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ABSTRACT
Graphics Processing Units (GPU) are increasingly deployed on
Cyber-physical Systems (CPSs), frequently used to perform real-
time safety-critical functions, such as object detection on autonomous
vehicles. As a result, availability is important for GPU tasks in
CPS platforms. However, existing Trusted Execution Environments
(TEE) solutions with availability guarantees focus only on CPU
computing.

To bridge this gap, we propose AvaGPU, a TEE that guarantees
real-time availability for CPU tasks involving GPU execution under
compromised OS. There are three technical challenges. First, to
prevent malicious resource contention due to separate scheduling
of CPU and GPU tasks, we proposed a CPU-GPU co-scheduling
framework that couples the priority of CPU and GPU tasks. Second,
we propose software-based secure preemption on GPU tasks to
bound the degree of priority inversion on GPU. Third, we propose a
new split design of GPU driver with minimized Trusted Computing
Base (TCB) to achieve secure and e�cient GPU management for
CPS. We implement a prototype of AvaGPU on the Jetson AGX
Orin platform. The system is evaluated on benchmark, synthetic
tasks, and real-world applications with 15.87% runtime overhead
on average.
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1 INTRODUCTION
GPU plays an increasingly important role in real-time CPSs [1, 3, 15]
as more and more AI components are integrated into safety-critical
CPS, such as self-driving [4, 8, 14]. Under the increasingly rich
features, the software system becomes incredibly complex, making
it extremely challenging, if not impossible, to be vulnerable-free [9].
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The exploitation of these vulnerabilities allows attackers to tamper
with or simply deny key safety-critical functionalities in CPS, such
as pedestrian detection.
GPU Execution Protection in CPS: Existing secure execution
solutions [27, 32, 33, 42, 43, 48, 59, 67] for GPU mostly focus on the
assurance of con�dentiality and integrity. These GPU TEE solutions
can be categorized into two approaches: leveraging CPU-TEE to
secure GPU access, as demonstrated in [27, 33, 42, 43, 48], or directly
instantiating a TEE on GPU [32, 59, 67]. CPU-based TEEs often
result in larger TCB, while GPU-TEE typically require hardware
modi�cations. However, for GPU protection in CPS, the availability
(timeliness) is also an essential aspect.

While there has been some recent work on TEE with availability
assurance [22, 61], they primarily considered systems with CPU
executions only and cannot be directly applied to GPU. Accelera-
tors, such as GPU, has its own resource management mechanisms
and structures as an additional computational unit. As a result,
availability of GPU execution requires a holistic consideration of
both CPU and GPU resource management. Given the prevalence of
AI in modern CPS for safety critical functions, such as perception
and control, it is essential for availability assurance solutions to
also support accelerators, such as GPU.
Secure and Timely GPU Execution with AvaGPU: To bridge
this gap, we introduce AvaGPU, a TEE designed to provide real-time
availability guarantees for CPU tasks involving GPU execution on
CPSs in the presence of untrusted OS. To achieve this objective,
AvaGPU needs to address several challenges unique to GPU and
beyond existing availability solutions [22, 61]:
C1. CPU-GPU Task Priority Coupling: As an independent computing
unit, the GPU contains its own task scheduler in the driver. The
separation between CPU and GPU schedulers introduces priority
decoupling between CPU and GPU tasks. Speci�cally, when the
GPU scheduler allocates computational resources, like GPU process-
ing units, to the submitted GPU tasks, it is unaware of the priority
of the CPU tasks associated with the GPU tasks. Thus, GPU tasks
from high priority CPU tasks, like safety-critical secure tasks, can
be delayed by other GPU tasks submitted by lower priority CPU
tasks [35, 46], resulting in priority inversion. Therefore, coupling
the priorities of both CPU and GPU tasks is necessary to ensure
timely completion of GPU-involved secure tasks. However, neither
existing GPU secure execution solutions [27, 33, 59] nor CPU avail-
ability solutions [22, 61] enforces priority coupling between CPU
and GPU tasks. To solve this problem, AvaGPU introduces a real-
time CPU-GPU co-scheduling framework in TEE. This framework
couples the priority of CPU and GPU tasks by prioritizing secure
GPU tasks during the execution period of corresponding secure
CPU tasks.
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C2. Secure Preemptive Scheduling: Preemptive scheduling is crucial
in mitigating priority inversion in real-time systems, by enabling
higher priority tasks to interrupt lower priority tasks. However,
mainstream GPUs lack hardware-level support or public APIs for
task preemption [30]. Existing software-basedGPU task preemption
solutions can be categorized as two approaches. 1) Wait-based inter-
thread preemption [24, 25, 63, 66] often incurs long preemption
delay, hindering the real-time responsiveness of the system. 2) Re-
execution-based methods are e�cient but only work for idempotent
workload [30, 37], cannot be applied on CPS workloads where
states are crucial. To tackle this challenge, AvaGPU proposes to
statically instrument both secure and non-secure GPU task codes
to add self-suspending capability according to preemption signal (a
software-based �ag) from GPU scheduler.

However, non-secure GPU tasks submitted from the untrusted
Rich Execution Environment (REE) can have their instrumentation-
based self-suspending capability disabled in two ways. First, REE
attackers can remove the self-suspending instrumentation. Second,
it’s di�cult to verify that a non-secure GPU task is free of vul-
nerability. Thus, a REE attacker can hijack control �ow [39, 44] in
non-secure GPU tasks to bypass self-suspending instrumentation at
runtime. Both approaches lead to non-secure GPU tasks executing
without any suspensions, introducing delay on secure GPU tasks
execution by contenting computing resources. AvaGPU proposes
two defense mechanisms to prevent/eliminate these attacks as early
as possible. First, AvaGPU only executes non-secure GPU tasks with
correctly veri�ed cryptographic signatures, preventing the removal
of self-suspending instrumentation before execution. Second, Av-
aGPU detects and eliminates the self-suspending instrumentation
bypassing at runtime. Speci�cally, AvaGPU monitors the secure
GPU progress. If secure GPU tasks don’t make expected progress in
a limited time period. AvaGPU proactively kills unresponsive GPU
tasks. However, the progress checkpoints must be selected care-
fully to defend against instrumentation bypassing attack without
introducing high runtime overhead. While more frequent secure
GPU tasks progress monitoring can detect attacks quicker, it also
introduces higher runtime overhead. To minimize the attack detec-
tion runtime overhead while eliminating self-suspending bypassing
attack in time for the guarantee of application’s real-time perfor-
mance, AvaGPU formulates the trade-o� between security and
runtime overhead as a constraint optimization problem to solve it.
C3. Secure GPU Management: In order to guarantee availability for
GPU tasks, it is necessary to leverage hardware resource isolation
to control the access of GPU resource from untrusted domains. This
is usually accomplished by assigning the GPU to secure domain as a
secure device. However, this poses two unique challenges. The �rst
challenge is due to the execution of non-secure GPU code on the
secure device (GPU). Existing hardware-enforced memory access
control in ARM TrustZone works on the granularity of hardware
device, and as a result, non-secure GPU tasks on the secure GPU
can access all the secure resources. AvaGPU prevents this attack by
deploying a DMA reference monitor in TEE to validate DMA mem-
ory access in GPU commands, preventing malicious modi�cation of
secure memory. The second challenge is due to the sharing of GPU
between secure and non-secure CPU tasks, requiring mechanisms
to harmonize the non-secure GPU driver in the REE and the secure

GPU driver in the TEE. To minimize the impact on TCB, AvaGPU
leverages CPS predictability to create a template driver [61]. How-
ever, di�erent from regular I/O devices, there is complex resource
management to enable GPU task execution, and trapping to TEE for
every management operation signi�cantly slows down the system,
violating the real-time requirement for the CPS. To minimize this,
AvaGPU proposes GPUmanagement delegation, separate command
bu�ers, and batch command bu�er synchronization mechanisms
based on Stage-2 memory access control.
Prototype and Evaluation: We implemented the prototype of
AvaGPU on the Jetson AGX Orin platform. Two cases are used
to demonstrate the e�ectiveness of defense against availability at-
tacks, including malicious GPU frequency reduction attack and
preemption bypassing attack. To evaluate the system performance
of AvaGPU, we measure the performance overhead on Rodinia [19]
GPU and SPECrate 2017 [20] CPU benchmark suite. The real-time
performance of AvaGPU is evaluated on both synthetic real-time
GPU tasks and real-world applications. In summary, we make fol-
lowing contributions:

• We design and implement a software-based real-time TEE
solution for tasks involving both CPU and GPU execution,
ensuring real-time secure GPU tasks �nish correctly and
timely in the presence of a compromised OS.

• To address priority inversion, we propose a secure real-time
CPU-GPU co-scheduling mechanism and a �ne-grained GPU
task preemption mechanism to ensure real-time responsive-
ness. A secure GPU management system is also developed
to take advantage of CPS predictability to isolate GPU re-
sources with minimized overhead in system runtime and
TCB.

• We implement a prototype of AvaGPU and show the pro-
posed system can defend against availability attacks with
case studies. We also evaluate the system performance on
Rodinia and SPECrate 2017 benchmarks, synthetic real-time
tasks, as well as real-world applications.

2 BACKGROUND
2.1 Graphics Processing Unit (GPU)
Hardware: GPUs, either dedicated or integrated, are classi�ed
based on whether they share physical memory with the CPU. CPSs
typically employ integrated GPUs that share memory with the
CPU because of Size, Weight, and Power (SWaP) limitations. Thus,
AvaGPU focuses on integrated GPU. We use Nvidia GPU as an
example. The CPU communicates with the GPU through access to
the GPU-exposed MMIO memory space. A GPU primarily consists
of copy (DMA) engine, command processor, computation unit, and
memory controller. The copy engine transfers data between host
device and GPU memory spaces, while the command processor re-
ceives commands from the GPU driver and dispatches them to the
GPU computation unit. This unit features Graph Processing Clus-
ters (GPCs) sharing an L2 cache, with each GPC containing multiple
Streaming Multiprocessors (SMs). Each SM includes several cores
that share an L1 cache. GPU uses di�erent mechanisms to isolate
cache between tasks. Speci�cally, L2 cache memory is indexed us-
ing physical addresses, while L1 cache uses virtual addresses for
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indexing. Thus, L1 caches are �ushed during a context switch. A
GPU task determines the number of threads used, organizing them
as thread blocks divided into warps. The hardware scheduler uti-
lizes warps as the scheduling unit for each SM. Modern mainstream
GPUs from leading manufacturers, such as Nvidia [59], AMD [51],
Intel [57], and Arm [27], utilize virtual memory to isolate memory
space among various GPU tasks. This is accomplished through a
separate Memory Management Unit (MMU) that employs page
table walkers for address translation and a hierarchy Translation
Lookaside Bu�ers (TLBs).
Software Stack: The GPU software stack primarily consists of a
user-space runtime library (e.g., CUDA and OpenCL) and a kernel-
space GPU driver. The user-space runtime library o�ers APIs for
user-space applications (i.e., GPU tasks) to program the GPU exe-
cution unit with codes and to transfer data between the host device
bu�er and GPU bu�er. These API calls are converted into GPU
commands, which con�gure the GPU and control data transfers
and task launches. The kernel-space GPU driver mainly responds
to the GPU management, like memory management and GPU com-
mand submission. Each GPU task executes in a separate virtual
memory space, ensuring memory isolation between tasks. This is
achieved by allocating multi-level page tables in GPU driver for
each GPU task before task loading. A command processor in the
GPU fetches commands from host devices, with the GPU driver
managing two bu�ers: a command bu�er and a ring bu�er. The
runtime library places commands into the command bu�er, which
is memory-mapped to the user space. The GPU’s command pro-
cessor utilizes a ring bu�er to fetch commands. Speci�cally, when
the runtime library pushes commands into the command bu�er,
the command group’s location and size are added to the ring bu�er.
Simultaneously, a PUT register is updated with a pointer to the com-
mand group. The command processor retrieves the command group
each time the PUT registers are updated and uses the GET register
to notify the host device of fetch completion. Once launched on the
GPU, a task cannot be preempted until completion. This is due to the
GPU’s lack of exposed software interface for task execution suspen-
sion mechanisms [30], unlike an interruptible CPU. Consequently,
the GPU cannot preserve the task context in the same manner as a
CPU. However, mainstream GPUs support concurrently executing
GPU tasks from mutually untrusted processes [23, 46], like Nvida
MPS [18] and AMD ROCm [2], making performance interference
through GPU computation resource contention possible. Existing
GPU support tasks killing mechanisms [16, 30] which can stop
speci�ed ongoing tasks on GPU at process-granularity without
modifying any GPU con�gurations.
Work Flow: The entire work�ow of a GPU task execution com-
prises four phases: memory allocation, code/data transfer between
host bu�er and GPU bu�er, task dispatching and computation, and
data transfer from GPU to host device. During the memory alloca-
tion phase, the GPU driver allocates memory space for GPU task
execution and creates PTEs. In the second phase, the host device
speci�es the source and destination for the data transfer, transfer-
ring input data and loading codes from the host bu�er to the GPU
bu�er. Once the data is transferred to the GPU bu�er, the task is
dispatched to the computing unit to execute. Finally, the results are
transferred from the GPU bu�er back to the host bu�er.

2.2 Arm TrustZone and Stage-2 Translation
Arm TrustZone: Arm TrustZone is a hardware security mecha-
nism that divides computational resources into two domains: the
normal world and the secure world. The normal world cannot ac-
cess the resources of the secure world, while the secure world can
access all resources. This asymmetrical permission arrangement
allows the normal world to run a feature-rich, large-size commodity
OS, whereas the secure world runs a smaller, secure OS with fewer
features. The two OSes cannot execute concurrently on a CPU core
at the same time, thereby ensuring CPU usage isolation. The transi-
tion between the two worlds is supervised by the highest privilege
level, known as the secure monitor, which employs a speci�c in-
struction called a secure monitor call (smc). Arm TrustZone also
enforces memory isolation at the bus level, preventing the normal
world from accessing the secure world’s memory.
Stage-2 Translation: The two-stage memory translation mech-
anism is commonly employed in high-end series, such as Arm
Cortex-A, to support virtualization. This mechanism is responsible
for mapping the Virtual Address (VA) in applications and the OS
to the Physical Address (PA). Speci�cally, Stage-1 translates the
VA into an Intermediate Physical Address (IPA), and then Stage-2
maps the IPA to the PA. When virtualization is not enabled, the VA
is directly translated into the PA.

3 THREAT MODEL AND SECURITY GOALS
Threat Model: AvaGPU is designed to protect against privileged
attackers capable of executing arbitrary code and reading/writing
any memory in the REE on CPS platforms where GPU is shared
between TEE and REE. The adversarial goal is to compromise the
availability of secure safety-critical GPU task execution, such as
object detection in autonomous vehicles, through Denial of Service
(DoS) attacks. It’s important to clarify that AvaGPU focuses on
computational availability guarantee of GPU tasks, and is comple-
mentary to existing work [61] that provides system availability
guarantee with only CPU as the computational unit. Concretely,
there are six unique attack vectors. From the perspective of GPU
task execution, (1) attackers can modify the GPU code and data
stored in host bu�ers. (2) Attackers can manipulate the DMA con-
troller to prevent GPU data transfer from completing correctly and
promptly. (3) Attackers can manipulate CPU task and GPU task
scheduling, which includes blocking GPU task command commits
or submitting multiple GPU tasks to compete for shared resources,
such as cache or computation units, on the GPU. In terms of GPU
management, (4) attackers may either deny access to or maliciously
con�gure the GPU, such as modifying the GPU frequency through
the MMIO interface. (5) They can manipulate GPU memory address
translation by modifying the GPU Page Table Entry (PTE) and Page
Table Directory (PD) that refers to the table pointing to page tables
for more granular address translation. (6) Attackers can exploit
vulnerabilities of untrusted GPU tasks to arbitrarily read, write, and
execute in their memory space.
Assumptions: AvaGPU targets real-time CPS where the worst
case execution time of safety-critical tasks are well understood for
schedulability analysis. We also assume the designer of the CPS
system has the access to GPU tasks’ source code. These GPU tasks
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Figure 1: AvaGPU System Overview

are compiled on a trusted machine with our customized compiler.
The AvaGPU’s software components, including Stage-2 memory
translation, the software stack in secure world, and the customized
GPU compiler are trusted and presumed vulnerability-free. Any
software components in the TCB on the CPU are veri�ed through
secure boot or remote attestation. Device initialization in REE is
also part of the secure boot process. We also trust the hardware,
including the CPU and integrated GPU, secure timer, as well as
the corresponding supporting �rmware. The physical attacks [29],
cryptographic-based attacks, algorithm complexity attacks [41, 60],
and side-channel attacks [45] are out of the scope of this paper.
System Goals: AvaGPU aims to ensure that secure CPU and GPU
tasks can complete correctly and timely.
(R1) Integrity of GPU Task’s Code and Data: If a GPU task’s
code and data integrity aren’t protected, it yields incorrect results.
Thus, the �rst goal is to protect GPU task data and code integrity.
(R2) Secure GPU Task Input/Output: GPUs use DMA to move
data to the GPU bu�er. Attackers could corrupt memory content of
secure GPU tasks with malicious DMA transactions or delay them
with lengthy data transfers. Therefore, AvaGPU should prevent ma-
licious DMA write, and preemptive GPU data transfer operations.
(R3) Availability of GPU Computation Resources: Without
access to properly con�gured GPU hardware, a GPU task cannot
execute. Therefore, AvaGPU needs to ensure that secure tasks have
access to correctly con�gured GPU computation resources.
(R4) Real-time Protection for Secure GPU Tasks: Some CPS
tasks requiring GPU computation are inherently real-time in nature.
Latency in computation results could lead to accidents. Thus, all se-
cure real-time tasks utilizing GPU should have timely completions.
(R5) Isolation of GPU Resources: A privileged attacker can ma-
liciously manipulate GPU resource management, including GPU
memory translation and command submission, to tamper with se-
cure GPU tasks. Thus, AvaGPU must ensure the isolation of GPU
resource management for secure and non-secure GPU tasks.
(R6) Maintaining a Minimized TCB: Large TCB may introduce
potential vulnerabilities. Therefore, AvaGPU aims to guarantee
GPU availability while maintaining a minimal TCB.

4 DESIGN
An overview of AvaGPU is shown in Fig. 1. There are three key
components. First, a secure CPU-GPU co-scheduling framework
couples priority of CPU and GPU tasks, making GPU scheduler
recognize GPU tasks’ priority to guarantee their enough compu-
tation resources timely. Second, a software instrumentation-based
secure and �ne-grained GPU task preemption mechanism, allows
the GPU scheduler to reliably and e�ectively preempt GPU tasks,
thereby e�ectively mitigating priority inversion. Third, a trusted
GPU setup and management mechanism isolates secure tasks and
essential GPU management functions from untrusted software to
guarantee trusted GPU hardware con�guration, dynamic resource
management and GPU task execution environment.

4.1 CPU-GPU Co-scheduling Infrastructure
The goal of the real-time CPU-GPU co-scheduler is to couple the
priority for both CPU and GPU tasks, ensuring timely GPU-enabled
task completion. A naive approach to construct such a scheduler to
move the combined infrastructure to the secure world. However,
this signi�cantly increases the complexity of the TCB. To address
this, recent work [61] adapts hierarchical scheduling to decouple
the real-time scheduler of REE from the trusted scheduler in TEE,
and rely on real-time scheduling theory based on the world sched-
uler to ensure the allocation of processor resources is adequate
for both the secure world and the non-secure world to complete
the workload. However, directly adapting this paradigm for CPU-
GPU co-scheduling poses two new challenges. First, GPU lacks the
individual world abstraction provided by ARM TrustZone, unlike
the processor counterpart. This necessitates a �atten design on the
scheduler. Second, the new co-scheduler has to ensure coherency
of priority between a hierarchical CPU scheduling and �atten GPU
scheduler.

TEEREE
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S CPU SchedulerNS CPU Scheduler GP
U 
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EL0
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GPU Task GPU TaskCPU Task

Figure 2: AvaGPU Real-time CPU-GPU Co-scheduling

To tackle this challenge, we propose to decouple the scheduler
infrastructure of CPU scheduling and GPU scheduling while main-
taining coherency on priority inheritance. The high level design is
shown in Fig. 2, where the CPU scheduler is adapting the hierar-
chical scheduling while the GPU scheduler is �atten. To maintain
coherency between the two, GPU execution strictly follows the
world switching, where the accelerators prioritize on GPU tasks
from the secure world when the processor is in secure state, and
vice versa. Furthermore, within a single secure domain, GPU tasks
inherit the priorities of the CPU tasks that they are associating
with. However, it is important to note that such tightly coupled
scheduling infrastructure may not provide the best performance.
Since the focus of this work is not on real-time scheduling, we will
leave such exploration as future work. Yet, it is important to note
that AvaGPU is designed to be extensible to di�erent types of CPU

4

2594



Secure and Timely GPU Execution in Cyber-physical Systems CCS ’23, November 26–30, 2023, Copenhagen, Denmark

and GPU co-scheduling algorithms. The �ndings and designs will
also generalize to or inform new co-scheduling designs.

4.2 Secure GPU Task Preemption
Preemption is one of the important features in real-time systems.
However, existing GPU scheduling infrastructure does not allow
task preemption. To tackle this challenge, there are two key de-
sign components to enable secure GPU task preemption. First, to
enable preemption on GPU tasks (kernels), AvaGPU instruments
both the secure and non-secure GPU tasks to enable software-based
self-suspension and resumption. Second, to ensure that the instru-
mentation bypass can be detected, when the tasks are compromised
or intentionally modi�ed by the REE, AvaGPU adapts a two-stage
defense mechanism that prevents/eliminates suspension instrumen-
tation bypassing attack as early as possible.
GPU Task Execution Suspension and Resumption: AvaGPU
supports GPU task suspension by instrumenting the GPU task,
enabling it to self-terminate at speci�ed locations after execution
context saving. When a suspended GPU task is resumed, it restores
the execution context and continuously executes from previous
suspended point. The GPU task suspension mechanism consists of
two stages, preventing the GPU hardware from queuing threads
and intra-thread GPU task self-suspension. First, AvaGPU prevents
the GPU hardware scheduler from queuing task threads. Each GPU
thread always processes one input unit. However, GPUs allow appli-
cations to submit tasks requiring more threads than a GPU’s total
core count. Consequently, excess threads execution are queued in
hardware and scheduled by the GPU hardware scheduler. How-
ever, hardware queued threads cannot be terminated until execu-
tion, causing preemption delays. AvaGPU solves this problem by
transforming the GPU tasks to only apply the maximum concur-
rent threads a GPU supports, with each thread processing multiple
thread workloads (i.e., multiple input units) sequentially. For exam-
ple, Fig.3 illustrates the transferred GPU task calculate_temp. The
variables tx and ty are used in line 14 to index the data processed by
each thread. Rather than deriving tx and ty from the internal vari-
able threadIdx only once in each thread, AvaGPU instruments the
GPU task to obtain multiple ones from a software queue, as shown
in lines 4 to 7. Consequently, all GPU task threads can be preempted
instantly, as no threads remain queued on GPU hardware.

Second, AvaGPU proposes an event-based GPU task preemption
approach, utilizing customized compiler to instrument the GPU
task. The instrumentation allows GPU tasks to self-monitor soft-
ware preemption signals (i.e., share variables) updated by trusted
GPU scheduler. The memory region containing these signals is set
to read-only for the untrusted OS via Stage-2 translation to pre-
vent tampering. When a preemption signal is received, the GPU
task saves its current execution context, and suspends execution.
The suspended execution resumes by restoring the saved context
when the scheduler resumes the suspended task. The saved con-
text includes GPU register values, while the memory content re-
mains unaltered for suspended tasks. As shown in Fig. 3, function
check_preemption in line 12 examines a preemption signal and in-
vokes context_save in line 12 if set. When a new thread is launched,
context_restore in line 2 restores the context if suspended. Lever-
aging the predictability of real-time CPS, AvaGPU’s event-based

01.__global__ void calculate_temp(...){  //GPU Code:   
02.if(suspended()){context_restore()}  //context restoring  
03.while(true){
04.if(queue_empty()){return;}
05.int curr_thread_idx = trd_dequeue(); 
06.int tx = get_bx(curr_thread_idx);
07.int ty = get_by(curr_thread_idx);
   ...
08.for (int i=0; i<cnt_preempt; i++){ 
09.   temp_cal(bx,by,tx,ty);
10.   checkpoint1 = 1;      //preemption checkpoint update
11.}}}
12.if(check_preemption()) context_save();  //context saving
13.for (; i<iteration ; i++){ 
14.   temp_cal(bx,by,tx,ty);}}}
15.calculate_temp<<<dimGrid, dimBlock>>> //CPU Code

Figure 3: GPU Task Transformation in AvaGPU

preemption approach minimizes unnecessary checks by examining
preemption signals at submission time for GPU tasks. Consequently,
preemption checking intervals align with the largest common factor
of all GPU task release periods. Note that the long data transactions
are also splitted into multiple ones to support preemption.
Instrumentation Modi�cation Defense: AvaGPU veri�es the
signature of instrumented non-secure GPU tasks’ hash prior to
loading, with the aim of identifying any instrumentation modi�-
cation from REE. Speci�cally, each GPU task has to be signed by
the developer, and the signature for the task has to be checked by
AvaGPU before loading it into the GPU for execution. Subsequent
loads of the same GPU task can just reuse the previous hash check-
sum for veri�cation without the need for public crypto operations.
However, the delay between command queue commitment and
GPU code execution could potentially allow the REE to execute a
Time-of-Check-Time-of-Use (TOCTOU) attack by modifying GPU
task code after signature check. To defend against this attack, Av-
aGPU sets memory space storing the GPU task codes as read-only
in REE via stage-2 memory translation before verifying the GPU
task signature.
Runtime Preemption Instrumentation Bypassing Defense:
AvaGPU defends against runtime preemption bypassing using an
attack detection and elimination mechanism instead of an attack
prevention mechanism, such as memory safety [55] that typically
introduces high runtime overhead. Speci�cally, AvaGPU identi-
�es runtime preemption instrumentation bypassing by monitoring
corresponding consequences, i.e., progress delay on secure tasks.
AvaGPU detects progress delay by verifying whether the expected
amount of computation is �nished in a �xed amount of time. Specif-
ically, AvaGPU �rst uses a customized compiler to insert progress
delay checkpoint into secure GPU tasks. When control �ow of
secure GPU task reaches a delay checkpoint, the value of corre-
sponding delay checkpoint pass variable will be set, as shown in
line 10 in Fig. 3. To verify the progress between two checkpoints at
runtime, AvaGPU triggers the secure timer after a period from the
previous delay checkpoint, checking whether the next checkpoint
pass variable is updated. If the next expected delay checkpoint pass
variable value is not set, malicious GPU task contends shared re-
sources. The preemption instrumentation is bypassed. As shown in
Fig. 4, the system is expected to pass through checkpoint2 at time
point t2. If checkpoint2 is not passed at t2, an attack is occurring.
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When an attack is identi�ed, AvaGPU kills the non-responsive
GPU task [16, 30]. Resetting a speci�c hardware channel associated
with a GPU task will stop corresponding ongoing computation on
the Nvidia GPU. This action is speci�c to individual GPU tasks,
only erasing the computational context of the target, thus leav-
ing other tasks’ memory untouched and preserving their accurate
execution. Yet, only killing the non-responsive GPU task cannot
prevent an attacker who turns on the malicious logic one by one.
To be conservative, AvaGPU suspends other non-secure GPU tasks
by sending software signals via secure shared memory until the
delayed GPU task is complete. The attack detection strategy, in-
cluding the number and the position of delay checkpoints in a GPU
task, is decided automatically by AvaGPU which will be described
in the next section. The delay checkpoint pass variables are located
in TEE. Thus, neither an untrusted CPU process nor an untrusted
GPU task can update delay checkpoint pass variables arbitrarily.
Additional discussion on di�erent strategies is in Section 9.
Defense Strategy Generation: As shown in Fig. 5, the time slack
between real-time task execution time and the deadline is limited.
Detecting progress delay at the end of task execution may lead
the task to miss its deadline. Furthermore, real-time systems often
maintain a system utilization upper bound to make sure the sys-
tem is schedulable [40], making AvaGPU has less time to eliminate
progress delay. To solve this problem, AvaGPU inserts multiple
delay checkpoints in a secure GPU task. In this way, the longest
delay time of a GPU task will be the duration between two check-
points. However, inserting more checkpoints will introduce more
runtime overhead. With all these system constraints considered,
AvaGPU generates the progress delay checkpoint strategy given a
user-provided real-time system utilization upper bound. The gener-
ated strategy guarantees that real-time tasks can complete in time
after detecting GPU progress delay under the system utilization
upper bound while maintaining a minimized runtime overhead.
Defense Strategy Optimization Formulation: In CPSs, CPU ex-
ecution often relies on the output of secure GPU task execution. As a
result, GPU execution often synchronizes with CPU task execution.
AvaGPU addresses the challenge of generating defense strategies
by formulating the process as an optimization problem. AvaGPU
assumes that there is a set of< CPU tasks, denoted as g0, g1, . . . , g< .
Each task g8 has a deadline38 , execution duration of 48 (where 48 rep-
resents the total execution delay for both CPU and GPU execution,
excluding the runtime overhead of the progress delay detection in
GPU tasks), and total GPU execution duration 68 . The developer
provides the expected system utilization upper bound,*D? 2 [0, 1],
as input to the model. The*D? is determined by the scheduling algo-
rithm deployed in the system, which in turn determines the schedu-
lability of the system. The output defense strategy consists of: the
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Figure 5: Preemption Bypassing Defense Strategy

number of delay checkpoints for each CPU taskN = {=8 |0  8 < <},
and the progress delay checkpoint positions in GPU tasks invoked
from each CPU task C = {28 9 |0  8 < <, 0  9 < =8 0  28 9  68 }.
To adhere to the developer’s expected system utilization, the total
system utilization resulting from the generated strategy must not
exceed the developer’s speci�ed upper bound for system utilization:

<�1’
8=0

48 + =8�2
38

 *D? . (1)

To guarantee every task can complete before the deadline, the total
task execution time for each task g8 after detecting the progress
delay should be less than its deadline

<0G{48 + 28 9+1 � 28 9 } + =8�2  38 , 0  9 < =8 . (2)

The optimization objective is to minimize the runtime overhead
introduced by attack detection, which can be formulated as:

<8=(�2
<�1’
8=0

=8 ), (3)

where �2 represents the overhead of checking delay checkpoint
pass variables, which is measured through program execution pro-
�ling.We adopt the genetic algorithm [31] to solve this optimization
problem. The details of the algorithm are presented in Appendix. A.

4.3 Trusted GPU Setup and Management
The GPU driver manages GPU, such as initializing GPU, managing
power and memory, etc. Secure GPU tasks need trusted driver to
have availability guarantee. However, directly migrating the GPU
driver into the TEE signi�cantly increases the TCB. Recent stud-
ies [47, 61] have replayed pre-recorded MMIO read/write sequences
and values to operate I/O devices or accelerators (i.e., GPU), o�ering
a trusted driver without substantially increasing the TCB. However,
they cannot be directly applied to guarantee GPU availability.

Shown in in Fig. 6 (a), [47] ensures con�dentiality and integrity
by isolating the trusted GPU replayer from the untrusted GPU stack.
However, this approach doesn’t prevent attacks from operating the
GPU in the REE, leaving GPU availability unprotected. Similarly,
as shown in Fig. 6 (b), [61] protects availability of I/O devices using
a global replayer in TEE, followed by an I/O reference monitor
to verify the validity of all MMIO operations. However, existing
design in [61] does not have dynamic memory management needed
by GPU, including runtime-allocated memory addresses and ring
bu�er pointer positions. Thus, as shown in Fig. 6 (c), AvaGPU o�ers
secure dynamic resource management prior to the replayer, provid-
ing the runtime-determined resource metadata for the replayer.
Trust GPU Management Overview: To prevents REE from
arbitrary operating GPU, GPU MMIO memory space is con�gured
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as inaccessible for REE using Stage-2 translation. Any GPU con-
�gurations from REE should send a GPU con�guration request to
TEE. A GPU con�guration mediator in TEE validates con�gurations
from REE based on OEM policies. As shown in Fig. 7, to provide
a trusted GPU driver while minimizing TCB, AvaGPU provides a
minimalist dynamic resource management (i.e., memory and com-
mand bu�er management) of the GPU driver in the TEE. Dynamic
memory management and GPU task commitment requests in the
REE driver are trapped and veri�ed in TEE before GPU task exe-
cution. Once resource management is completed in TEE, the GPU
replayer operates GPU with the result metadata from resource man-
agement and recorded I/O transaction message. However, trapping
resource management from the REE into the TEE increases runtime
overhead signi�cantly. To solve this problem, AvaGPU introduces
GPU PTE management delegation, separated command bu�ers, and
batch command bu�er synchronization mechanisms based on TEE
and Stage-2 memory translation.
Trusted GPU Memory Management: The GPU driver manages
GPU memory to provide isolation among GPU tasks. An untrusted
REE OS can manipulate GPU memory management to compromise
the integrity of secure GPU task execution, such as by mapping
the virtual address of secure GPU task code to the physical address
of malicious GPU task code. Thus, to support trusted GPU mem-
ory management for secure GPU tasks, AvaGPU manages GPU
memory in TEE. However, naively trapping every GPU memory
management function from REE to TEE introduces signi�cant run-
time overhead due to the context switch between the REE and TEE.
To tackle this challenge, we build on top of the observation that
most of the page table operations are read-only, AvaGPU therefore
only traps the security sensitive write operations to TEE. To realize
this design with minimal overhead, AvaGPU leverages the stage-2
translation to enforce the access control for REE. For each write re-
quest that is trapped into TEE, the memory management mediator
refers back to the physical memory range list. Requests for memory
outside of the range will be rejected. The access control is similar
to Enclave Page Cache Metadata (EPCM) in Intel’s Software Guard
Extensions (SGX) and Reverse Map Table (RMP) in AMD Secure
Encrypted Virtualization (SEV). However, di�erent from these TEE
designs, AvaGPU maintains a minimal resource management to
ensure availability guarantee for secure GPU tasks.
Trusted GPU Bu�er Management: The GPU runtime library
generates GPU commands that are submitted to the command
bu�er. The location and size of each command group are stored in
the ring bu�er by command bu�er management. The GPU contin-
uously fetches commands from the ring bu�er to execute tasks. An
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untrusted OS can maliciously modify commands of secure tasks,
corrupting the execution integrity and availability of secure tasks.
To address this issue, the TEE needs to take control of the com-
mand bu�er and ring bu�er management. AvaGPU migrates ring
bu�er and replicates command bu�er management within the TEE.
However, switching from REE to TEE when submitting every GPU
command introduces signi�cant runtime overhead. To address this
issue, AvaGPU proposes the separated command bu�er mechanism.
Speci�cally, REE GPU driver submits GPU commands in the com-
mand bu�er located in the REE. AvaGPU synchronizes the GPU
command bu�er in the REE with the one in the TEE, from which
the GPU fetches commands. However, actively synchronizing two
command bu�ers frequently introduces non-negligible runtime
overhead. Thus, AvaGPU proposes a batch command bu�er syn-
chronization mechanism. Speci�cally, the two bu�ers are synchro-
nized after the REE sends a request upon completion of a group
of command commitments by a task. This strategy is active only
when the GPU is busy, that is, when the ring bu�er is not empty,
thus avoiding delays caused by waiting for commands.
GPU Task’s Code/Data Isolation and Transfer Protection:
Code and data integrity of secure tasks should be protected from
untrusted OS as they assure correct GPU task execution. Besides the
page table in GPU, GPU tasks can also use DMA to transfer large
trunks of data between the GPU memory space and host memory
space [27, 59]. To prevent non-secure GPU tasks from sending DMA
request on GPU to corrupt secure memory by making source and
destination address in DMA commands fall into secure GPU tasks’
memory space. AvaGPU employs a DMA reference monitor in TEE
to validate DMAmemory access in GPU commands before GPU task
execution. Speci�cally, the DMA reference monitor validates that
the source and destination addresses of DMA transfer commands
from non-secure GPU tasks do not fall into the memory address
space of secure GPU tasks before these commands are pushed into
the command queue.

5 IMPLEMENTATION
We implemented a prototype of AvaGPU on the Jetson AGX Orin
platform. This platform has 12 Arm Cortex-A78AE CPU cores, an
GPU with 2048 CUDA cores, and 32GB memory. The software stack
includes LLVM 17.0.0 compiler, the CUDA-11 runtime library, the
Linux 5.10.65-tegra operating system, and the OP-TEE secure OS
based on Arm TrustZone.
CPU-GPUCo-scheduling Infrastructure: The end-to-end sched-
uling infrastructure in AvaGPU comprises a hierarchical CPU task
scheduling infrastructure and a global GPU task scheduling system.
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We utilize the secure physical timer on the Cortex-A78AE to trigger
the hierarchical CPU scheduling process. Both the world sched-
uler and the secure world scheduler employ Rate Monotonic (RM)
scheduling. In our prototype, global GPU task scheduling aligns
with the decision of CPU schedulers, allowing the GPU task of the
latest CPU process to preempt the current executing GPU tasks.
Additionally, it maintains a resource consumption table to man-
age each GPU task’s computational resources, including registers,
shared memory, and the number of threads.
GPU Task Preemption Instrumentation: The GPU task preemp-
tion method comprises two key components: identifying where to
check for preemption signals, and determining the data to save and
restore. Given the predictability in real-time systems, the GPU task
checks for preemption signals whenever a task is released. Thus,
the checking period is set as the greatest common factor of all tasks
release periods. To �gure out the code location of checkpoints, we
use LLVM front-end passes to record timestamps with clock64 func-
tion for each basic block and the statements within blocks that
include preemption checkpoints. AvaGPU ensures that at least one
preemption checkpoint is included within a �xed number of loop
cycles prior to generating the strategy. The speci�c number of cy-
cles is determined by the task release period. When a GPU task is
preempted, AvaGPU saves all registers into secure memory, restor-
ing them when the task is resumed. Memory content are preserved
during suspension to maintain the content throughout the GPU
task’s execution. Note that GPU has more registers than CPU, lead-
ing to noticeable runtime overhead during context saving in task
preemption. Thus, when multiple GPU tasks of the same priority
execute, AvaGPU use the preemption algorithm in Appendix A to
preempt as fewest GPU tasks as possible, while still freeing enough
computational resources for the next task to be scheduled.
Preemption Bypassing Detection and Elimination: The pre-
emption bypassing detection and elimination process consists of
two components: detection strategy generation and attack check-
point instrumentation. We use a Python script to generate an opti-
mized delay detection strategy with Algorithm 2. Then we inserted
delay checkpoints at the speci�ed points within the GPU task, us-
ing the same approach as when inserting GPU task preemption
checkpoints. Each checkpoint updates a unique variable in secure
memory, marking the execution progress. A secure timer is set ac-
cording to the strategy. It is noted that if two adjacent checkpoints
are located in two GPU tasks, two checks are implemented. If a new
checkpoint variable isn’t updated when triggered, all non-secure
GPU tasks are suspended though setting preemption variables. At
last, AvaGPU halts the non-terminated task by resetting its hard-
ware channel, thus eliminating the attack.
Trusted GPU Access: AvaGPU reserves memory in secure world
for GPU resource management and Stage-2 translation, providing
trusted services. Speci�cally, a 16MB secure memory region is re-
served for the GPU page table and Stage-2 translation table, with
the Stage-2 con�guration registers [21] appropriately con�gured.
AvaGPU uses a �at memory model for the normal world’s Stage-2
translation, re�ecting the single memory space. When page access
rights change, the access permission bits of a PTE are modi�ed, and
the MMIO addresses of the GPU are con�gured as readable-only
in the normal world. Our prototype includes a GPU con�guration

mediator that restricts non-secure tasks from modifying GPU fre-
quency during secure tasks execution. However, AvaGPU supports
policy-based hardware con�guration mediator. For example, OEMs
can limit frequency adjustments to speci�c ranges.
Trusted GPU Resource Management: For secure GPU memory
management, we migrated GPU virtual memory management and
GPU MMU operations from nvgpu driver to OP-TEE secure OS
kernel. We reserve a 4k-aligned memory region to store PD/PTE,
con�guring the access rights of this region in Stage-2 memory trans-
lation to be readable-only for normal world and both readable and
writable for secure world. To trap the PD/PTE update from normal
world to secure world, we substitute the normal world’s PD/PTE
operation functions (such as nvgpu_pd_write) with an SMC. The
secure world’s memory management mediator validates these write
requests, ensuring the physical addresses in the PTE from the REE
are outside the secure world’s physical memory, and that the PD
doesn’t point to the secure GPU tasks’ page tables. We implemented
trusted ring bu�er and command bu�er management in secure
world by migrating command/ring bu�er management functions
from the nvgpu driver to secure world. To synchronize command
bu�ers, the command are copied between two worlds. During func-
tion migration, we identi�ed and removed certain functions and
data structures, like those used in the Linux kernel, debugging, and
logging functions in nvgpu drivers, to reduce the TCB. Nvidia’s use
of virtual addresses in DMA transfers negates the need for our pro-
totype’s DMA reference monitor to check the command’s source
and destination. However, for vendors like Arm [27] that don’t
support virtual address DMA transfers, the DMA reference monitor
must reject commands if the source and destination addresses in
the control block fall into the secure memory space.
GPU Replay Message Generation: Generating GPU replay mes-
sages requires recording MMIO read/write operations and correlat-
ing them with runtime resource management decisions. We logged
these operations by instrumenting user-space CUDA API calls and
MMIO real/write nvgpu driver functions like nvgpu_os_readl/writel.
Additionally, we di�erentiated user-space operations from inter-
rupt handling by instrumenting all interrupt handlers in nvgpu
driver, as messages tied to interrupt handling are replayed only
after an interrupt is triggered. To correlate runtime resource man-
agement decisions with MMIO operations, we �rst obtain decisions
like GPU page table base address, code/data address, and ring bu�er
address from the instrumented runtime management functions in
the driver. Next, we located recorded MMIO operations containing
these decisions. During runtime, AvaGPU feeds the dynamically
generated decisions in the messages to control the GPU.
TCB Analysis: AvaGPU minimizes the TCB size through driver
debloating. As shown in Table. 1, the increased system TCB in Av-
aGPU includes operations for Stage-2 memory address translation,
secure GPU management, mediators, GPU message replayer, and
a scheduling framework. The prototype adds a total of 7301 Lines
of Code (LoC) to the TCB, with the trusted debloated GPU driver
accounting for 5331 LoC. This includes 153 LoC for hardware con-
�guration and memory management mediators, as well as DMA
reference monitor framework, a signi�cant reduction from the 46K
LoC in the nvgpu driver. The TCB size may further vary depending
on the quantity and size of secure tasks.
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Table 1: Line of Code (LoC) of Components in AvaGPU

S2 Trans. S GPU Mng Medi Repl Schd NS GPU Dri Compiler Record
413 4861 153 317 1557 321 4212 1268
Trans.: Translation, Mng: Manager, Medi: Mediator, Repl: Replayer, Schd: Scheduler, Dri: Driver

6 EVALUATION
In this section, we evaluate AvaGPU using the prototype described
in Sec.5. We aim to answer the following questions: (1) Can Av-
aGPU e�ectively defend against availability attacks? (2) What is
the system overhead of AvaGPU on GPU tasks? (3) What is the
system overhead on CPU tasks? (4) What is the real-time perfor-
mance of real-time CPU tasks that involve GPU executions? To
address these questions, we (1) conduct defense case studies to ex-
amine AvaGPU’s impact on two availability attacks, i.e., malicious
GPU frequency reduction and preemption bypassing attacks, (2)
measure AvaGPU’s system overhead on the Rodinia benchmark
suite[19], (3) measure AvaGPU’s runtime overhead on SPECrate
2017 benchmark, and (4) evaluate the real-time performance of both
synthetic real-time tasks and three real-world GPU tasks, as well
as CPU hierarchical scheduling computation cost on micro bench-
mark. Additionally, we evaluate AvaGPU’s e�ciency in generating
performance interference attack defense strategies. More details
can be found in Appendix A.

6.1 Defense Case Study
To demonstrate AvaGPU’s e�ectiveness in defending against avail-
ability attacks, we conduct two case studies on the prototype plat-
form: using AvaGPU to defend against GPU working frequency
reduction and preemption bypassing attacks.
GPU Working Frequency Reduction: In a GPU working fre-
quency reduction attack, an attacker with kernel privileges delays
GPU task execution by reducing the GPU’s working frequency.
To delay the victim task as much as possible, the attacker lowers
the GPU frequency from its highest setting (1.3GHz) to the lowest
(115MHz) during the execution of the GPU task, causing CPU tasks
to miss deadlines. In this case study, we select three open-source
applications commonly used on commercial drones: Object De-
tection (OD) using DetectNet [10], Image Classi�cation (IC) with
ImageNet [13], and Image Compression (IP)[12]. These envisioned
CPS applications operate autonomously under complex environ-
ments. As such, they often require powerful platforms with GPUs to
support timely execution of object recognition, object classi�cations
or other complex algorithms. Each application has a 50ms deadline,
corresponding to 20 fps camera operation on a drone camera[11].
Secure applications (OD and IC) operate in secure world, while the
non-secure application (IP) operates in normal world. The upper
bound of system utilization is 69%, aligned with the RM scheduling
algorithm in our prototype. We continuously execute each task at
least 1000 times. As indicated in Table. 2, the average execution
time for the three applications increases under a GPU working
frequency reduction attack, resulting in an 85% deadline miss rate.
However, with AvaGPU deployed, tasks meet deadlines even under
this attack, with 7.52% increase in system utilization. This is because
the GPU con�guration mediator denies requests to reduce GPU
execution frequency during secure task execution.

Table 2: E�ectiveness of Frequency Reduction Defense

Exe Time
w/o atk
w/o Ava

Utilization
w/o atk
w/o Ava

Exe Time
w atk

w/o Ava

Miss Rate
w atk

w/o Ava

Exe Time
w atk
w Ava

Utilization
w atk
w Ava

ObjDetect 10.59ms
47.36%

56.15ms
85.00%

12.25ms
54.88%ImgClassify 1.64ms 38.93ms 1.89ms

ImgCompress 11.45ms 54.26ms 13.3ms
Exe: Execution, w/o: without, w: with, atk: attack, Ava: AvaGPU

Preemption Bypassing Attack Defense: In this case study, we
evaluate the e�ectiveness of defending against preemption by-
passing attacks on Autoware [5], a widely-used open-source au-
tonomous driving software that requires high-end platform [6].
Within Autoware, perception tasks are crucial for detecting, recog-
nizing, and tracking objects, with 3D object detection and track-
ing [64] utilizing the GPU for accelerated processing. The correct-
ness and availability of 3D object detection and tracking are the
prerequisite of subsequent functions such as planning and control-
ling. Thus, we protect it with AvaGPU in secure world. Other tasks
such as sensor simulation run in normal world. The mission and
map we used in simulation is sample-rosbag [7] in Autoware. We
have pro�led the execution time of each task, setting the deadline
equal to the period, which corresponds to the time interval between
two consecutive task executions. We simulate the attack by exploit-
ing the bu�er over�ow vulnerability in �ve synthetic non-secure
GPU tasks that run arithmetic computation loop to bypass the
preemption, contending computation resources with victim GPU
task. The bu�er over�ow vulnerability in untrusted GPU tasks is
introduced at the end of the loop to overwrite the loop condition,
making loop execute without stopping. To show the e�ectiveness
of defense mechanism, we measure the execution time of 3D object
detection and tracking under three system deployment scenarios.
As illustrated in Table. 3, under a preemption bypassing attack, the
average GPU task execution delay is 6.99 times longer than the
execution without an attack, exceeding the task deadline by 1.36
times. The Autoware loss object perception of surrounding objects
can be observed in visualized panel, impacting the availability of
the following functionalities. When AvaGPU is deployed, the task
meets its deadline even under a preemption bypassing attack, but
with a 17% average increase in runtime overhead.

Table 3: E�ectiveness of Preeemption Bypassing Defense

w/o Atk w Atk w/o AvaGPU w Atk w AvaGPU Deadline
Min 43824 us 281123 us 51142 us 250000 us
Max 55399 us 385721 us 65094 us 250000 us
Avg 48470 us 338760 us 56710 us 250000 us

6.2 System Overhead on GPU Benchmark
To evaluate AvaGPU’s runtime overhead on GPU tasks under dif-
ferent workload distributions, we measure the execution times
of applications in Rodinia benchmark suite [19] on systems with
and without AvaGPU under three workload (the sum of the execu-
tion time of each application in every world, divided by its period)
distributions between secure and non-secure world, i.e., 25%/75%,
50%/50%, and 75%/25%. For each distribution, we evaluate the run-
time overhead of applications in both worlds over 10 iterations.
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Figure 8: Runtime Overhead of Rodinia Benchmark

Speci�cally, in each measurement iteration, under a given work-
load distribution, both the number and choice of applications in
each world are randomly selected to prevent biased results. Since no
real-time GPU task benchmarks exist, we treat Rodinia applications
as real-time GPU tasks. Speci�cally, after selecting applications in
each iteration, we assign deadlines to applications to ensure that
the workload distribution in each world is satis�ed and the entire
system utilization reaches the upper bound, i.e., 69% under the RM
scheduling algorithm. Assigning deadlines to tasks is reasonable
here as we aim to measure the runtime/memory overhead of real-
time applications with varied parameters, rather than assessing
real-time performance that requires actual application deadlines.
To measure the runtime overhead of each AvaGPU component,
we record starting and ending timestamps to calculate execution
delays.
Runtime Overhead Analysis: The maximum runtime overhead
of each application when they runs in normal world and secure
world is shown in Fig. 8. The highest runtime overhead is 17.12% for
kmeans in normal world and 18.49% for kmeans in secureworld. The
runtime overhead for each component in AvaGPU in normal world
and secure world are presented in Table. 4 and Table. 5. Preemption
checking and context switching exhibit the highest average runtime
overhead among all components. This overhead is mainly due to
checking variables shared between the CPU and GPU, and saving
and restoring the execution context. The data transfer overhead
primarily arises from extra DMA con�gurations due to transac-
tion splitting, which increases in proportion to the size of the data.
The code veri�cation overhead on the other hand, is solely caused
by validating the GPU task code integrity in the normal world,
and it increases with the size of the code. The scheduler’s runtime
overhead is introduced by CPU-GPU co-scheduling. It �uctuates
depending on various real-time task parameters throughout the sys-
tem. The overhead incurred bymemorymanagement and command
bu�er management is primarily attributable to page table and com-
mand/ring queue operations. The memory management overhead
grows in proportion to the size of both the code and data of GPU
tasks. This overhead also comprises the runtime overhead incurred
by PTE checking in memory management mediator for non-secure
GPU tasks. The con�guration mediator overhead occurs due to
the veri�cation of the validity of GPU operation requests made
from the normal world. Preemption bypassing attack detection run-
time overhead is only introduced in secure tasks, mainly caused
by checking the progress variables which are shared between CPU
and GPU. The GPU context switching overhead is introduced by
saving/restoring registers on GPU task preemption/resuming.

Figure 9: Memory Overhead of Rodinia Benchmark

Table 4: Runtime Overhead Breakdown of AvaGPU (NW)
preemp
check

data
transf

code
verif

ctx
swch sched mm

mng
cmd
bu�er

con�g
media total

Avg 3.47% 0.77% 0.66% 5.40% 1.61% 1.93% 1.94% 0.63% 15.87%
Max 3.96% 3.95% 1.18% 6.16% 1.96% 2.18% 2.19% 0.81% 17.12%
Min 3.10% 0.21% 0.21% 4.77% 0.97% 1.70% 1.75% 0.47% 14.51%

preemp: preemption, tranf: tranfer, verif: veri�cation, ctx: context, sched: scheduling, mm mng:
memory management, cmd: command, con�g: con�guration, media: mediator

Runtime Overhead Di�erence between NW and SW: Table. 4
and Table. 5 show the runtime overhead di�erences between the
normal and secure world. These di�erences include (1) GPU task
code veri�cation, (2) preemption bypassing attack detection, (3)
memory and command bu�er management, and (4) con�guration
mediation. The overall runtime overhead of GPU tasks in both the
normal and secure worlds is similar due to a combination of fac-
tors. (1) AvaGPU does not verify the integrity of GPU task code in
the secure world. (2) Preemption bypassing attack defense is only
applied to secure GPU tasks through instrumentation. (3) In the
secure world, memory management must validate every PTE sub-
mitted from the normal world and con�gure the Stage-2 translation
table to enforce read-only permission for page tables of non-secure
tasks. Additionally, commands must be copied from normal world
to secure world before non-secure GPU tasks execution. (4) The
con�guration mediator in the secure world must verify the validity
of con�guration values from normal world requests. Additionally,
all GPU operation requests from the normal world result in world
context switch runtime overhead.
Memory Overhead: Fig. 9 illustrates the maximum memory over-
head of each application when they run in normal world and secure
world under di�erent system utilizations. The memory overhead
is mainly introduced by context saving when a GPU task is sus-
pended. Among all applications in the benchmark, two bioinformat-
ics processing programs, namely hear and leuk have the highest
memory overhead, i.e., 37.98%, 31.10% in secure world and 38.21%,
29.93% in normal world. These programs require a large number of
registers for e�cient computation, which are saved during context-
switching, thus leading to signi�cant memory overhead. However,
the memory overhead introduced by context-saving is less than
10MB, which is less than 0.04% of the total memory on our platform.
Even on lower-performance platforms, such as the Nvidia Jetson
Nano [17] with 2GB memory, the memory overhead accounts for
less than 0.5% of the entire memory.

6.3 System Overhead on CPU Tasks
To evaluate AvaGPU’s runtime overhead on CPU tasks, we measure
the execution time of programs in SPECrate 2017 benchmark run-
ning in normal/secure world on the system with/without AvaGPU.
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Figure 10: Runtime Overhead on CPU Tasks

Table 5: Runtime Overhead Breakdown of AvaGPU (SW)

preemp
check

data
transf

ctx
swch sched mm

mng
cmd
bu�er

attack
detect total

Avg 2.78% 0.53% 5.53% 1.17% 1.70% 1.48% 2.39% 15.58%
Max 3.53% 3.73% 6.13% 1.58% 2.16% 1.67% 3.21% 18.49%
Min 1.62% 0.21% 4.73% 1.07% 1.22% 1.21% 2.19% 13.14%

preemp: preemption, tranf: tranfer, ctx: context, sched: scheduling, mm mng: memory manage-
ment, cmd: command, attack detect: preemption bypassing attack detect

CPU Task Runtime Overhead: As shown in Fig. 10, the max-
imum, minimum, and average runtime overhead of AvaGPU on
SPECrate 2017 benchmark in both worlds are 6.87%, 0.23%, and
2.25%, respectively. The runtime overhead on CPU tasks is intro-
duced by Stage-2 memory translation mechanism that is used to
enforce memory access control, preventing attackers from manip-
ulating GPU in normal world without being trapped into secure
world for veri�cation. It needs additional page table walks, intro-
ducing runtime overhead for CPU tasks. AvaGPU guarantees the
correctness of dynamic GPU resource management, GPU tasks
commitment, and GPU con�guration by taking over these opera-
tions from normal world GPU driver, i.e., relaying these operations
from normal world GPU driver to secure world. However, these
modi�cations are all located in the normal world GPU driver, thus
having no impact on CPU tasks without GPU execution involved.

6.4 Real-time Performance of System
To evaluate the real-time performance of AvaGPU, we evaluate the
real-time task miss rate for both synthetic real-time tasks under
varying system workloads and real-world CPS GPU applications,
demonstrating AvaGPU’s feasibility for real-world use cases. We
generate synthetic task sets by randomly creating ten benign CPU
tasks that exclusively execute GPU tasks, with GPU tasks featuring
di�erent task execution times calculated through varying iterations
of matrix multiplication. GPU execution durations are randomized
between 10us and 20ms, including �ve secure tasks and �ve non-
secure tasks. Task periods are set to yield total system utilization
ranging from 0% to 100%. Each task executes 100 times. To evaluate
the computation cost of hierarchical scheduling in AvaGPU, we also
measure the execution time of each component in the hierarchical
scheduler, including world scheduler, secure world scheduler, and
normal world scheduler, during synthetic real-time tasks execution
under di�erent system utilization. To evaluate the in�uence of task
priority on real-time performance, we alternate high priority be-
tween secure and non-secure benign tasks. We employ CARTS [50]
to obtain root-level scheduling parameters. Real-time performance
under an attacker in synthetic GPU tasks is shown by executing
10 malicious CPU tasks that have the lowest priority in normal

(a) Secure Task Prioritized (b) Insecure Task Prioritized

Figure 11: Schedulability Analysis of AvaGPU

Table 6: RT Performance of Real-world Applications

preemp
check

data
transf

code
verif

ctx
swch sched mm

mng
cmd
bu�er

attack
detect total

OD 2.38% 0.93% N/A 5.18% 1.78% 1.67% 1.48% 2.18% 15.6%
IC 2.57% 0.81% N/A 5.27% 1.57% 1.53% 1.44% 2.61% 15.8%
IP 3.13% 0.63% 0.83% 5.31% 2.03% 2.18% 2.09% N/A 16.2%
preemp: preemption, tranf: tranfer, verif: veri�cation, ctx: context, sched: scheduling, mm mng:
memory management, cmd: command, attack detect: preemption bypassing attack detect

world, running GPU tasks to achieve 100% CPU utilization for each
group. We use the same settings as the GPU working frequency
reduction case study (i.e., all tasks have a 50ms deadline, and the
system utilization upper bound is 69%) as real-world workload.
Real-time Performance: Fig. 11 illustrates the real-time perfor-
mance of synthetic tasks in AvaGPU. In a system without AvaGPU,
all tasks miss their deadlines due to attackers submitting numerous
GPU tasks in brief periods, contending for computational resources.
However, with AvaGPU protection, benign tasks only begin to
miss deadlines when system utilization of benign tasks exceeds
69%, in line with the theoretical result[40]. Prioritized tasks start
missing deadlines at higher utilization levels since they are sched-
uled �rst when computational resources are limited. The real-time
performance of synthetic tasks shows that AvaGPU can maintain
reasonable real-time performance under malicious GPU resource
contention. Table. 6 shows the real-time performance of a system
running three real-world applications. The highest average run-
time overhead, 16.2%, occurs on IP in the normal world. It includes
0.7% con�guration mediator checking overhead. Nevertheless, all
applications complete their tasks before the deadline, proving the
feasibility of AvaGPU for systems running real-world applications.
CPU Hierarchical Scheduling Compuataion Cost: We instru-
mented AvaGPU hierarchical scheduler and normal world OS sched-
uler in Linux to record the scheduling event count and the total
overhead over the execution of the same set of synthetic real-time
tasks used in above real-time performance section. The total execu-
tion time of the tasks set is 15.79s. Table. 7 shows the computation
cost of hierarchical scheduler when the system is schedulable (sys-
tem utilization remains below 69%). The normal world scheduler
(i.e., Linux scheduler) has signi�cantly higher execution time com-
pared to secure world scheduler and world scheduler because of
complex data structure and process operations in Linux scheduler.
Furthermore, the maximum scheduling events in normal world
scheduler under di�erent workloads is also higher thanworld sched-
uler and secure world scheduler. This is because Linux scheduler is
jitter-based, scheduler works at every �xed interval. While world
scheduler and secure scheduler is event-driven, working only when
a new scheduling event arises, such as the arrival of a new task. The
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Table 7: Hierarchical Scheduling Runtime Overhead

Scheduler Max Min Avg Max Events Max Pct
World Scheduler 0.83 us 0.71us 0.72 us 2863 0.01%
NW Scheduler 36 us 23 us 28 us 4309 0.80%
SW Scheduler 0.86 us 0.76 us 0.79 us 2261 0.01%

Max: Maximum Execution Time, Min: Minimum Execution Time, Avg: Average Execution
Time, Max Events: Maximum number of scheduling events, Max Pct: Maximum percentage of
scheduler execution time in all real-time tasks execution time.

maximum percentage of execution time taken up by the hierarchical
scheduling in AvaGPU across varying workloads is 0.82%.

7 SECURITY ANALYSIS
GPU Tasks’ Code and Data Integrity: GPU Task’s Code and Data
Corruption (R1): Attackers may modify the code and data of secure
GPU tasks to corrupt their executions. However, the codes and data
of secure GPU tasks are located within the TEE memory, shielding
them from direct modi�cation by REE attackers.
Secure GPU Task Input/Output: DMA Manipulation (R2): An
attacker could maliciously send commands to the GPU to deny
or manipulate the DMA transfers between the host and the GPU
bu�er. AvaGPU prevents such attacks by checking the destina-
tion and length of DMA data transfer transactions with the DMA
reference monitor. An attacker cannot deny the allocation of a
DMA bu�er because the DMA bu�ers used by secure tasks are
pre-allocated within the TEE. The DMA attack transferring data
from other untrusted devices to secure memory is prevented by
Arm TrustZone.
GPU Access Availability: Denial/Malicious GPU Access/Con�gu-
ration (R3): A REE attacker cannot prevent secure GPU tasks from
accessing or con�guring the GPU, as the GPU’s MMIO memory
space is accessed directly from the TEE and is typically prede�ned
for embedded devices. AvaGPU prevents attackers from arbitrarily
con�guring the GPU by using Stage-2 translation-based memory
control. All GPU con�guration requests are trapped and sent to the
TEE con�guration mediator for veri�cation before being written to
GPU.
Real-time Execution Availability: (1) Denial Scheduling GPU
Tasks (R4): All secure CPU tasks are invoked directly by the trusted
scheduler within the TEE, preventing attackers from hindering
their invocation. AvaGPU’s GPU task scheduler, located within the
TEE, is shielded from REE attackers’ control �ow manipulation.
Attackers may delay GPU scheduling by triggering REE interrupts.
To counter this, a REE interrupt handling task with a �xed periodic
budget is introduced. CPU scheduling analysis guarantees that the
CPU task will meet its deadline, even if the entire interrupt handling
task’s budget is consumed. (2) Delaying GPU Tasks Finishing (R4):
An attacker can delay a secure GPU task by statically disabling the
suspension instrumentation, runtime corrupting preemption sig-
nals or hijacking control �ow. Firstly, AvaGPU prevents suspension
instrumentation disabling by verifying the instrumented task’s sig-
nature, using an encrypted hash signed by a trusted compiler with
the public key in the TEE. Additionally, AvaGPUmitigates potential
TOCTOU attacks, which may occur after signature veri�cation but
before execution, by making GPU task code pages read-only for nor-
mal world during Stage-2 translation prior to signature veri�cation.

Secondly, an attacker’s attempts to modify preemption signals to
bypass self-preemption checks are prevented by Stage-2 translation,
as the variables are only readable in the REE. AvaGPU detects and
eliminates any e�orts to circumvent preemption through runtime
exploiting vulnerabilities like memory safety bugs, but it doesn’t
prevent memory safety corruption due to the signi�cant runtime
overhead.
GPU Resources Isolation Denial/Malicious GPU Management
(R5): AvaGPU utilizes a debloated secure driver accessible directly
within the TEE, making secure GPU tasks independent of REE GPU
management functions. Thus, REE cannot deny GPU management
for these tasks. Memory isolation provided by TEE prevents attacks
on resource management data structures. Memory management
mediator prevents malicious attempts to corrupt trusted resource
management in the TEE with invalid requests.

8 RELATEDWORK
GPU Execution Environment Isolation: As shown in Table. 8,
existing research on building isolated GPU execution environments
falls into two categories: GPU virtualization and TEE on GPU.

Through the introduction of a uni�ed additional layer of GPU
memory and con�guration management in the hypervisor, GPU
virtualization [54, 57] enables the isolation of computation environ-
ments across VMs on a shared hardware platform, thus eliminating
interference between individual VM memory and con�guration
management. GPU virtualization only provides OS-level isolation,
AvaGPU complements this by providing a �ner-grained GPU com-
putation isolation, i.e., between trusted and untrusted processes.

Another research line studies how to build TEE for GPU compu-
tation. Hardware-based solutions [32, 33, 59, 67] utilize customized
hardware to provide integrity and con�dentiality for GPU work-
laod. Graviton [59] uses a customized GPU command processor
to enforce GPU physical memory isolation for di�erent enclaves.
Based on Graviton, Telekine[32] transforms GPU computations
into a data-oblivious form to defend against side-channel attacks.
HIX [33] leverages customized CPU MMU and enclave metadata to
enforce the GPU usage isolation. HETEE [67] leverages centralized
FPGA-based controller to isolate accelerators physically. AvaGPU
complements these work by additionally guaranteeing availability
for secure GPU tasks with software-based GPU resource manage-
ment and access control solutions.

For software-based solutions, GPU separation Kernel (GSK) [65]
provides trusted display by isolating trusted GPU drivers in a sepa-
rated kernel to enforce GPU access control. AvaGPU complements
GSK by minimizing TCB of trusted GPU driver. Strongbox [27] im-
plements GPU TEE on Arm platform by leveraging Stage-2 memory
translation and Arm Trustzone for isolating GPU task data and code.
Di�erent from Strongbox, AvaGPU uses Stage-2 memory transla-
tion to provide trusted and e�cient GPU memory management.
HoneyComb [43] implements a TEE by statically verifying the GPU
task binary before loading to con�ne the behaviors of GPU tasks.
CODY [48] and RT-TEE [61] adopt I/O message recording and re-
playing to provide a trusted peripheral driver. However, GPU access
control and dynamic memory management is also necessary when
guaranteeing GPU workload availability. Thus, AvaGPU extends
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Table 8: GPU TEE Related Work Comparison Table

System Conf./Inte. CPU Avai. GPU Avai. OS Avai. C.GPU T. A. SW
GPUvm [54] X X X X X
gVirt[57] X X X X X

Graviton [59] X
HIX [33] X

HETEE [67] X
Trusted Disp [65] X X
StrongBox [27] X X
CODY [48] X X
SecDeep [42] X X
RTTEE [61] X X X
AvaGPU X X X X X

Conf: GPU Data Con�dentiality, Integrity: GPU Data/Code Integrity, OS Avai: OS-level GPU
Compute Availability, C.GPU T. A.: Task-level CPU-GPU Compute Availability SW: Software
Solution.

Table 9: Kernel Preemption Related Work Comparison Table

System Split Kernel Re-execution Inter Block Intra Thread
PKM, GEPS [24, 66] X
E�sha, FLEP [25, 63] X

REEF, Lee et al. [30, 37, 38] X
AvaGPU X

message replaying-based drivers by providing a secure and e�-
cient GPU access control and dynamic memory management. From
security property perspectives, all above software-based GPU solu-
tions focus on con�dentiality and integrity of GPU tasks, AvaGPU
supplements them by additionally guaranteeing the availability
of secure GPU tasks. RT-TEE [61] presents a solution to ensure
real-time availability for CPU tasks. AvaGPU complements RT-TEE
by ensuring GPU tasks availability.
Real-time GPU Scheduling: As shown in Table. 9, GPU task
scheduling mechanisms are divided into non-preemptive sched-
uling and preemptive scheduling. The non-preemptive GPU task
scheduling solutions [28, 34–36, 52] only schedule GPU tasks af-
ter one GPU task �nishing. AvaGPU proposes a preemptive-based
GPU scheduling mechanism that can schedule the GPU tasks at
each preemption checkpoint during a GPU task execution, reducing
scheduling delay. GPU doesn’t support a preemptive interface in
the hardware. Thus, to support preemptive-based GPU schedul-
ing either hardware or software needs to be modi�ed. Customized
hardware architectures [49, 56, 62] extend existing GPU hardware
to support preemption. However, compatibility issues make it chal-
lenging for these solutions to be widely adopted. Software-based
GPU preemption mechanisms have three categories. The �rst ap-
proach splits a long execution GPU tasks into multiple short ones
and schedules at the end of splitted GPU tasks execution[24, 66].
However, launching sub-tasks introduces high latency. AvaGPU
complements this approach by implementing GPU task preemption
with software instrumentation without additional GPU task launch-
ing. The second approach, thread block-level preemption [25, 63],
preempts GPU tasks at the end of a thread block. This method intro-
duces high preemption delay if thread block execution time is long.
AvaGPU complements these methods to support preemption at any
expected code execution points no matter how long a thread is. The
last approach kills and restores impotence workloads [30, 37, 38]
without saving context. AvaGPU complements this approach to sup-
port any kind of workload. Additionally, AvaGPU complements all
above work by securing the scheduling infrastructure and defense
against compromised GPU tasks.

9 DISCUSSIONS AND LIMITATIONS
GPU Source Code Requirement: AvaGPU includes a GPU task
compiling tool that requires the source code of the GPU task. For
binary-only AI applications, it’s possible to extend AvaGPU by in-
strumenting GPU binary code with GPU binary instrumentation
tools [58]. However, signi�cant reverse engineering e�orts are re-
quired. Similar to other security mechanisms [26, 53], modifying
the source code of an application can alter its performance. Conse-
quently, secure applications require re-certi�cation procedures and
schedulability testing after source code modi�cation.
Availability on Dedicated GPU: AvaGPU is primarily focused on
protecting the availability of embedded real-time systems, which
typically utilize integrated GPUs. The key distinction between inte-
grated and dedicated GPUs is that integrated GPUs share the same
physical memory as the CPU, while dedicated GPUs have their own
dedicated physical memory. Though the design of AvaGPU is also
applicable to platforms utilizing dedicated GPU, securing various
communication channels presents additional challenges, such as
addressing malicious PCIe channel con�gurations.
Suspending/killing Strategies: Current AvaGPU suspends (re-
sponsive ones) and kills (non-responsive ones) non-secure GPU
tasks upon detection of delay of secure GPU tasks. Such aggressive
strategy prevents sequential delays from multiple non-secure GPU
tasks at the cost of non-secure world performance. However, de-
pending on the level to tolerance of the control system, AvaGPU
also supports other strategies with di�erent trade-o�s. For example,
AvaGPU can only terminates the non-responsive GPU task without
suspending responsive non-secure ones.
Extending to Mutually Untrusted Secure GPU Tasks:While
AvaGPU assumes a simpli�ed model of trusted GPU tasks, there
are systems where secure GPU tasks may be mutually untrusted.
Extending AvaGPU’s support for availability protection to such set-
ting requires addressing three new attack vectors. First, malicious
secure tasks might disable/bypass preemption, by modifying GPU
tasks or exploiting vulnerabilities, to monopolize computational
resources. Second, malicious secure tasks can modify computation
con�gurations when other secure GPU tasks are running. Last, they
can compromise other tasks’ memory via DMA requests targeting
another task’s memory [27]. To defend against these attacks, Av-
aGPU can be extended to additionally verify user space requests of
GPU con�gurations and DMA transactions from secure GPU tasks
with existing GPU con�guration mediators and DMA reference
monitors. Additionally, preemption bypassing attacks can be pre-
vented by applying existing delay detection and attack elimination
mechanism to secure tasks. To understand the cost of this extension,
we implemented a prototype and measured the execution time of
secure GPU tasks with the same setup in section 6.2 (i.e., System
Overhead on GPU Benchmark). The maximum and average runtime
overhead of secure GPU task is 19.32% and 16.40% responsively,
0.82% higher than the baseline AvaGPU.
Remote Attestation: The implementation of AvaGPU adapts the
remote attestation mechanism from the embedded GPU TEE so-
lution [27], where the keying materials are stored in the secure
storage. Upon receiving a challenge from remote veri�er, a signed
measurement over the software TCB is returned for veri�cation.
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Though attestation is not the focus of this paper, it is one of most
foundational techniques for TEE and requires additional investiga-
tion in the context of AvaGPU in the future.
Solution Generality: The key features leveraged in AvaGPU, in-
clude virtual memory system-based GPU memory isolation, two
stage memory translation, and GPU task killing. Virtual memory
systems and two stage memory translation are well supported by
mainstream GPU vendors, including Nvidia, AMD, Intel and Arm,
and CPU architectures, such as Arm, MIPS, and RISC-V. Although
GPU task killing are not clearly documented, and may di�er by
GPU vendors. It’s still possible to adapt a less e�cient mechanism,
such as terminating all GPU tasks and resuming only trusted ones
to ensure availability without task level GPU process killing.

10 CONCLUSION
In this paper, we introduce AvaGPU, which ensures real-time avail-
ability guarantees for safety-critical GPU tasks. To couple the prior-
ity of secure CPU and GPU tasks, AvaGPU proposes a secure real-
time CPU-GPU co-scheduling framework, e�ectively mitigating
performance interference. To enable secure and e�cient preemptive
GPU scheduling, AvaGPU proposes a secure and �ne-grained GPU
task preemption mechanism, e�ectively bounding priority inver-
sion. To provide an e�cient and trusted GPU driver with minimized
TCB, AvaGPU proposes a new splitted GPU driver. We developed a
prototype on Jetson AGX Orin platform and evaluated the system
with benchmarks, synthetic tasks, and real-world applications. The
source code is available at our project repository 1.
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A ADDITIONAL DESIGN DETAILS
GPU Preemption Algorithm: The algorithm, which utilizes a
4-dimensional DP table, calculates the minimum number of tasks

Algorithm 1: Task Preemption Algorithm
Input :Number of existing GPU tasks with the same priority =. Tasks with the same

priority.) = {g8 = (<8 , A8 , C8 ) |0  8 < =},<8 , A8 , C8 is the required memory,
registers, and threads of g8 . A new task gF = (<F , AF , CF ) to be executed.

Output :Tasks to be preempted)
0
= {g 08 |0  8 < =}

1 for 8 = 0 to = do
2 3? [8 ] [0] [0] [0]  0
3 for 8 = 0 to =,< = 0 to<F , A = 0 to AF , C = 0 to CF do
4 3? [8 ] [<] [A ] [C ] = 3? [8 � 1] [<] [A ] [C ]
5 if< >=<8�1 and A >= A8�1 and C >= C8�1 then
6 3? [8 ] [<] [A ] [C ] =

min(3? [8 ] [<] [A ] [C ], 1 +3? [8 � 1] [< �<8�1 ] [A � A8�1 ] [C � C8�1 ] )
7 )

0
= {}

8 for 8 = = to 1 do
9 if 3? [8 ] [<F ] [AF ] [CF ] != 3? [8 � 1] [<F ] [AF ] [CF ] then
10 add g8�1 to)

0

11 <F -=<8�1 , AF -= A8�1 , CF -= C8�1
12 return)

0
;

to preempt to meet speci�c resource needs (including memory,
registers, and threads) for the next GPU task. It takes into account
the number of running tasks with the same priority and iterates
through all task and resource combinations, determining the min-
imum number to preempt by including or excluding the current
task. Once the table is built, it backtracks to identify the speci�c
tasks preempted in the optimal solution.

Algorithm 2: Defense Strategy Optimization
1 Input: Deadline of CPU tasks {38 }, execution time of CPU tasks {48 },

system utilization upper bound*D? , maximum iteration number 2<0G ,
selected o�spring number  , number of crossover rounds # , ?< is
mutation probability.

2 Output: Attack detection points # , attack detection position⇠
3 Randomly perturb # ,⇠ into initialization groups N0 , C0
4 for 2 = 0 to 2<0G � 1 do
5 Calculate �tness score ( of N2 and C2 , by Eq. 3 in the constraints of Eq.

1 and Eq. 2;
6 N2 ,C2  0A6B>AC (( ) [:  ], (2  B>AC (( ) [:  ];
7 for 8 = 1 to # do
8 ?0A4=C1,?0A4=C2  (0<?;4 (N2 ,C2 , S2 )
9 2⌘8;38  ⇠A>BB>E4A (?0A4=C1,?0A4=C2 )

10 #8 ,⇠8  "DC0C4 (2⌘8;38 ,?< )
11 N2+1,C2+1  {#8 }, {⇠8 }
12 return N2<0G ,C2<0G ;

Preemption Bypassing Defense Strategy Optimization: Av-
aGPU utilizes the genetic algorithm [31] to address the preemp-
tion bypassing attack defense strategy optimization. It begins by
randomly selecting # strategies and iteratively re�nes them for
reduced runtime overhead. The �tness score, representing the strat-
egy’s runtime overhead, is calculated using Equations 1, 2, and 3. In
each iteration, the top K strategies are chosen as o�spring based on
their scores. New strategies are then produced via crossover, where
elements in # and ⇠ from two parent strategies are exchanged,
followed by potential mutations with a probability of ?< . This pro-
cess continues until a satisfactory o�spring emerges. Details can
be found in Alg. 2. To assess the convergence of our optimization
algorithm, we tested it on three task sets with system utilizations of
20%, 40%, and 60%. Each set had three tasks with random execution
times. Results showed the algorithm converged in fewer than 2000
iterations for all sets, and reduced runtime overhead from 43.98%
to under 3% of task execution time.
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