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Recently, an 80 K superconductor was discovered in La3Ni2O7 under high pressure. Density function theory

calculations identify dx2−y2 , dz2 as the active orbitals on the bilayer square lattice with a d8−x configuration of Ni

per site. Here, x is the hole doping level. One naive expectation is to describe this system in terms of a two-orbital

t-J model. However, we emphasize the importance of Hund’s coupling JH and the x = 0 limit should be viewed

as a spin-one Mott insulator. Especially, the significant Hund’s coupling shares the interlayer superexchange J⊥
of the dz2 orbital to the dx2−y2 orbital, an effect that cannot be captured by conventional perturbation or mean-field

approaches. This study first explores the limit where the dz2 orbital is Mott localized, dealing with a one-orbital

bilayer t-J model focused on the dx2−y2 orbital. Notably, we find that strong interlayer pairing survives up to

x = 0.5 hole doping driven by the transmitted J⊥, which explains the existence of a high Tc superconductor

in the experiment at this doping level. Next, we uncover the more realistic situation where the dz2 orbital is

slightly hole-doped and cannot be simply integrated out. We take the JH → +∞ limit and propose a type II

t-J model with four spin-half singlon (d7) states and three spin-one doublon (d8) states. Employing a parton

mean-field approach, we recover similar results as in the one-orbital t-J model, but now with the effect of the J⊥
automatically generated.

DOI: 10.1103/PhysRevB.108.174511

I. INTRODUCTION

Recently a superconductor with Tc = 80K was found in

La3Ni2O7 under high pressure [1], following previous dis-

coveries of superconductivity in nickelate Nd1−x SrxNiO2 [2]

and also in Nd6Ni5O12 [3] at ambient pressure. The discov-

ery has triggered many experimental [4,5] and theoretical

[4–15] studies. The average valence of Ni is in d8−x with hole

doping level, x = 0.5 [1]. Density functional theory (DFT)

calculations identify a bilayer square lattice structure with

active dx2−y2 and dz2 orbitals, which we label as d1 and d2

in the following. The density (summed over spin) per site

is estimated to be n1 ≈ 1 − x = 0.5 and n2 ≈ 1, so that the

dz2 orbital is close to Mott localization. Due to a large inter-

layer hybridization of the dz2 orbital, we expect that it just

forms a rung singlet when n2 = 1. The dz2 orbital has a small

intralayer hopping, thus we do not expect a strong supercon-

ductivity from it. Then one may expect that superconductivity

originates from the dx2−y2 orbital. But the dx2−y2 orbital is at

hole doping level of 50%. According to the phase diagram of

cuprates, it should be in the overdoped Fermi liquid phase. A

major goal of this paper is to identify the minimal model to de-

scribe the nickelate superconductor and also find a mechanism

for the material to superconductor at such a large hole doping.

One important ingredient we identify is Hund’s coupling

JH between the dz2 and the dx2−y2 orbital. Due to the JH

coupling, the x = 0 limit should be viewed as a spin-one

Mott insulator formed by Ni2+. The strong Hund’s coupling

JH aligns the spin of the two orbitals at each site, then the
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large interlayer spin coupling J⊥ of the dz2 orbital is shared to

the dx2−y2 orbital. Therefore, when n2 = 1, we can ignore the

Mott localized dz2 orbital (which is in a gapped rung-singlet

phase) and phenomenologically consider a bilayer one-orbital

t-J model for dx2−y2 only. The model has a large interlayer

spin coupling J⊥ but without interlayer hopping t⊥, a new

situation not possible in the usual one-orbital Hubbard model.

Through a slave-boson mean field calculation, we find that

a large J⊥ disfavors the familiar dx2−y2 pairing at the J⊥ = 0

limit and the system forms a strong s-wave superconductor

with dominant interlayer pairing. But with a sufficiently

large J⊥, the pairing survives at x = 0.5, which explains the

superconductor at this hole doping level in the experiment.

We note that a previous work has discussed quantitative

renormalization effects of the Hund’s coupling in flattening

the bands [15], but the effect we identify here is qualitatively

distinct and completely new. To our best knowledge the

possibility of strong interlayer pairing for the dx2−y2 orbital

due to Hund’s rule coupling to a rung-singlet phase of the dz2

orbital has not been discussed previously.

The above treatment of ‘integrating’ out the dz2 orbital is

not very rigorous. Also, in the real system the dz2 orbital

may also be slightly hole doped. To be more precise and to

enable the doping of the dz2 orbital, we propose a bilayer

type II t-J model to describe the low energy physics. The

model is a generalization of a model proposed one of us before

[16,17]. Basically we take the large JH limit and restrict to a

Hilbert space with four spin 1/2 singlon (d7) states and three

spin-one doublon (d8) states. Inter-orbital JH disappears in the

model with the cost of non-trivial constraint. The type II t-J

model can be understood to describe the low energy physics

of doping a spin-one Mott insulator [18] with doped hole in a
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FIG. 1. (a) The schematics of the bilayer two-orbital model. The

various t, J’s are introduced for the hoppings and interactions of

two orbitals on square lattices. Importantly, a strong ferromagnetic

Hund coupling JH transmits Jz
⊥ of the dz2 orbital to the dx2−y2 orbital,

by enforcing a spin-triplet at each site (Inset). (b) The electronic

configuration of two Ni+2.5 states in one unit cell. The density per

site with summing over spin is roughly n1 � 1/2 and n2 � 1.

spin 1/2 state. The model has two important parameters: the

total hole doping level x and energy splitting � between the

two orbitals to tune the relative doping of the two orbitals. In

the large � limit, we have n2 = 1 and dz2 is Mott localized and

forms a rung singlet. We propose a parton mean field theory to

deal with the type II t-J model. In the simple large � limit, in

the mean field level we reach a bilayer one-orbital t-J model

for an emergent ‘dx2−y2 ’ orbital in the mean-field level. In this

model, we can automatically get a large J⊥/t from our parton

mean field theory, justifying our previous phenomenological

treatment. From a direct mean field calculation of the type II

t-J model, we find s-wave interlayer pairing at x = 0.5 similar

to the one-orbital t-J model before.

II. BILAYER TWO-ORBITAL MODEL

We start from a two-orbital t-J model on a bilayer square

lattice, Fig. 1(a), which has the following Hamiltonian:

H = HK + Jx
‖
∑

l

∑

〈i j〉

Si;l;1 · 
Si;l;1 + Jz

⊥
∑

i


Si;t ;2 · 
Si;b;2

+ U ′ ∑

i

ni;1ni;2 − 2JH

∑

i

(


Si;l;1 · 
Si;l;2 + 1

4
ni;1ni;2

)

(1)

and

HK = −t x
‖
∑

l,σ

∑

〈i, j〉
(Pd

†
i;l;1;σ d j;l;1;σ P + H.c.)

− t z
‖
∑

l,σ

∑

〈i, j〉
(Pd

†
i;l;2;σ d j;l;2;σ P + H.c.)

− t xz
‖

∑

l,σ

∑

〈i j〉
((−1)si j Pd

†
i;l;1;σ d j;l;2;σ P + H.c.)

− t z
⊥

∑

i

(Pd
†
i;t ;2;σ di;b;2;σ P + H.c.) + �

∑

i

(ni;1 − ni;2),

where P is the projection operator to remove the double occu-

pancy of each orbital. Here, l = t, b labels the layer index,

and σ =↑,↓ is for the spin index. We dub d1, d2 for the

dx2−y2 and dz2 orbital, respectively. The hopping parameters

are estimated t x
‖ = 0.485, t z

‖ = 0.110, t xz
‖ = 0.239, t z

⊥ = 0.635

by DFT [6]. si j = 1 for the x bond and si j = −1 for the y bond.

For simplicity, we only keep intralayer Jx
‖ for the dx2−y2 orbital

and the interlayer Jz
⊥ for the dz2 coupling. U ′ is inter-orbital

repulsion and JH is the Hund’s coupling. ni;a is the density

for orbital a = 1, 2. 
Si;l;a is the spin operator for layer l = t, b

and orbital a = 1, 2. We also ignore the nin j term in the J

coupling. In Fig. 1, we illustrate the system and the model.

On average we have n = 2 − x number of electrons (summed

over spin) per site with x ≈ 0.5 in the experiment. We have

n1 ≈ 0.5 and n2 ≈ 1.

III. BILAYER ONE-ORBITAL T-J MODEL

We first consider the limit where the d2 orbital is Mott

localized with pinned n2 = 1. In this limit, d2 orbitals form

a rung-singlet insulator due to large J⊥ and may be integrated

out and one can focus on an one-orbital t-J model with the

d1 orbital. However, we emphasize that the gapped d2 degree

of freedom still plays an important role due to the Hund’s

coupling. A large Hund’s coupling enforces the two orbitals

to form a spin-triplet at each site. Within the restricted Hilbert

space, the spins of the two orbitals align and the interlayer

spin-spin coupling Jz
⊥ also induces anti-ferromagnetic cou-

pling of the d1 orbital [see the inset of Fig. 1(a)]. Basically

only the orbital symmetric part, Jx
⊥ = Jz

⊥, can persist in the

restricted Hilbert space. Consequently, we should consider

a significant interlayer J⊥ also for the dx2−y2 orbital, though

there is no interlayer hopping.

Motivated by the above considerations, we now consider

an effective one-orbital t-J model for the dx2−y2 orbital,

Heff = − t x
‖
∑

l,σ

∑

〈i, j〉
P(d†

i;1;l,σ
d j;1;l;σ )P + H.c.

+ Jx
‖
∑

l

∑

〈i, j〉

Si;l;1 · 
S j;l;1 + Jz

⊥
∑

i


Si;t ;1 · 
Si;b;1. (2)

Hereafter, shorthand notations t = t x
‖ , J‖ = Jx

‖ , and J⊥ = Jz
⊥

are used, unless otherwise stated. Note that the model above

is quite unconventional in the sense that we have a large J⊥ but

no interlayer hopping t⊥, compared to other existing models

[19]. This is impossible in the standard t-J model usually with

J < t . We note a similar model (dubbed as mixed dimensional

t-J model) has been proposed in the cold atom context but

only out of equilibrium [20,21].

We then employ the standard U(1) slave-boson mean-field

theory [22] and represent the electronic operator as, d
†
i;l;1;σ

=
f

†
i;l;σ bi;l with the constraint ni;l; f + ni;l;b = 1 [see the Appen-

dices for details]. In the mean-field level, we decouple the

following order parameters from the J terms: the hopping

terms χ l
‖;i j,σ = 2〈 f

†
i;l;σ f j;l;σ 〉, χ⊥;i;σ = 2〈 f

†
i;t ;σ fi;b;σ 〉 and the

pairing terms �l
‖;i j = 2si j〈 fi;l;↑ f j;l;↓〉, �⊥;i = 2〈 fi;t ;↑ fi;b,↓〉.

We obtain these order parameters from self-consistent calcu-

lations. We fix t‖ = 1 and J‖ = 1/2 and vary the J⊥ and the

doping x in the range 0 � x � 1/2.

Here, we summarize our numerical results. In the limit

of small J⊥, the model reproduces the well-known behaviors

of the single-layer t-J model, with the famous dx2−y2 pairing

within each layer. As the strength of J⊥ is gradually increased,

there is a first-order transition after which we find s-wave
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FIG. 2. [(a), (b)] Zero temperature mean-field solutions of one-

orbital t-J model. We plot the filling x dependence of (a) intralayer

d-wave pairing, (b) interlayer s-wave pairing within the slave-boson

framework are shown at t x
‖ = 1, Jx

‖ = 1/2. (c) J⊥ dependence of

pairing order parameter at x = 0. The inclusion of Jz
⊥ induces the

first-order phase transition from d-wave pairing, �d
‖ , to s-wave pair-

ing, �s
⊥. (d) The energy gap of the two distinct superconducting

states at the Fermi surface. Two specific cases of Jz
⊥/t x

‖ = 0, x = 0

(top) and Jz
⊥/t x

‖ = 2, x = 1/2 (bottom) are chosen for a illustration.

The normal Fermi surface, centered at the M = (π, π ) point, is

completely gapped with an s-wave pairing (bottom), while there are

four point nodes with a d-wave pairing (top).

pairing with dominated interlayer pairing, as illustrated in

Figs. 2(a) and 2(b). In Fig. 2(c), we find a first-order transition

from the d-wave to s-wave pairing with dominated interlayer

pairing. With a large enough J⊥ (for example, J⊥/t>0.5), the

value of |�⊥| remains survives to the large hole doping regime

with x � 0.5.

We note that the normal Fermi surfaces are completely

gapped in the s-wave pairing phase, while there are nodes

in the d-wave pairing, as depicted in Fig. 2(d). J⊥/t > 0.5

is quite reasonable given that J⊥ origins from the superex-

change of the d2 orbital which has a large interlayer coupling.

Thus we expect an s-wave interlayer paired superconductor

in the experimental regime even with a 50% hole doping. We

emphasize that it is important to have large J⊥ but with the

interlayer hopping t⊥ = 0. For example, one can imagine a

conventional bilayer t-J model for the dz2 orbital with t⊥ >

J⊥. In Fig. 3, we show that a large t⊥ term suppresses the

pairing because the hopping disfavors interlayer spin-singlet

Cooper pair. Therefore the unusual model we consider here

for the dx2−y2 orbital host has stronger pairing than the usual

t-J model.

IV. TYPE-II T-J MODEL

The importance of Hund’s coupling in sharing the superex-
change J has been demonstrated in the simple case of n2 = 1
per site. In this limit, the d2 orbital is orbital-selective Mott

FIG. 3. Mean-field order parameters of the one-orbital model.

Inter-layer hopping t⊥ dependence of the interlayer pairing at J⊥ =
1/2. The inclusion of larger inter-layer hopping t⊥ suppressed the

inter-layer pairing order parameter �⊥.

localized and forms a rung-singlet. Then we just ignore d2

and deal with a one-orbital model and take the transmission
of J⊥ by hand. However, this approach is not very rigorous
and needs a justification. Moreover, in the real system, the d2

orbital is likely to be slightly hole doped with n2 < 1. Then
the d2 orbital should be kept in the low energy model. In
this case, we need to deal with the full two-orbital model in
Eq. (1). However, U ′ and JH are large and cannot be treated in
perturbation or mean field level. Especially, there is no good
way to capture the effect of sharing the J terms between the
two orbitals from the Hund’s coupling. Apparently, a new
model and a new method is called for to describe the realistic
regimes with two active orbitals and a strong Hund’s coupling.

To address this challenging problem, we take a non-
perturbative approach. We first take U ′, JH to be large and
project to a restricted Hilbert space. This leads to a gener-
alization of the type II t-J model proposed by one of us in
Ref. [16]. We only keep four singlon (d7) states and three
spin-triplet doublon (d8) states. First, at each site i, the four
singlon states can be labeled as, |aσ 〉 = d†

a;σ |G〉 where |G〉
is defined as a vacuum states where all t2g orbitals are fully
filled with a = 1, 2 and σ =↑,↓. Meanwhile, the three spin-
triplet doublon states are written as |−1〉 = d

†
1↓d

†
2↓|G〉, |0〉 =

1√
2
(d†

1↑d
†
2↓ + d

†
1↓d

†
2↑)|G〉, and |1〉 = d

†
1↑d

†
2↑|G〉. Here, we ig-

nore the site index i for simplicity. The spin-singlet doubly
occupied states are penalized by a large JH and are removed
from the Hilbert space.

Now, we project the electron operator inside this 4 + 3 = 7

dimensional Hilbert space:

di;l;1↑ =
∏

j<i

(−1)n j

(

|2 ↑〉il〈1|ił + 1√
2
|2 ↓〉il〈0|il

)

,

di;l;1↓ =
∏

j<i

(−1)n j

(

|2 ↓〉il〈−1|il + 1√
2
|2 ↑〉il〈0|il

)

,

di;l;2↑ = −
∏

j<i

(−1)n j

(

|1 ↑〉il〈1|i l + 1√
2
|1 ↓〉il〈0|il

)

,

di;l;2↓ = −
∏

j<i

(−1)n j

(

|1 ↓〉il〈−1|il + 1√
2
|1 ↑〉il〈0|il

)

, (3)
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where
∏

j<i(−1)n j is the Jordan-Wigner string. The

spin operators for the spin-1/2 singlon state are


si;a = 1
2

∑

σσ ′ |aσ 〉i 
σσσ ′〈aσ ′|i with 
σ as the Pauli matrices.

the spin operators for the spin-one doublon states are

written as 
Si = ∑

α,β=−1,0,1

Tαβ]|α〉i〈β|i. Here, we have

Tx = 1√
2
(
0 1 0

1 0 1

0 1 0
) and Ty = 1√

2
(
0 −i 0

i 0 −i

0 i 0
) in the

|1〉, |0〉, |−1〉 basis.

The type II t-J model Hamiltonian is

H = HK + Jx
‖
∑

l

∑

〈i j〉

si;l;1 · 
s j;l;1 + Jz

⊥
∑

i


si;t ;2 · 
si;b;2

+ J
‖
sd

∑

l

∑

〈i j〉
(
si;l;1 · 
S j;l + 
Si;l · 
s j;l;1)

+ J⊥
sd

∑

i

(
si;t ;2 · 
Si;b + 
Si;t · 
si;b;2)

+ J
‖
dd

∑

l

∑

〈i j〉

Si;l · 
S j;l + J⊥

dd

∑

i


Si;t · 
Si;b, (4)

where HK is the same as in Eq. (1), except that the above pro-

jected electron operators are in the 4 + 3 = 7 Hilbert space as

defined above. We have J
‖
sd

= 1
2
Jx
‖ , J⊥

sd = 1
2
Jz
⊥, J

‖
dd

= 1
4
Jx
‖ , and

J⊥
dd = 1

4
Jz
⊥. We are interested in the filling of nT = n1 + n2 =

1 + n = 2 − x. If the number of sites is NS , there are (1 − x)Ns

number of doublon states and xNs number of singlon states.

The energy splitting � in HK tunes the relative density of the

two orbitals. In particular, if � is large and positive, we only

need to keep two singlon states corresponding to the d2 orbital.

V. PARTON MEAN-FIELD THEORY

We employ the three-fermion parton construction [16]

to deal with the type II t-J model. The four singlon

states are constructed as |aσ 〉i = f
†
i;aσ |0〉, while the three

S = 1 doublons are created by |−1〉i = ψ
†
i;1↓ψ

†
i;2↓|0〉, |0〉i =

1√
2
(ψ†

i;1↑ψ
†
i;2↓ − ψ

†
i;2↑ψ

†
i;1↓)|0〉, and |1〉 = ψ

†
i;1↑ψ

†
i;2↑|0〉. We

need to impose a local constraint at each site i: ni; f +
ni;ψ1

= 1, ni;ψ1
= ni;ψ2

with ni; f = ∑

aσ f
†
i;aσ fi;aσ and ni;ψa

=
∑

σ ψ
†
i;aσ ψi;aσ . On average, we have n f = x and nψ1

= nψ2
=

1 − x with the convention n1 + n2 = 2 − x. We introduce

the notation 	i;σ = (ψi;1σ , ψi;2σ )T , then there is another con-

straint: 	
†
i 
τ	i = 0, where 
τ is the Pauli matrix in the color

space. This constraint enforces the two colors a = 1, 2 forms

singlet, thus the spin is in a triplet due to fermion statistics

[16]. This constraint gives a SU(2) gauge symmetry: 	i →
Uiψi, where Ui ∈ SU (2) acting in the color space, rotating ψ1

to ψ2.

Within the parton construction, the projected elec-

tron operator is represented as, di;aσ = εab f
†
i;bσ ψi;2σ ψi;1σ +

1
2
εab f

†
i;bσ̄ (ψi;2↓ψi;1↑ + ψi;2↑ψi;1↓). Here, εab is the anti-

symmetric tensor with ε12 = 1 and σ̄ denotes the opposite

spin of σ . The singlon and doublon spin operators are

now represented as 
si;a = 1
2

∑

σ,σ ′ f
†
i;aσ 
σσσ ′ fi;aσ ′ and 
Si =

1
2

∑

a

∑

σσ ′ ψ
†
i;aσ 
σσσ ′ψi;aσ ′ .

Substituting all the above expressions, one can decouple

the type II t-J model in Eq. (4) and perform the self-consistent

mean-field calculation. We provide all details in the Appen-

dices. In principle, one can have a phase diagram from tuning

� and x. For simplicity, we here consider the large positive

� limit, so that n2 is pinned to be 1, safely ignoring f1

and keeping only the two singlon states occupied by f2σ .

This corresponds to orbital selective Mott localization of the

dz2 orbital and now di;2σ = 0 without the f1 operator. One

important mean field decoupling is an on-site term,

〈ψ†
i;l;aσ

fi;l;2σ 〉 = 3
4
�a for each spin σ component. Due to the

SU(2) gauge symmetry, we can always fix the gauge to choose

�2 �= 0 while �1 = 0. Then 〈ψ†
i;l;2σ

fi;l;2σ 〉 = 3�2/4 �= 0 and

we have di;l;1σ ∼ 3
4
�

†
2ψi;l;1σ . Now ψi;l;1σ can be identified

as the electron operator of the dx2−y2 orbital with density

nψ1
= 1 − x, while f2 and ψ2 hybridize and form the same

band with the total density n f2
+ nψ2

= 1 per site. They just

represent the localized spin moments of the dz2 orbital and

form a rung singlet in the bilayer model due to the large Jz
⊥

term.

In terms of the emergent ‘dx2−y2 ’ orbital ψ1, an effective

model can be derived from Eq. (4) by substituting di;l1σ ∼
3
4
�

†
2ψi;l;1σ :

Hψ1
=

∑

l

∑

〈i j〉

[

− 9

16
|�2|2t x

‖ψ
†
i;l;1σ

ψi;l;1σ

+ J
‖
dd


Si;l;ψ1
· 
S j;l;ψ1

]

+ J⊥
dd

∑

i


Si;t ;ψ1
· 
Si;b;ψ1

, (5)

where 
Si;l;ψ1
= 1

2
ψ

†
i;l;1σ 
σσσ ′ψi;l;1σ ′ is the spin operator of ψ1.

The effective spin-spin coupling for this emergent ψ1 orbital

originates from the Jdd coupling of the spin-one moments.

As a result, the superexchange of both dz2 and dx2−y2 orbitals

contribute to the J coupling of this effective model. We have

a large J⊥
dd = 1

4
Jz
⊥ and large J

‖
dd

= 1
4
Jx
‖ for this emergent

ψ1 ∼ d1 orbital, even though there is no interlayer hopping.

We also note an interesting effect of reducing the hopping

by a factor of |�2|2 (|�2| < 0.5 from our calculation as in

Fig. 5(c) in Appendix B. We perform a fully self-consistent

mean field calculation involving all f2, ψ1, ψ2 orbitals. We

confirm that f2, ψ2 just form a band insulator in agreement

with a rung-singlet phase, while the ψ1 orbital is at density

n1 = 1 − x and gets intralayer and interlayer pairing terms

as shown in Figs. 4(a) and 4(b). Note that we still use t ,

J‖, and J⊥ as abbreviations of t x
‖ , Jx

‖ , and Jz
⊥, and set t = 1,

J‖ = 1/2. Varying J⊥, we again find a first-order transition

from the familiar d-wave to s-wave pairing with dominated

interlayer pairing [see Fig. 5(d)]. If we take a large J⊥ such as

J⊥/t = 1, the s-wave pairing is still large at x = 0.5. Overall,

the results are qualitatively the same as the previous bilayer

one-orbital t-J model [see Figs. 2(a) and 2(b)], justifying

our previous treatment. However, now we achieve these re-

sults from a more precise approach of a microscopic model.

The sharing of the superexchange of one orbital to the other

orbital is automatically taken care of in our model and parton

framework.
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FIG. 4. [(a), (b)] Zero temperature mean-field solutions of type

II t-J model in the large � limit. We plot the filling x dependence of

(a) intralayer pairing, (b) interlayer pairing of the emergent ‘dx2−y2 ’

orbital at t x
‖ = 1, Jx

‖ = 1/2. Comparing Figs. 2(a) and 2(b) here, we

notice that the one-orbital t-J model shows similar behaviors as the

more rigorous type II t-J model in the large � limit with the dz2 Mott

localized.

VI. DISCUSSION

The calculation in Fig. 2 is limited to the large � regime

with the orbital dz2 in a Mott localized state (forming a rung

singlet). In the realistic system, we may have a smaller �

and the dz2 orbital may likely be slightly doped and also

participate in the pairing. This will induce some quantitative

effects: (1) dz2 orbital also contributes to superconductivity;

(2) The effective hole doping level of the dx2−y2 can get re-

duced even though the total hole doping level is fixed; (3)

The inter-orbital hopping may further transmit the pairing of

one orbital to the other orbital. We note that a two-orbital

t-J model has been proposed and studied for La3Ni2O7 (for

example, see Ref. [6]), but the previous works all ignore the

important effect of sharing the superexchange J coupling be-

tween the two orbitals by the large Hund’s coupling. We have

demonstrated that this effect is crucial in the large � limit, so

obviously it should not be ignored in the smaller � regime.

With both orbitals active, we also cannot derive a one-orbital

model simply by integrating the dz2 orbital. In this regime, we

believe the type II t-J model we propose here is the minimal

model to capture all essential ingredients. A phase diagram

of (�, x) can be obtained by extending our parton mean-field

theory with f1 orbital included, which we leave to future

work.

We also emphasize the difference between our type II t-J

model in Eq. (4) and the simplified one-orbital t − J‖ − J⊥
model in Eq. (2). We here uncover the one-orbital model

simply to demonstrate the essence of our mechanism of in-

terlayer pairing. However, we emphasize here that Eq. (2)

is not appropriate for nickelate at least quantitatively even

if the dz2 is Mott localized. Starting from the full model in

Eq. (1), one can reach Eq. (2) by integrating the dz2 orbital in

the JH � Jz
⊥ limit and get J⊥ ∼ J2

H

Jz
⊥

. But we believe nickelate

is in the JH � Jz
⊥ limit because Hund’s coupling JH is part

of the Coulomb interaction and should be large. Then the

perturbative treatment obviously breaks down and we do not

see any controlled way to reach the one-orbital t-J model in

Eq. (2) from Eq. (1) in the large JH regime. In the large JH

limit, the appropriate approach is to take the large JH expan-

sion instead, which leads to our type II t-J model in Eq. (4)

in the leading order. In the type II t-J model, the localized

spin moment from dz2 orbital becomes also dynamical due to

the coupling to the holes in the dx2−y2 orbital. One possible

effect is the polaron formation between the hole and the lo-

calized spin moment, as has already been demonstrated in a

previous study of a one-dimensional type II t-J model [18].

Such polaron effect is completely ignored in the one-orbital

t-J model. We believe the type II t-J model is the minimal

model to capture all of the essential physics in the nickelate

La3Ni2O7.

VII. CONCLUSION

In summary, we propose and study a bilayer type II t-J

model for the superconducting La3Ni2O7 under high pressure.

We emphasize the important role of the Hund’s coupling

between the dx2−y2 and the dz2 orbital, which enforces the

d8 state to be a spin-triplet. Due to the Hund’s rule, the

superexchange of one orbital can be shared to the other or-

bital. We propose a parton mean field treatment of the type

II t-J model. In the limit that the dz2 is Mott localized and

forms a rung singlet, we reach a bilayer one-orbital t-J model

without interlayer hopping, but with enhanced interlayer anti-

ferromagnetic spin-spin coupling J⊥ over intralayer hopping

t . Mean field theory then predicts an s-wave interlayer paired

superconductor even at hole doping 50%, in agreement with

the experiment. In the future, one natural extension is to tune

the orbital splitting � in our type II t-J model to make the dz2

orbital also slightly hole doped.

Note added. When finalizing the manuscript, we became

aware of a preprint [23] which also studied a bilayer one-

orbital t-J model with strong interlayer J⊥, which is the same

as Eq. (2) of our paper. However, in our opinion, the correct

model in the large JH limit is the type II t-J model in Eq. (4)

of our paper. These two models are different even when dz2 is

Mott localized, see our recent paper [24] for comparisons in

numerical simulations of these two models.

ACKNOWLEDGMENT

Y.-H.Z. was supported by the National Science Foundation

under Grant No. DMR-2237031.

APPENDIX A: ONE-ORBITAL T-J MODEL AND

SLAVE-BOSON THEORY

We start from the one-orbital Hamiltonian,

H = − t x
‖
∑

l,σ

∑

〈i, j〉
P
(

d
†
i;1;l,σ

d1;l;σ

)

P + H.c.

+ Jx
‖
∑

l

∑

〈i, j〉

Si;l;1 · 
Si;l;1 + Jz

⊥
∑

i


Si;t ;1 · 
Si;b;1, (A1)

and perform the mean field theory employing the slave bo-

son representation, d
†
i;l,1,σ

= f
†
i;l;σ

bi;l . Assuming 〈bi〉 = √
x,

after the mean-field decoupling, the mean-field Hamiltonian
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is given by

HMF
SB = − t‖

∑

l,σ,〈i, j〉
( f

†
i;l;σ

f j;l;σ + H.c.)

− t⊥
∑

σ,i

( f
†
i;t ;σ fi;b;σ + H.c.)

+ D‖
∑

l,〈i, j〉
(si j ( f

†
i;l;1;↑ f

†
j;l;1;↓ − f

†
i;l;1;↓ f

†
j;l;1;↑) + H.c.)

+ D⊥
∑

i

( f
†
i;t ;↑ f

†
i;b;↓ − f

†
i;t ;↓ f

†
i;b;↑ + H.c.) (A2)

with the coefficients

t‖ = xt x
‖ + 3

8
Jx
‖χ‖, t⊥ = 3

8
Jz
⊥χ⊥,

D‖ = 3
8
Jx
‖�d

‖ , D⊥ = 3
8
Jz
⊥�s

⊥.

There are four mean field order parameters:

χ‖ =
∑

σ

〈 f
†
j;l;σ

fi;l;σ 〉, χ⊥ =
∑

σ

〈 f
†
i;t ;σ fi;b;σ 〉, (A3)

�‖ = 〈si j ( fi;l;↑ f j;l;↓ − fi;l;↓ f j;l;↑)〉,
�⊥ = 〈 fi;t ;↑ f j;b;↓ − fi;t ;↓ f j;b;↑〉. (A4)

Moreover, the chemical potential should be fixed for conserv-

ing the particle number, n = ∑

k,l〈 f
†
k;l;σ fk;l;σ 〉 = 1 − x.

APPENDIX B: TYPE-II T-J MODEL AND THREE-FERMION PARTON THEORY

We start from the type II t-J model introduced in Eq. (4). Considering the large � limit, the singlon is formed by only d2

orbital, thus the Hilbert space is restricted into P0 = P − |1,↑〉〈1,↑| − |1,↓〉〈1,↓|. In this Hilbert space, electron operators of

d2 orbital itself become zero, thus the kinetic Hamiltonian can be expressed in terms of d1 orbital,

H = − t x
‖

∑

l,σ,〈i, j〉
(P0d

†
i;l;1;σ

d j;l;1;σ P0 + H.c.)

+ Jx
‖

∑

l,〈i, j〉

si;l;1 · 
s j;l;1 + Jdd

‖
∑

l,〈i, j〉

Si;l · 
S j;l + Jsd

‖
∑

l,〈i, j〉
(
si;l;1 · 
S j;l + ·
Si;l · 
s j;l;1)

+ Jz
⊥

∑

i


si;t ;2 · 
si;b;2 + Jdd
⊥

∑

i


Si;t · 
Si;b + Jsd
⊥

∑

i

(
si;t ;2 · 
Si;b + 
Si;t · 
si;b;2). (B1)

Here, we use the following three-fermion decomposition:

d
†
i;l;1;σ = (ψ†

i;l;1;σ ψ
†
i;l;2;σ ) fi;l;2;σ + 1

2
(ψ†

i;l;1↑ψ
†
i;2;l;↓ + ψ

†
i;1;l;↓ψ

†
i;2;l;↑) fi;l;2;σ̄ , (B2)

d j;l;1;σ = f
†
j;l;2;σ (ψ j;l;2;σ ψ j;l;1;σ ) + 1

2
f

†
j;l;2;σ̄ (ψ j;l;2;↓ψ j;l;1;↑ + ψ j;l;2;↑ψ j;l;1;↓). (B3)

Employing the standard decoupling principle, the mean-field Hamiltonian is given by

HMF
T F = − t f ;2

∑

l,σ,〈i, j〉
( f

†
i;l;2;σ f j;l;2;σ + H.c.) −

∑

a,c=1,2

tψ ;ac

∑

l,σ,〈i, j〉
(ψ†

i;l;a;σ ψ j;l;c;σ + H.c.)

−
∑

a=1,2

C0
a

∑

l,σ,i

( f
†
i;l;2;σ

ψi;l;a;σ + ψ
†
i;l;a;σ

fi;l;2;σ + H.c.) − t⊥
f

∑

σ,i

( f
†
i;t ;2;σ fi;b;2;σ + H.c.)

−
∑

a,c=1,2

t⊥
ψ ;ac

∑

σ,i

(ψ†
i;t ;a;σ ψi;b;c;σ + H.c.) −

∑

a=1,2

C⊥
a

∑

σ,i

( f
†
i;t ;2;σ ψi;b;a;σ + ψ

†
i;t ;a;σ fi;b;2;σ + H.c.)

+ Dψ ;1

∑

l,〈i, j〉
(si j (ψ

†
i;l;1;↑ψ

†
j;l;1;↓ − ψ

†
i;l;1;↓ψ

†
j;l;1;↑) + H.c.) + D⊥

ψ ;1

∑

i

(ψ†
i;t ;1;↑ψ

†
i;b;1;↓ − ψ

†
i;t ;1;↓ψ

†
i;b;1;↑ + H.c.)

− μ f

∑

l,σ,i

f
†
i;l;a;σ fi;l;a;σ −

∑

a=1,2

μa

∑

l,σ,i

ψ
†
i;l;a;σ ψi;l;a;σ (B4)

with the coefficients

tψ ;11 = t x
‖
[

3
8
χ f χψ ;22 − 9

16
�0

2�
0
2

]

+ 3
8
Jdd
‖ χψ ;11,

tψ ;22 = t x
‖
[

3
8
χ f χψ ;11

]

+ 3
8
Jdd
‖ χψ ;22, t f ;2 = t x

‖
[

3
8
(χψ ;11χψ ;22)

]

, C0
2 = t x

‖
[

− 9
8
�0

2χψ ;11

]

,

t⊥
ψ ;11 = 3

8
Jdd
⊥ χψ ;11, t⊥

ψ ;22 = 3
8
Jdd
⊥ χψ ;22, t⊥

f = 3
8
Jz
⊥χ⊥

f , C⊥
2 = 3

8
Jsd
⊥ �⊥

2 ,

and

Dψ ;1 = 3
8
Jdd
‖ �ψ ;1, D⊥

ψ ;1 = 3
8
Jdd
⊥ �⊥

ψ ;1.
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FIG. 5. Mean-field order parameters of the type II t-J model at t x
‖ = 1. [(a)–(c)] Doping ratio x dependence of intralayer pairing, interlayer

pairing, Kondo-like coupling at Jx
‖ = 1/2, (d) interlayer coupling J⊥ dependence of pairings at x = 0.2.

There are ten mean-field order parameters in total for constructing a mean-field Hamiltonian,

χψ ;aa =
∑

σ

〈ψ†
j;l;a;σ ψi;l;a;σ 〉, χ f =

∑

σ

〈 f
†
j;l;2;σ fi;l;2;σ 〉, �0

2 =
∑

σ

〈ψ†
i;l;2;σ fi;l;2;σ 〉, (B5)

χ⊥
ψ ;aa =

∑

σ

〈ψ†
i;t ;a;σ ψi;b;a;σ 〉, χ⊥

f =
∑

σ

〈 f
†
i;t ;2;σ fi;b;2;σ 〉, �⊥

2 =
∑

σ

〈ψ†
i;t ;2;σ fi;b;2;σ 〉, (B6)

�ψ ;1 = 〈si j (ψi;l;1;↑ψ j;l;1;↓ − ψi;l;1;↓ψ j;l;1;↑)〉, �⊥
ψ ;1 = 〈ψi;t ;1;↑ψ j;b;1;↓ − ψi;t ;1;↓ψ j;b;1;↑〉. (B7)

Note that tψ ;12 = C0
1 = C⊥

1 = χψ ;12 = �0
1 = �⊥

1 = 0, and J
‖
sd

= 1
2
Jx
‖ , J⊥

sd = 1
2
Jz
⊥, J

‖
dd

= 1
4
Jx
‖ , J⊥

dd = 1
4
Jz
⊥. Together with the order

parameters, one should impose the constraints on the number of fermion nψ ;1 = nψ ;1 = 1 − x, and n f = x, where the particle

numbers are defined as

nψ ;a =
∑

k,l

〈ψ†
k;l;a;σ ψk;l;a;σ 〉, n f =

∑

k,l

〈 f
†
k;l;2;σ fk;l;2;σ 〉.

FIG. 6. (a) Schematic illustrations for physical meaning of three fermions. ψ1 itself means a d1 orbital, while ψ2, f together form a localized

d2 orbital. (b) Energy dispersion of localized d2 sector. We plot the dispersion of the hybridized band of ψ2, f for justifying that this sector

forms a band insulator in mean field level, indicating a gapped rung-singlet phase. For an illustration, we set J⊥ = 1/2, x = 0.1.
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In Fig. 5, we plot (�
‖
ψ ;1,�

⊥
ψ ;1,�

0
2) upon doping with a frac-

tion x of holes. Moreover in Fig. 6, we illustrate the physical

meaning of the three fermions in our parton construction. With

a non-zero � = �0
2, the ψ1 orbital can be identified as the

d1 orbital from Eq. (B3). At the same time, ψ2, f together

form a localized d2 orbital with total density ni;2 + ni; f = 1

per site. In our bilayer model they form a gapped rung-singlet

phase.
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