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CONSPECTUS: Natural products research derives from a desire to explore, understand, and 

perturb biological function with atomic precision. To reach these goals at all, let alone 

efficiently, requires thoughtful, strategic, and creative problem solving. Often this means 

bold and unprecedented disconnections that would simplify access to complex structures, if 

only the methods existed to bridge these theoretical gaps. Whereas biological interrogations 

provide long-term intellectual value and impetus, methods come as attractive fringe benefits 

of natural product synthesis. This Account describes strategic, methodological solutions to 



 2 

the syntheses of natural products—(–)-eugenial C, Galbulimima alkaloids GB18, GB22, 

GB13, and himgaline—featuring new, convergent disconnections as important problem-

solving steps, which themselves were inspired by recent methods that arose from our group. 

Each target required the invention of first row transition metal-catalyzed cross-coupling 

procedures to satisfy the biological goals of the project. In these cases, synthetic strategy 

identified the methodological gap—the absence of stereo- and chemoselective couplings of 

appropriate fragments—but the tactical advantage conferred by first row metals met the 

challenge. These methods were competent to handle the dense, sterically encumbered motifs 

common to natural products, due to, in many cases, elementary steps that did not require 

bond formation between the hindered substrate and the metal center. Instead, these sterically 

lenient reactions appeared to involve metal–ligand–substrate reactions (i.e. outer-sphere 

steps), in contrast to the metal–substrate, coordinative reactions of precious metals (i.e. inner-

sphere steps). Key observations from our previous studies, combined with the observations 

in seminal publications from other labs (Mattay, Weix, MacMillan), led to the optimization 

of ligand-controlled, stereoselective reactions and the introduction of complementary 

catalytic cycles that revealed new modes of reactivity and generated novel structural motifs. 

Optimized access to bioactive natural product space accelerated our timeline of biological 

characterization, fulfilling a common promise of natural products research. The integration 

of complex natural product synthesis, diversification and bioassay into a single PhD 

dissertation would have been unmanageable in a prior era. The unique ability of first row 

transition metals to effect Csp3-Csp3 cross-coupling with high chemo- and stereoselectivity 

has significantly lowered the barrier to reach the avowed goal of natural product synthesis 
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and reduced the burden (real or perceived) of integrating natural products into functional 

campaigns.    
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1. Introduction: Cross-coupling methods that employ first row transition metals offer orthogonal 

reactivity to second and third row metals. Whereas the latter, precious metals, often undergo 

coordinative reactions via canonical, two-electron elementary steps, the former, abundant metals, 

can generate and engage open shell carbon intermediates via outer-sphere steps.4 Here, the outer-

sphere cross-couplings enable the formation of congested motifs in a chemoselective5 fashion and 

with great chemofidelity.6 Our group has developed a suite of hydrofunctionalizations enabled by 

one or two base metal catalysts that engage olefins and diverse coupling partners in unprecedented 

reactions (Figure 1a). These new methods have paved the way for convergent syntheses of natural 
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products that present interesting biological questions (Figure 1b). In turn, the demands of complex 

syntheses have inspired the development of novel cross-coupling methods (Figure 1c), driven by 

the need for chemo-, regio- and stereoselectivity. This account will detail how the interplay 

between new method development and natural product synthesis for biological interrogation 

contributed to innovation in the field of first-row metal-mediated cross-coupling. 

 

Figure 1. Overview of the Account. a. First-row transition metal-catalyzed cross-couplings enable 

general new methods involving MHAT as an outer-sphere elementary step; b. lessons learned from 

this work helped address problems in natural product chemical space: fragment coupling, 

stereoselectivity, strategic bond formation identified by network analysis; c. in turn, these 

disconnections led to general new methods. 

2. Alkene hydrofunctionalizations by outer-sphere cross-coupling:  

Formation of quaternary carbon stereocenters via Csp3-Csp3 cross-coupling ranks among the 

most challenging of reactions.7 We thought carbon quaternization by alkene 

hydrofunctionalization might serve as a laudable goal due to its potential generality. After all, most 
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quaternary carbons contain adjacent C–H bonds.8 Furthermore, alkenes represent abundant 

feedstocks so their direct quaternization would circumvent substrate prefunctionalization steps. 

The difficulty of devising a general reaction also held appeal as we might learn new lessons in 

catalysis. Methods emanating from Drago-Mukaiyama hydration9,10,11,12,13,14,15,16,17,18 offered a 

powerful entry into this area due to their robustness,19 chemoselectivity5 and chemofidelity.6 These 

reactions have been hypothesized to proceed via metal-hydride hydrogen atom transfer (MHAT),20 

an outer-sphere elementary step that directly generates carbon-centered radicals (open shell carbon 

intermediates) from alkenes.21 MHAT tends to tolerate alkene poly-substitution, steric repulsion, 

and Lewis basic functional groups to a higher degree than inner-sphere, coordinative pathways 

characteristic of precious metals.6,22,20 Therefore, MHAT is a particularly powerful reaction 

pathway for complex, natural product-like substrates, which is where our interest 

originated.6,22,23,24 Many of these reactions are catalyzed by commercially available first-row 

transition metals complexed with inexpensive ligands (acetylacetone, acac; dipivaloylmethane, 

dpm; etc.), providing a barrierless entry for any practitioner. In contrast to traditional metal 

hydrides with strong field supporting ligands (e.g. cyclopentadienyl, carbonyl, phosphine, and 

pyridine), that adopt low-spin electronic configurations, these metal hydrides with weak field 

ligands (acac, salen) adopt intermediate or high spin electronic configurations with unpaired 

electrons in antibonding orbitals.2 Access to higher oxidation states facilitates homolysis to radical 

intermediates; supporting ligands can be labile; multiple spin states may be present; and bonds are 

often weaker. These properties have not been directly measured, in part because these weak field 

metal-hydrides are not isolable, but computational studies have begun to shed light on these 

mechanistic features. For example, a computational study by Hui Chen and co-workers suggests 

that iron(III)hydrides react with single-state reactivity as opposed to multi-state reactivity 
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involving spin cross-over.25 Understanding these factors and their mechanistic consequences will 

be important for future reaction discovery. 

Historically, MHAT-based methods have employed classical, stoichiometric radical traps to 

install heteroatomic functional groups.8,26 In contrast, variants from our group add a secondary 

transition metal complex to generate catalytic concentrations of a coupling partner that engages an 

open-shell carbon intermediate (Figure 1a). Despite its low concentration, the high rate-constant 

associated with capture of the carbon radical by the secondary metal species leads to efficient 

overall reaction.27,28 Nevertheless, different first-row transition metal catalysts enable 

complementary reactivity pathways and unique substrate tolerances based on competing 

elementary steps occurring at different rates. For example, MHAT dual catalysis was restricted 

initially to the formation of sec-alkyl arenes from terminal alkenes by cobalt salen-catalyzed 

hydroarylation, which appeared to proceed via sec-alkylcobalt transmetalation by an arylnickel.29 

The suitability and branched-selectivity of electron-neutral, -rich or -deficient alkenes (e.g., α-

olefins, vinyl thioether, vinyl pinacol boronate) reflected the outer-sphere nature of the MHAT 

step, and the chemoselectivity of both cobalt and nickel catalysis allowed the use of substituted 

benzene electrophiles as well as heteroaromatics (Figure 2). The inherent instability of tert-alkyl 

cobalt salen complexes prevented formation of quaternary centers under similar conditions; 

instead, alkene isomerization occurred via reversible MHAT. 
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Figure 2. Initial forays into hydroarylation were restricted to terminal alkenes, reflecting the 

mechanism: radical collapse to a sec-alkyl organocobalt followed by transmetalation.  

 

Replacement of cobalt salen with an iron b-diketonate complex expanded the hydroarylation 

methodology to include di-, tri- and even tetrasubstituted alkenes and form quaternary centers with 

broad scope.30 We suspect that this breadth reflects the very low stability of the intermediate Fe–

H complex, which appears to undergo rapid and irreversible MHAT.31,32,33,34,35,36 Holland has even 

suggested that metal hydride formation, not MHAT, is turnover limiting.41,37 Mechanistic 

differences in metal hydride formation arising from alternative ligand spheres may also contribute 

to varying substrate tolerance. For instance, metal acac complexes have been proposed to form 

metal hydrides through a concerted interchange mechanism,37 which may not be possible for salen 

complexes lacking open cis-coordination sites.16,38,39,45 As a consequence of this rapid rate of 

alkene engagement, sec-alkyl and tert-alkyl arenes can be formed with ease from simple, electron-

neutral olefins and haloarenes. In contrast to Brønsted or Lewis acid-mediated reactions like 
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Friedel-Crafts alkylation, a variety of acid-sensitive groups like furans, ketals, oxetanes and 

epoxides can be incorporated into substrates (Figure 3).  

 

Figure 3. Rapid and irreversible MHAT from iron hydrides allow quaternary center formation. 
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ensured an optimal rate of MHAT to intersect the nickel/manganese catalytic cycles that engage 

the alkyl halide. HFIP and potassium carbonate proved to be crucial additives hypothesized to 

facilitate s-bond metathesis from phenylsilane to the Mn b-diketonate, possibly via formation of 

a transient alkoxysilane.41 The reaction displayed exceptional functional group compatibility in its 

tolerance of esters, phthalimides, carbamates, silyl enol ethers, boronic esters, and epoxides 

(Figure 4). A broad range of terpenoids were successfully functionalized, enabling the 

transformation of simple or complex, electron-neutral alkenes. A diverse range of alkyl halides 

could be appended that included sensitive functional groups such as acetals, nitrogen-containing 

heterocycles and numerous chain lengths. The use of nickel, however, suggested some deficits: its 

high toxicity proscribed large scale application42 and steric crowding of ligands about the metal 

suggested that more encumbered partners might resist coupling. As seen in Section 3, this second 

limitation was confirmed and required intersection with an alternative catalytic cycle to couple 

hindered partners.  

 

Figure 4. Hydroalkylation required a manganese hydride catalyst, which reacted with the alkene 

by MHAT but also served to reduce the nickel catalyst.   
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Finally, the combination of MHAT catalysis with chromium enabled chemistry reminiscent of 

carbanion reactivity to form Csp3-Csp3 bonds.43 This bimetallic reaction signaled a departure from 

prior work in MHAT that led alkenes to undergo traditional radical or cationic polar crossover 

reactivity.44,45,46,47 Instead, the open-shell carbon intermediates were captured by chromium to 

form strong polar nucleophiles that could react with aldehydes with branched selectivity. 

Typically, chromium(II) serves as the active species to convert alkyl halides to alkylchromium(III) 

reagents for carbonyl addition,48 which suggested that the chromium(III) salts were reduced in situ, 

either by the silane or intermediate cobalt hydride. Mechanistic experiments were consistent with 

an alkyl−cobalt(III) transmetalation to an alkyl−chromium(III), mediated by in situ generated 

chromium(II). In prior work,27 the oxidant was implicated in rescue of the cobalt(III) catalyst, 

whose hydride (Co3+–H) can undergo a hydrogen evolution reaction (HER) to the inactive Co(II) 

and must be brought back on-cycle via oxidation. The reaction scope included aromatic, 

heteroaromatic and aliphatic aldehydes with broad electronic variation, and tolerated reactive 

functional groups like esters, tosylates, and chlorides (Figure 5).  
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Figure 5. The mechanism of 1st generation hydroarylation inspired the use of chromium salts to 

transform unreactive organocobalt complexes to nucleophilic organochromium reagents.  

 

Our foregoing research demonstrated that alkenes could undergo branch selective cross-coupling 

catalyzed by first-row transition metals. We hypothesized that intermediate metal hydrides might 

react with the alkenes via MHAT—still a controversial proposal due to the low BDE of metal 

hydrides necessary49 and the competing HER that might be expected to predominate.50 Among the 

several compelling arguments that the MHAT step occurs (an outer-sphere reaction), as opposed 

to alkene coordination/metal insertion (an inner-sphere reaction) is the observation that increased 

alkene substitution does not significantly decrease reaction rate.22 This steric tolerance lends itself 

to natural product synthesis, especially hindered, bi-lobed motifs common to meroterpenoids.51 A 

general solution, however, requires not merely effective alkene engagement, but also efficient 

capture of the ensuing radical, in addition to stereocontrol in the case of many quaternary carbon 

stereocenters prevalent in natural products. We were curious to explore whether dual catalytic 

MHAT cross-coupling could solve compelling problems in complex synthesis and how the 

methods might be improved when subjected to a challenging substrate pair. We did not expect this 

exercise to lead to the development of a new cross-coupling platform competent for the 

diastereoselective formation of hindered Csp3-Csp3 bonds.   

 

3. Eugenial C via MHAT / SH2: two outer-sphere steps for alkene hydrofunctionalization   

Our proposal for the synthesis of meroterpenoid (–)-eugenial C (1) was married to the development 

of two generations of hydroalkylation methods,1,3 as well as the potential for these methods to 

interrogate the biological function of its two lobes.52 Biosynthetic reactions forge the unique bi-

lobal structure of (–)-eugenial C convergently through Friedel-Crafts capture of a 
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phloroglucinolmethyl cation reaction by bicyclogermacrene, followed by carbocationic 

rearrangement (Figure 6, top left).53 The generality and versatility of a biomimetic route seemed 

low. In contrast, an MHAT cross-coupling might provide a simple and combinatorial route to 1 

and its many meroterpenoid congeners (Figure 6, top right). Retrosynthetic dissection of the 

stereogenic quaternary center would allow us to probe the biological function of each lobe, both 

in the context of the antimicrobial activity of 1 and as a general lysine adductor. An effective cross-

coupling would enable these future biological goals. Perhaps the greatest challenge to surmount 

was skepticism from one of us (R.A.S.) that such a cross-coupling would ever be possible.    

Initial forays into the synthesis of 1 were not encouraging and encountered material supply 

problems, low cross-coupling yields, no stereoselectivity and no catalyst turnover. As luck would 

have it, our chiral pool starting material, aromadendrene, suffered from COVID-19 pandemic-era 

shortages that left it backordered for months. Literature sleuthing identified a local tree, Eucalyptus 

globulus, that produced large quantities of aromadendrene and its hydrated counterpart,54 globulol, 

in its woody fruits.55,56 The San Diego Natural History Museum's online Plant Atlas57 identified 

major groves of E. globulus trees just a few miles from our laboratory, allowing us to devise an 

effective procedure for the collection, extraction, and isolation of materials for the alkene coupling 

partner. Synthesis of the hexasubstituted benzyl bromide partner proved challenging due to its o,o'-

disubstitution, which significantly reduced yields of product relative to unsubstituted partners. Late 

stage o,o'-dihydroxylations were unsuccessful. Instead, we crafted a bis-dioxinone substrate that 

tied the ortho- substituents into a butterfly structure to decrease steric repulsion and reduce Lewis 

basicity (Figure 6, middle). 
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Figure 6. The strategy to synthesize antimicrobial meroterpenoid (–)-eugenial C evolved into a 

general method for MHAT/SH2 coupling. 
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photocatalytic Csp3-Csp3 cross-coupling from the MacMillan lab.58 Simple models suggested an 

intermediate benzyl porphyrin might encounter the distant steric environment at the radical's 

periphery and differentiate its prochiral faces. If successful, this approach would merge two outer-

sphere elementary steps, MHAT and SH2, to cross-couple simple building blocks and form a very 

hindered bond.  

Despite the potential for multiple off-pathway processes—benzyl dimerization, alkene 

hydrogenation, radical oxidation—to contravene the productive reaction, coupling occurred 

effectively to deliver 4 with high diastereoselectivity (Figure 6, bottom). Iron proved more 

effective than manganese to promote good yields at low catalyst loading (5–10 mol%), likely due 

to the tendency for iron to turnover efficiently at low concentrations of O2,37 the lower hydridic 

character of Fe–H compared to Mn–H,2,20,33 and possibly the lower rate of hydrogen evolution 

reaction (HER)59,60 associated with Fe–H. A clear improvement in reactivity was also observed 

when exchanging bulky dpm ligands for acac, likely owing to a faster rate of the outer sphere 

MHAT step.38,61  Iron became the workhorse of a new reaction system that engaged alkenes in 

MHAT to form a tertiary radical, and formed a benzyl iron complex that underwent SH2. The 

unusual breadth of the substrate scope is captured in Figure 7. 
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Figure 7. Iron-iron dual catalysis engages a breadth of 1,1-disubstituted and trisubstituted 

alkenes in two putative outer-sphere reactions: MHAT and SH2. 
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methodological exploration and developed an efficient platform for biological interrogation. 

Biological assays are currently underway to verify the antibacterial activity of eugenial C, 

investigate the activity of its congeners and analogs, and probe the basis for these effects.  

 

4. GB18: ligand control over attached-ring endo-selectivity  

Observations and mechanistic hypotheses derived from the Mn/Ni dual-catalytic 

hydroalkylation manifested themselves in a crucial step of another natural product synthesis, this 

time in the context of a cross-electrophile coupling (XEC).63 GB18 contains a difficult tetrahedral 

attached-ring problem: its pendant 6-methyl-piperidine resides on the endo-face of a tetracyclic 

scaffold; both attached-ring bridgeheads are stereogenic centers (Figure 8, top). This structure 

caught our attention due to its potent activity in a mouse grooming assay and a literature hypothesis 

that it might represent the hallucinogenic principle of Galbulimima (GB) bark.64,65,66,67 A cross-

coupling solution to GB18 would accelerate access to large quantities of material for biological 

interrogation and offer an avenue for diversification to analogs to perturb pharmacology. This 

coupling, however, proved unusually challenging, again for reasons of chemo- and 

stereoselectivity. Intermediate 5 could be procured in 6 steps on multigram scale, but cross-

electrophile coupling with 6-halo-picoline under a variety of standard conditions (Zn0, Mn0, 

TDAE) led to protodeiodination or ether fragmentation (Figure 8, middle). It's important to note 

that traditional precious metal-catalyzed arylations of 6 were unsuccessful. The iodide substituent 

of 5, however, served as a homolytically-cleavable substituent on carbon that could undergo outer-

sphere (relative to carbon) reactions with a reductant, analogous to the proposed, outer-sphere SH2 

reactions68,69 available to organoporphyrins and carbon-centered radicals.70  
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Figure 8. An attached-ring problem evolved into a need for stereo-invertive cross-coupling to 

append a picoline on a more hindered endo-face. This could be achieved with stereocontrol by an 

amidine ligand, which happened to be the inexpensive drug, praxadine.  

 

Owing to the pioneering work of Weix, Reisman, and others, cross-electrophile coupling has been 

featured in a variety of complex syntheses, yet its application to the formation of an attached ring 

motif has little precedent and none for endo-selective coupling.71,72  Drawing inspiration from the 

lab’s Mn/Ni dual-catalyzed hydrofunctionalization,Error! Bookmark not defined. in which the MHAT 

catalyst Mn(dpm)3 appears necessary to reduce nickel(II) to (I), we applied the same catalytic 

system to the cross-electrophile coupling of 5. Although coupled products were observed, 

diastereoselectivity was absent. Notably, the endo-isomer is destabilized by 0.5 kcal/mol relative 

to exo-, and model radical addition reactions occurred preferentially from the exo-face. 

Fortunately, a careful survey of amidine ligands, directly inspired by Weix's discovery of their 

privileged performance in cross-electrophile coupling,73 unearthed a novel amidine ligand 
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(praxadine) that favored the more hindered endo-isomer by 10:1 over exo- (Figure 8, bottom). This 

ligand-controlled stereochemical inversion of iodide 5 represents an important step forward in 

generalized stereocontrol for organonickel/carbon radical capture independent of substrate 

topology. Even though this cross-electrophile coupling used the reagents of our hydroarylation, 

the underlying mechanism did not involve in situ formation of an alkene: subjection of this control 

substrate to the same reaction conditions yielded no product. The mechanism of stereocontrol 

could not be fully elucidated, however, and the complexity of the possible pathways prevented the 

development of catalytic conditions. We considered that the final diastereoselectivity may derive 

from a hydrogen-bond network between the pyridylnickel-ligand complex and the Lewis basic 

oxygen bridge of 5; however, this and related models remain speculative. Elaboration of the endo- 

product to GB18 identified µ- and k-opioid receptors as high affinity targets, whereby GB18 

served as a potent antagonist (pIC50 = 8) at both targets. The ease of cross-coupling 5 with 

stereocontrol lends this substrate to extensive diversification by heterocycles and investigation of 

opioid pharmacology with this novel class. Indeed, this approach has led to >90 analogs of GB18 

currently under investigation in vitro and in vivo.   

5. GB22, GB13 and himgaline: siloxycyclopropane endo-arylation  

In contrast to the stereoselective attached-ring cross-coupling featured in the synthesis of GB18, a 

class I alkaloid, the alternative Class III GB alkaloids presented an altogether different attached-

ring problem.74 We had aimed to use the newly isolated aromatic alkaloid GB22 as a linchpin 

intermediate en route to more complex congeners like himgaline, and traced their syntheses back 

through hydrogenation and Friedel-Crafts transforms to compound 9 (Figure 9, top). Similar 

scaffolds had been synthesized in a single step via strong acid-mediated double Friedel-Crafts 

reactions (Figure 9, middle).75 These reactions failed, however, due to incompatible arene 
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electronics and the acid sensitivity of the product. In order to circumvent the unproductive 

carbocation intermediate, we targeted the corresponding carbon radical with the anticipation that 

nickel could mediate its capture and cross-coupling with a bromoarene partner.  

 

Figure 9. Himgaline could be retrosynthetically transformed to a bridging tetracycle, whose two 

strategic bonds could be dissected sequentially. The polar disconnection could be replaced with a 

new radical cross-coupling that complemented existing enone–arene attachment methods. 

 

This convergent strategy would enable rapid access to the GB chemical space for biological 

exploration: in particular, the assignment of high affinity human receptors. We were inspired by 

Mattay's seminal work demonstrating that photoinduced electron transfer (PET) between arene 
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organonickel intermediate would result in net reversal of the normal regioselectivity of 

cyclopropanol arylations: palladium catalysts, for example, cleave the exo-bond on similar ring 

systems,77 whereas this proposed nickel catalysis would select for the endo-bond (Figure 9, middle) 

as proposed by Lectka.78,79 Indeed, subjection of pyridine siloxycyclopropane 10 and arene 11 to 

Zhang's carbazole-cyano-benzene PET catalyst80 (photocatalyst, PC) in the presence of a nickel 

catalyst led to serviceable yields of the targeted attached-ring system. This reaction proved general 

across variations to both partners and provided an alternative solution for the synthesis of 5-

functionalized-2,3-unsaturated cyclohexenones. Typically, this general substructure can be 

synthesized by protection, unsaturation, conjugate addition and deprotection, by conjugate 

addition, followed by selective unsaturation, or by Robinson annulation. Endo-selective 

cyclopropane ring opening offered an effective solution in the case of 9, where none of these 

alternatives were productive. The nickel-catalyzed attached-ring formation served as an effective 

tool for route discovery, enabling the efficient advance of 9 to GB 22, GB 13, and himgaline upon 

strategic scouting of an optimal final sequence.  

 

CONCLUSION  

The advantages of first-row transition metals lend themselves to the most challenging problems in 

natural product synthesis, especially the ability to cross-couple complex, high fraction sp3 (Fsp3) 

fragments with stereoselectivity, chemoselectivity and chemofidelity. This latter category, which 

describes the capacity of a reaction to occur independent of the molecular context of the reacting 

functional group, contrasts markedly with precious metal-catalyzed reactions of alkenes. Here 

inner-sphere, coordinative reactions exhibit extreme sensitivity to substitution patterns and steric 

repulsion from adjacent atoms, an effect minimized in MHAT reactions due to the outer-sphere 

nature of the reaction pathway. The new ability to combine MHAT with cross-coupling reactions 
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has enabled some startling results, starkly illustrated in the synthesis of (–)-eugenial C by its iron-

catalyzed convergent cross-coupling of complex and hindered partners (Figures 6 and 7). Both the 

stereoselectivity and the efficiency of the cross-coupling likely benefit from two sequential outer-

sphere reactions, MHAT and SH2, and establish a thought-provoking paradigm for alkene 

functionalization. Additionally, the merger of MHAT with nickel catalysis offers solutions to 

related problems in fragment coupling, including tetrahedral attached-ring synthesis. These cross-

coupling platforms to access (–)-eugenial C, GB18, GB22, GB13 and himgaline relate directly to 

goals in chemistry and biology, which continue to bear fruit as methods expand beyond the initial 

targets and the naturally-occurring scaffolds are diversified beyond nature's constraints.81 The view 

that total syntheses are vain tales of mountain climbing—full of sound and fury, symbolizing 

nothing—ring hollow if sights are set beyond mere target acquisition. Instead, new cross-coupling 

reactions can identify profitable areas of reactivity to mine on the mountain slopes and can 

illuminate paths to accelerate exploration beyond the summit.    
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