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A B S T R A C T

This paper investigates the game theory of resource-allocation situations where the ‘‘first come, first serve’’
heuristic creates inequitable, asymmetric benefits to the players. Specifically, this problem is formulated as a
Generalized Nash Equilibrium Model where the players are arranged sequentially along a directed line graph.
The goal of the model is to reduce the asymmetric benefits among the players using a policy instrument.
It serves as a more realistic, alternative approach to the line-graph models considered in the cooperative
game-theoretic literature. An application-oriented formulation is also developed for water resource systems.
The players in this model are utilities who withdraw water and are arranged along a river basin from upstream
to downstream. This model is applied to a stylized, three-node model as well as a test bed in the Duck River
Basin in Tennessee, USA. Based on the results, a non-cooperative, water-release market can be an acceptable
policy instrument according to metrics traditionally used in cooperative game theory.

1. Introduction

1.1. Asymmetric games

In engineering-economic and other systems, asymmetric games exist
if some players have distinct advantages over other players. These ad-
vantages may be structural, e.g., first-mover advantage, e.g. Stackelberg
games (Gabriel et al., 2012) or may take the form of disproportionately
higher payoffs, a greater number of strategies, or other aspects. Con-
cerns regarding equity and welfare arise when these situations involve
shared resources or infrastructure of economic, social, or environmental
importance. Thus, ways to balance this asymmetry provide insight into
policies to improve equity in asymmetric games.

Games played on asymmetric networks are one important class
and can naturally become a source of asymmetry between players.
Specifically, the asymmetric network governs the interactions among
players such that only a few neighbors are capable of influencing a
given player’s set of decisions (Parise and Ozdaglar, 2019). If this
influence is biased in one direction, then the network position of
certain players may be advantageous in space, time or both. Players
with these positional advantages could be ‘‘indifferent’’ to or even
exploit the strategies of others and thereby create an asymmetric game.
Stackelberg games are an important example of the latter. The differ-
ence is that in Stackelberg and leader–follower games more generally,
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e.g., mathematical program with equilibrium constraints (MPECs) or
equilibrium problems with equilibrium constraints (EPECs) (Gabriel
et al., 2012), the leaders directly take into account the actions of
the followers in their decision-making to optimize their own objective
functions. The followers are passive and take the leaders’ decisions as
given.

The study of asymmetric games in this paper concentrates on an
asymmetric network that takes inspiration from river systems with
multiple independent water users. Specifically, the players located on
the upstream end of the river have a positional advantage manifesting
as privileged access to water. Downstream users must take these deci-
sions as given, which may result in excess flooding, inadequate water
supply, or degraded water quality. Independent, conflicting water usage
decisions often arise in trans-boundary river basins. Namely, these
include situations where the river basin is not solely contained within
one administrative boundary. This general situation is known as the
river-sharing problem (van den Brink et al., 2007).

With this example in mind, we consider a general, asymmetric
game on a line-graph network where a shared resource is accessed
on a ‘‘first come, first served’’ basis. In such a network, each player
is sequentially positioned in a line on a directed network (van den
Brink et al., 2007). Excluding the two terminal-end players, each player
has both an upstream and downstream neighbor. The two terminal-end
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players have only one upstream or downstream neighbor depending on
the position. The upstream users are like leaders in a Stackelberg game,
except they may not directly exploit the downstream users (e.g., are
‘‘indifferent’’ to followers). In this context, truly indifferent leaders are
mathematically equivalent to those who are abstaining from exploiting
the followers.

Using this general model, we provide several non-cooperative game
theory models for linear-graph networks of river systems. The aim is
to allow the downstream players to balance this asymmetry through
payments to water-release markets. Compared to other papers in this
line of research, the non-cooperative approach provides more realistic
modeling as compared to cooperative game theoretic ones (Peleg and
Sudhölter, 2007) yet still allows for an improved system benefit as com-
pared to the current one. There are a number of important examples of
these asymmetric games in a variety of different areas. Similarities and
differences between river basins and other infrastructure systems are
discussed in the next section.

1.2. Water vs. Other infrastructure systems

Water resource-related risks are closely linked to a number of
on-going economic and environmental concerns and have been exac-
erbated in recent years. The myriad number of causes are responsible
for this include rapid population growth and urbanization, increased
wastewater discharges and more stringent effluent limits, a greater
number of recreational users, degraded in-stream environmental habi-
tats and landscapes, increased frequency and duration of extreme cli-
mate events, and inequitable access to clean drinking water. For in-
stance, a study found that the drought in the Western United States is
the worst in 1200 years (Rott, 2022). For years, stakeholders have rec-
ognized that the future was rapidly coming into focus: tackling complex
challenges requires a unified collaborative approach and cutting-edge
solutions to evaluate and mitigate future risks. Furthermore, translating
the flow of water into the flow of benefits is inherently challenging
because of water’s ubiquitous usage across municipal, agricultural, and
industrial sectors. This hinders the ability to validate and address the
associated inequities with regulation alone.

What makes water management and river systems in particular
interesting and the focus of the application in this paper, is their
relationship to commodity markets. In general, there are no widely-
implemented market structures to balance the asymmetry outlined
above either for water quantity or quality. For example, the doctrine of
prior appropriation in the western United States grants water rights on
a ‘‘first in time, first in right’’ basis (Cech, 2005). However, this system
is rigid and does little more than transfer a spatial asymmetry into
a temporal asymmetry. In contrast, other infrastructure systems can
have market structures/systems to balance welfare and other system-
level economic or other objectives. Consider the following examples to
highlight this point.

In the electric power sector, markets in Europe and North America
have several stages of decisions leading up to real time. For example,
power producers can submit day-ahead bids for production levels and
prices which then help independent system operators (ISOs) to balance
power supply with forecasted demand. There are also markets that
balance supply and demand in near real-time or automatic adjustment
in real-time as well e.g., PJM power market in the U.S. (https://www.
pjm.com/) or Nordpool in Europe (https://www.nordpoolgroup.com/).

Relative to water volumes, water resources do not operate with
these levels of decision-making in part because they can store water
as needed. In power systems, in today’s markets there are generally
no market-scale storage assets to mitigate potential imbalances in
uncertain supply (i.e., renewable) or uncertain demand. Also, power
markets allow for forward contracts as well as spot markets to be as
flexibile as possible which is distinct from river-based water systems.
One aspect that is akin to balancing upstream and downstream players
in power is what is called demand response. This is temporal shifting

of the consumer load (e.g., residential, industrial) to better balance
supply and demand. For example, the residents in buildings may be
incentivized with payments to shift their load to hours with lower
prices for overall system benefit (i.e., less need for expensive and fossil
fuel-based peaking plants). In this sense, the asymmetric game is over
time with the upstream players the consumers (or producers) that are
paid to alter their consumption (production) schedules for temporally
later consumers or producers (i.e., downstream players) (Conejo et al.,
2010)

In transportation, specifically traffic management, there are also
mechanisms in place to better balance the asymmetry in this transport
infrastructure on a real-time basis. Consider real-time tolls that change
their prices based on the volume of flow along a particular highway
through the use of vehicle transponders. In effect, drivers can decide
to use the roads later if the prices are too high. The earlier drivers
in this case are the upstream players whose choice of using the tolled
road can affect later, downstream drivers. In this case the asymmetry
is over time but the earlier drivers are negatively incentivized by much
higher congestion tolls (assuming that they are driving during the busy
hours) (Gabriel and Bernstein, 1997).

From a water-quality perspective, the analog with power is perhaps
best through carbon emissions-reduction programs like the U.S. Re-
gional Greenhouse Gas Initiative (RGGI) https://www.rggi.org/, (Ruth
et al., 2010). This program gives certain carbon allowances (maximum
amount of tons of carbon emissions) and it is up to the market to
balance this with policy goals. For example, power companies that pro-
duce renewable energy or can limit their carbon emissions can generate
revenue from selling their unused allowances. Power companies that
produce too much carbon emissions have to pay for this overage. It
seems that RGGI has done well to monetize carbon emissions reduc-
tions. From this perspective, RGGI relates to water quality for example,
sediment or pollution reduction in river systems. While power has such
systems and markets in place, it is rarer for water systems to apply
them successfully. The Virginia Nutrient Credit exchange program is
a notable exception (Caldwell, 2012). Another interesting comparison
between water and power is that in water systems water users along a
river can act as both suppliers and consumers, which is analogous to
prosumers in energy markets.

2. Literature review and contributions of this paper

2.1. Literature review

Most if not all of the research on line-graph games has been from
the framework of cooperative game theory. Brink et al. (2007) used
cooperative game theory to analyze line-graph games with applications
in machine sequencing games and the river-sharing problem (van den
Brink et al., 2007). Khmelnitskaya (2010) extended this work to a more
general case, which considers cooperative game theory on rooted-tree
and sink-tree digraphs (Khmelnitskaya, 2010). This structure was then
used to address the river-sharing problem for more complex networks.
These works demonstrate that the river-sharing problem can be gen-
eralized to a mathematically abstract setting within a game-theoretic
context.

Network games from the non-cooperative game theoretic frame-
work have been researched, but lack coverage in line-graph games. For
example, Cominetti et al. (2021) formulate the ‘‘Buck Passing Game’’
where the players attempt to pass a chore to other players in the
network to minimize individual effort (Cominetti et al., 2021). Zhou
and Chen (2018) consider sequential consumption in networks during
a firm’s release of a new product (Zhou and Chen, 2018). It is similar to
a line-graph game but involves more sophisticated network dynamics.
Parise and Ozdaglar (2019) formulate a general, variational inequality
framework for network games, but do not cover line-graph games as a
specific case (Parise and Ozdaglar, 2019).

https://www.pjm.com/
https://www.pjm.com/
https://www.pjm.com/
https://www.nordpoolgroup.com/
https://www.rggi.org/
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Water-resource problems have been analyzed from a wide vari-
ety of both cooperative and non-cooperative game theoretic network
contexts. Dinar and Hogarth (2015) presented a systematic review of
game theory and water resource literature (Dinar and Hogarth, 2015).
They found that much of this research was related to cooperative game
theory. However, the non-cooperative models lack extensive formula-
tions from an equilibrium programming perspective. Bekchanov et al.
(2017) reviewed over 150 papers on water economic models. They
concluded that the literature poorly integrates economic equilibrium
models with the underlying water resource networks (Bekchanov et al.,
2017). Archibald and Marshall (2018) corroborate this viewpoint in
their literature review. They reviewed nearly 450 papers on mathemati-
cal programming in water resources, but equilibrium programming was
notably absent (Archibald and Marshall, 2018).

Britz et al. (2013) provides a notable exception to the equilibrium
programming gap in the literature. They model a stylized river basin us-
ing multiple optimization problems with equilibrium constraints (Britz
et al., 2013). In a follow-up paper, Kuhn et al. (2014) extend the
approach to a real-world case study in the Lake Naivasha Basin. De-
spite the uniqueness of the approach, both of these papers do not
attempt to generalize it to the general non-cooperative game theoretic
context. They also focus primarily on water allocation issues without
considering the trade-offs between water use curtailments and water
infrastructure investment. Additionally, they do not consider nuances
of water balances such as the role of indirect water reuse.

2.2. Contributions of the current paper

Thus, the current work formalizes the modeling approach used
in Britz et al. (2013) as a Generalized Nash equilibrium model for
asymmetric, non-cooperative games on line graphs. It also provides a
counterpoint to the cooperative game theory approach that is already
well covered in the literature. The goal is to demonstrate how self-
enforcing agreements are possible among players even in the context of
an asymmetric game. Specifically, market structures are used to identify
trading opportunities that connect high marginal benefits downstream
to lower marginal costs upstream. It also considers water management
decisions beyond water allocation such as the role of consumptive use,
indirect water reuse, storage, and capital projects.

Furthermore, the proposed water release market is more tangible
than markets based on water-allocation. In the water release market,
water’s scarcity and associated value is based on the physical barriers
and cost of releasing additional water to the river. In contrast, water-
allocation markets are based on legally increasing a water-withdrawal
limitation. Thus, the value of water is derived from scarcity associated
with a legal barrier. In countries such as Chile, real-world implemen-
tation of these water-allocation markets are inequitable because the
judicial system has not uniformly enforced this legal barrier (Galaz,
2004).

To illustrate the approach, the model is applied to a stylized river
basin as well as a case study in the Duck River basin in Tennessee,
USA. We consider the role of consumptive use, indirect water reuse,
storage, and capital projects in water resource systems. The purpose is
to extend the application of the approach used in Britz et al. (2013).
Taken together, the application goal is to develop a collaborative ap-
proach to water resources management to better balance the upstream-
downstream asymmetries. Our approach achieves this goal using con-
cepts from other infrastructure markets and economic theory.

Summarizing the above discussion, the current paper makes valu-
able contributions versus the existing literature as follows: 1. Formalize
non-cooperative games on line graphs as a counterpoint to the existing
cooperative game theory literature; 2. Extend non-cooperative river
basin game theory models to consider engineering-economic decisions
beyond water allocation schemes, and 3. Create novel water market
structures to achieve a better alignment of stakeholder interests in a
river basin.

3. General model

3.1. Line-graph network games

The line-graph network game is a sequential game of I turns, in
which player i À I derives a payoff from depleting a shared resource
down to a level si. This process repeats for player i+1, i+2,… until the
final player I takes their turn. Player i’s payoff is dependent on the
state, S, of the shared resource, which is represented as the depletion
level inherited from the previous player: S = si*1. This paradigm
could apply to games with ‘‘first come, first serve’’ access (e.g., queuing
problems) or to games with directed network flows (e.g., river basins
or supply chains).

Sequential optimization models are used to represent the line-graph
game mathematically in which S À {so, s1, s2,… , s

I*1} is a dynamic
parameter linking the models. The initial value so represents the start-
ing state of the resource prior to the game. Additionally, let xi À
Ri(S) ” Rn denote player i’s ‘‘n’’ decisions that are possible given a
resource state S. We assume for simplicity of notation that each player
faces the same number of decisions. Furthermore, let fLG

i
(xi) : Rn ,,ô R

denote the associated payoff function and let the function g
LG(xi;S) :

Rn ,,ô R describe the relationship between player i’s decisions, xi,
and the resulting depletion level si. This game can be expressed in
algorithmic form as follows:

For each i À I :

1. if i = 1: S = so; else: S = si*1
2. Solve maxxi f

LG

i
(xi) s.t. xi À Ri(S)

3. si = g
LG(x<

i
;S)

4. i = i + 1

This formulation illustrates how players at a positional disadvantage
(i.e., late in the sequence) inherit the shared resource. They are com-
pletely dependent on the optimal decisions, x<

i
of the players early

in the sequence yet have no direct opportunity to influence them.
For future reference, the model described in Section 4.4.3 can be
solved using this algorithm. The model represents the river basin as
a line graph with players ordered from upstream to downstream, and
the dynamic parameter S equals the minimum water outflow (Omin

i*1,t),
which is introduced in Section 4.2.

3.2. Generalized Nash reformulation

The line-graph network structure does not preclude the players
from other types of interactions such as allocating the shared resource
in a market. We now reformulate the problem assuming these inter-
actions help reduce the asymmetric resource access. The sequential
algorithm no longer applies because market interactions are typically
simultaneous. Consequently, the depletion levels, si, can be directly
incorporated into the model without the sequential updating of S.
The models presented in Sections 4.4.1 and 4.4.2 are examples of this
reformulation. These models also represent the river basin as a line
graph but have market interactions in the form of water sales flowing
downstream to water purchasers.

In general, this reformulation is expressed in the form of (1) where
each player simultaneously solves the following optimization problem:

maxxi ,yi ,zi
f
GN

i
(xi, yi, zi,⇡) (1a)

s.t.

xi, yi, zi À R
GN

i
(si*1) (1b)

The vector xi À Rnx has the same definition as described in the
previous section. The vector yi À Rny represents player i’s decisions
that desirably influence players with better resource access to alter
their depletion of the shared resource. An example of this is water
purchases, W P

i,t
, which are introduced in Section 4.2. Conversely, the
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vector zi À Rnz represents player i’s accommodations for players with
worse resource access. An example is the water-loss reductions, LR

i,c,t
,

which are also introduced in Section 4.2. The variable ⇡ À Rn⇡ is
a vector of variables unique to the system that informs each player’s
decisions (e.g., market prices).

This is a generalized Nash problem because the constraint region,
R
GN

i
, is affected by other players’ decisions, which is captured in the

following mathematical expressions:

si = g
GN (zi; si*1),⇡ = h(Y ,Z) (2)

The function g
GN : Rnz ,,ô R describes the value for the depletion level

si on the domain of player i’s feasible accommodation decisions, zi,
and the feasible states of the inherited resource, si*1. In the simplest
form, this function could include conservation of flow constraints. In
its most complex form, this function could include resource depletion
estimates from a simulation. The function h transforms the vector of
decisions Y = (yT1 ,… , y

T

I
)T and Z = (zT1 ,… , z

T

I
)T to some system

value ⇡ (e.g., market price).
Generalized Nash problems are special cases of quasi-variational

inequality problems which are more computationally challenging to
solve than Nash games. In the latter case, just the objective functions
of the various players show interactions with the decision variables of
the other players. For generalized Nash problems, each player’s con-
straint set can also be changed by the other players’ decision variables
which is a more complicated situation but consistent with some shared
resources. However, it is well-known that if the Lagrange multipliers to
any shared constraints have the same value for each player (e.g., same
value of the resource), then there is an equivalent variational inequal-
ity problem (or mixed complementarity problem) which is easier to
solve (Harker, 1991; Facchinei et al., 2007). For recent references,
see also Passacantando and Raciti (2021) and Mastroeni et al. (2020)
for a more general treatment of generalized Nash games. The former
reference discusses generalized Nash games on networks and the latter
considers a more general setting.

3.3. Cooperative game theoretic considerations

Concepts from cooperative game theory are used to compare alter-
native systems or rules for specific implementations of the Generalized
Nash Reformulation. These include the concepts of the coalition, the
characteristic function, and the imputation. In this section, each con-
cept is introduced in general and then adjusted to fit the context of the
paper.

A coalition represents a subset of players I
C

” I cooperating
towards a common goal. One typically analyzes many distinct I

C

to obtain a particular solution concept (e.g., core, Shapley values).
However, in the context of (1) and (2), we assume that an equilibrium
from a mathematical program can serve as a solution concept under
certain conditions. Accordingly, we restrict our considerations to I

C

that are associated with an equilibrium solution:

I
C = {i ÒyiÒ ë 0} ‰ {i ÒziÒ ë 0} (3)

where yi and zi are the same variables defined previously and Ò � Ò is
any vector norm.

The characteristic function v(IC ) gives the payoff that the members
of IC are guaranteed to receive if they act together as a coalition (Win-
ston and Goldberg, 2004). One typically analyzes a single game and
thus expresses the payoff in absolute terms. However, in this con-
text, we express the payoff as the surplus of the Generalized Nash
Reformulation over the Line Graph Game:

v(IC ) =
…

iÀIC

�

f
GN

i
(x<

i
, y

<
i
, z

<
i
,⇡) * f

LG

i
(x<

i
)
�

(4)

where x<
i
, y

<
i
, z

<
i
represent optimal decisions for player i. This definition

was chosen because the line graph game represents the default situ-
ation of the players. In contrast, the Generalized Nash Reformulation
represents the improvement from cooperation.

An imputation is defined mathematically as follows (Winston and
Goldberg, 2004):

v(I) =
I
…

i=1
ri, (5a)

ri g v({i}) ≈i À I (5b)

where ri is the reward player i receives from participating in the
coalition. The first condition states that the rewards distributed to all
players must equal the value of the characteristic function composed
of all players. The second condition states that participating in the
coalition should not decrease the rewards received. Put another way,
joining the coalition of the group should provide a higher reward than
the coalition of only oneself. Therefore, an imputation must maximize
the payoff to the coalition and leave no player worse off than they
would be independently. It effectively is a condition for mutual interest
among the participating players.

Theorem 1. A non-negative reward ri for all players is a sufficient
condition for an imputation in this optimization-based, line-graph game.

See the Appendix for the proof. Using these metrics, the solutions of
alternative reformulations shown below are compared and contrasted
using the associated characteristic functions and the criteria for im-
putations. Specifically, we seek alternative reformulations with high
characteristic function values that are also imputations. Such conditions
represent interactions that are non-cooperative fundamentally but are
mutually beneficial for the players.

4. River basin equilibrium model formulations

This section presents a special case of the general line-graph model
applied to water resources in river basins. Two alternative Generalized
Nash reformulations are considered in Sections 4.4.1 and 4.4.2. In both
cases, the interaction structure between the players (i.e., the ⇡ function
in (2)) is a water-release market. Section 4.4.3 considers the original
line-graph game without any market to allow interaction between the
players. Finally, Section 4.5 translates the cooperative game theory
concepts into performance metrics for the market structures.

4.1. Model overview

Fig. 1 depicts the flow balance for a particular river user, referred
to as player i. The water available to player i is a function of the flow
rate in the river as well as water released from upstream players. Player
i can withdraw river water from an intake and combine it with an
independent water supply, which typically represents a capital project
such as a reservoir or pumped groundwater. The total water withdrawn
is used to meet demand. A fraction of this water usage is returned to
the river as discharges in the form of runoff, wastewater, or both. It
recombines with the river water and flows to downstream players. The
remaining water fraction is returned to the groundwater or another
basin. This fraction is called consumptive losses because they effectively
are unavailable for downstream players.

Releases from independent water supply infrastructure are one
mechanism to increase flows in the river. Specifically, water is released
from a structure, such as a dam, into the river to increase the flow
levels. It typically provides a significant capacity increase over the
natural flows in the river. A player in control of such infrastructure
often gains a level of independence from other players. Thus, modeling
infrastructure of this type extends beyond water allocation schemes
because supply can often be increased if demand is high enough.

Reductions of consumptive losses are another mechanism to in-
crease flows in the river. These reductions involve alterations such that
more water is returned to the river as wastewater or runoff. One of the
largest classes of consumptive losses are aging infrastructure. In this
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Fig. 1. Hydrology and flow balance in the river basin for player i.

Fig. 2. High-level view, water-release market (just 2 players) shown.

case, leaks from water mains or sewers enter the groundwater. Repair-
ing the infrastructure reduces these losses from the river. Another class
of losses are septic systems in rural and suburban areas, which return
treated wastewater to the groundwater. Converting septic systems to
sewers increases the return flow to the river via central wastewater
collection and treatment.

The cost profiles associated with these two sources of water releases
are nearly opposite. The capacity of the independent supply infrastruc-
ture is considered to be fixed, which reflects the large fixed costs of
water supply infrastructure. However, the marginal costs are low and
the potential releases are high. By contrast, consumptive-loss reduc-
tions are much more diffuse. For instance, many water mains would
likely need to be repaired to generate a significant increase in return
flows. Accordingly, the capacity of the consumptive-loss reductions
are modeled as a continuous variable. To model diminishing returns,
the marginal costs are considered to be progressively higher as more
consumptive-loss reductions are implemented.

Having considered a single player, one can envision a market struc-
ture connecting the decisions of multiple players together. Fig. 2 de-
picts the high-level function of the proposed water-release market.
Downstream players (e.g., Player 2) purchase water from this market,
which is supplied by upstream players (e.g., Player 1). This supply
takes the form of water releases from independent supply sources
and consumptive-loss reductions. The market prices cover the cost of
these releases and could also provide additional revenue to incentivize
upstream players to participate.

4.2. Notation

The notation in the model consists broadly of sets, primal variables,
dual variables, and parameters. In the formulation, these are either
units of flow or unit costs per flow rate. In the results section, flow
rates are expressed in million gallons per day (MGD), or equivalently,
thousand cubic meters per day (TCMD). Notation representing unit
costs are expressed in discounted million dollars/MGD/planning pe-
riod ($M_MGD), or equivalently, discounted million dollars/TCMD/
planning period. ($M_TCMD). These latter units were chosen to rep-
resent flow rates conventionally while allowing total costs to be calcu-
lated over longer planning periods.

Sets
The following list consists of the sets in the model. Aliases are

provided to allow the calculation of cumulative values arising from the
use of these sets in the model. The brackets are omitted when referring
to the cardinality of these sets.

• i, j, k À I = indexed users of the river from upstream to down-
stream

• Ui œ I = upstream nodes of i, where j À Ui is a typical node index
• Di œ I = downstream nodes of i, where k À Di is a typical node
index

• c À C = classes of water loss reductions in ascending order of
expense

• t, t
® À T = budgetary planning time periods

Primal variables
The following consists of the primal variables in each user’s opti-

mization problem. In this context, reliable capacity is a deterministic
equivalent corresponding to a reasonable probability that the supply
will be available to meet water demands. These variables represent
steady state flow rates that occur during a much longer time horizon
(i.e., planning period t).

• W
D

i,t
= player i’s incremental increase in direct water withdrawal

from the river relative to time period t * 1 (volume/day)
• W

S

i,t
= player i’s water supply sources from capital improvements

that are independent of upstream releases (volume/day).
• Qi,t = player i’s total demand in time period t (volume/day)
• Ki,t = player i’s reliable capacity added from capital project in
time period t (volume/day)

• L
R

i,c,t
= player i’s incremental water loss reductions in class c in

time period t (volume/day)
• W

P

i,t
= player i’s water purchases from upstream in the cost-

sharing market formulation to reduce asymmetric access to water
in time period t (volume/day)

• W
P

i,j,t
= player i’s purchases from an upstream player j (vol-

ume/day)
• W

P

k,i,t
= water sales to player k downstream from i (volume/day)

• O
min

i,t
= player i’s minimum water outflow to downstream nodes

in time period t (volume/day)

Dual variables
• �

loss

i,c,t
= Nonnegative shadow price for loss reductions (cost/unit

flow)
• �

flow

i,t
= Nonnegative shadow price for withdrawal limitations

(cost/unit flow)
• �

cap

i,t
= Nonnegative shadow price for storage releases (cost/unit

flow)
• �

sup

i,t
= Unrestricted shadow price for total supply (cost/unit flow)

• �
aug

i,t
= Unrestricted shadow price for supply augmentations (cost/

unit flow)
• �

rel

i,t
= Unrestricted shadow price for the minimum release down-

stream (cost/unit flow)
• ⇡

as

i,t
= Nonnegative user i’s price for reducing asymmetric access

to water in time period t (cost/unit flow)
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Endogenous functions
• Bi,t = Concave consumer benefit function for player i at time t

(currency)
• R

LR

i,t
= Revenue from loss reduction for player i at time t (cur-

rency)
• V

op

i,t
= Total operational costs for player i at time t (currency)

• V
inv

i,t
= Total investment costs for player i at time t (currency)

• ✓i,t(Qi,t) = Endogenously defined inverse demand curve as a func-
tion of total water demand Qi,t (cost/unit flow)

Parameters
• c

ops

i,t
= player i’s unit operating costs in time period t (cost/unit

flow)
• c

cap

i,t
= player i’s unit capital construction costs in time period t

(cost/unit flow)
• c

cu

i,c,t
= player i’s unit cost for consumptive use reductions in class

c during time period t (cost/unit flow)
• c

sr

i,t
= costs incurred per release of reliable storage capacity for

player i during time period t (cost/unit flow)
• dt = discount rate for time period t (%)
• �

all

dsk,i
À {0, 1} = logical parameter specifying if player k is down-

stream of player i
• �

all

usj,i
À {0, 1} = logical parameter specifying if player j is upstream

of user i
• lfi,c,t = player i’s estimated fraction of water losses in class c and
time period t (%)

• ni = local water inflow at player i independent of upstream
players and capital improvements (volume/day)

• r
fc

i,t
= player i’s regulator imposed flow constraint in time period

t (volume/day)
• a

req

i,t
= player i’s required augmentation for capital project in time

period t that is varied to parameterize the equilibrium model
(volume/day)

• ↵i,t = inverse demand intercept for player i in time period t

(cost/unit flow)
• �i,t = inverse demand linear slope for player i in time period t

(cost/unit flow)

4.3. Formulation for water resource user i À I

Each player represents a municipal water provider who is competing
with other providers for access to water along a river. Specifically, each
player must decide the values for the following set of variables, ⇣ :

⇣ =
⇠

W
D

i,t
,W

S

i,t
,Qi,t,Ki,t,L

R

i,c,t
,W

P

i,t

⇡

The maximum payoff and constraints for player i’s decisions are mod-
eled as an optimization problem, which is represented as Program (6):

max
⇣

H

T 
…

t=1
dt(Bi,t + R

LR

i,t
* V

op

i,t
* V

inv

i,t
)
I

(6a)

s.t.

t
…

t®=1
L
R

i,c,t® f
t

…

t®=1
lfi,c,t®W

D

i,t® ≈c, t (�loss
i,c,t

) (6b)

Qi,t f ni +W
S

i,t
+W

P

i,t
* r

fc

i,t
+ O

min

i*1,t ≈t (�flow
i,t

) (6c)

W
S

i,t
f Ki,t ≈t (�cap

i,t
) (6d)

Qi,t =
t

…

t®=1
W

D

i,t® ≈t (�sup
i,t

) (6e)

Ki,t = a
req

i,t
≈t (�aug

i,t
) (6f)

W
D

i,t
,W

S

i,t
,Qi,t,Ki,t,W

P

i,t
g 0 ≈t, L

R

i,c,t
g 0 ≈c, t (6g)

(6a) represents the objective function for each player. It seeks to
maximize social welfare. This is measured as the discounted consumer
surplus of water use and the discounted revenue from the water release
market less discounted capital and operating costs. The terms in each
player’s objective function are defined endogenously in terms of z and
are described in Section 4.4.

(6b)–(6g) represent the constraints on each player’s objective func-
tion. (6b) states that the loss reductions cannot exceed the losses from
water withdrawals. (6c) states that the water withdrawn from the river
is limited to the net inflow at a particular node minus the regulatory
mandated stream flow. The net inflow depends on the minimum out-
flow from the player immediately upstream (i.e., player i * 1). Thus,
individual players can modify the constraint set of another player,
which results in a generalized Nash equilibrium problem (Facchinei
et al., 2007). (6d) states that the water released from independent
water supply sources must be less than or equal to the capacity of the
associated capital project. (6e) states that the cumulative water demand
consists of the sum of incremental direct water withdrawals up to the
reference time period. Eq. (6f) states that any capital project must be
built in its entire capacity. The dual variables in parenthesis quantify
how much each equation constrains the optimal objective function
value.

4.4. Mixed complementarity problem formulation

The water equilibrium model is formulated as a mixed comple-
mentarity problem (MCP). It consists of the concatenation of every
player’s Karush–Kuhn–Tucker (KKT) optimality conditions associated
with (6), the endogenous functions listed in , and market-clearing
conditions (Gabriel et al., 2012). The KKT conditions are necessary
because the constraints are linear. The sufficiency direction results
since each player’s optimization problem (6) is a concave maximization
subject to polyhedral (hence convex) constraints.

The mixed complementarity problem generalizes the Karush–Kuhn–
Tucker (KKT) optimality conditions of convex programs (with con-
straint qualifications), non-cooperative game theory, as well as a host
of other problems in engineering and economics (Gabriel et al., 2012).
Formally, the MCP is defined for a given function F as finding x À
R
nx , y À R

ny such that

0 f Fx(x, y) ⌅ x g 0 (7a)

0 = Fy(x, y), yfree (7b)

where x is a non-negative vector and y is a vector of free variables.
The particular form of the vector-valued function F is application-
specific and below we describe details about this function and related
optimization problems. The ⌅ operator indicates that the product of the
left and right sides of the expression must equal to zero.

Two alternative water release market structures are considered
within these assumptions: a general commodity market and a cost-
sharing market. The asymmetric line-graph game without a market
is also considered. These three structures result in different endoge-
nous functions and market-clearing conditions. The similarities be-
tween them are described next, and their key features and differences
are discussed in the subsections that follow.

Regardless of the market structure, there needs to be an expression
defining the flow regime in the river that would result without any
regulatory intervention or market. These are the flow conditions on
which additional water purchases are based.

O
min

i,t
= ni *

C

…

c=1

t
…

t®=1
lfi,c,t®W

D

i,t® +
C

…

c=1

t*1
…

t®=1
L
R

i,c,t® + O
min

i*1,t ≈i, t (8)

To serve this purpose, (8) establishes the minimum outflow conditions
at each player’s node. It is a function of the water withdrawal and
release decisions and the minimum releases of the player immediately
upstream (i.e., player i-1).
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Both market structures share the same intrinsic consumer benefit
function for player i’s water withdrawals at time t. As shown in (9),
it is represented as the area under a linearized water inverse demand
curve ✓ with intercept ↵i,t and slope *�i,t < 0.

Bi,t(Qi,t) =  
Qi,t

0
✓i,t(x) dx =  

Qi,t

0
(↵i,t * �i,tx )dx (9)

We note that Bi,t(Qi,t) is concave since, by the Leibniz Integration Rule,
dBi,t(Qi,t)

dQi,t

= ↵i,t * �i,tQi,t so that the second derivative is just *�i,t < 0.
Both market structures also share the same function for total investment
costs. Thus the total capital investment costs for node i at time t is
expressed as follows:

V
inv

i,t
(Ki,t) = c

cap

i,t
Ki,t (10)

4.4.1. General Commodity Market (GCM) formulation
In the general commodity market formulation (GCM), separate

markets are established for each player generating water releases.
Because of the market interactions, this model is an example of the
Generalized Nash Reformulation described in Section 3.2. Downstream
players submit bids to gain access to the water in each of these
markets, and the water releases in each market are delivered to the
downstream players with the highest willingness to pay at the market
price. Intermediate player’s between the supplier and the purchaser are
not allowed to use this water when it is released into the river system.
This reflects the structure of general commodity markets where the
supplier establishes a price, and the supply is divided among the various
consumers purchasing goods at this price.

A key distinction between the market structures in the way wa-
ter purchases are defined. For the general commodity market, water
purchases are defined as follows:

W
P

i,t
=

I
…

j=1
�
all

usj,i
W

P

i,j,t
≈t (11)

It states that the total water releases a recipient purchases is the sum
of all the purchase requests to all upstream neighbors.

The revenue from water releases for node i at time t is defined in
terms of the price at the supplying player’s market:

R
LR

i,t
(LR

i,c,t
,≈c À C) =

C

…

c=1
⇡
as

i,t
(LR

i,c,t
+W

S

i,t
) ≈t (12)

The total operating costs are defined in terms of the marginal costs of
water conveyance and treatment, supply releases, loss reductions, and
water purchase requests to upstream players:

V
op

i,t
(Qi,t,L

R

i,c,t
,≈c À C ,W

S

i,t
,W

P

i,j,t
,≈j À I , j ë i) =

c
ops

i,t
Qi,t +

C

…

c=1
c
cu

i,c,t
L
R

i,c,t
+ c

sr

i,t
W

S

i,t
+

I
…

j=1
⇡
as

j,t
�
all

usj,i
W

P

i,j,t
≈t (13)

Loss reductions are considered incremental. Namely, loss reductions
only need to be made in one time period because the measures to
achieve them are usually permanent (e.g., water main leak reductions).
Thus, the loss reductions only need to be paid for in one time period.
In contrast, releases from independent water supply sources need to
be purchased in each time period, because the measures to accomplish
them are not permanent.

The market-clearing conditions say that the total amount of water
demanded at node i by downstream nodes to balance asymmetry (left-
hand side) should be less than or equal to what is made available by
node i through loss-reduction efforts or releasing from independent
water supply sources.
I
…

k=1
�
all

dsk,i
W

P

k,i,t
f …

cÀC
L
R

i,c,t
+W

S

i,t
⌅ ⇡i,t g 0,≈t (14)

Substituting these expressions into (6) yields the General Commodity
Market (GCM) formulation for each player:

max
⇣

T 
…

t=1
dt( 

Qi,t

0
(↵i,t * �i,tx )dx +

C

…

c=1
⇡
as

i,t
(LR

i,c,t
+W

S

i,t
) * (cops

i,t
Qi,t

+
C

…

c=1
c
cu

i,c,t
L
R

i,c,t
+ c

sr

i,t
W

S

i,t
+

I
…

j=1
⇡
as

j,t
�
all

usj,i
W

P

i,j,t
) * c

cap

i,t
Ki,t) (15a)

s.t.

t
…

t®=1
L
R

i,c,t® f
t

…

t®=1
lfi,c,t®W

D

i,t® ≈c, t (�loss
i,c,t

) (15b)

Qi,t f ni +W
S

i,t
+

I
…

j=1
�
all

usj,i
W

P

i,j,t
* r

fc

i,t
+ O

min

i*1,t ≈t (�flow
i,t

) (15c)

W
S

i,t
f Ki,t ≈t (�cap

i,t
) (15d)

Qi,t =
t

…

t®=1
W

D

i,t® ≈t (�sup
i,t

) (15e)

Ki,t = a
req

i,t
≈t (�aug

i,t
) (15f)

W
D

i,t
,W

S

i,t
,Qi,t,Ki,t,W

P

i,t
g 0 ≈t, L

R

i,c,t
g 0 ≈c, t (15g)

The KKT conditions, endogenous functions, and market-clearing
conditions are then concatenated together to form a linear complemen-
tarity problem (LCP) as shown in the Appendix.

4.4.2. Cost-Sharing Market (CSM) formulation
In the cost-sharing market (CSM) formulation, the restriction on

intermediate players using water releases is relaxed. This allows mul-
tiple players to claim the same quantity of released water from an
upstream player. While this is uncommon in most commodity mar-
kets, direct and indirect water reuse enables water supplies to be
treated as a renewable resource. Indirect water reuse is common in
river basins because treated wastewater discharges feed surface wa-
ter intakes downstream (Daniell et al., 2015). Because of the market
interactions, this model is also an example of the Generalized Nash
Reformulation described in Section 3.2.

In contrast with the GCM structure, the markets are established
at the purchasing player’s node because water may be reused mul-
tiple times between the supplying and the purchasing player. Thus,
the upstream players relative to the purchaser separately decide how
much water releases to deliver based on the purchaser’s willingness
to pay. Conversely, the water release supplier receives revenue from
all downstream users of this water. This market can be thought of as
creating a mechanism for cost sharing through the rental of water.

In this structure, purchase agreements between players are no
longer well defined. Therefore, water release purchases are simply the
amount of water player i purchases. This makes the substitution of (11)
into (6a) and (6c) unnecessary.

The revenue for node i’s water releases at time t is similar to the
GCM formulation, except the payment received for loss reductions is
the sum of all the prices of the downstream players:

R
LR

i,t
(LR

i,c,t
,≈c À C ,W

S

i,t
) =

I
…

k=1
⇡
as

k,t
�
all

dsk,i
(
C

…

c=1
L
R

i,c,t
+W

S

i,t
) ≈t (16)

As before, the total operating costs are defined in terms of the marginal
costs of water conveyance and treatment, supply releases, loss reduc-
tions, and water release purchases:

V
op

i,t
(Q

i,t
,L

R

i,c,t
,≈c À C ,W

S

i,t
,W

P

i,t
) = c

ops

i,t
Q

i,t
+

C

…

c=1
c
cu

i,c,t
L

R

i,c,t
+ c

sr

i,t
W

S

i,t
+⇡

as

i,t
W

P

i,t
≈t

(17)
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However, the cost for water releases is defined in terms of the price at
the recipient player instead of the supplying players.

As in the traditional market formulation, loss reductions are per-
manent, and water releases from independent supply sources must be
repurchased in subsequent time periods.

(18) represents the market-clearing conditions for player i’s asym-
metric access to water. It states that the losses reduced by the upstream
players plus the amount released to the river from independent water
supply sources place an upper bound on the purchases at node i. A
positive price can only occur for these resources when the purchases
equal the amount available upstream.
I
…

i®=1
�
all

us
i® ,i
(
C

…

c=1
L
R

i,c® ,t +W
S

i® ,t) *W
P

i,t
g 0 ⌅ ⇡

as

i,t
g 0 ≈t (18)

Substituting these expressions into (6) yields the Cost Sharing Market
(CSM) formulation for each player:

max
⇣

T 
…

t=1
dt( 

Qi,t

0
(↵i,t * �i,tx )dx +

I
…

k=1
⇡
as

k,t
�
all

dsk,i
(
C

…

c=1
L
R

i,c,t
+W

S

i,t
)

*(cops
i,t

Qi,t +
C

…

c=1
c
cu

i,c,t
L
R

i,c,t
+ c

sr

i,t
W

S

i,t
+ ⇡

as

i,t
W

P

i,t
) * c

cap

i,t
Ki,t) (19a)

s.t.

t
…

t®=1
L
R

i,c,t® f
t

…

t®=1
lfi,c,t®W

D

i,t® ≈c, t (�loss
i,c,t

) (19b)

Qi,t f ni +W
S

i,t
+W

P

i,t
* r

fc

i,t
+ O

min

i*1,t ≈t (�flow
i,t

) (19c)

W
S

i,t
f Ki,t ≈t (�cap

i,t
) (19d)

Qi,t =
t

…

t®=1
W

D

i,t® ≈t (�sup
i,t

) (19e)

Ki,t = a
req

i,t
≈t (�aug

i,t
) (19f)

W
D

i,t
,W

S

i,t
,Qi,t,Ki,t,W

P

i,t
g 0 ≈t, L

R

i,c,t
g 0 ≈c, t (19g)

The KKT conditions, endogenous functions, and market clearing condi-
tions are then concatenated together to form this alternate LCP shown
in the Appendix.

4.4.3. No-market formulation
This formulation represents no market-clearing conditions, as play-

ers only interact with each other through sequential water removal
from the river. LR

i,c,t
is equal to zero because there is no water release

market to generate revenue. There is no incentive to reduce losses and
no ability to make water purchases. Thus, this model is an example
of the line-graph network game described in Section 3.1. The total
operating costs are simplified accordingly:

V
op

i,t
(Qi,t,W

S

i,t
) = c

ops

i,t
Qi,t + c

sr

i,t
W

S

i,t
≈t (20)

Substituting these expressions into (6) yields the No-Market formula-
tion for each player i:

max
⇣

T 
…

t=1
dt( 

Qi,t

0
(↵i,t * �i,tx )dx * (cops

i,t
Qi,t + c

sr

i,t
W

S

i,t
) * c

cap

i,t
Ki,t) (21a)

s.t.

Qi,t f ni +W
S

i,t
* r

fc

i,t
+ O

min

i*1,t ≈t (�flow
i,t

) (21b)

W
S

i,t
f Ki,t ≈t (�cap

i,t
) (21c)

Qi,t =
t

…

t®=1
W

D

i,t® ≈t (�sup
i,t

) (21d)

Ki,t = a
req

i,t
≈t (�aug

i,t
) (21e)

W
D

i,t
,W

S

i,t
,Qi,t,Ki,t,g 0 ≈t (21f)

Solving the No-Market formulation with an LCP is not necessary. It
can be solved recursively using the algorithm presented in Section 3.1.
However, the LCP Formulation is presented to be consistent with
the other two Generalized Nash reformulations and is shown in the
Appendix.

4.5. Performance metrics

The cooperative game theoretic concepts described in Section 3.3
are used to create performance metrics for the GCM and CSM market
structures. They are calculated from the optimal objective function val-
ues determined from the LCP solutions, which represent social welfare.
The ultimate goal of the analysis is to test the effectiveness of each
market structure in reducing the asymmetry between players.

The optimal objective function values are related to the rewards,
ri, that each player achieves. Let fm

i
represent the optimal objective

function value for player i under market structure m À {GSM ,CSM}.
These correspond to (15a) and (19a), which are both special cases of
the generalized Nash reformulation objective function in (1a). Addi-
tionally, let foi represent the optimal objective function value for player
i in the no-market formulation. It is a special case of fLG

i
(xi) described

in Section 3.1.
With these definitions in mind, the performance metrics from co-

operative game theory can be expressed mathematically. The reward
r
m

i
each player experiences from participating in market structure m is

the difference between the player’s objective function value in market
structure m and the no-market case:

r
m

i
= f

m

i
* foi

(22)

Accordingly, the characteristic function for market structure m, vm(I),
is simply the sum of the rewards across all players:

v
m(I) =

…

iÀI
r
m

i
(23)

The best performing market structures will be imputations and have
large characteristic function definitions. With this in mind, consider a
final metric representing the difference in characteristic function values
between market structures m1 and m2:

v
�(I) = v

m1 * v
m2
 (24)

In this particular case, m1 is for the GCM market, and m2 is for the
CSM market. These metrics are used to analyze the numerical results
presented in Section 5.

5. Results

In this section, we discuss some theoretical results for the models
proposed above with a focus on the GCM formulation for specificity.
Additionally, we provide sensitivity results for a small stylized water
system and numerical results for the Duck River in Tennessee, in the
southeastern U.S. using real and realistic data to demonstrate insights
of the models.

5.1. Theoretical results

These theoretical results address existence and uniqueness of solu-
tions as well as the relationships among important variables. As will be
explained, the existence of solutions can be guaranteed in certain cases.
In terms of uniqueness, there is the possibility for multiple solutions to
the River Basin Equilibrium Model Formulation. An example of one of
the multiple solutions is provided in Section 5.2.1.
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There are many variations in the water supply in solutions to
the GCM model. For example, these variations could include more
water from loss-reduction markets, water from extra supply based on
capacity expansions, or decrease of demand. Accordingly, we single out
a simpler yet illustrative case of what could result. Thus, the value
of this illustrative case is the data input values that lead to one of
these solutions in one case. It also illustrates the use of loss-reduction
markets.

In this representative case, we take just one time period T  = 1, 1
loss-reduction class for each node, C = 1 and adjust the optimization
model that each node is trying to solve appropriately. Note that there
is now no discount factor (i.e., dt = 1), LR

i
has no index for class nor

time, and the incremental additions W D

i,t
are now equal to Qi so that

equation from before relating them is now suppressed. Also, since the
model is for the short-term, there are no capacity decisions Ki,t,W

S

i,t

are no longer needed as well as the associated dual variables to the
corresponding constraints.

max
⇣  

Qi

0
(↵i * �ix )dx + ⇡

as

i
L
R

i
* (cops

i
Qi + c

cu

i
L
R

i
+

…

jÀUi

⇡
as

j
W

P

i,j
) (25a)

s.t.

L
R

i
f lfiQi (�loss

i
) (25b)

Qi f ni +
…

jÀUi

W
P

i,j
* r

fc

i
+ O

min

i*1 (�flow
i

) (25c)

Qi,L
R

i
,W

P

i,j
,≈j À Ui g 0 (25d)

In addition, there are the definitional and market-clearing con-
straints from before suitably modified (e.g., the loss reductions happen
and are used in the same time period):

O
min

i
= ni * lfiQi + O

min

i*1 (26a)

…

kÀDi

W
P

k,i
f L

R

i
⌅ ⇡

as

i
g 0 (26b)

The next result is about existence of a solution for this one-period
model (25) ≈i À I plus (26) and is presented below. For simplicity
of illustration, we assume that there is just one upstream node u that
delivers loss reductions, one downstream node d that receives it, and
all other nodes e are inactive relative to the loss-reduction market.
Clearly, other conditions on the data may lead to other solutions as
this equilibrium problem has multiple solutions in general.

Theorem 2. Consider the river system linear complementarity problem
defined by the KKT conditions to (25) combined with (26) ≈i À I . This
problem always has a solution as long as the following conditions hold
(assuming all positive cost coefficients):

(i) �i > 0,≈i À I

(ii) c
ops

e * ↵e g 0 for all nodes e inactive in the loss-reduction market

(iii) lfuQu = W
p

d,u

(iv) ≥e

r=1 nr g r
fc

e for all inactive nodes e.

(v) 0 <
↵u*c

ops

u

�u

f ≥u

r=1 nr * r
fc

u for loss-reduction supplying node u.

(vi) c
cu

u
g ↵d * c

ops

d

(vii) ≥d

r=1 nr * r
fc

d
= * ↵u*c

ops

u

�u

lfu < 0

where u, d, e are respectively, the one loss-reduction market supplying node,
the one loss-reduction receiving node, and any other node e not active in the
loss-reduction market.

See the Appendix for the proof.
Note that in (i) �i > 0 means that the demand function for each

node i has a strictly decreasing slope which is quite reasonable. Also,
the condition in (i) on the costs being nonnegative is also quite realistic.
Condition (ii) amounts to saying that the operational costs for inactive
node e exceed the highest demand ↵e. Condition (iii) says that node
d À Du uses up 100% of the loss reductions from node u that is
supplying it. Condition (iv) states that the inflows from upstream nodes
is sufficient to cover the required flow constraints for each nodes e that
are inactive in the loss-reduction market. Condition (v) states that the
extra supply at node u after accounting for inflows and flow constraints
should be sufficiently large. Condition (vi) is a statement connecting
the loss-reduction costs for upstream node u with the largest demand
and operational costs for downstream node d. Lastly, (vii) states that
the inflow to node d from all upstream nodes and itself less any flow
restrictions should be sufficiently negative to induce water purchases
from upstream node u.

We now return to the original GCM model allowing for multiple
time periods and loss-reduction classes. With this in mind, the next
result concerns the prices at active nodes for the GCM model. Here
we adopt the following notation: U+

i,t
is the set of nodes upstream of

node i where node i purchases loss-reduction measures at time t from
node j, i.e., U+

i,t
= {j À I : j À Ui,W

P

i,j,t
> 0}. Also, D+

i,t
is the set of

nodes downstream of node i where node i sells loss-reduction measures
at time t to node k, i.e., D+

i,t
= {k À Di : W

P

k,i,t
> 0}. The result below

implies that the upstream loss-reduction markets must equilibrate in
prices so that there is no arbitrage opportunity among them relative to
a fixed, downstream node i that wants these loss-reduction measures.

Theorem 3. Consider node i in the GCM formulation and all upstream
nodes j À U

+
i,t
. Then, ⇡

as

j,t
= ⇡i,t,≈j À U

+
i,t
where ⇡i,t is a common

loss-reduction market price for these nodes j À Ui.

See the Appendix for the proof.
The next result is a statement about the uniqueness of the nodal

prices for a fixed value of the dual variable �
loss

i,c,t
. This dual variable is

associated with Constraint (15b) and it can be construed as the incre-
mental value of one more unit of loss reductions. The first part of the
next result (27a) states that the prices at a node i are the (discounted)
sum of future values of �loss

i,c,t
plus the unit cost for consumptive use

class c. This can be understood as the sum of the future opportunity
costs plus the current operating cost of loss reductions. The second
part of this next result (27b) says that these nodal prices also are the
discounted shadow price for downstream nodes k À D

+
i,t
of getting one

more unit of flow via the associated multiplier �flow
k,t

to constraint (15c).
Thus, these nodal prices are computed to balance the economic needs
of node i with its downstream loss-reduction market customers.

Theorem 4. Consider the GCM formulation and a node i for which there
are loss reductions, i.e., LR

i,c,t
> 0 for some c À C , t À T . Then,

⇡
as

i,t
=

≥

T 

t®=t �
loss

i,c,t

dt

+ c
cu

i,c,t
(27a)

⇡
as

i,t
=

�
flow

k,t

dt

,≈k À D
+
i,t

(27b)

See proof in the Appendix.
Given that there are multiple solutions to the river basin equilibrium

problem as indicated above, some other approach is needed perhaps
to further refine the solution set. For example, one approach is to use
equity-enforcing constraints or more generally logical constraints to
filter out all but one solution as presented in the discretely constrained
mixed complementarity problem (DC-MCP) formulations from Gabriel
(2017), Djeumou Fomeni et al. (2019).
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5.2. Numerical results

5.2.1. Three-node model
A small but illustrative three-node model of the above two formula-

tions was developed to illustrate the merits of the modeling approach
and to compare the market structures. Three players, numbered se-
quentially in increasing order from upstream to downstream, represent
producers, prosumers, and consumers of consumptive loss reductions,
respectively. Two loss-reduction classes and two time periods give
the model multi-dimensionality with respect to these parameters. In
contrast, no capital projects are present to simplify the analysis.

The parameters for this system were chosen to represent a sys-
tem with asymmetric access to water and intermediate water scarcity.
Enough water is available in the first time period for two out of three
players to completely satisfy their demand. In the second time period,
the economic growth potential of all players is greater than the water
available. To ensure asymmetry, all of the inflow into the river basin
occurs at Player 1’s node (n1). Each player has the same regulatory
flow constraint (rf ,c

i,t
) representing the minimum base flow necessary

to preserve the aquatic habitat. The overall intent is to fully utilize the
market in time period 2 while illustrating reasonable starting conditions
in time period 1.

Within these guidelines, various scenarios were developed to con-
sider different types of river basins. Certain parameters were kept
constant from scenario to scenario to keep them relatively comparable.
These include each player’s operating costs (cops

i,t
), the discount rate

(dt), and the inverse demand slope (�i,t). The remaining parameters
were varied across scenarios to ascertain the impact of different player
configurations, supplies, and demands. These include the following
four non-fixed parameters: maximum demand in time period 1, the
maximum demand in time period 2, the loss fractions (lfi,c,t), and the
consumptive use reduction costs (ccu

i,c,t
).

The demands were incorporated into the model via the inverse de-
mand intercept (↵i,t). Specifically, a point of known price and quantity
was assumed to exist at the current demand level and operating cost
(cops

i,t
). Linearizing about this point for a given value of �i,t was then

used to obtain the intercept value. (28) expresses this mathematically:

↵i,t = �i,tdemandi,t + c
ops

i,t
(28)

Table 1 summarizes the input data used in the three-node model sce-
narios. Each row represents the unique value assigned to the parameter
from the first column. The second, third, and fourth columns indicate
the applicable indices for the given value assignment. For example, the
inverse demand slope (�) is assigned a value of 3.0 for all three players
in all three time periods. Consumptive loss-reduction costs, time period
1 demands, time period 2 demands, and loss factors are baseline values
to be varied in the different scenarios.1

The baseline values, which are the last three parameters in Table 1,
are systematically varied among the players to investigate how player
heterogeneity influences market structure. For a given scenario, the
baseline values are each multiplied by a low (0.66), medium (1.0), or
high (1.33) scaling factor to obtain the actual value of the parameter.
To create this heterogeneity, no two players have the same scaling
factor for a given parameter in a given scenario. Mathematically, this
results in 3! = 6 ways to assign a player a value for a given parameter.
For example, consider one of the six ways to assign the time period 2
demands among the players. The scaling factors for players (1, 2, 3)
are (medium, high, low) respectively such that the tuple of associated
demand values is (10.00, 13.33, 6.66).

A given scenario consists of one of these player-specific tuples for
each of the four baseline value parameters. Every combination of tuples
for the four parameters were considered, which results in a sizable

1 For simplicity, only the baseline values themselves are depicted.

Table 1
Data used in the three-node model scenario analysis.
Parameter Player(s) Time Period(s) Class(es) Value

int rate 1, 2, 3 1, 2 0.04

� 1, 2, 3 1, 2 3

n 1 9
2, 3 0

rfc 1, 2, 3 4

c_ops 1, 2, 3 1

c_cu1 1, 2, 3 1 1
1, 2, 3 2 5

demand1 1, 2, 3 1 5
1, 2, 3 2 10

lf1 1, 2, 3 1, 2 1, 2 0.1

Table 2
Summary of scenario results.
Metric GCM CSM

% higher v
m(N) 3.70% 96.30%

average v
m(N) $42.64 $36.87

std. dev v
m(N) $0.74 $11.96

average v
�(N) $42.64 $14.49

std. dev v
�(N) $0.74 $14.44

number of scenarios. Mathematically, applying the Cartesian product
to the four non-fixed parameters results in 3!4 = 1296 scenarios total.
Table 3 provides examples of final parameter values that correspond to
scenarios analyzed closely in this section.

Each scenario was compiled and solved in GAMS2 Three separate
models were solved for each scenario, which included the GCM, CSM,
and no-market formulations. The solutions from these models were
used to calculate the metrics detailed in Section 4.5. These are used
to quantify the benefit of the GCM and CSM market structures relative
to no market.

Table 2 summarizes the results of the various scenario runs in more
detail. The first row depicts the percentage of the scenarios where the
market structure in the corresponding column generated higher social
welfare improvements (i.e. vm(N)) than the alternative (GCM or CSM).
The second and third row depict the mean and standard deviation, re-
spectively, of social welfare improvement as defined in Eq. (6a). Lastly,
the fourth and fifth rows depict the improvement of social welfare when
the given market structure is higher-performing (i.e., v�(N)).

For every player in every scenario, at least one of the market
structures improves social welfare as compared to no market at all
(i.e., ri g 0). Therefore, the markets demonstrate mutual interest
among the players (i.e., always form an imputation). However, not
all the market structures result in mutually beneficial interactions.
For instance, in some of the scenarios, the lower-performing market
structure will not form an imputation. This illustrates why choosing
the proper market structure is important.

The CSM generates higher social welfare for most of the scenarios
compared to the GCM. This occurs in over 96% of the scenarios
analyzed. However, the GCM vastly outperforms in this metric relative
to the CSM in the small number of its preferred scenarios. It reliably
generates high social welfare improvements when it is the appropriate
choice. The average and standard deviations for v

m(N) and v
�(N) in

Table 2 support this finding.
The furthest downstream player always undergoes dramatic eco-

nomic growth for scenarios where the GCM has higher social welfare
than the CSM. Specifically, Player 3 has a low demand in time period

2 www.gams.com/ using an application programming interface with
Python.

http://www.gams.com/
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Table 3
Parameter values used in the detailed analysis.
Parameter Scenario Player

i = 1 i = 2 i = 3

demand
i,1

Large Prosumer 3.33 6.67 5.00
D.S. Econ. Growth 5.00 6.67 3.33
Multiple Prices 5.00 3.33 6.67

demand
i,2

Large Prosumer 6.67 13.33 10.00
D.S. Econ. Growth 6.67 10.00 13.33
Multiple Prices 10.00 13.33 6.67

c
cu

i,1 All Three 0.67 1.00 1.33

c
cu

i,2 All Three 3.33 5.00 6.67

lf1,i,1 All Three 0.13 0.10 0.07

lf1,i,2 All Three 0.13 0.10 0.07

lf2,i,1 All Three 0.13 0.10 0.07

lf2,i,2 All Three 0.13 0.10 0.07

1 and grows to have a high demand in time period 2. Under these
conditions, Player 3 is most vulnerable to the decisions of Player 2. As
will be explained, this vulnerability exists when the system-wide social
welfare is most sensitive to the positional advantage of intermediate
players along the network. This demand profile appears in all the cases
where the GCM exceeds the CSM in social welfare.

The loss-reduction market, regardless of structure, is most effec-
tive relative to no market for a specific set of common scenarios.
These occur when the time period 2 demands get progressively higher
downstream and the losses get progressively higher upstream. This
finding makes sense, because higher losses upstream lead to less water
available downstream where it is most valuable. Interestingly, these
scenarios were relatively insensitive to the consumptive use costs. The
demand and loss parameters seem to matter the most to the viability
of the market.

With the aggregate results in mind, three scenarios were selected
for detailed analysis. The objective was to identify a scenario for
each market structure where the social welfare differences are the
most pronounced. Mathematically, these are scenarios where v

m(N)
and v

�(N) are both high. The first scenario, hereafter called ‘‘Large
Prosumer Scenario’’, was chosen to illustrate the merits of the CSM
market. The second scenario, hereafter called ‘‘Downstream Economic
Growth Scenario’’, was chosen to illustrate the merits of the GCM
market. The parameter values used in these scenarios are shown in
Table 3. This further reinforces the importance of the demand profile
to the appropriate water-release market structure. Furthermore, a third
scenario was selected to illustrate the non-uniqueness of prices as
described in Section 5.1.

Figs. 3(a) and 3(b) compare and contrast the market structures for
the Large Prosumer Scenario, while Figs. 4(a) and 4(b) do the same for
the Downstream Economic Growth Scenario. All these figures depict the
line graph of the river in plan view with the cooperative game theory
metrics. Additionally, a profile view representing the flow levels in the
river is depicted in millions of gallons per day (MGD). These plots have
two key groups of elements warranting explanation.

The first group of elements includes the bars on the profile view. The
stacked bar represents the actual inflow. It is subdivided into the freely-
available inflow irrespective of the market structure plus additional
inflow purchased from a market. The maximum usable inflow for each
player is also plotted to gauge the level of scarcity of the actual inflow.
In essence, it represents the inflow levels that the player would want
to see in the river.

The second group of elements includes the line plots on the profile
view. They represent how consumptive losses and the subsequent re-
ductions impact the actual flows on the river. Specifically, the inflow
without market represents the minimum river levels at a player’s

Table 4
Mathematical definitions for terms used in the detailed analysis.
Term [Reference] Mathematical definition

inflow with market (MGD) [D1] n
i
+ O

min

i*1,t +
≥

I

j=1
≥

C

c=1 �
all

us
j,i

L
R

i,c,t
+W

S

j,t

inflow without market [D2] n
i
+ O

min

i*1,t

freely available inflow (MGD) [D3] Q
i,t
*W

P

i,t
+ r

fc

i,t

max-usable inflow (MGD) [D4] demand
i,t
+ r

fc

i,t

resource utilization (%) [D5] 1 *min
<

D1*(Q
i,t
+rfc

i,t
)

D1 ,
D4*(Q

i,t
+rfc

i,t
)

D4

=

node if no consumptive-loss reductions were made. By contrast, the
inflow with market represents the actual levels in the river including
consumptive-loss reductions. If these two line plots are equal, then no
consumptive-loss reductions were made. For additional clarity, Table 4
mathematically defines these elements and other terms used in the
detailed analysis.

In the Large Prosumer Scenario, the CSM generates higher social
welfare than the GCM because the former has higher resource uti-
lization than the latter. In both market structures, Player 2 purchases
inflow up to the amount made available through the markets. However,
as shown in Fig. 3(a), Player 3’s actual inflow in the GCM is less than
the available inflow with the market. This difference between available
and actual inflow used to meet demand represents resource under-
utilization because all the available inflow with the market is within
Player 3’s maximum usable inflow. By contrast, Fig. 3(b) shows that
both Player’s 2 and 3 are able to purchase all the available inflow in
the CSM.

The resource under-utilization in the GCM is a consequence of
the structure of the market-clearing conditions. In (14), water-release
purchases (i.e., W P

k,i,t
) are treated as bilateral agreements between a

supplier i and a purchaser j. These agreements will increase the actual
inflow in the river for all players downstream of Player i unless Player
j’s consumptive losses are 100%. However, the GCM structure only
permits Player j to withdraw this added inflow. By contrast, the CSM
relaxes the bilateral purchasing assumption (i.e., W P

i,t
) in (18) to allow

multiple players to benefit from the water releases.

In the Downstream Economic Growth Scenario, the GCM generates
higher social welfare than the CSM because the bilateral water pur-
chases reduce the asymmetry in the network. As shown in Fig. 4(a), the
GCM decreases the loss reductions that Player 3 needs to purchase (2.07
MGD instead of 2.33 MGD) to maximize social welfare. This occurs
because the water Player 3 purchases from Player 1 is inaccessible to
Player 2. In the CSM, no such restriction exists, so Player 2 uses this
additional water as shown in Fig. 4(b). In doing so, Player 2 incurs
additional losses because it has a non-zero loss factor.

This scenario illustrates that the overall decrease in social welfare
from intermediate losses can be significant because Player 2 values an
incremental increase in consumption less than Player 3. Numerically,
Player 3 has a higher �flow value than Player 2 ($20.55 M vs. $15.95
M), which represents the marginal value of additional water use. As
alluded to earlier in this section, this phenomenon in the CSM market
structure gives a positional advantage to intermediate players. Relative
to the GCM, Player 2 increases water withdrawals and subsequently
increases Player 3’s consumptive loss-reduction purchases.

The Downstream Economic Growth Scenario also reveals an impor-
tant nuance with regards to social welfare. The CSM model technically
has a higher characteristic function value, but it is not an imputation
because the reward to Player 3 is negative. Thus, the basin would not
likely agree unanimously to implement this market structure. Alter-
natively, the GCM model is an imputation. Thus, the GCM is a more
reasonable alternative for improving social welfare over the no-market
structure.
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Fig. 3. Visualization of the Large Prosumer Scenario. The cooperative game-theoretic
rewards to each player, r, are shown in the plan view of the network. Water usage is
shown in the profile view.

In both scenarios, the figures for time period 1 were omitted because
no purchases of loss reductions are made. This occurs because the play-
ers making loss reductions realize a higher price by waiting for demand
increases. This can be observed mathematically in the stationary KKT
conditions for loss reductions (Eqs. (31e) and (32e)). The tendency to
withhold supply may offset some of the inherent advantages of market
efficiencies.

Table 5 illustrates the non-unique solutions in the GCM market.
The term ‘‘V’’ represents the starting point used for all the variables in
the model. Thus, different solution starting points generate more than
one valid solutions that satisfy Theorem 4. An equity-enforcing set of
constraints found in discretely constrained MCPs would be one way to
distinguish between multiple solutions (Djeumou Fomeni et al., 2019;
Gabriel, 2017).

Fig. 4. Visualization of the Downstream Economic Growth Scenario. The cooperative
game-theoretic rewards to each player, r, are shown in the plan view of the network.
Water usage is shown in the profile view.

5.2.2. Duck river model
Another model was also generated for the Duck River in Tennessee.

The purpose of this model is to evaluate the market approaches with
real-world data and to explore the impact of capital projects. In the
three-node model, no capital projects were considered. In contrast, the
Duck River model seeks to understand how the water release market
impacts the optimal timing of water infrastructure investments with
large fixed costs. This use case is relevant to river basins in general
because water scarcity usually serves as a driver for significant supply
expansion. For context, a similar real-options approach was considered
for a single-optimization problem in Chapter 18 of Daniell et al. (2015).

Stakeholders in the Duck River watershed in central Tennessee
have been navigating water resource-related challenges in earnest since
the extreme drought of 2007. Seven water utilities in the Duck River
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Table 5
Multiple prices scenario in the GCM market.
Variable/Parameter V = 2 V = 2000

�
loss

2,1,1 0.71 1.34

�
loss

2,1,2 6.84 6.52

c
cu

2,1,1 1 1

�
loss

2,2,1 0 0.63

�
loss

2,2,2 3.55 3.24

c
cu

2,2,1 5 5
≥2

t=1 �
loss

2,1,t + c
cu

2,1,1 8.55 8.87
≥2

t=1 �
loss

2,2,t + c
cu

2,2,1 8.55 8.87

⇡
as

2,1 8.55 8.87

�
flow

3,1 8.55 8.87

W
P

3,2,1 0.67 0.68

watershed serve water to approximately 250,000 people and industries
that include car manufacturers, food processing plants, and other busi-
nesses. In addition to these uses, the river provides a wide range of
other values including recreation, an excellent fishery, and some of the
most biologically-rich freshwater habitat in North America (Rest and
Dumm, 2011).

The drought of 2007 highlighted the issue that in extended dry
weather conditions, the citizens of the Duck River region depend on the
water stored in Normandy Reservoir to meet all designated uses, includ-
ing drinking water, wastewater assimilation, recreation, and natural
resource protection. The dramatic decrease in rainfall, combined with
the multitude of uses of the reservoir and the river, caused record low
water levels in Normandy Reservoir that resulted in temporary changes
in dam operation to protect water uses. Weather patterns and growth
projections, combined with the obligation to manage water resources
responsibly for future generations, created the need for a comprehen-
sive regional water supply plan for the Duck River Region (Rest and
Dumm, 2011).

Development of the regional water supply plan (Rest and Dumm,
2011) and a reservoir–river model of water budgets along the river
highlighted the inequities in benefits between the upstream and down-
stream users in the basin3 Higher than normal releases from the reser-
voir to the river during extreme dry events resulted in impacts to the
reservoir users due to excessive draw down of the reservoir. In contrast,
the flow constraint of 100 cubic feet per second (cfs) on just the most
downstream user ignored consumptive water use by upstream water
systems, golf courses, and other users.

While the river-reservoir model provided insights into water with-
drawals and discharges along the river (i.e., water balance), improved
decision-making tools are needed to gain a better understanding of the
following questions:

• How does the flow of water in the Duck River translate into the
flow of economic and environmental benefits for the individual
stakeholders and the region?

• How can decision-makers overcome the strategic fragmentation
that exists among stakeholders who individually may have an
incomplete view of the ‘‘big-picture’’ problems for the region?

• How can water supply agreements and permits incorporate flexi-
bility to overcome changing conditions?

Fig. 5 depicts the line-graph network structure for the Duck River
Basin. Contrasting with the previous example, there are six players

3 The OASIS software was used to build the reservoir–river model. More
information can be found here: www.hazenandsawyer.com/publications/oasis-
modeling-for-water-people/.

Fig. 5. Schematic of the Duck River Agency’s municipal users and relative positions
along the river. Normandy reservoir is at the upstream end of the river. The flow
direction is shown opposite of convention to reflect the east-to-west flow of the river.

considered instead of three. Each player is a municipal water provider
for the named city or county with the exception of Duck River Utility
Commission (DRUC). DRUC serves the cities of Manchester and Tulla-
homa using the water from Normandy reservoir at the upstream end
of the basin. The Normandy dam separates DRUC from the rest of the
downstream water providers.

Several data sources were consulted to estimate the model parame-
ter values. The published water rates for each of the municipalities were
used to estimate water operating costs. The water supply plan (Rest
and Dumm, 2011) and the drought management plan (O’Brien and
Gere, 2013) were used to estimate water supply volumes, capital recov-
ery costs, capital supply augmentation capacities, and regulatory flow
constraints. Water demand projections and consumptive loss fractions
were estimated from analysis associated with a demand projection
study in the basin (Maddaus Water Management Inc., 2016). Industry-
available data was used to estimate consumptive use costs and the
inverse demand slope (Alcubilla and Lund, 2006; Pickard et al., 2007;
Ramboll, 2020).

The primary water supply source for most of the basin is water
released from Normandy reservoir. Historically, these releases have
been at least 77.6 MGD at a 97 percent reliability (O’Brien and Gere,
2013).4 Due to rapid growth in the region, water demands are expected
to increase in the coming decades. Furthermore, consumptive use rep-
resents over a quarter of the water withdrawn from the basin in some
cases (Maddaus Water Management Inc., 2016). Some users discharge
wastewater outside the basin as well.

This supply and demand profile of the basin creates the potential
for inequities in economic growth. Columbia is expected to grow from
7.54 to 12.74 MGD between the years 2015 and 2050. Despite the
growth potential, Columbia has the least favorable access to water.
First, it is the only water system with a regulatory flow constraint in its
water withdrawal permit. The permit states that Columbia must cease
all water withdrawals if the flow in the river decreases to 64.6 MGD.
Additionally, it is the farthest downstream player, so the consumptive
losses of upstream water systems can exacerbate Columbia’s inequity.

4 This is based on the criteria for Stage 3 drought conditions, which
represents the drought threshold necessitating the reduction of Normandy Dam
outflows to 77.6 MGD. This condition is expected to occur once every thirty
years.

http://www.hazenandsawyer.com/publications/oasis-modeling-for-water-people/
http://www.hazenandsawyer.com/publications/oasis-modeling-for-water-people/
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Fig. 6. Two plots of the social welfare for various installation years of the Williamsport
Intake capital project for a water release market and no market.

The water supply plan for the Duck River Agency (Rest and Dumm,
2011) identified two projects as alternatives to address this and other
water supply related inequities in the basin. Fig. 5 depicts the location
of these proposed capital projects in the basin. The Normandy Dam
improvements project would raise the Normandy dam to effectively
increase the water stored in the Normandy Reservoir. Alternatively,
the Williamsport project would create a new water intake at a less
environmentally-sensitive location, which would allow for increased
withdrawals from the river.

The latter alternative is incorporated into the present analysis be-
cause it has emerged as the higher-priority project for Columbia and
the rest of the basin’s stakeholders. The project enables Columbia to
withdraw water without its regulatory flow constraint, which therefore
improves its access to water significantly. It also decreases its depen-
dence on releases from the Normandy reservoir, which leaves more
water available for upstream players. Thus, the scenarios considered
for this model involve the installation year for the Williamsport Intake
project.

Assuming Columbia finances the project, the optimal timing for
the investment is the key question underlying the scenario analysis
in this model. Deferring investment decreases project costs. However,
the decreased costs must be weighed against the benefits of the water
supply increase. Furthermore, the role of the water release market must
also be considered.

To answer this question, separate model runs for each market struc-
ture were performed for the installation years 2015, 2020, .. , 2040,
2045. It was assumed that Columbia bore the majority of the direct
benefits and associated costs. Accordingly, the required augmentation
parameter, areq

columbia,t
, and the capital cost parameter, ccap

columbia,t
, were

manipulated from scenario to scenario. The former was set to the
project’s capacity, which is 64.6 MGD, for the installation year onward.
The latter was set according to the simple formula: ccap

columbia,t
= 5 <

[annual_payment]_64.6. This converted the annual payment to cost per
MGD per planning period.

Fig. 6 depicts the results of these scenarios. For each scenario,
social welfare is plotted against the installation year for both the water
release market and the no market models. The water release market
is referred to generically because the GCM and CSM models produce
identical results. This arises because there are no intermediate players
purchasing water. Also, based on Theorem 3, we see that the prices
for all upstream nodes of Columbia active in the loss-reduction market
must have similar nodal prices (in the GCM formulation). Take for

Table 6
This table demonstrates how profit generated from the water release market (i.e., �sup

i,t
)

can increase water consumption. The nominal demand represents the projected water
needs, and Q represents the total water withdrawn for consumption.
Utility (i) Time period (t) Q

i,t
(MGD) Nominal demand (MGD) �

sup

i,t
($ M)

DRUC 2030 7.5 7.27 0.06
Shelbyville 2015 3.98 3.85 0.07
Shelbyville 2030 5 4.89 0.03
Lewisburg 2015 2.59 2.47 0.06
Lewisburg 2030 3.27 3.17 0.03
Spring Hill 2015 2.79 2.66 0.06
Spring Hill 2030 3.95 3.84 0.03

example the year 2025. In that case, Columbia purchases from DRUC,
Shelbyville, and Spring Hill, and the resulting, common market price
for water is 0.874 (not graphically shown). The curves reveal com-
peting trade-offs in the installation year for the project. Furthermore,
these competing trade-offs occur at higher social welfare (i.e., benefits
minus costs) for the water release market than the no market model.
The water release market also enables the project to be deferred for
longer. As noted previously, the cost of the installation decreases the
longer it is deferred. However, the cumulative opportunity costs, as
measured through �

flow, increase with deferment because less water is
available to satisfy economic growth. These competing costs are jointly
minimized between the years 2035 and 2040 for the water release
market.

The water release market decreases the water opportunity cost to
make continued capital deferment viable, thereby serving as a tem-
porary water supply solution. This can be visualized in Fig. 7, which
depicts the estimated flow conditions five years prior to the optimal
time frame for the Williamsport Intake installation. The inflow needed
to meet water demand is only a limiting factor (i.e., binding constraint)
for Columbia because they are the only utility with a non-zero value for
r
fc

i,t
. To reduce the supply deficit, Columbia purchases a small amount

of consumptive-loss reductions from each player to decrease the op-
portunity cost of deferring the Williamsport Intake project another five
years. This can be observed in the differences between the ‘‘inflow with
market’’ and ‘‘inflow without market’’ curves.

The Duck River case study reveals a potential unintended conse-
quence of the water release market. Market profits (i.e., ⇡as

i,t
* c

cu

i,c,t
)

tend to increase water consumption beyond what it would be other-
wise. As shown in Table 6, each of the players upstream of Columbia
occasionally use more water than their nominal demand during the
Williamsport Intake deferment period (i.e.,2015–2030). Such excess
water consumption only occurs when �

sup

i,t
is positive, which can be

interpreted as market profits.
Thus, increasing consumption allows the upstream users to experi-

ence more consumptive losses and subsequently derive more consump-
tive loss-reduction revenue from Columbia. All the upstream players
that make loss reductions have a positive value for �sup in 2030. This is
when Columbia’s water demand opportunity cost is the highest in the
deferment period. Several players also have positive values for �sup in
2015 because consumptive losses occur at lower rates for these players
in later time periods.

6. Conclusions

The river basin equilibrium formulations presented reveal a general
framework for non-cooperative models on line graphs. In the three-
node example, a market structure leads to non-negative rewards for
all players. However, these models are needed to determine which
market structure is necessary to achieve these rewards. In the Duck
River example, the water-release market acts as a temporary solution
to help optimally defer capital investments. In all cases, it was assumed
that consumptive-loss reductions are practical and relatively cheap to
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Fig. 7. This figure depicts the function of the water release market in 2030, which is five years before the optimal installation of the capital project.

implement. Water releases from storage become much more important
when this assumption fails.

Future research will build on the water-release market approach to
make it more versatile for more types of river basins. For example, the
models in this paper assume that upstream players cannot completely
control the water resource. This assumption could fail in situations with
a few number of players or restricted water access. In such a case, treat-
ing the river basin as a Stackelberg game is perhaps more appropriate.
An alternate bi-level formulation could consider the top level player
as a government entity that imposes regulatory flow constraints on the
lower level players. Lastly, considering the role of groundwater could
be important in river basins with high agricultural usage.
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Appendix

Proof of Theorem 1

Proof. In this game, ri equals the difference between the optimal
objective functions of the Generalized Nash reformulation and the
original line-graph game:

ri = f
GN

i
(x<

i
, y

<
i
, z

<
i
,⇡) * f

LG

i
(x<

i
) (29)

Assume ri g 0 ≈i À I . In this case, fGN

i
(x<

i
, y

<
i
, z

<
i
,⇡) = f

LG

i
(x<

i
) ≈i Ã

I
C using an optimality argument. Otherwise, player i would chose to
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be in the set IC . Therefore, v(I) = v(IC ) = ≥

iÀIC ri follows from sub-
stituting Eq. (29) into Eq. (4) given that ri = 0 for all non-participating
players. This satisfies Eq. (5a). The premise satisfies Eq. (5b). ∏

Proof of Theorem 2

Proof. First note that the KKT conditions to (25) are necessary due
to the linearity of the constraint functions and sufficient due to the
concavity of the objective function since �i > 0. These conditions are
the following.

0 f c
ops

i
* ↵i + �iQi * lfi�

loss

i
+ �

flow

i
⌅ Qi g 0 (30a)

0 f c
cu

i
* ⇡

as

i
+ �

loss

i
⌅ L

R

i
g 0 (30b)

0 f ⇡
as

j
* �

flow

i
⌅ W

P

i,j
g 0,≈j À Ui (30c)

0 f lfiQi * L
R

i
⌅ �

loss

i
g 0 (30d)

0 f ni +
…

jÀUi

W
P

i,j
* r

fc

i
*Qi + O

min

i*1 ⌅ �
flow

i
g 0 (30e)

Consider a node e that is not active in the loss-reduction market. Then,
the following are feasible values for the variables:

Qe = 0,LR

e
= 0,W P

e,j
= 0,≈j À Ue, �

loss

e
= 0, �flow

e
= 0,⇡as

e
= 0.

To see why, take each part of (30) separately. (30a) is feasible as long as
c
ops

e * ↵e g 0, which is condition (ii) in the premise. (30b) holds as long
as ccu

e
g 0 which is guaranteed since all cost coefficients are positive.

Conditions (30c), (30d) and the market-clearing condition (26b) are
automatically satisfied for the given values. Note that for j À Ue, (30c)
holds if ⇡as

j
> 0 or if ⇡as

j
= 0. Under (iii), and considering the definition

of Omin

e
, we see that from (26a)Omin

e
= ≥e

r=1 nr. Thus, in (30e), we need
ne + O

min

e*1 =
≥e

r=1 nr g r
fc

e which is (iv).
Now consider node u which alone supplies loss reduction. As LR

u
>

0 this means by (30d) that Qu > 0. LR

u
> 0 in (30b) means that

⇡
as

u
= c

cu

u
+ �

loss

u
> 0. This in turn implies in (26b) and (iii) that

W
P

d,u
= L

R

u
= lfuQu > 0 is feasible. Since Qu > 0, choose �loss

u
= �

flow

u = 0
so that in (30a)Qu =

↵u*c
ops

u

�u

which is positive by the left-most inequality
in (v). (30c) is true since ≈j À Uu, W P

u,j
= 0, 0 = �

flow

u f ⇡
as

j
= 0. Note

that since lfuQu = L
R

u
and �

loss

u
g 0, (30d) is feasible. (30e), reduces to

0 < Qu f
u
…

r=1
nr * r

fc

u
⌅ �

flow

u
g 0

which is true as long as Qu satisfies

0 < Qu =
↵u * c

ops

u

�u

f u
…

r=1
nr * r

fc

u

which is valid by the right-most inequality in (v).
Lastly, consider node d, a sole downstream node in Du, active in the

loss-reduction market and receiving water purchases from node u. By
construction, from (30c), W P

d,u
> 0 Ÿ �

flow

d
= ⇡

as

u
> 0, the right-most

part coming from the analysis above. Now let the rest of the variables
have the following values: �loss

d
= 0,Qd = 0,LR

d
= 0,⇡as

d
= 0, �flow

d
=

⇡
as

u
> 0,W P

d,j
= 0, j ë u,W

P

d,j
= L

R

u
> 0, j = u. With those values, note

that (30a) is satisfied as long as ⇡
as

u
g ↵d * c

ops

d
which is guaranteed

by condition (vi) and taking into account the analysis above that gave
⇡
as

u
= c

cu

u
+ �

loss

u
= c

cu

u
. (30b) is automatically satisfied with those

values since c
cu

d
g 0. (30c) is satisfied since W

P

d,u
> 0 Ÿ �

flow

d
= ⇡

as

u
.

(30d) is automatically satisfied for the given values as is (26b), the
latter since W

p

d,u
= L

R

u
and ⇡

as

u
> 0. Since �

flow

d
> 0, and given that

W
p

d,u
= L

R

u
= Qulfu the last condition, (30e) is satisfied as long as:

Qd =
d
…

r=1
nr * r

fc

d
+
0

↵u * c
ops

u

�u

1

lfu

which is guaranteed by (vii). ∏

Proof of Theorem 3

Proof. Consider a node j À U
+
i,t
. Since W

P

i,j,t
> 0 it follows by

complementarity that ⇡as

j,t
=

�
flow

i,t

dt

. As this is true ≈j À U
+
i,t
we see that

the corresponding prices ⇡as

j,t
must be equal with ⇡i,t =

�
flow

i,t

dt

. ∏

Proof of Theorem 4

Proof. Consider a node i for which L
R

i,c,t
> 0, for some c À C , t À T .

Then, by (31e),

⇡
as

i,t
=

≥

T 

t®=t �
loss

i,c,t

dt

+ c
cu

i,c,t

Since k À D
+
i
, then by (31f), W P

k,i,t
> 0, we see that

⇡
as

i,t
=

�
flow

k,t

dt

,≈k À D
+
i

∏

LCP for the GCM formulation

0 f T 
…

t®=t
�
sup

i,t®
*

T 
…

t®=t

C

…

c=1
lfi,c,t�

loss

i,c,t® ⌅ W
D

i,t
g 0 ≈t (31a)

0 f dt(csri,t * ⇡
as

i,t
) * �

flow

i,t
+ �

cap

i,t
⌅ W

S

i,t
g 0 ≈t (31b)

0 f dt(c
ops

i,t
* ✓i,t(Qi,t)) * �

sup

i,t
+ �

flow

i,t
⌅ Qi,t g 0 ≈t (31c)

0 f dtc
cap

i,t
* �

cap

i,t
+ �

aug

i,t
⌅ Ki,t g 0 ≈t (31d)

0 f dt(ccui,c,t * ⇡
as

i,t
) +

T 
…

t®=t
�
loss

i,c,t® ⌅ L
R

i,c,t
g 0 ≈c, t (31e)

0 f �
all

usj,i
(dt⇡as

j,t
* �

flow

i,t
) ⌅ W

P

i,j,t
g 0 ≈j, t, j ë i (31f)

0 f t
…

t®=1
lfi,c,t®W

D

i,t® * L
R

i,c,t® ⌅ �
loss

i,c,t
g 0 ≈c, t (31g)

0 f ni +W
S

i,t
+

I
…

j=1
�
all

usj,i
W

P

i,j,t
* r

fc

i,t
+ O

min

i*1,t *Qi,t ⌅ �
flow

i,t
g 0 ≈t (31h)

0 f Ki,t *W
S

i,t
⌅ �

cap

i,t
g 0 ≈t (31i)

t
…

t®=1
W

D

i,t® *Qi,t = 0, �
sup

i,t
free ≈t (31j)

Ki,t * a
req

i,t
= 0, �

aug

i,t
free ≈t (31k)

O
min

i,t
= ni *

C

…

c=1

t
…

t®=1
lfi,c,t®W

D

i,t® +
C

…

c=1

t*1
…

t®=1
L
R

i,c,t® + O
min

i*1,t ≈i, t (31l)

I
…

k=1
�
all

dsk,i
W

P

k,i,t
f …

cÀC
L
R

i,c,t
+W

S

i,t
⌅ ⇡

as

i,t
g 0,≈t (31m)

✓i,t(Qi,t) = ↵i,t * �i,tQi,t ≈t (31n)

The endogenous functions were substituted into Eq. (6a) prior to solv-
ing for the KKT conditions.
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LCP for the CSM formulation

0 f T 
…

t®=t
�
sup

i,t®
*

T 
…

t®=t

C

…

c=1
lfi,c,t�

loss

i,c,t® ⌅ W
D

i,t
g 0 ≈t (32a)

0 f dt(csri,t *
I
…

k=1
⇡
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k,t
�
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dsk,i
) * �

flow

i,t
+ �

cap

i,t
⌅ W

S

i,t
g 0 ≈t (32b)

0 f dt(c
ops

i,t
* ✓i,t(Qi,t)) * �

sup

i,t
+ �

flow

i,t
⌅ Qi,t g 0 ≈t (32c)

0 f dtc
cap

i,t
* �

cap

i,t
+ �
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i,t
⌅ Ki,t g 0 ≈t (32d)

0 f dt(ccui,c,t *
I
…

k=1
⇡
as

k,t
�
all

dsk,i
) +

T 
…

t®=t
�
loss

i,c,t® ⌅ L
R

i,c,t
g 0 ≈c, t (32e)

0 f dt⇡
as

i,t
* �

flow

i,t
⌅ W

P

i,t
g 0 ≈t (32f)

0 f t
…

t®=1
lfi,c,t®W

D

i,t® * L
R

i,c,t® ⌅ �
loss

i,c,t
g 0 ≈c, t (32g)

0 f ni +W
S

i,t
+W

P

i,t
* r

fc

i,t
+ O

min

i*1,t *Qi,t ⌅ �
flow

i,t
g 0 ≈t (32h)

0 f Ki,t *W
S

i,t
⌅ �
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i,t
g 0 ≈t (32i)

t
…

t®=1
W

D
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sup

i,t
free ≈t (32j)

Ki,t * a
req

i,t
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i,t
free ≈t (32k)

O
min

i,t
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t
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i*1,t ≈t (32l)
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…
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�
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C

…
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S
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P
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i,t
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✓i,t(Qi,t) = ↵i,t * �i,tQi,t ≈t (32n)

The endogenous functions were substituted into Eq. (6a) prior to solv-
ing for the KKT conditions.

LCP for the no-market formulation
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