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Recently, an 80 K superconductor was discovered in La;Ni,O; under high pressure. Density function theory
calculations identify d,2_,2, d > as the active orbitals on the bilayer square lattice with a d®~* configuration of Ni
per site. Here, x is the hole doping level. One naive expectation is to describe this system in terms of a two-orbital
t-J model. However, we emphasize the importance of Hund’s coupling Jy and the x = 0 limit should be viewed
as a spin-one Mott insulator. Especially, the significant Hund’s coupling shares the interlayer superexchange J
of the d_» orbital to the d,>_,» orbital, an effect that cannot be captured by conventional perturbation or mean-field
approaches. This study first explores the limit where the d_» orbital is Mott localized, dealing with a one-orbital
bilayer #-J model focused on the d,2_» orbital. Notably, we find that strong interlayer pairing survives up to
x = 0.5 hole doping driven by the transmitted J,, which explains the existence of a high Tc superconductor
in the experiment at this doping level. Next, we uncover the more realistic situation where the d» orbital is
slightly hole-doped and cannot be simply integrated out. We take the J; — 400 limit and propose a type II
t-J model with four spin-half singlon (d”) states and three spin-one doublon (d®) states. Employing a parton
mean-field approach, we recover similar results as in the one-orbital 7-J model, but now with the effect of the J,.
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I. INTRODUCTION

Recently a superconductor with 7, = 80K was found in
La3Ni;O; under high pressure [1], following previous dis-
coveries of superconductivity in nickelate Nd;_, Sr,NiO, [2]
and also in NdgNisOy, [3] at ambient pressure. The discov-
ery has triggered many experimental [4,5] and theoretical
[4-15] studies. The average valence of Ni is in d 8=x with hole
doping level, x = 0.5 [1]. Density functional theory (DFT)
calculations identify a bilayer square lattice structure with
active d,»_,» and d orbitals, which we label as d; and d»
in the following. The density (summed over spin) per site
is estimated to be n; ~ 1 —x = 0.5 and n, ~ 1, so that the
dp orbital is close to Mott localization. Due to a large inter-
layer hybridization of the d,. orbital, we expect that it just
forms a rung singlet when n, = 1. The d orbital has a small
intralayer hopping, thus we do not expect a strong supercon-
ductivity from it. Then one may expect that superconductivity
originates from the d,>_,> orbital. But the d,>_,» orbital is at
hole doping level of 50%. According to the phase diagram of
cuprates, it should be in the overdoped Fermi liquid phase. A
major goal of this paper is to identify the minimal model to de-
scribe the nickelate superconductor and also find a mechanism
for the material to superconductor at such a large hole doping.

One important ingredient we identify is Hund’s coupling
Ju between the d. and the d,»_,» orbital. Due to the Jy
coupling, the x = 0 limit should be viewed as a spin-one
Mott insulator formed by Ni**. The strong Hund’s coupling
Jy aligns the spin of the two orbitals at each site, then the
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large interlayer spin coupling J of the d,. orbital is shared to
the d,>_,» orbital. Therefore, when ny = 1, we can ignore the
Mott localized d,. orbital (which is in a gapped rung-singlet
phase) and phenomenologically consider a bilayer one-orbital
t-J model for d,>_,» only. The model has a large interlayer
spin coupling J; but without interlayer hopping ¢,, a new
situation not possible in the usual one-orbital Hubbard model.
Through a slave-boson mean field calculation, we find that
a large J, disfavors the familiar d,>_,» pairing at the J; =0
limit and the system forms a strong s-wave superconductor
with dominant interlayer pairing. But with a sufficiently
large J, the pairing survives at x = 0.5, which explains the
superconductor at this hole doping level in the experiment.
We note that a previous work has discussed quantitative
renormalization effects of the Hund’s coupling in flattening
the bands [15], but the effect we identify here is qualitatively
distinct and completely new. To our best knowledge the
possibility of strong interlayer pairing for the d,>_,» orbital
due to Hund’s rule coupling to a rung-singlet phase of the d .
orbital has not been discussed previously.

The above treatment of ‘integrating’ out the d orbital is
not very rigorous. Also, in the real system the d. orbital
may also be slightly hole doped. To be more precise and to
enable the doping of the d. orbital, we propose a bilayer
type II ¢-J model to describe the low energy physics. The
model is a generalization of a model proposed one of us before
[16,17]. Basically we take the large Jy limit and restrict to a
Hilbert space with four spin 1/2 singlon (d”) states and three
spin-one doublon (d®) states. Inter-orbital J; disappears in the
model with the cost of non-trivial constraint. The type II ¢#-J
model can be understood to describe the low energy physics
of doping a spin-one Mott insulator [18] with doped hole in a
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FIG. 1. (a) The schematics of the bilayer two-orbital model. The
various ¢, J’s are introduced for the hoppings and interactions of
two orbitals on square lattices. Importantly, a strong ferromagnetic
Hund coupling Jy transmits J{ of the d» orbital to the d,>_,» orbital,
by enforcing a spin-triplet at each site (Inset). (b) The electronic
configuration of two Ni*23 states in one unit cell. The density per
site with summing over spin is roughly n; >~ 1/2 and n, >~ 1.

spin 1/2 state. The model has two important parameters: the
total hole doping level x and energy splitting A between the
two orbitals to tune the relative doping of the two orbitals. In
the large A limit, we have n, = 1 and d,2 is Mott localized and
forms a rung singlet. We propose a parton mean field theory to
deal with the type II -J model. In the simple large A limit, in
the mean field level we reach a bilayer one-orbital -/ model
for an emergent ‘d,>_,>’ orbital in the mean-field level. In this
model, we can automatically get a large J, /¢ from our parton
mean field theory, justifying our previous phenomenological
treatment. From a direct mean field calculation of the type II
t-J model, we find s-wave interlayer pairing at x = 0.5 similar
to the one-orbital -/ model before.

II. BILAYER TWO-ORBITAL MODEL

We start from a two-orbital 7-J model on a bilayer square
lattice, Fig. 1(a), which has the following Hamiltonian:

H =HK + Jﬁ( Z Zgi;l;l : gi;l;l + JJZ_ Zgi;t;Z ‘ §i;b;2
I (ij) i
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where P is the projection operator to remove the double occu-
pancy of each orbital. Here, [ = ¢, b labels the layer index,
and o =1, | is for the spin index. We dub d;,d, for the
d>»_y» and d orbital, respectively. The hopping parameters

are estimated tﬁ“ = 0.485, tﬁ =0.110, tﬁ‘z =0.239,¢ =0.635
by DFT [6]. 5;; = 1 for the x bond and s;; = —1 for the y bond.
For simplicity, we only keep intralayer Ji for the d2_» orbital
and the interlayer J{ for the d» coupling. U’ is inter-orbital
repulsion and Jy is the Hund’s coupling. n;, is the density
for orbital a = 1, 2. S‘,-;l;a is the spin operator for layer I = ¢, b
and orbital @ = 1, 2. We also ignore the n;n; term in the J
coupling. In Fig. 1, we illustrate the system and the model.
On average we have n = 2 — x number of electrons (summed
over spin) per site with x & 0.5 in the experiment. We have
n ~05andn, ~ 1.

III. BILAYER ONE-ORBITAL T-J MODEL

We first consider the limit where the d, orbital is Mott
localized with pinned n, = 1. In this limit, d, orbitals form
a rung-singlet insulator due to large J, and may be integrated
out and one can focus on an one-orbital #-/ model with the
d; orbital. However, we emphasize that the gapped d, degree
of freedom still plays an important role due to the Hund’s
coupling. A large Hund’s coupling enforces the two orbitals
to form a spin-triplet at each site. Within the restricted Hilbert
space, the spins of the two orbitals align and the interlayer
spin-spin coupling J{ also induces anti-ferromagnetic cou-
pling of the d; orbital [see the inset of Fig. 1(a)]. Basically
only the orbital symmetric part, J{ = Ji, can persist in the
restricted Hilbert space. Consequently, we should consider
a significant interlayer J, also for the d,»_> orbital, though
there is no interlayer hopping.

Motivated by the above considerations, we now consider
an effective one-orbital z-J model for the d,»_> orbital,

Her = — 1 > Y P}, ,dju110)P + He.

Lo (i,])
I Y S Spa A5 St S @)
1 (i, )) i

Hereafter, shorthand notations ¢ = tﬁ‘, Jy= Jﬁ‘, and J, =J§
are used, unless otherwise stated. Note that the model above
is quite unconventional in the sense that we have a large J; but
no interlayer hopping ¢, , compared to other existing models
[19]. This is impossible in the standard ¢-J model usually with
J < t. We note a similar model (dubbed as mixed dimensional
t-J model) has been proposed in the cold atom context but
only out of equilibrium [20,21].

We then employ the standard U(1) slave-boson mean-field
theory [22] and represent the electronic operator as, dlfl o =
f:,.ab,-;l with the constraint n;,;.s + n;;, = 1 [see the Appen-
dices for details]. In the mean-field level, we decouple the
following order parameters from the J terms: the hopping
terms X|l|;,'j,g = Z(ﬁjl;gfj;l;ﬂ’ XLiiso = 2(]3?;;0]3';1;;0) and the
pairing terms Aﬂ;,‘j =25 (fiur fizy)s ALi = 2{fiur fin,))-
We obtain these order parameters from self-consistent calcu-
lations. We fix 7y = 1 and J; = 1/2 and vary the J, and the
doping x in the range 0 < x < 1/2.

Here, we summarize our numerical results. In the limit
of small J, the model reproduces the well-known behaviors
of the single-layer z-J model, with the famous d,»_,> pairing
within each layer. As the strength of J, is gradually increased,
there is a first-order transition after which we find s-wave
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FIG. 2. [(a), (b)] Zero temperature mean-field solutions of one-
orbital #-J model. We plot the filling x dependence of (a) intralayer
d-wave pairing, (b) interlayer s-wave pairing within the slave-boson
framework are shown at 7 = 1, Jy = 1/2. (c¢) J, dependence of
pairing order parameter at x = 0. The inclusion of J; induces the
first-order phase transition from d-wave pairing, A‘H’, to s-wave pair-
ing, AY. (d) The energy gap of the two distinct superconducting
states at the Fermi surface. Two specific cases of J{ /tﬁ' =0,x=0
(top) and J3 /tﬁ =2,x = 1/2 (bottom) are chosen for a illustration.
The normal Fermi surface, centered at the M = (&, ) point, is
completely gapped with an s-wave pairing (bottom), while there are
four point nodes with a d-wave pairing (top).

pairing with dominated interlayer pairing, as illustrated in
Figs. 2(a) and 2(b). In Fig. 2(c), we find a first-order transition
from the d-wave to s-wave pairing with dominated interlayer
pairing. With a large enough J, (for example, J, /t>0.5), the
value of | A | | remains survives to the large hole doping regime
with x >~ 0.5.

We note that the normal Fermi surfaces are completely
gapped in the s-wave pairing phase, while there are nodes
in the d-wave pairing, as depicted in Fig. 2(d). J, /t > 0.5
is quite reasonable given that J, origins from the superex-
change of the d, orbital which has a large interlayer coupling.
Thus we expect an s-wave interlayer paired superconductor
in the experimental regime even with a 50% hole doping. We
emphasize that it is important to have large J, but with the
interlayer hopping #;, = 0. For example, one can imagine a
conventional bilayer ¢-J model for the d_. orbital with 7; >
J1. In Fig. 3, we show that a large 7, term suppresses the
pairing because the hopping disfavors interlayer spin-singlet
Cooper pair. Therefore the unusual model we consider here
for the d,>_,» orbital host has stronger pairing than the usual
t-J model.

IV. TYPE-II T-] MODEL

The importance of Hund’s coupling in sharing the superex-
change J has been demonstrated in the simple case of n, = 1
per site. In this limit, the d, orbital is orbital-selective Mott
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FIG. 3. Mean-field order parameters of the one-orbital model.
Inter-layer hopping ¢, dependence of the interlayer pairing at J, =
1/2. The inclusion of larger inter-layer hopping ¢, suppressed the
inter-layer pairing order parameter A | .

localized and forms a rung-singlet. Then we just ignore d»
and deal with a one-orbital model and take the transmission
of J, by hand. However, this approach is not very rigorous
and needs a justification. Moreover, in the real system, the d,
orbital is likely to be slightly hole doped with n, < 1. Then
the d, orbital should be kept in the low energy model. In
this case, we need to deal with the full two-orbital model in
Eq. (1). However, U’ and Jy are large and cannot be treated in
perturbation or mean field level. Especially, there is no good
way to capture the effect of sharing the J terms between the
two orbitals from the Hund’s coupling. Apparently, a new
model and a new method is called for to describe the realistic
regimes with two active orbitals and a strong Hund’s coupling.

To address this challenging problem, we take a non-
perturbative approach. We first take U’, Jy to be large and
project to a restricted Hilbert space. This leads to a gener-
alization of the type II #-J model proposed by one of us in
Ref. [16]. We only keep four singlon (d’) states and three
spin-triplet doublon (d®) states. First, at each site i, the four
singlon states can be labeled as, |ac) = dL,IG) where |G)
is defined as a vacuum states where all 1, orbitals are fully
filled with @ = 1, 2 and 0 =1, |. Meanwhile, the three spin-
triplet doublon states are written as |—1) = d;f ¢d; 11G), 10) =
%(dﬂdzl +d],d;,)|G), and |1) = d{ d},|G). Here, we ig-
nore the site index i for simplicity. The spin-singlet doubly
occupied states are penalized by a large Jy and are removed
from the Hilbert space.

Now, we project the electron operator inside this4 + 3 =7
dimensional Hilbert space:

1
digy = l—[(—l)"f <|2 Mallly + EQ l«)il(olil)’

Jj<i

diga) = l_[(—l) 7 <|2 =1l + Ep T)il<0|il>v

Jj<i

1
digay = = [ [(=1)" <|1 Ml + EU ¢>i1(0|i1>v

j<i

n; 1
dijoy = —H(—l) / <|1 al=1l; + ﬁll T>il<0|il>v (3)

j<i
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where [, (1) is the Jordan-Wigner string. The
spin operators for the spin-1/2 singlon state are
Siq = ézw |ao);6,4{(ac’|; with & as the Pauli matrices.
the spin operators for the spin-one doublon states are
written as S; =Y, B=10.1 Topla); (,3| Here, we have
| 10 ) =i 0
=0 0 D e R=G v
[1), |0), |[—1) basis.
The type II #-J model Hamiltonian is

H= HK+J||ZZS111 S +J1 Zszrz Sib2

I (i)
+JV”d Z Z(fi;l;l “Sj+ Siv - Sjun)
)

1 Z - o 3 =
+Jsd (Si;t;2 . Si;b + Si;t . si;b;Z)
i

+J 4 Z Zgi;l S+ T3 Zg";’ +Si @
1)) i

in the

where H is the same as in Eq. (1), except that the above pro-
jected electron operators are in the 4 + 3 = 7 Hilbert space as
defined above. We have .[” = lJﬁ‘,Jét, = 'Ji,](yd = 1Jﬁ‘,and
Jj;, = %Ji‘. We are interested in the filling of ny = n; +n, =
1 + n = 2 — x. If the number of sites is N, there are (1 — x)N;
number of doublon states and xN; number of singlon states.
The energy splitting A in Hg tunes the relative density of the
two orbitals. In particular, if A is large and positive, we only
need to keep two singlon states corresponding to the d orbital.

V. PARTON MEAN-FIELD THEORY

We employ the three-fermion parton construction [16]
to deal with the type II 7-J model. The four singlon
states are constructed as |ao); = f“w|0) while the three

S =1 doublons are created by |—1); = I/Ii;ulﬂiulO), |0); =

F WiV, = Wiy ¥ )I0), and (1) =yl vl 10). We
need to impose a local constraint at each site i: n;r +
Rigy, = 1, Nisy, = Niy, with nip = 30 filo frao and ny, =
>y Wiy Wiao - On average, we have ny = x and ny, = ny, =
1 — x with the convention n; +n, =2 — x. We introduce
the notation Wi, = (Yii10, Yino )T, then there is another con-
straint: \l/f TW; = 0, where 7 is the Pauli matrix in the color
space. This constraint enforces the two colors a = 1, 2 forms
singlet, thus the spin is in a triplet due to fermion statistics
[16]. This constraint gives a SU(2) gauge symmetry: V; —
Uiy, where U; € SU (2) acting in the color space, rotating i,
to Y.

Within the parton construction, the projected elec-
tron operator is represented as, diuo = € fina YioeVisle +
%Gabﬂb&(l/fi;u Vi + Ying iy ). Here, €4, is the anti-
symmetric tensor with €;, = 1 and & denotes the opposite
spin of o. The singlon and doublon spin operators are
now represented as §;, = %Z(m, fi;o&w, fiaor and S’,- =

1 -
2 Zu Zaa’ W[fago—UU’Wi;aa’-

Substituting all the above expressions, one can decouple
the type II #-J model in Eq. (4) and perform the self-consistent
mean-field calculation. We provide all details in the Appen-
dices. In principle, one can have a phase diagram from tuning
A and x. For simplicity, we here consider the large positive
A limit, so that n, is pinned to be 1, safely ignoring f
and keeping only the two singlon states occupied by fi;.
This corresponds to orbital selective Mott localization of the
d,> orbital and now d;.», = 0 without the f; operator. One
important mean field decoupling is an on-site term,

w,,,’aafz,l,za = —<I> for each spin o component. Due to the

SU(2) gauge symmetry, we can always fix the gauge to choose
@, # 0 while ®; = 0. Then (wifl;zdfi;l;zﬂ) =3®d,/4 # 0 and
we have d;j.1 ~ %‘D;%;z;lm Now ;.1 can be identified
as the electron operator of the d,»_,» orbital with density
ny, = 1 —x, while f, and v, hybridize and form the same
band with the total density ny, + ny, = 1 per site. They just
represent the localized spin moments of the d orbital and
form a rung singlet in the bilayer model due to the large J
term.

In terms of the emergent ‘d,>_,>" orbital ¥, an effective
model can be derived from Eq. (4) by substituting d;;,o ~

cb;w:’;l;la:

m=%] -5

1 (ij)

+ g Stz - §j;z;wl} +Jia Y S Simprs )
i

2 ¥
16 — | Dy tﬁwi;l;lg 1pi;l;lzf

where §i;1;¢,l = %Iﬂgl;w&mw//i;l;lgr is the spin operator of ;.
The effective spin-spin coupling for this emergent i, orbital
originates from the J;4; coupling of the spin-one moments.
As a result, the superexchange of both d,» and d,»_,» orbitals
contribute to the J coupling of this effective model. We have
a large Jii = %Ji and large J(L,‘ = %Jﬁ‘ for this emergent
Y1 ~ d, orbital, even though there is no interlayer hopping.
We also note an interesting effect of reducing the hopping
by a factor of |®,]> (|®,] < 0.5 from our calculation as in
Fig. 5(c) in Appendix B. We perform a fully self-consistent
mean field calculation involving all f>, ¥, ¥, orbitals. We
confirm that f;, ¥, just form a band insulator in agreement
with a rung-singlet phase, while the i, orbital is at density
n; = 1 —x and gets intralayer and interlayer pairing terms
as shown in Figs. 4(a) and 4(b). Note that we still use 7,
Jy, and J; as abbreviations of tﬁ‘, JH’ and J5, and set ¢t = 1,
Jy =1/2. Varying J,, we again find a ﬁrst order transition
from the familiar d-wave to s-wave pairing with dominated
interlayer pairing [see Fig. 5(d)]. If we take a large J, such as
J1 /t = 1, the s-wave pairing is still large at x = 0.5. Overall,
the results are qualitatively the same as the previous bilayer
one-orbital 7-J model [see Figs. 2(a) and 2(b)], justifying
our previous treatment. However, now we achieve these re-
sults from a more precise approach of a microscopic model.
The sharing of the superexchange of one orbital to the other
orbital is automatically taken care of in our model and parton
framework.
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FIG. 4. [(a), (b)] Zero temperature mean-field solutions of type
II -J model in the large A limit. We plot the filling x dependence of
(a) intralayer pairing, (b) interlayer pairing of the emergent ‘d,>_»’
orbital at fj = 1, Jj = 1/2. Comparing Figs. 2(a) and 2(b) here, we
notice that the one-orbital #-J model shows similar behaviors as the
more rigorous type II #-J model in the large A limit with the d>» Mott

localized.

VI. DISCUSSION

The calculation in Fig. 2 is limited to the large A regime
with the orbital d,. in a Mott localized state (forming a rung
singlet). In the realistic system, we may have a smaller A
and the d. orbital may likely be slightly doped and also
participate in the pairing. This will induce some quantitative
effects: (1) d orbital also contributes to superconductivity;
(2) The effective hole doping level of the d,>_,» can get re-
duced even though the total hole doping level is fixed; (3)
The inter-orbital hopping may further transmit the pairing of
one orbital to the other orbital. We note that a two-orbital
t-J model has been proposed and studied for LaszNi,O; (for
example, see Ref. [6]), but the previous works all ignore the
important effect of sharing the superexchange J coupling be-
tween the two orbitals by the large Hund’s coupling. We have
demonstrated that this effect is crucial in the large A limit, so
obviously it should not be ignored in the smaller A regime.
With both orbitals active, we also cannot derive a one-orbital
model simply by integrating the d,» orbital. In this regime, we
believe the type II -J model we propose here is the minimal
model to capture all essential ingredients. A phase diagram
of (A, x) can be obtained by extending our parton mean-field
theory with f; orbital included, which we leave to future
work.

We also emphasize the difference between our type II z-J
model in Eq. (4) and the simplified one-orbital t — J; —J1.
model in Eq. (2). We here uncover the one-orbital model
simply to demonstrate the essence of our mechanism of in-
terlayer pairing. However, we emphasize here that Eq. (2)
is not appropriate for nickelate at least quantitatively even
if the d» is Mott localized. Starting from the full model in
Eq. (1), one can reach Eq. (2) by 1ntegrat1ng the d,» orbital in

the Jy < J3 limit and get J, ~

is in the Jy > J§ limit because Hund’s coupling Jy is part
of the Coulomb interaction and should be large. Then the
perturbative treatment obviously breaks down and we do not
see any controlled way to reach the one-orbital 7-J model in
Eq. (2) from Eq. (1) in the large Jy regime. In the large Jy

-4 But we believe nickelate
L

limit, the appropriate approach is to take the large Jy expan-
sion instead, which leads to our type II #-J model in Eq. (4)
in the leading order. In the type II #-J model, the localized
spin moment from d,> orbital becomes also dynamical due to
the coupling to the holes in the d,»_,» orbital. One possible
effect is the polaron formation between the hole and the lo-
calized spin moment, as has already been demonstrated in a
previous study of a one-dimensional type II #-J model [18].
Such polaron effect is completely ignored in the one-orbital
t-J model. We believe the type II -/ model is the minimal
model to capture all of the essential physics in the nickelate
La3NiZO7.

VII. CONCLUSION

In summary, we propose and study a bilayer type II 7-J
model for the superconducting La3;Ni,O7 under high pressure.
We emphasize the important role of the Hund’s coupling
between the d>_y» and the d. orbital, which enforces the
d® state to be a spin-triplet. Due to the Hund’s rule, the
superexchange of one orbital can be shared to the other or-
bital. We propose a parton mean field treatment of the type
IT #-J model. In the limit that the d,. is Mott localized and
forms a rung singlet, we reach a bilayer one-orbital 7-J model
without interlayer hopping, but with enhanced interlayer anti-
ferromagnetic spin-spin coupling J; over intralayer hopping
t. Mean field theory then predicts an s-wave interlayer paired
superconductor even at hole doping 50%, in agreement with
the experiment. In the future, one natural extension is to tune
the orbital splitting A in our type II #-J model to make the d,»
orbital also slightly hole doped.

Note added. When finalizing the manuscript, we became
aware of a preprint [23] which also studied a bilayer one-
orbital #-J model with strong interlayer J, , which is the same
as Eq. (2) of our paper. However, in our opinion, the correct
model in the large Jy limit is the type II -J model in Eq. (4)
of our paper. These two models are different even when d. is
Mott localized, see our recent paper [24] for comparisons in
numerical simulations of these two models.

ACKNOWLEDGMENT

Y.-H.Z. was supported by the National Science Foundation
under Grant No. DMR-2237031.

APPENDIX A: ONE-ORBITAL T-J MODEL AND
SLAVE-BOSON THEORY

We start from the one-orbital Hamiltonian,

—t”ZZP (d},, ,d11:0)P + Hec.

Lo (i)

202 Sua -5

i1 +JLZSIZI' i1, (Al)

and perform the mean field theory employing the slave bo-

son representation, dl Ulo w10 Dizt. Assuming (b;) = N2

after the mean-field decouphng, the mean-field Hamiltonian
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is given by with the coefficients
3 3
n=xty+ghix, to=3Jix0,

D! = JxAd, Dt =3J7 A
H.%F = -1 Z (ﬁ?];afj;l;a +H.c.) I 87LmL

1,00, ) There are four mean field order parameters:
— 11 Y (g fibo + Hoe.) X =Y Fhaliza) XL =Y (fhglivo) (A3
+D Z (Sif(fifl;l;Tf;l;l;l - fiTl;l;iij;l;l;T) +Hc.) Ay = (Sij(fi;l;Tfj;l;l = firy i),
L4 Ay = (firnfimy — fi;r;ifj;b;T)‘ (A4)
+D, Z(f,-;T,;ng;,; L f,Tt Sipy HHC) (A2)  Moreover, the chemical potential should be fixed for conserv-
i ing the particle number, n = Zk,l(f]j;l;afkﬂig) =1-x

J
APPENDIX B: TYPE-II T-J MODEL AND THREE-FERMION PARTON THEORY

We start from the type II t-J model introduced in Eq. (4). Considering the large A limit, the singlon is formed by only d,
orbital, thus the Hilbert space is restricted into Py = P — |1, 1)(1, 1| — |1, {)(1, | |. In this Hilbert space, electron operators of
d, orbital itself become zero, thus the kinetic Hamiltonian can be expressed in terms of d; orbital,

H=—1 Z (Pod;., o dji1:0Po + Hec.)
Lo,(i, )

+Ji Z St - Sjan + T Z Si - Sy + I3 Z(szll +Siu+ St Sjaa)
+ Jj_ Z §i;t;2 . Ei;b;Z + in_d Z §i;t . gi;b + Jj_d Z(Ei;t;z ° gi;b + gi;t : 3'l';b;Z)' (Bl)
Here, we use the following three-fermion decomposition:

zlla (wzllathZJ)fll2U+ (‘/’zlml/’zzu+‘/f111ﬂ’121¢)ft12m (B2)

1
dj;l;l;zr = ;1;2;0(wj;l;Z;UWj;l;l;o*) + 2 ;l;z;g(l//j;l;z;¢¢j;l;l;¢ + %;1;2;ij;[;1;¢)- (B3)

Employing the standard decoupling principle, the mean-field Hamiltonian is given by

HT%F = _tf;2 Z (f;?l;Z;afj§l;2;0 +HC) - Z tl//;llf Z (ng;a;ol/’j;l;cxr +HC)

1,00, ) ac=1,2 Lo (i j)
= O (fhe Vitao + Vg frize +Hee) = tF Z(f,,ggfzbz(r +H.c.)

a=1,2 l,o,i
- > r‘,,acZ(l/f,,Mwlbw FHC) = Y CEY (fhooVinao + Vi finzw +He)

a,c=1,2 a=1,2 o,i

i T i T L i i i i
+ Dy Z Gij Wi ¥y = Vi Vi) T He) + Dy Z(‘ﬁi;z;1;¢l/’i;h;1;¢ = Vg Vipayy +HC)
L) i
— Uf Zf,‘?[;a;gfi;l;a;a - Z Ma Z Wifl;a;(, wi;lga;n (B4)
lo,i a=1,2 l,o,i

with the coefficients
fys11 = lﬂ%XfX‘//;zz — ,—96<I>8<D2] + J|| X1l
tyo = fﬂ%x,f'x.//;n] + %Jﬁid)(w;zz, tra =t [‘g(X(//;nX]p;zz)], Q) = tﬁ‘[—%ﬂngw;n],
o = M, = W 1 =ikt Ch= e,

and

3 ydd
Dy = 3{ Ayt Dy = 1Ay
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(a) d (b) ]
|A] |AL
— —
% 03 Jijt=0 % Ju/t=0
& “ T/t=05 S a I Jt=05
= 02 N e
< = J /t=07 & = J /t=0.75
[al) ol
- J /t=1 - J ft=1
ES 01 L/ q&—j A/
= - Jjt=15 C - J/t=15
O oofpsss oo bsos] o/ /i=2 © - Jjt=2
00 01 02 03 04 05
r=1-—n
¢ d
(© o (@
<, 05 e
% Ji/t=0 % 0.30
g ™ “ Jijt=05 5 02
b = .
5 03 - /t=075 3 020 - |Af]
0.15 .
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'E 01 - J/t=15 5 005
o 0.0 '.'Ji/tZQ 000ttt A 4 4 4 4
00 01 02 03 04 05 00 01 02 03 04 05 06
r=1—n J1

FIG. 5. Mean-field order parameters of the type Il -J model at i = 1. [(a)-(c)] Doping ratio x dependence of intralayer pairing, interlayer
pairing, Kondo-like coupling at Ji = 1/2, (d) interlayer coupling J, dependence of pairings at x = 0.2.

There are ten mean-field order parameters in total for constructing a mean-field Hamiltonian,

Xiaa = Z(W;l;a;g Vitazo ) s Xf = Z(f;l;z;gfi;lﬂ;a)a d>(2) = Z(I//itl;z;gfi;lﬁ;a)’ (BS)
o o o

Xiaa = D \VhwoWivao)s  XF = D \fhoefivae) @3 =Y (W, fivao): (B6)
o o o

Ay = (T Wi Vi, — Viaau Vinnt))s Ay = Wit Wisis, — Yirng Vi )- (B7)

1 1 1 1 .
Note that #.15 = C) = Cll = xy2 = DY = ®{ =0, and JS”d = EJﬁ‘,J; = EJi’JJd it J3; = 377 Together with the or.der
parameters, one should impose the constraints on the number of fermion ny,; = ny,; = 1 — x, and ny = x, where the particle

numbers are defined as

Nysa = Z(W}Zl;a;g Yitao)r Nf = Z(f/iz;z;gfk;l;z;a)~

k.l k.l

(a) (b) Hybridized band of s, f

Mobile d,2 Localized d.2
0.5
\/\/ 04
\ / N XL B
5
— 02
\/ AN
0.1
— Yy — o, f 0.0f_ |
r X M r

FIG. 6. (a) Schematic illustrations for physical meaning of three fermions. v, itself means a d, orbital, while v, f together form a localized
d, orbital. (b) Energy dispersion of localized d, sector. We plot the dispersion of the hybridized band of v,,f for justifying that this sector
forms a band insulator in mean field level, indicating a gapped rung-singlet phase. For an illustration, we setJ, = 1/2,x = 0.1.
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In Fig. 5, we plot (Al‘/j;l, A1 ®9) upon doping with a frac-
tion x of holes. Moreover in Fig. 6, we illustrate the physical
meaning of the three fermions in our parton construction. With
a non-zero ¢ = CDg, the v, orbital can be identified as the

d; orbital from Eq. (B3). At the same time, v,,f together
form a localized d, orbital with total density n;» +n;r =1
per site. In our bilayer model they form a gapped rung-singlet
phase.

[1] H. Sun, M. Huo, X. Hu, J. Li, Z. Liu, Y. Han, L. Tang, Z. Mao,
P. Yang, B. Wang et al., Nature (London) 621, 493 (2023).

[2] D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee,
Y. Cui, Y. Hikita, and H. Y. Hwang, Nature (London) 572, 624
(2019).

[3] G. A. Pan, D. Ferenc Segedin, H. LaBollita, Q. Song,
E. M. Nica, B. H. Goodge, A. T. Pierce, S. Doyle, S.
Novakov, D. Cérdova Carrizales et al., Nat. Mater. 21, 160
(2022).

[4] Z. Liu, M. Huo, J. Li, Q. Li, Y. Liu, Y. Dai, X. Zhou, J. Hao, Y.
Lu, M. Wang et al., arXiv:2307.02950

[5] J. Hou, P. Yang, Z. Liu, J. Li, P. Shan, L. Ma, G. Wang, N. Wang,
H. Guo, J. Sun et al., arXiv:2307.09865.

[6] Z. Luo, X. Hu, M. Wang, W. Wu, and D.-X. Yao, Phys. Rev.
Lett. 131, 126001 (2023).

[71 Y. Zhang, L.-F. Lin,
arXiv:2306.03231.

[8] Q.-G. Yang, D. Wang, and Q.-H. Wang, Phys. Rev. B 108,
L140505 (2023).

[9] H. Sakakibara, N. Kitamine, M. Ochi, and K. Kuroki,
arXiv:2306.06039.

[10] Y. Gu, C. Le, Z. Yang, X. Wu, and J. Hu, arXiv:2306.07275.
[11] Y. Shen, M. Qin, and G.-M. Zhang, arXiv:2306.07837.

A. Moreo, and E. Dagotto,

[12] W. Wi, Z. Luo, D.-X. Yao, and M. Wang, arXiv:2307.05662.

[13] V. Christiansson, F. Petocchi, and P. Werner, arXiv:2306.07931.

[14] Y.-B. Liu, J-W. Mei, F. Ye, W.-Q. Chen, and F. Yang,
arXiv:2307.10144.

[15] Y. Cao and Y.-f. Yang, arXiv:2307.06806.

[16] Y.-H. Zhang and A. Vishwanath, Phys. Rev. Res. 2, 023112
(2020).

[17] Y.-H. Zhang and Z. Zhu, Phys. Rev. B 103, 115101 (2021).

[18] Y.-H. Zhang and A. Vishwanath, Phys. Rev. B 106, 045103
(2022).

[19] M. Nakata, D. Ogura, H. Usui, and K. Kuroki, Phys. Rev. B 95,
214509 (2017).

[20] A. Bohrdt, L. Homeier, 1. Bloch, E. Demler, and F. Grusdt, Nat.
Phys. 18, 651 (2022).

[21] S. Hirthe, T. Chalopin, D. Bourgund, P. Bojovié, A. Bohrdt, E.
Demler, F. Grusdt, I. Bloch, and T. A. Hilker, Nature (London)
613, 463 (2023).

[22] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

[23] C. Lu, Z. Pan, F. Yang, and C. Wu, arXiv:2307.14965 [cond-
mat.supr-con].

[24] H. Yang, H. Oh, and Y.-H. Zhang, arXiv:2309.15095 [cond-
mat.str-el].

174511-8



