
erate downwash include active vortex generators*’, dielectric
barrier discharge plasma actuators*® and jet-assisted surface-
mounted actuators’!.

In the numerical simulations, the actuator is modeled as a
near-wall body force field (force per unit mass, i.e. accelera-
tion, in Eq. (1)) described by

£(x,1) = €,3(x)f (). (8)
In the above:

°ey= Lcos(¢) sin(¢) O] is the direction of the force field,
which has a pitch angle toward the wall of ¢ = —n/3.
The angle is empirically chosen to create both near-wall
acceleration and flow toward the wall.

e 3(x) is the spatial distribution of the force field, which
follows a Gamma distribution in the streamwise direc-
tion and a Gaussian distribution in the wall-normal and
spanwise directions, and is given by

. g(x) if g(x)>0.01,
X) = 9
§x) {0 otherwise, ©)
where
o(x) _Xi-xiy -exp(l ! —xu).
g1,J 1,7
1 3 1 (x3—x3.)2
exp[—i%]-exp[—iw], (10)
920 03
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FIG. 1: Numerical Setup.
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FIG. 2: Grid independence study. Velocity profiles at
different x; locations upstream and near the separation
bubble. (a) Mean streamwise velocity. (b) Mean wall-normal
velocity. The grid sizes indicate the number of elements in
each direction (e.g., 260 x 24 x 40 corresponds to Nj = 260,
N, =24, and N3 = 40).

with x; = [xu 0 x3,1] the location of the jet and oy j,
02,j, 03,j the positive scalars that control the stream-
wise, wall-normal and spanwise extent of the jet.

e f(1) is the scalar-valued function of time that controls
the magnitude of the overall force field such that the

power input is constant and equal to p(7).

The control input to the actuator is a binary time-varying
signal p(f) € {0,G} that controls whether or not a constant
amount of power will be added to the flow at each time step.
In particular, since the power p(¢) is defined as

p(f) = f of(x,1)-u(x,H)dV (1D)
%

= f(op fv 2(x)es - u(x,HdV (12)

= @I, (13)

where /(7) is the volumetric integral of the power per unit force
f(®), then

F@ = p@/1(). (14)

The model predictive control scheme presented in this work
aims to determine the optimal control policy that the input sig-
nal p(¢) has to follow, such that only high-momentum LSMs
will be moved toward the wall. When the jet is on (p(?) = G),
the ¢ = —m/3 pitch angle of the force field leads to the accel-
eration of the flow both downstream and toward the wall. A
localized region of downwash (u’2 <0, Fig. 3) is created near
the core of the force field that then travels downstream. At the
same time, two smaller lobes of upwash («, > 0) are created
on both sides of the downwash. Depending on how long the
jet force field remains on, longer or shorter regions of down-
wash can be created.

TABLE II: Jet force field parameters.

|G X1y x35 01y 02y 035 &
Baseline|0.02 32 4 05 04 03 -n/3

The baseline actuator force field parameters are given in Ta-
ble II. The height of the force field, controlled by o ; is cho-
sen such that the region of strong downwash (u/, < —0.025)
extends to the outer region of the boundary layer, where the
LSMs of interest can be found. The streamwise extent of the
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force field, which is approximately 4d;,, is chosen to corre-
spond to a typical length of an LSM. However, the stream-
wise length of the created downwash region can also be con-
trolled by the time the jet remains on, making the exact value
of o1y less critical. In the spanwise direction, 073 ; is cho-
sen to create downwash in a span of approximately ¢j,. The
jet parameter with the most notable contribution to the perfor-
mance of the scheme is the power input, G, to the jet when
it is on (p(¢) = G), which directly determines the strength of
the jet force field. The effect of the parameter G on the flow
reattachment is further studied in Section IV.

lll. CONTROL SCHEME
A. Overview

The primary objective for separation delay is to increase
the near-wall momentum at the area where separation occurs.
One could formulate an optimal control problem where the
objective is to maximize the streamwise momentum at a loca-
tion downstream of the actuator. However, such a formulation
would not ensure that LSMs are considered when determining
the optimal control input, as the interaction of LSMs with the
actuator-induced flow field and the resulting streamwise mo-
mentum increase can be highly nonlinear and challenging to
model.

Since the present study aims to extract additional perfor-
mance gains by exploiting the energy contained in LSMs, a
surrogate optimal control problem is formulated. To render
the above control problem tractable using linear reduced-order
models, the objective of the surrogate optimal control problem
is defined as the maximization of the jet-induced downwash
experienced by the LSMs of interest (i.e., high-momentum
LSMs), along with the minimization of power consumption
(i.e., the amount of time the actuator is on). Specifically, the
controller is designed as a model predictive control scheme
with three main components: 1) detection of the LSMs of in-
terest, 2) prediction of LSM trajectories using Taylor’s hy-
pothesis, and 3) maximization of the downwash encountered
by the LSMs of interest along their predicted trajectory.

LSMs of interest are detected upstream of the actuator
within a measurement grid. The jet-induced wall-normal ve-
locity field near the actuator is modeled in a control grid using
a linear reduced-order model. With LSM measurements from
the measurement grid, LSMs in the control grid are predicted
using Taylor’s hypothesis. Then, the control input that solves
the surrogate optimal control problem is determined through
a binary optimization problem.

B. Measurement Grid

The first step of the control scheme is to detect the regions
of large-scale streamwise velocity fluctuations u} upstream of
the actuator. In the present work, the raw velocity fluctuations
u are directly measured on a sub-sampled orthogonal grid lo-
cated directly upstream of the jet force field. This choice is

made to simplify the detection scheme and avoid potential er-
rors that could arise from estimating the location of LSMs in-
directly from wall shear stress or pressure measurements (e.g.,
Refs. 27 and 28). This measurement grid has 51 x 17 %26 grid
points in the streamwise, wall-normal, and spanwise direc-
tions, respectively, and spans 56j, X 1.66i, X 2.50;, (Fig. 4). It
is centered at x3 = x3 y and spans from x; = 27d;, to x1 = 320;y.
Furthermore, the first grid point from the wall is located at
xp = 0.26j,, such that only the logarithmic and outer layers
of the boundary layer contribute to the fluctuation measure-
ments. This is an important choice for prioritizing moving
high-momentum regions from the outer parts of the boundary
layer toward the wall rather than expending control efforts on
high-momentum regions already close to the wall.

1. Box Filtering

Once the velocity fluctuations u] at the measurement grid
have been obtained at a given time step, a box filter is applied
to the 3D measurement, such that the smaller scales are fil-
tered out, and only the largest scales remain. Here, the filter
of choice is the 7 x 7 x 7 uniform convolution kernel that is ap-
plied to the measurement u’l(t)[i, J, k] at each grid point [4, j, k]
as

1 3 3 3
w0l K = = Z Z D wOli+my, j+ma,k+ms]

— — 1=_

5)

fori=0,...,100, j = .,16, and k =0,...,25. An exam-
ple of a 3D measurement of u} sub- sampled from the LES
grid to the measurement grid before and after applying the
box filter is given in Fig. 5. It can be seen that the filter-
ing operation leads to a u] velocity field where the large-scale
high and low momentum regions are clearly visible, while the
smaller scales, which are not of interest in the proposed con-
trol scheme, are eliminated.

An alternative filtering method for isolating the largest
scales in a flowfield snapshot is Gaussian filtering, which has
been used in works such as Refs. 33 and 49. However, a sim-
ple box filter like the one used in this work is deemed appro-
priate here due to its simplicity (only one parameter to tune,
i.e. the box size) and effectiveness in filtering out small-scale
structures.

C. Control Grid

The second part of the control setup is the control grid. The
control grid has the same size and number of grid points as
the measurement grid but is translated by 56;, downstream
relative to it. As a result, the control grid begins at x; = 326,
i.e. where the measurement grid ends and the jet force field
begins, and both grids share the nodes at x; = 326;, (Fig. 4).

The control grid is strategically placed to cover the imme-
diate neighborhood of the actuator, where the downwash is
created. The purpose of this grid is twofold. First, the LSMs
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FIG. 3: Wall-normal velocity fluctuations induced by the jet force field. The velocity fluctuations are obtained by first
ensemble-averaging the turbulent flow snapshots and then smoothing using the first 8 POD modes of 500 ensemble-averaged
snapshots, in order to discern the effects of the jet from the background turbulence.

of interest that are detected in the measurement grid are as-
sumed to convect downstream with the mean velocity field.
Thus, the filtered | fluctuations in the control grid are pre-
dicted via Taylor’s hypothesis (see Subsection IIID). Sec-
ond, the dynamics of the wall-normal velocity fluctuations u),
at the control grid points induced by the jet for a given con-
trol input are modeled via a total-least-squares dynamic mode
decomposition with control (tlsDMDc) reduced-order model
(see Subsection IITE).

These two components — knowing where the LSMs are lo-
cated within the control grid and having a model of the down-
wash that can be created within the same grid — are essen-
tial for designing a model-based controller that is optimal in
the sense that it maximizes the downwash in the location of
high-momentum LSMs in the control grid while avoiding low-
momentum ones and minimizing actuation effort.

D. Taylor’s Hypothesis for Predicting LSM Trajectories

Large-scale motions need to be detected upstream of the ac-
tuator to minimize the influence of the actuator-induced flow-

field on the measurement of streamwise velocity fluctuations
and to give enough time to the actuator to respond. As actu-
ation occurs in the control grid, which is downstream of the
measurement grid, there is a delay before the detected LSMs
reach the actuator. Therefore, it is necessary to predict the lo-
cation of the LSMs over the next few time steps before decid-
ing whether to activate the actuator or not. This requires pre-
dicting the streamwise velocity fluctuations in the control grid
based on measurements obtained in the measurement grid. To
do that, Taylor’s hypothesis is employed.

Taylor’s frozen turbulence hypothesis!3? states that the
small-scale turbulence in a fluid flow remains frozen in shape
and structure as it convects downstream with the large-scale
(i.e., mean) velocity. In other words, the hypothesis suggests
that turbulent structures of different length scales can be con-
sidered as separate and distinct entities, with each structure
evolving independently of one another.

In the context of a turbulent boundary layer, the hypothesis
can be stated as

(16)

for relatively small values of time delay 7. In the above, U,
is the convection velocity, which is typically chosen to be the

u(-xl’-x2a-x3at) = u(xl - UCTax29-x39t_T)
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FIG. 4: Control setup. The location and size of the measurement and control grids, along with an isosurface of the jet force
field distribution (g(x) = 0.01), are illustrated.

mean streamwise velocity at the given streamwise and wall-
normal location, i.e. U, = U.(x1, x2). This approximation has
been observed to be accurate for boundary layers, as long as
the velocity fluctuations u’ are relatively small>3. Although
the convection velocity is typically assumed to be the mean
velocity profile, it has been observed through space-time cor-
relations of experimental flowfield measurements that the con-
vection velocity tends to be higher than the local mean near
the wall (up to the logarithmic layer) and smaller than the
mean in the outer logarithmic and wake regions>°. Similar ob-
servations have also been made for channel flows*. However,
it is also expected that the actuator will induce an acceleration
in the streamwise component that will counteract the slower
convection of the outer LSMs. Therefore, the convection ve-
locity in this study is taken to be equal to the mean, before
actuation.

In practice, the proposed control scheme needs to take into
account the velocity fluctuations at the control grid over the
next few time steps, starting from the current time step, ¢. Let
u} ,, be the streamwise velocity fluctuations measured at the
measurement grid and u’l ¢ the predicted streamwise velocity
fluctuations at the control grid. The predicted value of u cat
some future time step 7+ k according to Taylor’s hypothesis
and using measurements up to time step ¢ is

’ ’
ulic(xlvx% x3,t+k)= ul,M(xl = UctTrom, X2, x3,t +k—1),

a7

where the time delay 7 is chosen such that
276in < x1 = UctTrom < 326in, (18)
t+k—-1<Ht, (19)

i.e. the measurement is coming from within the measurement
grid and has already been obtained. Furthermore, it is de-
sired that the most recent measurement is used, i.e. t +k— 71 is

maximized while still corresponding to an integer time step at
which a measurement was obtained. Note that the above time
steps correspond to reduced-order model timesteps.

An important aspect that needs to be considered is the influ-
ence of the filtering of streamwise velocity fluctuations on the
validity of Taylor’s hypothesis. Assuming that the actuator is
off, the correlation of the predicted streamwise velocity fluc-
tuations with the actual measurements obtained in the control
grid can be computed as

Uy ¢
Ru'lu'l,c(xw%k) =, (20)

() V(.0

where u] is a sample of the exact streamwise velocity fluctua-
tions measured at the control grid at a timestep 7 +k and ] ca
sample of the velocity fluctuations predicted via Taylor’s hy-
pothesis using measurements up fo timestep t. The operator
(-) denotes the time and spanwise average of the underlying
quantity. A similar correlation metric can be derived for the
filtered velocity components i} and i “1 c

Figure 6 presents the correlatlon between the streamwise
velocity fluctuations measured at the control grid with those
predicted by applying Taylor’s hypothesis. This is done for
both the raw and filtered fluctuations from the measurement
grid, taking into account various distances from the wall (x,)
and prediction horizons. In every case, the correlation be-
tween the box-filtered u] at the control grid and the predictions
using the filtered «| from the measurement grid is consistently
higher than the predictions utilizing the raw /. Note that the
correlation at x; = 32 tends to be lower than one the further
ahead in time (i.e., larger k) the prediction is made.

The correlations are calculated by averaging spanwise and
across a sample of 2000 different measurements for various
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FIG. 5: LSM filtering. Isosurfaces correspond to i} = 0.025 (red) and &} = —0.025 (blue).

— k=10 k=20 k=30 k=40 — k=50
----- Raw uj —— Box-Filtered uj
1.0
0.8
0.6 -
0.4 -
0.2 1
0.0 T v 0.0 : - 0.0 - .
32 34 36 32 34 36 32 34 36
X1 X1 X1
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FIG. 6: Correlation Ru’l W of the predicted velocity fluctuations, u’1 c with the actual ones, u'l at different streamwise and
wall-normal locations, x; and x;, within the control grid, and for different time horizons k. Similar correlations for the filtered
quantities Et’l c and ﬁ’l are also given. Each time step in k corresponds to a nondimensional time of Ty, = 0.056;,.

prediction horizons (k timesteps in the future) relative to the supports the observations made by Ref. 33.
last obtained measurement at timestep ¢. This analysis demon-
strates that predicting filtered velocity fluctuations results in
a stronger correlation with the actual (filtered) velocity fluc-
tuations, leading to more accurate predictions. This finding
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E. Actuator Reduced-Order Model

After predicting the streamwise velocity fluctuations within
the control grid, the next step is to determine whether turning
the actuator on (p(f) = G) will create enough downwash at
high-momentum regions while avoiding low-momentum ones
and, at the same time, minimizing actuation effort. To ad-
dress this optimal control problem, a reduced-order model is
employed for the dynamics of the wall-normal velocity fluc-
tuations induced by the jet force field.

The }, dynamics within the control grid are modeled us-
ing total least squares dynamic mode decomposition with con-
trol (tlsDMDc). Dynamic Mode Decomposition (DMD)>152
is a widely-used algorithm for analyzing and modeling the dy-
namics of fluid flows. The algorithm decomposes a complex,
high-dimensional system into a set of simple, linear, and dy-
namically evolving modes that describe the underlying struc-
ture and behavior of the system. This can provide insight
into the underlying physics of the system and facilitate the
development of predictive models that are useful for control
design’3, among other tasks. The linear nature of DMD mod-
els makes them well-suited for linear optimal control tech-
niques, which can be implemented efficiently due to the low
order of the resulting system.

Since the jet force field is located within the turbulent
boundary layer, ensemble averaging of the training data is per-
formed to accurately separate the jet-induced wall-normal ve-
locity fluctuations from the background turbulence. The con-
trol input signal used to generate the jet response is repeated
multiple times and the resulting average of the wall-normal
velocity fluctuations is obtained. Averaging is also carried out
symmetrically across the spanwise-normal plane at x3 = 46j,
due to the symmetry of the jet force field.

However, performing LES multiple times to gather ensem-
ble responses is cost-prohibitive. As a result, only a limited
number of ensembles is collected, leading to a cleaner but still
noisy dataset for the jet-induced u}. Throughout this study,
a total of 10 ensembles are used to compute a reduced-order
model for each of the presented control configurations. If the
remaining small-scale turbulence is treated as noise, then a
dynamic mode decomposition model that can handle noisy
datasets is needed.

In order to account for the presence of measurement and
process noise in the snapshot data, total least squares DMD
(tIsDMD) was proposed in Ref. 35, while a similar method,
named total DMD (TDMD), was proposed in Ref. 54. The
robustness to measurement and process noise of these noise-
aware variants of DMD makes them an attractive choice for
modeling a turbulent flow. However, neither of the above
methods can handle systems with control inputs. In this work,
tIsDMD is extended to systems with control inputs, follow-
ing a similar approach to Ref. 53. A reduced-order state-
space model of the actuator dynamics is obtained using the
“noisy” (turbulent) snapshots of wall-normal velocity fluctua-
tions within the control grid. The details of extending tisDMD
to systems with control inputs are provided in Appendix A.

The training data for the present study consist of the wall-
normal velocity fluctuations at the control grid collected over

10 distinct LES, where the training input signal is repeated,
albeit with different background turbulence each time. The
snapshots are sampled every T,, = 10 LES time steps, or
At = 0.056i, /U, and the background turbulence is smoothed
by ensemble-averaging the 10 different sets of measurements,
as well as averaging around the symmetry plane x3 = 46j,.

It is important to note that the high computational cost of
LES, combined with the necessity to ensemble average snap-
shots to discern the actuator’s impact on the turbulent flow,
can make using a lengthy training input signal prohibitive. As
a result, the training input must be strategically selected to
extract the dominant modes the actuator is anticipated to dis-
play during operation. Specifically, since the jet will target
LSMs with spatial coherence on the order of the boundary
layer thickness di,, the actuator is expected to remain active
for periods on the order of 6;,/Uw. For that reason, the train-
ing input is chosen to consist of three pulses with durations
of 26in/ U, 40in/Uc, and 68, /Us, ensuring sufficient time
between each pulse for the jet-induced flowfield to subside.

The control input used to generate the training data is
shown in Fig. 7a. An additional validation dataset is ob-
tained using a control input consisting of a different set of
three random-width pulses, also shown in Fig. 7a. Both
datasets contain 560 snapshots. The ability of the computed
tIsDMDc models to predict the wall-normal velocity fluctu-
ations at the control grid is evaluated on both the training
and validation data. Specifically, using the control input of
each dataset (training and validation), a 560-time-step predic-
tion is made using the linear reduced-order model and a zero
initial condition, and the average error between the predicted
flowfield, ypreqa(k), and the exact flowfield, yeyqer, Obtained by
ensemble-averaging, is computed and normalized by the av-
erage snapshot in each dataset. The errors are given in Fig.
7b. Even though the relative errors appear to be large due to
the unmodeled small-scale structures that are present in the
snapshots, qualitatively, the predictions appear to agree with
the large-scale influence of the jet. This is demonstrated in
Fig. 8, where the predicted velocity field u, (which does
not include small-scale turbulence) compares favorably with
an ensemble-averaged snapshot, where small scales are still
present, despite the ensemble-averaging. Due to the need for
computational efficiency when executing the proposed control
algorithm, a model with n, = 7 modes is selected as a compro-
mise between prediction accuracy and model order.

F. Optimal Output Tracking Controller

With both the streamwise velocity fluctuations and the dy-
namics of the wall-normal velocity induced by the jet on the
control grid nodes known, finding the control input that max-
imizes the downwash encountered by high-momentum LSMs
can be expressed as follows.

Problem Formulation: Among the admissible control poli-
cies m, = {p(®), -+, p(t+Nupe = 1)}, such that p(k) € {0,G)
for all k =t,...,t+ Nype — 1, find an optimal control policy
= {p*(t), o, PR+ Npe — 1)} that solves the optimization
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FIG. 7: Training and validation of the tlsDMDc
reduced-order model.

problem

4+ Npe—1

o =argmin > rpP0)+lytk+ 1) = Yaesk+ DIE,

i k=t

subjectto  z(k+1) = Az(k) + Bp(k), k=1,...,t+ Nypc — 1
y(k)=Cz(k), k=t,...,t+Nppc
pk) € {0, G}, k=t,...,t+Npypc—1
z(t) = ().
(21)
If v(z+1), -+, v(t+ Nppc) is the (vectorized) filtered stream-

wise velocity fluctuations ﬁ’l ¢ predicted with Taylor’s hypoth-
esis at the control grid over the next N, time steps and using
measurements up to the current time step ¢, then the desired
output y s of the reduced-order model can be defined as

ydé’S(k) = _/lv(k)’ Vk = 19 ey Nmpc (22)

with 4 > 0 a scaling factor that maps regions of high mo-
mentum () > 0) within the control grid to regions of desired
downwash (1), < 0), while low-momentum ones are mapped
to regions of upwash. Note that 7(k) is a previous estimate of
the ROM state.

The above can be formulated as an integer quadratic pro-
gram (IQP) with

7= [p(t), -+, pt+N-D]"

the decision variable. However, the complexity of an IQP is
NP-hard and can be prohibitively expensive to solve. Here,

5] 3 35 Er ar

(b) Predicted snapshot.

FIG. 8: A sample of an ensemble-averaged snapshot versus a
snapshot predicted with the ROM (with n; = 7 modes) on the
validation dataset. 3D isosurfaces of downwash ), = -0.1
(blue), upwash u} = 0.1 (red), and jet force field g(x) = 0.01
(transparent gray).

the above problem is solved by relaxing the integer input to a
continuous one (p(k) € R), with the additional constraint of

Gp(k) = p*(k)

that is satisfied only when p(k) = 0 or p(k) = G. The prob-
lem can then be cast to a semi-definite program with linear
constraints and solved efficiently>. In particular, the optimal
output tracking control problem (OTC) in (21) (after its semi-
definite relaxation) can be considered as a stand-alone module
of the form

7} = OT C(A, B.C.7, Q. 7(1). Yaes(t+ 1)..... Yaes(t+ N))  (23)

The details of implementing the above semi-definite program
are provided in Appendix B.

G. Model Predictive Control

The individual components of the control scheme presented
so far can now be composed to design a systematic controller
under the model predictive control (MPC) framework. The
key idea behind MPC is to predict the system’s future behavior
using an available model and then optimize the control signal
over a finite time horizon to achieve the desired performance.
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The optimized control input is then applied to the system, and
the process is repeated at frequent time steps.

In the proposed scheme, the two quantities of interest
within the control grid are: the streamwise velocity fluctua-
tions, which are predicted using Taylor’s hypothesis, and the
jet-induced wall-normal velocity, which is estimated using the
tIsDMDc reduced-order model. To solve the optimal out-
put tracking control problem, these predictions are utilized to
identify the optimal input that maximizes the overlap between
downwash and LSM within the control grid. The optimization
process yields the optimal input, which is then implemented in
the LES until new measurements are obtained, at which point
the procedure is repeated. The MPC algorithm for targeting
LSMs is given in Algorithm 1.

The optimal control problem is solved over a horizon of
Nype = 50 ROM time steps, which corresponds to a time
horizon of At = 2.56;,/U~. However, new measurements
are taken into account every Np.qs = 5 ROM time steps, or
At =0.256;n/Us. As aresult, the optimal input from each op-
timization step is applied only for the first At = 0.256in/Uc
before the optimal control problem is resolved using the up-
dated measurements. Figure 9 provides a visual representa-
tion of the distinct timelines involved in the MPC algorithm.

The rationale behind selecting the aforementioned time
steps is twofold. First, the MPC horizon is chosen to be suf-
ficiently long to accommodate any actuation delays, as the jet
force field does not generate downwash instantaneously. Sec-
ond, the frequency at which new LSM measurements are con-
sidered, and consequently, the optimal input is updated, is de-
termined to be frequent enough to account for medium-scale
motions (e.g., with streamwise lengths of less than d;,) but not
so frequent that the computational cost becomes prohibitively
high. Comprehensive investigations on the impact of these
two time scales have led to the adoption of the specified time
horizons.

IV. RESULTS

The control scheme presented in Section III is implemented
in the LES of Section II. The focus is on targeting high-
momentum LSMs to increase the near-wall momentum and
reduce the size of the separation bubble. To evaluate the per-
formance of the proposed scheme, four control schemes are
considered, as shown in Table III.

TABLE III: Actuation schemes being compared in the
present study.

Scheme Targets Power Input Duty Cycle
Targeting fast LSMs >0 G 05=+0.01
Targeting slow LSMs i <0 G 0.5+0.01
Random actuation ﬁ’l >0 and ﬁ’l <0 G 05+0.02
Constant actuation 12’1 >0 and ﬁ’l <0 0.5xG 1.0

The control inputs for the fast and slow LSM targeting cases
are denoted by py, and py, respectively, where the superscript
* indicates optimality with respect to Problem (21). For the

Algorithm 1 Model Predictive Control of LSMs

1: procedure MpcOFLsMS(Nype, Nmeass Troms A, B,C,r, Q)
2: Z(0) <0
3: fori=0,1,...do
4: t— Li/Trom) > Integer division of i by T',om
5: if i mod (Nyeas * Trom) == 0 then
6: > Detect LSMs
7: Measure u’l on Measurement Grid
8: i1} « filtered u]
9:
10: > Predict LSMs on Control Grid
11: for j=1,...,Nyp do
12: ﬁ’l,T(t+j) « Taylor’s hypothesis on it/ for j steps
13: end for
14:
15: > Map predicted fluctuations to desired ROM output
16: for j=1,...,Nypc do
17: Yaes(t+j) < _/lﬁ,l T(t+j)
18: end for ’
19:
20: > Solve optimal output tracking control problem
21 P*(@)s....p*(t+ Nppe — 1) — OT C(A, B,C.r, Q. 5(1). Ydes)
22:
23: > Propagate ROM by Neqs time steps
24: for j=0,...,Npeqs — 1 do
25: Z(t+ j+ 1) « AZ(t+ j)+ Bp*(t + j)
26: end for
27: end if
28: Apply control input p*(¢) in Large Eddy Simulation

29: end for
30: end procedure

random and continuous actuation cases, the control inputs are
denoted as pg and pc, respectively.

In all cases, the synthetic turbulent inflow condition is the
same, meaning that all cases are expected to encounter the
“same” turbulence — at least up to the proximity of the con-
trol jet, near which the flow structures are affected by the jet.
Targeting slow LSMs is considered the “opposite” of target-
ing fast LSMs. The control inputs for the two cases tend to be
the opposite of each another, as one would expect: when the
jet is on in one case, the jet in the other case is off. Switching
to slow targets from fast ones can be done by setting 1 < 0 in
(22). In both of these cases, if the control scheme is applied
for long enough (e.g., > 5000;,/ U ), the average optimal con-
trol input converges to 0.5G. This is expected since about half
of the domain should contain fast LSMs and the other half
slow LSMs.

For the random actuation case, a random binary signal with
an average value of 0.5G is used. To generate an input that
is qualitatively similar to the fast and slow targeting cases but
not correlated with the presence of LSMs in the control grid,
a random signal is generated using the power spectral density
(PSD) of p}. and p§. Since both control inputs have (approxi-
mately) the same frequency content, Welch’s method>® is used
to compute the PSD of pj, and p§. Then, a random continuous
signal pg is generated using the computed PSD. Finally, pr is
converted to a binary signal by setting pr = G if pg > 0 and
pr = 0 otherwise. This leads to a control input that is qualita-
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FIG. 9: The MPC horizon compared to the frequency with which the MPC problem is resolved.

tively similar to the optimal inputs p}. and pg but with a low
correlation to either of the two signals.

The final case considered is a continuously actuated jet, i.e.,
a jet that is constantly on, albeit at 50% the strength of the
other three cases. In other words, pc = 0.5G for all time steps
t. The reduction of the continuous jet strength by 50% is moti-
vated by the fact that in all other cases, the duty cycle is 50%,
whereas the continuous jet is always on. The control inputs
for each case over a total test time of 8000;,/U (i.e. 10 flow-
through times) are given in Fig. 10

In addition to the control input, another important parame-
ter that is explored is the power input G, which controls the
overall strength of the jet. Three power input values are con-
sidered, as shown in Table IV.

TABLE IV: Power inputs considered in the present study.

Case Power Input G
Weak Jet 0.01
Baseline Jet 0.02
Strong Jet 0.03

For each power input, all four actuation schemes are imple-
mented, resulting in a total of 12 cases in addition to the case
with no actuation. Each case is run for a total of 8000i,/U o,
corresponding to 10 flow-through times, with each simulation
consuming approximately 100000 CPU hours.

A. Validation of the Control Scheme

In order to ensure that the control scheme is indeed tar-
geting high-momentum LSMs, a separate simulation is run,
where the streamwise velocity fluctuations, u/, are condition-
ally averaged only when p}. > 0, i.e., when fast LSMs are tar-
geted. However, no actuation occurs in order to avoid pol-
luting the conditionally-averaged flowfield with the effects of
the jet. This conditional average, (u}),>0, is illustrated in Fig.
11. It can be seen that upstream and close to the center of
the jet, the average velocity fluctuations are positive, i.e., they
correspond to fast LSMs. Conversely, slow LSMs are seen on
the sides of the jet. The presence of fast LSMs upstream of
the location of the jet force field also indicates that the con-
trol scheme is taking into account the delay between the jet
turning on and downwash being created. This confirms that,
indeed, the control scheme targets high-momentum LSMs, as
expected.

B. Mean Effect on Separation

While the flow is homogeneous when no actuation is
present, the introduction of the jet in the middle (spanwise) of
the domain breaks the homogeneity in the x3 direction due to
the inhomogeneity of the body force field but introduces sym-
metry around the x3 = 46;, plane. Therefore, in order to cap-
ture the mean effect that the actuation scheme has on the flow,
the time and symmetry averaged flow is considered, leading
to a total time horizon for averaging of 16006/ U .

First, the reduction of the time-average separation bubble
is considered. For each case, both the volume of the reverse
flow,

V= f Iu1) < 0)dvV (24)
Vv
and the area of negative streamwise wall shear stress on the
wall
0
A= f ( ol O)dﬂw 25)
Ay 8x2 x=0

are computed, in 8in2 and 6,3 units, respectively. In the above,
V is the computational (3D) volume, A,, is the surface of the
2D wall and I(a) is the indicator function such that,

I(a):{l’ if a is true 26)

0, otherwise.

The results of the above values for each case are given in
Fig. 12. The mean and standard deviation values presented are
the statistics of a windowed-average approach, where mean
values are obtained for two cases: a window fromt=0to ¢ =
5600,/ U and another from ¢t = 2408;,/ U to t = 8000in/Uco.
The window length is long enough (7 flow-through times) to
ensure that the average duty cycle in all cases is 50%. How-
ever, due to the large computational cost of the simulations,
obtaining statistics for a larger number of windows is imprac-
tical.

For the baseline case, targeting fast LSMs leads to the
biggest decrease in both the separation volume and area. In
particular, there is an approximately 42% decrease in the av-
erage separation volume and 38% in the separation area, com-
pared to 28% and 25.0% for the slow targets, respectively. De-
creasing the strength of the jet G leads to targeting fast LSMs
performing better than the other actuation schemes in decreas-
ing the volume of separation, but the decrease in the separated
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FIG. 10: Control inputs. pj.: optimal input for targeting fast LSMs; p’: optimal input for targeting slow LSMs; pg: random
actuation; pc: continuous actuation.
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FIG. 11: Conditionally-averaged velocity fluctuations /| for when p}. > 0.

area is less significant, compared to the other schemes. The
picture is reversed when the jet is stronger than the baseline.
While targeting fast LSMs leads to a smaller separation area
(55.9% compared to 60.5% for the slow targets), the mean
separation volume is higher than the random and continuous
cases, as well as targeting slow LSMs.

C. Separation Volume and Area Distribution

The above metrics provide insight into how the actuation
scheme alters the overall flow. However, since the jet is lo-
cated in the center of the span of the domain, the localized

effects can be obscured by the above "global" statistics. More
information can be gained by looking at the distribution of the
separation volume and area over the spanwise direction x3. In
particular, define

Ly X3+0x3/2
_( 3)= 1 f f f 1(it; < 0)dxs3dxpdx
5X3—>0 0x3 X3-6x3/2

27
and
Ly x3+0x3/2
4 = f ( iy 0) dxsdx
dxs 5x3—>0 6x3 3—6x3/2
(28)
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FIG. 12: Average separation volume and area, normalized by the mean values when no actuation occurs.

as the spanwise distribution of separated volume and area, re-
spectively. In Fig. 13a, it can be seen that for the weak jet,
the overall volume in the vicinity of the jet (between x3 = 2
and x3 = 6) is significantly smaller when targeting fast LSMs,
compared to targeting slow LSMs. In fact, the performance
of the random and continuous cases, which do not distinguish
between fast and slow LSMs, falls between the fast and slow
LSM targeting schemes. The same effect is noted over a wider
span (x3 = 1 to x3 = 7) in the baseline case (Fig. 13b), which
leads to more reattachment due to the increased jet strength.
Further increase of the jet strength (Fig. 13c) leads to satu-
ration, with the fast, random, and constant cases performing
similarly between x3 = 1.5 and x3 = 6.5 and the slow case per-
forming slightly worse in the same span.

A similar trend is observed by looking at the spanwise dis-
tribution of the reversed wall shear stress area in Fig. 14. Tar-
geting fast LSMs leads to more reattachment near the center
of the domain, compared to targeting slow LSMs, while the
random and continuous cases fall between the fast and slow
LSM targeting values. The difference is most notable in the
baseline jet case, while in the strong jet case, reattachment
performance is saturated, with the fast LSM targeting case
performing marginally better.

The separation line on the wall for each case is presented
in Fig. 15. In Figs. 15a and 15c, the separation lines are

comparable. However, targeting fast LSMs tends to perform
better in reducing the reattachment region, as shown in Fig.
12. In the baseline jet strength case, targeting fast LSMs no-
tably outperforms the other two cases, leading to the center
of the bubble reattaching almost completely. In contrast, tar-
geting slow LSMs underperforms compared to the other three
cases.

D. Momentum Distribution

In all cases, it can be observed that while the separation
volume decreases near the center plane x3 = 4di,, the vol-
ume distribution tends to increase at the edges of the domain
(x3 = 00, and x3 = 86y, ). Since the boundary conditions at the
sides are periodic, the simulations employed here represent an
infinite array of actuators in the spanwise direction, spaced at
Axz = 8dip. However, since the top boundary condition main-
tains a fixed uy velocity profile, there is only a limited amount
of momentum that the jet force field can entrain from the free
stream to increase near-wall momentum (in addition to the
momentum increase due to the jet force field). This leads to
a redistribution of momentum from the free stream and the
sides of the domain (x3 — 0 and x3 — 8) to the center.

To better understand the momentum distribution within
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FIG. 13: Spanwise distribution of separation volume.

the domain, consider the spanwise momentum distribution
around the separation bubble 356;, < x| < 65,
dm . 1
—l(xg) = lim —
3

(29)

The above distribution for each case is given in Fig. 16. Com-
puting the above distribution shows increased momentum at
the center of the domain (x3 = 46i,), followed by a decrease
of momentum below the no-actuation values at the sides of the
domain, away from the jet, for all actuation cases. However,
the total streamwise momentum in each case remains close to
the no-actuation case, with a change of less than 0.1% of the
area under the %()@) curve for all cases.

In the baseline case and when targeting fast LSMs, the mo-
mentum at the center of the domain is notably lower than in

T N S
f f PG (%)) dos dxy dxy
dxs 6320 6x3 J3s5, Jo  Jxz-6x32

the other actuation schemes (Fig. 16b). At the same time,
it is more elevated away from the center plane and toward
x3 = 18, and x3 = 70i,. A similar trend is observed in the
strong jet case, with momentum lower at the center but better
distributed toward the sides of the domain (Fig. 16c). The
momentum distribution effects are less notable, however, in
the weak jet case (Fig. 16a).

The momentum distribution can also be studied by exam-
ining the mean streamwise velocity (u;) at different x loca-
tions. In Fig. 17, (u;) velocity profiles on spanwise-normal
planes are shown as (u;(x7)) line plots at various streamwise
locations around the separation bubble. At the center of the
domain (x3 = 46i,), the momentum away from the wall is de-
creased in the fast LSM targeting case relative to the slow
LSM case. Howeyver, it increases near the wall further down-
stream, particularly in the favorable pressure gradient part of
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FIG. 14: Spanwise distribution of separation area.

the separation bubble (x; > 500i,). Moving away from the
center plane (x3 = 30j, and x3 = 2dj,), the mean velocity in
the fast LSM targeting scheme tends to be higher than both the
slow LSM and the no actuation cases closer to the wall. Fur-
ther away from the center plane, however, (u) is lower than
the no actuation case for both the fast and slow LSM schemes
due to the redistribution of momentum within the computa-
tional domain.

E. Instantaneous Flowfield

The streamwise velocity fluctuations, u’l, used to detect the
LSMs are depicted in Fig. 18a as ] isosurfaces. Prior to the
onset of the APG (x| < 35), long coherent structures with both
high (red) and low (blue) streamwise momentum are visible.

The size of these LSMs tends to increase substantially as the
APG intensifies (35 < x; < 50), while they begin to break up
in the FPG region (50 < x; < 65). Figure 18b shows the cor-
responding near-wall streamwise velocity, uj, at xp = 0.18;,
(which corresponds to x7 = 50 at x; = 32, i.e., the beginning
of the jet force field). The beginning of the APG, where the
flow significantly slows down, resulting in the formation of
the separation bubble (indicated by the u; = 0 isosurface be-
tween x; = 40 and x| = 55), is also visible. Both figures also
indicate the location of the control setup.

F. Streamwise Voriticity

A simplified view of the benefit of targeting high-
momentum large-scale motions (LSMs) for re-energizing a
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FIG. 15: Wall separation line ((x1,x3) at which du;/dx; = 0 at xp = 0). The streamlines correspond to the flow field of the fast
LSMs case. The control setup is also visible for comparison.

turbulent boundary layer (TBL) and preventing separation is
illustrated in Fig. 19. Slow-moving LSMs can be thought
of as Q2 (or ejection) events, i.e., flow structures with u} <0
and u), > 0, while fast-moving LSMs can be viewed as Q4 (or

sweep) events, i.e., structures with u’l > (0 and u’2 <07, These
alternating low and high-momentum LSMs, which tend to be
aligned with the flow direction, are accompanied by the for-
mation of quasi-streamwise vortices, leading to the natural roll
modes depicted in Fig. 19.

The natural roll mode in a turbulent boundary layer plays a

significant role in the dynamics of the flow, as it contributes to
the transfer of momentum between the wall and the bulk flow.
Conceptually, pushing fast LSMs toward the wall should re-
inforce the intensity of the roll modes, leading to an increased
exchange of momentum between the free stream and the near-
wall flow. On the other hand, pushing slow-moving LSMs to-
ward the wall should have the opposite effect, i.e., suppressing
the natural roll modes. The increase in the intensity of mixing
can be observed by looking at the root mean square (RMS) of
the streamwise vorticity component w; around the separation
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FIG. 16: Spanwise distribution of momentum.

bubble. In particular, consider

1
%()(3): lim —

(30)

The distribution for the baseline fast and slow LSM schemes
can be observed in Fig. 20. Targeting fast LSMs results in a
higher RMS value for w; compared to targeting slow LSMs,
with these elevated values prevailing throughout most of the
domain’s span. This finding supports the hypothesis that push-
ing fast LSMs toward the wall enhances mixing by amplifying
the effect of the natural roll modes.

G. Discussion

The results presented here indicate that directing fast LSMs
toward the wall can be beneficial for separation delay. It is

556in 20in X3+0x3/2
(W] () (%)) dx3 dx; i ibuti -
axs 55350 0x3 Jsos,. j(; mtra2 ] 1 ﬂﬁportant to recognize that the largest contribution to the reat

tachment of the flow is due to the momentum introduced by
the jet itself. Irrespective of the targeting of LSMs, the actu-
ator on its own can lead to a reduction in the separation area
and volume. However, using the jet to direct fast LSMs to-
ward the wall can lead to additional reattachment at no addi-
tional cost. This can be intuitively explained by the fact that
when the jet is on and targets fast LSMs, the entrained flow
will tend to have higher momentum than the average momen-
tum of the turbulent boundary layer. In addition, as discussed
in Subsection IV F, favoring fast LSMs can also increase the
streamwise vorticity — and, therefore, mixing — in the flow,
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FIG. 17: Average streamwise velocity. The dashed lines indicate the location of the separation bubble, u; = 0, for each case.

due to the association of fast and slow LSMs with sweep and
ejection events.

V. CONCLUSION

In this study, a model predictive control scheme was de-
veloped for targeting high-momentum LSMs in a turbulent
boundary layer to delay separation. The proposed control
strategy employs Taylor’s hypothesis and reduced-order mod-
eling within an optimal control framework, generating down-
wash at locations where fast LSMs are anticipated. A compre-
hensive comparison of targeting fast and slow LSMs, as well

as random and continuous actuation schemes, highlighted the
benefits of targeting fast LSMs for separation delay by en-
hancing momentum transfer from high to low momentum re-
gions on the verge of separation.

The present study supports the idea that targeting fast LSMs
has the potential to delay separation. However, to prove the
above concept, several design choices had to be made that are,
by no means, optimal. For instance, one could think of a con-
trol setup consisting of an array of smaller actuators that in-
dividually target narrower regions with fast LSMs, but collec-
tively lead to a more even distribution of the separation delay
in the spanwise direction instead of the effects being localized
at the center of the domain, as seen in Fig. 15. Taylor’s hy-
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FIG. 19: Illustration of a streamwise-normal plane with alternating slow and fast LSMs. Pushing fast LSMs toward the wall has
the potential to increase the intensity of streamwise vorticity and, thus, mixing.

pothesis for predicting the future location of LSMs could also
be either improved by selecting a more appropriate convection
velocity or replaced by a more sophisticated prediction model
that also takes into account the deformation of an LSM by the
effect of the jet, similar to Ref. 58.

This study is the first demonstration of the idea that LSMs
can be selectively manipulated to achieve enhanced separation
control in a turbulent boundary layer. There are many param-

eters, such as the detailed shape or pitch angle of the force
field, that are not varied in this work but will be studied in
subsequent work. The effect of the Reynolds number is also
not explored in this study, but the broad idea is expected to
hold and, perhaps, be even more effective at higher Reynolds
numbers. This is because higher Reynolds numbers typically
result in more energetic and larger turbulent structures*®-°,
which can influence the dynamics of near-wall motions®%-62
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FIG. 20: Spanwise distribution of the streamwise vorticity RMS.

and are responsible for extreme wall shear events®3.

Further study of some of the design choices, such as the
streamwise location of the actuator and the size and loca-
tion of the measurement/control grids, have the potential to
amplify the performance gains. Modeling choices, such as
detecting LSMs from wall measurements and using more
realistic actuators, instead of a body force field, can lead
to more practical implementations of the proposed control
scheme. Lastly, realistic geometries encountering adverse
pressure gradients, such as airfoils, are a potential avenue for
further research. Ongoing work at the Rensselaer Polytech-
nic Institute®*% is aimed at experimentally understanding and
demonstrating the proposed control scheme and will be pre-
sented in the future.
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Appendix A: Total Least-Squares Dynamic Mode
Decomposition with Control

It is assumed that the high-dimensional dynamics of the
system of interest have a discrete-time form of

y(k+1) = £(y(k), p(k), w(k)), (AL)

where y € R™ is the state (here, ué in the control box), p € R™»

the control input, w € R the independent and identically dis-

tributed Gaussian white noise, and f(-) the nonlinear operator
that propagates the state y(k) by one time step.

The goal of tIsDMDc is to identify a linear reduced-order
model of the underlying dynamics when (A1) is unknown or
prohibitively expensive to compute in real-time, and only a
limited number of noisy experimental or numerical data is
available, as is typical in fluid dynamics applications.

In particular, given a set of m+ 1 ensemble-averaged snap-
shots of the velocity field y(k), k = 0,...,m generated from a
sequence of inputs p(k), k =0,...,m — 1, the data can be ar-
ranged as

Y=y - ym—1)]erm™, (A2a)
Y =[y(D) - yom)] R, (A2b)
P=[p©) - pm—D]eR"™". (A2c)

A common way to reduce the dimensionality of the data
when 7y > 1 is to project the high-dimensional state y(k) onto
the proper orthogonal decomposition (POD) modes given by
the singular value decomposition (SVD) of the data matrix

Y=UxVT,

where the columns of matrix U € R»*™ are the orthonormal
eigenvectors of YYT or POD modes arranged by their energy
content, i.e. their singular value, the columns of V € R"™"
are the orthonormal eigenvectors of YTY, and X € R"™ is the
diagonal matrix containing the singular values of Y arranged
by their magnitude.

Projecting the high-dimensional snapshots y(k) on the
range space of the matrix Uppp € R " formed by the
first (most energetic) n, POD modes corresponding to the n,
largest singular values of Y is a common choice in model re-
duction methods that focuses the modeling efforts on the most
important modes of the high-dimensional system while ignor-
ing the least energetic (and, typically, noisy) ones. The high-
dimensional state can then be approximated as

y(k) = Upopz(k),

where z(k) € R is the amplitude vector of the POD modes
at time step k. In general, z(k) is approximated in a least-
squares sense as z(k) = UIT,ODy(k). The snapshot matrices in

(A3)
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Eqgs. (A2a) - (A2b) are also reduced as
Z= U1T>0DY’ zZ = U;ODY,’

where Z,Z’' are the POD mode amplitude matrices for the
training data in Egs. (A2a) and (A2b).

Like DMDc>?, it is assumed that the dynamics of the high-
dimensional system are linear. Hence, the POD mode ampli-
tudes z(k) also follow a linear state-space model, as the POD
projection is linear. The reduced-order model has the form

Z(k+ 1) = Az(k) + Bp(k) + e(z(k), p(k), w(k)), (A4)

where A € R"*" and B € R"*"» are the state and control tran-
sition matrices and e(-) represents the error from the unmod-
eled nonlinear dynamics and process noise.

Following Ref. 35, in order to account for the noise in the
data, it is assumed that the snapshots (Eqgs. (A2a) and (A2b))
can be decomposed in a mean and noise part as

Y=Y+Ey, Y =Y +Ey
where Y, ¥’ are the mean snapshots and Ey, Ey’ are the noise
terms. After projection on the POD modes, the reduced-order
snapshots become
Z=7Z+E;, 7 =7 +Eyp.
According to Ref. 35, the least-squares minimization ap-
proach typically used in DMD (and, consequently, DMDc)
accounts only for the noise Ez in the plus-one time step data
7', leading to a bias in the estimate of the dynamics that de-
pends on Ez. Alternatively, one can use total least-squares
DMD to account for the noise in both Z and Z’. The approxi-
mation of the dynamics can be expressed as

7' +Ez =A(Z+Ez)+ BP (AS)

and the error in both components can be minimized simulta-
neously by solving the least-squares minimization problem

wp e el o

Equation (A5) can be reformulated as

Z+EZ
[AB—I P |=0 (A7)
Z'+E,
and the solution to Eq. (A6) can be computed using the trun-
cated SVD
Z+E
Z1 «_|Un Un2f|Z1 0|1
P 1F VRV = 0 g0 o[y
7' +E, 21 U 2

where only the first n, + 1 singular values are kept, leading to
an unbiased estimate of A and B

|A B]=UwU. (A8)

The final outcome of tIsDMDc is a reduced-order state-space
model of the form

2k + 1) = Az(k) + Bp(k)
y(k) = Cz(k)

(A9a)
(A9b)

where z(k) is the reduced-order state, p(k) the control input,
and y(k) the original, high-dimensional state (e.g., the flow-
field), with C = Upop.

Notice that in the above total least-squares optimization,
only the noise in Z and Z’ is minimized, since the control in-
put matrix P is noise-free (e.g. a sequence of zeros and ones).
The above is an extension of tIsDMD to systems with control
inputs (tlsDMDc).

Appendix B: Formulating the Optimal Output Tracking
Controller as a Semi-Definite Program

Since the reduced-order system of Eq. (A9) is time-
invariant, without loss of generality, consider # = 0. The goal
of the optimal tracking control problem is to find the sequence
of inputs 7y = {p*(0), ..., p*(N — 1)} that solves the optimiza-
tion problem (21).

Instead of minimizing the cost function of Problem (21),
alternatively, one can minimize

Ji(m) =7 R +vTQu-20"T¢ (BI)
where
p(0) y(1) OYdes(1)
™= : , vi= |, ¢:= : ,
pP(N-1) y(N) OYdes(N)

R :=bdiag{R,...,R}, Q:=bdiag{Q,...,0},

and bdiag{A;,...,A,} denotes the block diagonal matrix with
the matrices A; as its diagonal blocks.

From Egs. (A9a) and (A9Db), and with initial condition
z(0) = zg, the sequence of outputs can be written as
y(1) = Cz(1)
=CAzy +Cp(0)
y(2)=Cz(2)
= CA%z9+CABp(0)+ CBp(1)
y(N) = Cz(N)

=CANzy+CAN='Bp(0)+---+ CBp(N - 1)
or, more compactly, as
v =Qzy+I'T, (B2)
with Q, I defined as
CA CB - 0
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Eq. (B2) can now be used to replace v in Eq. (B1) and derive
a cost function that depends only on the input vector 7,

J)=n" [[TQr+R|m+27'TT(QQz - ¢),  (B3)

where the factors that are independent of 7 have been omitted.

The output tracking problem with input constraints can
now be expressed as the following unconstrained binary
quadratic program (BQP):

minimize 7w Hmw+7w'f
§ (B4)
subjectto 7 €{0, 1}V
where
H=TTQr+R, f=2I"(QQz-¢).

The problem of solving a BQP like (B4) is known to be
NP-hard®>, meaning it is computationally difficult to find an
optimal solution. However, various optimization algorithms
and heuristics have been developed to solve BQPs, including
branch and bound, simulated annealing, genetic algorithms,
and semi-definite programming®®.

If w € RV, then problem (B4) can be relaxed to a quadrat-
ically constrained quadratic program (QCQP) with the addi-
tion of the constraint p(k) = pz(k), or

minimize m Hr + 7 f
T (B5)
subjectto = diag(ﬂ'ﬂ'T).

If IT = wxT, further relaxation to a semi-definite program of
the form

minimize trace (HII)+ 7rTf
™

subject to 7 = diag(IT) (B6)

1 =T
(L)oo

can be achieved using the Schur complement. The above
problem can then be solved efficiently using, for instance, in-
terior point methods.

'A. Townsend, The structure of turbulent shear flow (Cambridge university
press, 1980).

28. K. Robinson, “Coherent motions in the turbulent boundary layer,” An-
nual Review of Fluid Mechanics 23, 601-639 (1991).

3R. J. Adrian, C. D. Meinhart, and C. D. Tomkins, “Vortex organization in
the outer region of the turbulent boundary layer,” Journal of fluid Mechanics
422, 1-54 (2000).

4B. Balakumar and R. Adrian, “Large-and very-large-scale motions in chan-
nel and boundary-layer flows,” Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences 365, 665-681
(2007).

SN. Hutchins and I. Marusic, “Evidence of very long meandering features
in the logarithmic region of turbulent boundary layers,” Journal of Fluid
Mechanics 579, 1-28 (2007).

SK. Kim and R. Adrian, “Very large-scale motion in the outer layer,” Physics
of Fluids 11, 417-422 (1999).

M. Guala, S. Hommema, and R. Adrian, “Large-scale and very-large-
scale motions in turbulent pipe flow,” Journal of Fluid Mechanics 554, 521
(2006).

8J. C. Del Alamo, J. Jiménez, P. Zandonade, and R. D. Moser, “Scaling of
the energy spectra of turbulent channels,” Journal of Fluid Mechanics 500,
135-144 (2004).

9]. Lee, J. H. Lee, J.-I. Choi, and H. J. Sung, “Spatial organization of large-
and very-large-scale motions in a turbulent channel flow,” Journal of fluid
mechanics 749, 818-840 (2014).

10R. J. Adrian, “Hairpin vortex organization in wall turbulence,” Physics of
Fluids 19, 041301 (2007).

p_A. Krogstad and P. E. Skére, “Influence of a strong adverse pressure gra-
dient on the turbulent structure in a boundary layer,” Physics of Fluids 7,
2014-2024 (1995).

127 Harun, J. P. Monty, R. Mathis, and I. Marusic, “Pressure gradient effects
on the large-scale structure of turbulent boundary layers,” Journal of Fluid
Mechanics 715, 477-498 (2013).

13J-H. Lee and H. J. Sung, “Structures in turbulent boundary layers subjected
to adverse pressure gradients,” Journal of fluid mechanics 639, 101-131
(2009).

145, Rahgozar and Y. Maciel, “Low-and high-speed structures in the outer
region of an adverse-pressure-gradient turbulent boundary layer,” Experi-
mental thermal and fluid science 35, 1575-1587 (2011).

15]. H. Lee, “Large-scale motions in turbulent boundary layers subjected
to adverse pressure gradients,” Journal of Fluid Mechanics 810, 323-361
(2017).

16p Moin and T. Bewley, “Feedback control of turbulence,” (1994).

"M. Gad-el Hak, Flow Control: Passive, Active, and Reactive Flow Man-
agement (Cambridge University Press, 2000).

I8R. Rathnasingham and K. S. Breuer, “Active control of turbulent boundary
layers,” Journal of Fluid Mechanics 495, 209-233 (2003).

19G. Karniadakis and K.-S. Choi, “Mechanisms on transverse motions in tur-
bulent wall flows,” Annual review of fluid mechanics 35, 45-62 (2003).

201, Marusic, K. Talluru, and N. Hutchins, “Controlling the large-scale mo-
tions in a turbulent boundary layer,” in Fluid-structure-sound interactions
and control (Springer, 2014) pp. 17-26.

2IM. Abbassi, W. Baars, N. Hutchins, and 1. Marusic, “Skin-friction drag re-
duction in a high-Reynolds-number turbulent boundary layer via real-time
control of large-scale structures,” International Journal of Heat and Fluid
Flow 67, 30-41 (2017).

22 A. Tsolovikos, S. Suryanarayanan, E. Bakolas, and D. Goldstein, “Model
predictive control of material volumes with application to vortical struc-
tures,” AIAA Journal 59, 40574070 (2021).

23A. Tsolovikos, A. Jariwala, S. Suryanarayanan, E. Bakolas, and D. Gold-
stein, “Separation delay in turbulent boundary layers via model predictive
control of large-scale motions,” Bulletin of the American Physical Society
(2022).

24A. Jariwala, A. Tsolovikos, S. Suryanarayanan, D. B. Goldstein, and
E. Bakolas, “On the effect of manipulating large scale motions in a bound-
ary layer,” in AIAA AVIATION 2022 Forum (2022) p. 3771.

25M. Ja’fari, A. J. Jaworski, and A. Rona, “Numerical study of flow sepa-
ration control over a circular hump using synthetic jet actuators,” AIP Ad-
vances 12 (2022).

26X. Geng, Z. Sun, Z. Li, Z. Shi, K. Cheng, and B. Khoo, “Effect of flow
structure frequency on flow separation control using dielectric barrier dis-
charge actuator,” Physics of Fluids 34 (2022).

27C. S. Vila and O. Flores, “Wall-based identification of coherent structures
in wall-bounded turbulence,” in Journal of Physics: Conference Series, Vol.
1001 (IOP Publishing, 2018) p. 012007.

28R. J. Pabon, L. Ukeiley, M. Sheplak, and C. B. Keane, “Characteristics of
turbulent boundary layer large scale motions using direct fluctuating wall
shear stress measurements,” Physical Review Fluids 3, 114604 (2018).

Y A. Giiemes, S. Discetti, and A. Ianiro, “Sensing the turbulent large-scale
motions with their wall signature,” Physics of Fluids 31, 125112 (2019).
30T, Brauner, S. Laizet, N. Benard, and E. Moreau, “Modelling of dielectric
barrier discharge plasma actuators for direct numerical simulations,” in 8th

AIAA Flow Control Conference (2016) p. 3774.

318, Gildersleeve and M. Amitay, “Three-dimensional wake characteristics
associated with the jet assisted surface mounted actuator,” in 2018 Flow
Control Conference (2018) p. 3060.

32G. 1. Taylor, “The spectrum of turbulence,” Proceedings of the Royal Soci-
ety of London. Series A-Mathematical and Physical Sciences 164, 476490
(1938).



Separation Delay in Turbulent Boundary Layers via Model Predictive Control of Large-Scale Motions 24

3D. J. Dennis and T. B. Nickels, “On the limitations of Taylor’s hypothesis
in constructing long structures in a turbulent boundary layer,” Journal of
Fluid Mechanics 614, 197-206 (2008).

343 C. Del Alamo and J. Jiménez, “Estimation of turbulent convection veloci-
ties and corrections to Taylor’s approximation,” Journal of Fluid Mechanics
640, 5-26 (2009).

35S, Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley, “Charac-
terizing and correcting for the effect of sensor noise in the dynamic mode
decomposition,” Exp. in Fluids 57, 1-19 (2016).

36A. T Patera, “A spectral element method for fluid dynamics: laminar flow
in a channel expansion,” Journal of computational Physics 54, 468488
(1984).

373, W. L. Paul F. Fischer and S. G. Kerkemeier, “Nek5000 web page,”
(2008), http://nek5000.mcs.anl.gov.

38p Schlatter, S. Stolz, and L. Kleiser, “LES of transitional flows using the
approximate deconvolution model,” International journal of heat and fluid
flow 25, 549-558 (2004).

39A. Bobke, R. Vinuesa, R. Orlii, and P. Schlatter, “History effects and near
equilibrium in adverse-pressure-gradient turbulent boundary layers,” Jour-
nal of Fluid Mechanics 820, 667-692 (2017).

40<“Tyrbulent boundary layers around wing sections up to Rec= 1,000,000,
author=Vinuesa, Ricardo and Negi, Prabal Singh and Atzori, M and
Hanifi, Ardeshir and Henningson, Dan S and Schlatter, Philipp, jour-
nal=International Journal of Heat and Fluid Flow, volume=72, pages=86—
99, year=2018, publisher=Elsevier,” .

41p. Schiatter and R. Orlii, “Turbulent boundary layers at moderate Reynolds
numbers: inflow length and tripping effects,” Journal of Fluid Mechanics
710, 5-34 (2012).

42T.S. Lund, X. Wu, and K. D. Squires, “Generation of turbulent inflow data
for spatially-developing boundary layer simulations,” Journal of computa-
tional physics 140, 233-258 (1998).

M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, “Synthetic tur-
bulence generators for RANS-LES interfaces in zonal simulations of aero-
dynamic and aeroacoustic problems,” Flow, turbulence and combustion 93,
63-92 (2014).

4], Jiménez, S. Hoyas, M. P. Simens, and Y. Mizuno, “Turbulent bound-
ary layers and channels at moderate Reynolds numbers,” Journal of Fluid
Mechanics 657, 335-360 (2010).

45Y. Na and P. Moin, “Direct numerical simulation of a separated turbulent
boundary layer,” Journal of Fluid Mechanics 374, 379—-405 (1998).

46G. Coleman, C. Rumsey, and P. Spalart, “Numerical study of turbulent
separation bubbles with varying pressure gradient and Reynolds number,”
Journal of Fluid Mechanics 847, 2870 (2018).

473 -L. Aider, J.-F. Beaudoin, and J. E. Wesfreid, “Drag and lift reduction of
a 3D bluff-body using active vortex generators,” Experiments in fluids 48,
771-789 (2010).

48T C. Corke, C. L. Enloe, and S. P. Wilkinson, “Dielectric barrier discharge
plasma actuators for flow control,” Annual review of fluid mechanics 42,
505-529 (2010).

49].H. Lee and H. J. Sung, “Very-large-scale motions in a turbulent boundary
layer,” Journal of Fluid Mechanics 673, 80 (2011).

50C. Atkinson, N. A. Buchmann, and J. Soria, “An experimental investiga-
tion of turbulent convection velocities in a turbulent boundary layer,” Flow,
Turbulence and Combustion 94, 79-95 (2015).

Sic.w. Rowley, I. Mezié, S. Bagheri, P. Schlatter, and D. S. Henningson,
“Spectral analysis of nonlinear flows,” Journal of fluid mechanics 641, 115—
127 (2009).

32p. J. Schmid, “Dynamic mode decomposition of numerical and experimen-
tal data,” Journal of fluid mechanics 656, 5-28 (2010).

533, L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition
with control,” SIAM Journal on Applied Dynamical Systems 15, 142-161
(2016).

54M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, “De-
biasing the dynamic mode decomposition for applied Koopman spectral
analysis of noisy datasets,” Theoretical and Computational Fluid Dynamics
31, 349-368 (2017).

337, Park and S. Boyd, “A semidefinite programming method for integer con-
vex quadratic minimization,” Optimization Letters 12, 499-518 (2018).

56p. Welch, “The use of fast Fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified peri-

odograms,” IEEE Transactions on audio and electroacoustics 15, 70-73
(1967).

577, M. Wallace, “Quadrant analysis in turbulence research: history and evo-
lution,” Annual Review of Fluid Mechanics 48, 131-158 (2016).

58 A. Tsolovikos, S. Suryanarayanan, E. Bakolas, and D. B. Goldstein, “To-
ward model-based control of near-wall turbulent coherent structures,” in
AIAA Scitech 2020 Forum (2020) p. 1319.

9A. J. Smits, B. J. McKeon, and L. Marusic, “High-Reynolds num-
ber wall turbulence,” Annual Review of Fluid Mechanics 43 (2011),
10.1146/annurev-fluid-122109-160753.

0R. Mathis, N. Hutchins, and I. Marusic, “Large-scale amplitude modulation
of the small-scale structures in turbulent boundary layers,” Journal of Fluid
Mechanics 628, 311-337 (2009).

6IN. Hutchins and 1. Marusic, “Large-scale influences in near-wall turbu-
lence,” Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 365, 647-664 (2007).

621 Marusic, R. Mathis, and N. Hutchins, “High Reynolds number effects in
wall turbulence,” International Journal of Heat and Fluid Flow 31, 418-428
(2010).

3C. Pan and Y. Kwon, “Extremely high wall-shear stress events in a turbulent
boundary layer,” in Journal of Physics: Conference Series, Vol. 1001 (IOP
Publishing, 2018) p. 012004.

4], Wylie and M. Amitay, “Experimental generation of large-scale motion for
boundary layer control,” Bulletin of the American Physical Society (2022).

655, Wylie, A. Jariwala, S. Suryanarayanan, D. Goldstein, and M. Amitay,
“Hairpin vortex generation for physio-cyber simulations and control,” Bul-
letin of the American Physical Society (2023).

66G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lii, H. Wang, and
Y. Wang, “The unconstrained binary quadratic programming problem: a
survey,” Journal of combinatorial optimization 28, 58-81 (2014).



