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We propose a computationally efficient method to derive the unitary evolution that a quantum state is
most sensitive to. This allows one to determine the optimal use of an entangled state for quantum sensing,
even in complex systems where intuition from canonical squeezing examples breaks down. In this paper we
show that the maximal obtainable sensitivity using a given quantum state is determined by the largest
eigenvalue of the quantum Fisher information matrix (QFIM) and the corresponding evolution is uniquely
determined by the coinciding eigenvector. Since we optimize the process of parameter encoding rather than
focusing on state preparation protocols, our scheme is relevant for any quantum sensor. This procedure
naturally optimizes multiparameter estimation by determining, through the eigenvectors of the QFIM, the
maximal set of commuting observables with optimal sensitivity.
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Introduction.—Advances in quantum sensing technolo-
gies including atomic clocks [1,2], inertial sensors [3-5],
gravitational wave detectors [6-9], and biosensors and
tissue imaging devices [10] revolutionize the way we
understand the world around us. The development of
sensing devices using parameter estimation is at the core
of the ever-growing field of quantum metrology [11].
Moreover, quantum sensors can make use of quantum
entanglement to surpass the standard quantum limit (SQL)
and simultaneously have increased robustness against
fluctuations that harm the measurement process [12—-14].
One of the greatest challenges in developing quantum
sensors is the generation of metrologically useful entan-
glement. Many schemes rely on dynamics in which the
quantum state evolution can be intuitively understood.
This provides insight about the final state so it may then be
manipulated to utilize its entanglement for a given sensing
purpose. For example, analytic solutions have been devel-
oped for one-axis twisting (OAT) [11,15-17] to track the
rotation axis the state is most sensitive to.

Many theoretical techniques have been developed to
determine the metrological usefulness of a state for a given
sensing purpose [11,18]. In particular, the quantum Fisher
information (QFI) represents the maximum achievable
precision of measuring a specific parameter [19] and is a
sufficient entanglement witness [20,21]. However, this
assumes a particular evolution and thus fails to shed light
on what evolution is optimal when intuition from canonical
squeezing examples breaks down. This is the case in higher
dimensional systems where the dynamics cannot be rep-
resented on a single collective Bloch sphere [22-27] and so
the potential gain from entanglement cannot be readily
determined.
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In this Letter, we develop a procedure that finds the
physical evolution that a prepared quantum state p is most
sensitive to. We utilize the quantum Fisher information
matrix (QFIM) in which the diagonal elements are the QFI
for each single parameter [28,29], while the off-diagonal
elements represent correlations between two parameters
[30]. More fundamentally, the QFIM has a deep connection
to distances between quantum states in the language of
quantum state geometry [31-36]. We use this geometric
formalization to show that one can find the optimal
evolution by diagonalizing the QFIM. The largest eigen-
value of the QFIM is the maximum achievable QFI for
single parameter estimation and the corresponding eigen-
vector gives the evolution that achieves this maximum
sensitivity. Our procedure can also be used for multi-
parameter estimation with the potential to sense vector or
tensorial quantities beyond the SQL [5,37-42].

To be clear, the purpose of our work is not to propose
protocols to create entangled states for quantum sensing.
Instead, we consider the state fixed and seek to quantify its
sensitivity to all possible evolutions, which allows us to
determine its full potential for quantum sensing. This makes
our method useful for any preparation scheme of metro-
logically useful entangled states, assuming the subsequent
metrological application is a continuous process. For
practical purposes, this method means one could determine
the QFIM of a state, diagonalize it, and then rotate the state
until the optimal generator determined here matches the
Hamiltonian for a given sensing purpose. This is a natural
consideration because highly entangled states are difficult to
engineer while rotations of entangled states are more easily
controlled [43,44].
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The utility of optimization via QFIM diagonalization
becomes clear when one considers the dimensionality of
group structures that are often used as the basis for quantum
metrological interactions [45-47]. For the case of SU(n)
systems, one has dim[8u(n)] = n> — 1 where 8u(n) is the
algebra that generates the group SU(n) under exponentia-
tion. To find the optimal generator of evolution, one would
have to optimize over the span of n> — 1 operators which is

equivalent to searching an entire -2 hypersphere. Instead,
the QFIM procedure only requires one to find the eigen-
vector with the largest eigenvalue of an (n? — 1) x (n*> — 1)
matrix.

Formalism.—We start now by introducing the general
formalism. To work out a procedure to find the optimal
generator, we adopt the language of quantum state geom-
etry (see Supplemental Material [48]). Consider a Hilbert
space H of dimension d, with a set of quantum states p(x).
Here, the states are parametrized by some ordered list of n
coordinates, x = (x',...,x"), that are associated with
physical parameters. The set of p(x) forms a state manifold
that may be equipped with a Riemannian metric in the form
of the QFIM,

ds? = F,dx"dx", (1)

with the definitions

1 A 1/ . .
Fu=5Tr [p{Lﬂ, Ly}] L =3 (pLﬂ + Lﬂp). (2)
Here, {A,B} =AB+BA is the anticommutator, d, =
0/0x*, and lA,M is the symmetric logarithmic derivative
[35] with respect to the coordinate x*.

The set of tangent vector fields on the state manifold
represent all potential quantum operations under which the
state may evolve. This is physically equivalent to a set of
derivatives, such that any tangent vector may be expanded
asV = V#0,. From Eq. (1), we can then understand the QFI
metric F, as the inner product between vectors at the point
X [48]: (V, W), = FV*WY. In other words, when the
QFIM is used to define the interval ds?, it can be intuitively
understood as a differential path length across the quantum
state space.

A natural consequence of this interpretation of the
QFIM is that the vector whose magnitude is_maximized
under the QFIM’s inner product, labeled O, uniquely
determines the infinitesimal rotation which changes the

state most rapidly. The magnitude of O is then inversely
proportional to the quantum Cramer-Rao bound (QCRB),
and thus determines the evolution in which the quantum

state is most sensitive to. Calculating O and its magnitude
is equivalent to finding the eigenvector with the largest
eigenvalue of F,, when treated as a matrix [48],

7(5” = Amaxéﬂ’ (3)

where @ is the column vector representation of OF.

In the case that the parametrization of a state may be
described unitarily, p(x) = U(x)p(0)U"(x), we may fur-
ther simplify this process since the geometric structure is
inherited from the unitary group U(H) [48,60,61]. If
p(0) = |¥)(P| for some prepared state |¥), we can study
pure states U(x)|¥) belonging to the state manifold. Here,
the expression for F,, simplifies to

-7:;41/ = 2<{G/u Gv}>‘l’ - 4<G/4>‘P<Glz>‘l” (4)

which matches the Fubini-Study metric [62]. We can
further understand derivatives at X as

LU =-iGUX)¥), 9,

= —iG”, (5)

where —iG, € u(*H) belongs to the Lie algebra. Therefore,
any vector 1% naturally defines a generator on the Hilbert
space according to Eq. (5), where V* is a set of coefficients
associated with the observables Gﬂ in a Hamiltonian. The
determination of O = —iO”Gﬂ is thus equivalent to find-
ing the optimal generator G=or Gﬂ. Here, the QCRB
may be artificially lowered by choosing larger coefficients
" and claiming this leads to a metrological advantage. As

a result, we enforce that O is normalized with respect to
the operator basis, ), (O")? = 1. By further defining a

suitable norm C such that Tr[G,G,] = C8,, [48], the SQL
is formally defined for SU(n) systems at the particle
number N. This also defines the Heisenberg limit (HL),
which is the fundamental sensitivity bound originating
from the Heisenberg uncertainty principle [18,63], at N2.

Squeezing in a SU(2) system.—To demonstrate the
validity of our QFIM diagonalization procedure, we first
consider states created by nonlinear interactions between N
two-level particles with an underlying SU(2) structure. Each
particle’s states are labeled with ground state |d) and excited
state |u). We use the Schwinger boson representation [64]
for two modes with creation operators d" and & represent-
ing the “creation” of a particle in the states |d) and |u),
respectively. As shown in Ref. [15], squeezing a coherent
spin state (CSS),

0.9) = |cos (2 )i +sin( 2 eitd "), (6)
V/N! 2 2

about a single axis may be accomplished with a nonlinear
interaction. In particular, the OAT Hamiltonian

~ ~ h s A
Honr = iyJ? = % (ma - d*d)z, (7)
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FIG. 1. One-axis twisting with N = 20. (a) and (b) Collective
Bloch sphere at 1 =0 and t = 1/ (;(N%), respectively. The color
represents |(0, ¢|w(t))|* at each point. (c) The three eigenvalues
A; of . Also plotted as a black dotted-dashed line is Fr from
Eq. (8). (d) Location of the optimal generator during the
squeezing process. The color represents the QFI for the given

generator. The time axis for t < z/(2y) —2/(yv/N) is shown
with a black arrow, while the discontinuous jump at 7 ~ z/(2y) —

2/(yV/N) is shown with a purple arrow. The eigenvalue then
grows at this final axis for the remainder of the process.

correlates quantum fluctuations by twisting the northern
and southern hemispheres of the collective Bloch sphere
in opposite directions, leading to a squeezed state with
particle-particle entanglement. We demonstrate squeezing
of a CSS initially oriented along J, = (afd +d'a)/2,
shown in Fig. 1(a), which reaches an optimally squeezed
state at time 7 = 1/(yN3), shown in Fig. 1(b).

We now examine this well-known squeezing example
through the lens of QFIM diagonalization. The operator
basis of the SU(2) group is the collective operators
G,€1{J,,J,.J.}, where J, = i(d' — i d)/2. Therefore,
Eq. (3) requires the diagonalization of a 3 x 3 matrix F.
Figure 1(c) shows the three eigenvalues of F during
the squeezing process. At t =0, the eigenvectors Y =
(0,1,0)" and 7" = (0,0, 1)T have degenerate eigenvalues
at the SQL, A, = N. The third eigenvector X* = (1,0,0)T
has a zero eigenvalue, showing the underlying symmetry of
the initial CSS. The degenerate eigenvalues split as squeez-
ing begins. As shown in Fig. 1(c), we find perfect agreement
between the largest eigenvalue of F and the analytical
solution [11,16] during the initial squeezing ¢ < 1/(yv/N),

Foar :N+W(A+ \/A2+B2), (8)

with A = 1 —cos"=2(2yt) and B = 4sin(yt)cosM2(yt).
We emphasize that this analytical result is found using
the exact solution of the squeezing dynamics which allows
one to extract the maximum QFI. Instead, with the help of
the QFIM, we do not require any such insight into the state
and yet can still efficiently find the maximum QFI numeri-
cally, deriving the eigenvector visible in Fig. 1(d) displaying
the optimal generator G. However, we will see that the
QFIM eigendecomposition offers its own insights into
symmetries at points of a given system’s dynamics.

After t = 0, the symmetry of the CSS is broken, and the
optimal generator jumps to G = sin(6)J, + cos(8)J y» Where
we find perfect agreement with the expression 6 =
arctan(B/A)/2 given in Ref. [15]. As squeezing progresses,
the optimal generator then rotates towards the equator. At
t~2/ (;(\/]V ), the first two eigenvalues become degenerate

with the associated eigenvectors X" and Y*, once again
showing an underlying symmetry of the state [17]. This
symmetry is then broken at t ~ 7/ (2y) — 2/(yv/N), causing
the two largest eigenvalues to split and a discontinuous
jump of the optimal rotation axis from Y* to X* [purple
arrow in Fig. 1(d)]. Therefore, Eq. (8) no longer calculates
the maximum QFI because it corresponds to rotations about
jy when t>2/(y/N). We find that For follows the
second eigenvalue down to the SQL while the largest
eigenvalue grows to the HL, A,,, = N°. The final three
eigenvalues, one at HL and two at SQL, are only possible in
SU(2) systems with a NOON state, which matches the
analysis of Ref. [17]. Having demonstrated that the well-
known results of OAT follow naturally from the diagonal-
ization of the QFIM, we now turn to a higher dimensional
system in which analytical results for the maximum QFI and
optimal generator cannot readily be obtained.

Squeezing in higher dimensonal systems.—We consider a
N-body system in which the constitute particles now have
four states |u), |d), |s), and |c). We again utilize Schwinger
bosons with corresponding creation operators ', d', 3", and
¢'. Here, the linear dynamics are described by the SU(4)
group with six 81(2) subalgebras. Each subalgebra has the
associated raising operators [65] O = afd, £ =3'e,
Mt =dte, NT =3d, U = '3, and V' = ¢7d. These
operators define the Hermitian components of each algebra
according to 0, = (0" + 07)/2, 0, = (0" -= 07)/2,
and O, = [0", 07]/2. We can then create an operator basis
that spans 31(4) with 15 operators that satisfy the ortho-
normality property [48]:

A

Gﬂ S {Qx, Qy, Qza ix’ 2y’ 22’ MX’M}”
vhs

X-/(/-xv-/{/)nlszyaxvz:{y, ]A)x,f} (9)

where P, = (M, - N.)/V2.
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FIG. 2. Three-axis twisting of a SU(4) system with N = 20.
(a) The largest eight eigenvalues 4; of . Also shown as a black
dashed line is the largest QFI from an operator in the §, &, and €
subgroups. (b) Coefficients O* and corresponding basis operator

G, of the optimal generator G = O'G,,.

We prepare the state via the nonlinear interaction
Hpar =y (QF +8°) (& +87) = 2yt B
TAT Y + Q + 2 Zfl)(E E™, (10)

which causes twisting about three of the axes of a
15-dimensional collective hypersphere [27]. Here, we have
introduced three SU(2) subgroups g, &, and € generated
by algebras with raising operators J© = (M+ +N +)/ V2,
Kt = U +V)/V2,and E* = (Q" +£%)//2, respec-
tively. The ¥ and & algebras might represent the dynamics
of the internal and external degrees of freedom of atoms in a
dispersive Kapitza-Dirac cavity, while the € algebras
represents the entanglement-generating processes [27,48].

When we begin in a simultaneous eigenstate of
J, and K., |yo) = (N!)77 exp[—iJ,z/v/2](a)V|0), the
Hamiltonian Eq. (10) causes squeezing as well as nontrivial
entanglement between § and &. We display the dynamics
of the QFIM eigenvalues for N = 20 in Fig. 2(a) and the
eigenvector of the QFIM with the largest eigenvalue in
Fig. 2(b). Figure 2(a) also displays the maximum QFI from
operators in the ¥, &, and € subgroups, which were the
generators considered in Ref. [27]. At ¢t = 0, the largest six
eigenvalues are degenerate at the SQL, A; = N, indicating
that the starting state is a generalized CSS [66]. This mirrors
the symmetry between Y* and Z* initially in OAT, but now
over three SU(2) subgroups [67]. As the squeezing begins,
the largest two eigenvalues grow until ¢ ~ 1/(y+/N) where
they reach a maximum value of A, ~ 146 ~ 0.366N?. This
degeneracy can be seen in Fig. 2(b) as the optimal generator
jumps back and forth between two operators for the
beginning of the squeezing process. These two degenerate
eigenvalues subsequently fall until they cross the third
largest eigenvalue at 7~ 5/(3yv/N), corresponding to a
discontinuous jump in Fig. 2(b). The eigenvalue corre-

sponding to a rotation axis close to Mx then grows
rapidly, eventually becoming the largest eigenvalue at
t~m/(2y)—1/(¢v/N). This analysis highlights that the
QFIM diagonalization unravels the complicated nonlinear

dynamics of the high dimensional quantum system. In fact,
with its help, we find that at all times the state has a higher
sensitivity than what was shown in Ref. [27].

Multiparameter estimation.—So far, we have focused on
optimizing single parameter estimation. However, our QFIM
diagonalization scheme inherently optimizes multiparameter
estimation as well by finding multiple eigenvectors of the
QFIM whose complimentary generators commute with one
another. This, in turn, could be used in quantum sensors that
aim to infer multiple parameters beyond the SQL simulta-
neously. As an example, at 1 = z/(4y) in Fig. 2(a), the
generators associated with the eigenvalues 1, = 0.307N?,
A3 = 0.189N?, and Ag = 0.117N? all commute with one
another, meaning one could carry out simultaneous estima-
tion beyond the SQL for all three of the corresponding
parameters. The associated generators go as Ql =cV2K -+
o (M, +My)» Gy =c,V2K, —ci (M, +My)7 and Gy =
C3./(/’ xt c4/§/’ y» with real coefficients c¢; that satisfy the
normalization condition. For the case of the spin-momentum
SU4) system considered in Ref. [27], a portion of these
generators may be found to correspond to interactions which
are more physically accessible than the whole generator is
(see Supplemental Material [48] for details). In this physical
example, K, could correspond to a linear acceleration while
./\A/lx + /\A/ly and c3jv xt c4/(f , may correspond to spatially
dependent rotations, thereby creating the opportunity for
many combinations of useful interferometry [37,68,69]. We
thus consider (Mx + My) /V2, K ., and QS which still have
QFIs of 0.300N2, 0.195N?, and 0.117N?, respectively.
Since these operators are in three commuting subalgebras,
they can be independently rotated to any arbitrary operator in
the respective subalgebra in order to be made relevant for
sensing vector quantities or network node interferometry
[69-T71].

More generally, within SU(n), one is guaranteed sets of
n — 1 commuting generators [48,72,73], thereby guarantee-
ing sets of n — 1 eigenvectors of the QFIM which corre-
spond to simultaneously commuting generators. One could
thus select the eigenvector with the largest eigenvalue and
search the remaining eigenvectors to find the set of n — 1
generators which mutually commute and have suitable
eigenvalues that scale beyond the SQL. Furthermore, the
associated symmetric logarithmic derivatives I:” are guar-
anteed to commute such that the optimal measurement basis
is the same for each parameter. This ensures that the QCRB
is always simultaneously attainable for all n — 1 parameters
as the elements of the Uhlmann curvature matrix U,, =
—iTr[p[L,.L,]]/2 will vanish [28,74-76].

Conclusion and outlook.—We have demonstrated
that the optimal generator for quantum sensing is given
by the eigenvector associated with the largest eigenvalue of
the QFIM. This is a consequence of maximizing differential
path lengths through quantum state space when the QFIM
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is viewed as a Riemannian metric, generalizing the work of
Ref. [77] to any metrological process with an underlying Lie
group structure. For the examples we considered, unitary
parametrization was assumed, but future steps include
examining a channel or hybrid parameterization scheme
[28,78,79] using QFIM diagonalization. Furthermore, our
examples have used pure states, but the procedure is equally
valid with mixed states and the properly defined tangent
vectors. Here, one must utilize the more general definition
of the QFIM given in Ref. [28]. The use of mixed states is
then relevant to experiments where a small amount of
entanglement entropy between the system and a bath can be
generated through either known or unknown dissipative
processes.

The examples we considered had underlying SU(2) and
SU(4) group dynamics. Already in the case of SU(4), one
finds that more care must be taken compared to the SU(2)
case when considering larger group structures. For one,
unitarily rotating the optimal generator to an arbitrary
operator is not always possible in larger group structures
[48]. We also outline in the Supplemental Material [48] how
to extend our work to general SU(n) systems with an
algorithm to generate an orthogonal operator basis that
spans the quantum state space. Moreover, the underlying
formalism of this Letter extends to any dynamical group
structure. This makes our procedure relevant to systems
described by Sp(n,R) [80,81], SU(m, n) [82], or transla-
tional groups [83], for example.

Interestingly, there have been recent efforts to experimen-
tally infer the quantum geometric tensor [84-87], which is
related to the QFI metric through its real component [48,62].
This leads to the prospect of finding the optimal generator
for quantum sensing without the need for a full theoretical
model, only an understanding of the underlying symmetries.
This is necessary for complex systems where such models
are difficult to derive or fully simulate. Our QFIM diago-
nalization procedure thus opens an exciting avenue for
experiments with complex systems [24-26,88-93], whose
current interest is not parameter estimation, to naturally test
if the experiment can be useful as a quantum sensor and how
to use any generated entanglement in an efficient manner.
In addition, we can combine numerical approaches with
QFIM diagonalization for these complex systems, which is
relevant for quantum optical control and machine learning
methods that have been used effectively for quantum design
tasks [94-100].
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