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In conventional Bardeen-Cooper-Schrieffer superconductors!, electrons with
opposite momenta bind into Cooper pairs due to an attractive interaction mediated
by phonons in the material. Although superconductivity naturally emerges at thermal
equilibrium, it can also emerge out of equilibrium when the system parameters are
abruptly changed®®. The resulting out-of-equilibrium phases are predicted to occur
inreal materials and ultracold fermionic atoms, but not all have yet been directly
observed. Here we realize an alternative way to generate the proposed dynamical
phases using cavity quantum electrodynamics (QED). Our system encodes the presence
or absence of a Cooper pair in along-lived electronic transition in 38Sr atoms coupled
toanoptical cavity and represents interactions between electrons as photon-mediated

interactions through the cavity®'°. To fully explore the phase diagram, we manipulate
the ratio between the single-particle dispersion and the interactions after aquench
and performreal-time tracking of the subsequent dynamics of the superconducting
order parameter using nondestructive measurements. We observe regimes in which
the order parameter decays to zero (phase 1)>*, assumes a non-equilibrium steady-
state value (phase I1)?* or exhibits persistent oscillations (phase Il)>*. This opens up
exciting prospects for quantum simulation, including the potential to engineer
unconventional superconductors and to probe beyond mean-field effects like the

spectral form factor

1112 and for increasing the coherence time for quantum sensing.

Quantum simulation offers a path to understanding a broad range of
phenomena, from high-temperature superconductivity and correlated
quantum magnetism in condensed matter physics® to quarks and
gluonsinnuclei and matter under extreme conditions, as well as the
black hole information paradox in gravitational physics®. A fascinating
and promising case is the prethermal dynamical phases™ predicted
to emerge from quenches of superconductors and superfluids? %72,
systems that feature Cooper pairing of electrons or neutral fermions.
There hasbeengreat progress in pump-probe experiments of supercon-
ductorsthatinduce such fast quenches using terahertz technology, in
whichsigns of phasesland Il have been observed. However, theintense
pulses couple nonlinearly to the Cooper pairs in the superconductor
and complicate a clean observation of the dynamical phases®*%. For
these reasons, the realization of fermionic superfluids in ultracold
atomic gases? has generated great excitement®®; however, to date
observations have been limited to spectroscopic signatures rather
than the full time dynamics?. In neither system has a systematic scan
ofthe dynamical phase diagram been performed, andinfact, phase Il
has never been observed.

Here we take a step forward towards this challenge by using internal
electronic states to encode effective Cooper pairs. At the heart of this
implementation is the Anderson pseudo-spin mapping® by which the

presence or absence of Cooper pairsinamomentum modeis encoded
inapseudo-spin-1/2 system. We simulate Anderson pseudo-spins using
along-lived electronic transition in %Sr with interactions between
the spins mediated by a high-finesse optical cavity. As proposed in
refs. 9,10, the scattering between Cooper pairs in condensed matter
systems can be engineered in our system through the exchange of
photons through the cavity (Fig. 1d). In this way, the dynamics of a
collection of interacting spin-1/2 systems maps onto the low-energy
physics of a superconductor or superfluid.

We probe all three dynamical phases (phases |, Il and Ill) predicted
toexistinBardeen-Cooper-Schrieffer (BCS) superconductors by uti-
lizing the high degree of control and flexibility in state initialization,
interaction control and nondestructive measurements available when
couplinglong-lived atoms to an optical cavity. Behavioursintrinsic to
phasel(normal phase) and phase Il (finite steady-state superconductiv-
ity) have previously been observed in spin systems realized in optical
cavities®?* and in two-level atoms interacting through collisions® 3¢,
We build on this work by clarifying the connection between these
dynamical phases from the BCS model and the physics of many-body
gap protectionin spinsystems. Our results also provide ademonstra-
tion of phase Ill (a self-generated Floquet phase featuring persistent
oscillations of the order parameter), whichis predicted to dynamically
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Fig.1|Engineering BCS dynamical phases. a, The Anderson pseudo-spin
mapping encodes the presence and absence of a Cooper pair asthe up and
downstates ofa spin -1/2system, respectively. Under this mapping, the attractive
interaction Xckc kc Kk between electronsis equivalent to anall-to-all
exchangeinteraction )(SkSk between pseudo-spins. b, Model parameters.
The top plot shows the effective dispersion relation near the Fermisurface
engineeredinour systemasafunction of parameters §,and £, controlled
usinga.c. Stark shifts. The bottom plot visualizes the ground state of aBCS
superconductor using Anderson pseudo-spins. Near the Fermi momentum,
the pseudo-spins develop a phase-coherent superpositionatascalesetbya
non-zero BCS pairing gap Agcs. This gap is self-consistently defined from the

emerge in superconductors through quenches from weak to strong
interactions®®. In our system, we instead engineer this phase using flex-
ible control of the single-particle dispersion®*, dynamically resembling
the low-energy condition of aBCS superconductor. For all experiments,
we performreal-time tracking of the superconducting order parameter,
enabling a fast readout of the dynamics.

Experimental set-up and model system

To realize the dynamical phases of the BCS model, we laser cool
an ensemble of N=10°-10° %8Sr atoms and trap them inside a A, =
813 nm one-dimensional optical lattice supported by a high-finesse
optical cavity A spin-1/2 system is encoded in the electronic ground
state [¥)='S,, m;=0) and a long-lived optical excited state | )=
1 P, m;=0), where m; indicates the Zeeman sublevel of each state.
Along this transition, we define spin operators $, = |4 )(*|, and
Sk UMM g = WY 1)/2 for single atoms with labels k€ {1, ..., N},
as well as the collective lowering operator $ = Yk SA; and raising
operator§ =(S ).

Assuming homogeneous atom-light coupling in the cavity and
unitary dynamics, our system can be described by the Hamiltonian

=hxS'S +Zek5k )

The first term represents an infinite-range spin-exchange interac-
tion described by a frequency scale y (ref. 30), realized using the col-
lective coupling between the atomic ensemble and a detuned optical
cavity mode. Inhomogeneous atom-light coupling and dissipative
processes (including, foremost, single-particle spontaneous decay)
are presentin the currentimplementation but do notlargely change
the qualitative behaviour of the targeted dynamical phases under our
experimental conditions (Methods). Previously, we characterized this
interaction®*®and studied the collective dynamics by applying an exter-
nal drive®. In this work, we go beyond the fully collective manifold by
engineering aspread insingle-particle energies ¢, = hw, using applied
a.c. Stark shifts w, (refs. 36,37). These shifts form the second termin
the Hamiltonian and compete with the spin-exchange interaction.
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spincoherence asshown on the Blochsphere. ¢, Dynamical phase diagram.
Thethree dynamical phases canberealized by varying parametersxN, §,and E,,.
Representative dynamics of the BCS order parameter |4,¢| for each phase are
shownasinsets. We explore cut H1 (dashed line) in Fig. 2 using a single ensemble
ofatomsand cutsVand H2 (solid lines) in Figs. 3 and 4 using two separately
controlled subensembles. d, Cavity QED implementation of the BCS interaction.
Coupling many strontium atoms to adetuned optical cavity generates infinite-
range spin-exchange interactions mediated by a virtual exchange of cavity
photons. Thisinteraction also causes afield proportional to 4, to leak out of
the cavity, thus providing areal-time probe of the dynamics.

AN/E,

Equation (1) is the so-called Richardson-Gaudin spin model***,

which describes the low-energy physics of BCS superfluids and
superconductors using the Anderson pseudo-spin mapping?®. This
mapping relates the presence (or absence) of a Cooper pair formed
byapairofelectronswithmomentatktoaspin-up (or down) at momen-
tumk, asshowninFig.1a. Correspondingly, annihilating a Cooper pair
maps to a spin-lowering operator by the relation S := é,¢_,, where
¢, are fermionic annihilation operators. Similarly, the spin operator
2§§ +1:= ¢1¢, + €1, é_, counts the number of electrons with momentum
k or —k. Our cavity system, therefore, manifestly implements a BCS
superconductor if one identifies the label k of an atom in the cavity
withthe momentumk of the electronsina Cooper pair. In this way, the
first term in equation (1) is equivalent to the attractive interaction
betweenelectronsinthe superconductor, and the second term can be
associated with the kinetic energy or dispersion relation of the elec-
trons. Note that the BCS model, described by equation (1), accounts
only for the zero-momentum collective excitations presentin conven-
tional superfluids and superconductors®,

The BCS order parameter in the Anderson mapping is defined by
Apcs =Xk Eé) =x<S ) asdepictedinFig. 1b. Inequilibrium, it plays
the role of the BCS pairing gap, which energetically favours many-
body statesinwhich the electrons arrange in a coherent superposition
between Cooper pairs and holes for states close to the Fermi energy.
Away fromequilibrium, 4, is also predicted to characterize the three
dynamical phases (I, land IlI) that arise after quenchesin superconduc-
tors and superfluids'. Such dynamical phases represent distinct
regimes of dynamical behaviour that arise after asudden perturbation
of a control parameter in a closed many-body system. They are
described using atime-averaged or steady-state order parameter that
demonstrates non-analyticbehaviour at the boundary between phases.
In particular, the BCS model is predicted to exhibit second-order
dynamical phase transitions.

Phase lis characterized by a steady state with a vanishing order
parameter |4,5(6)| > O at long times. Phase Il exhibits a steady state
with a constant non-zero order parameter 4. :=lim,,..|4zcs(¢)| > 0.
Finally, phase Il features oscillations in |4,5(¢)| that persist to long
times, realizing a Floquet superfluid despite not being periodically
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Fig.2|Phaselto phasell transition. a, Tuning the single-particle dispersion.
Wesshine an off-resonant 461 nmbeam onto the atoms from outside the cavity.
Thisgenerates adistribution of a.c. Stark shifts representing aroughly uniform
density of states p(w) (bottom plot). b, Probing phaseland phase Il. We apply a
rapid /2 pulse to prepare a highly coherent initial state, wait for 2 us, quench
toavariable yN/E, with §,= 0 and then let the system evolve. The inset shows
the explored parameter cut and identifies post-quench yN/E,, values with
coloured dots. The main plot shows experimental time traces of | 4| (coloured
curves) accompanied by numerical simulations (darker lines). Two curves are
extended to demonstrate long-time coherence protection, with the yN/2m =
0.19 MHz trace smoothed for clarity. For yN/2n=1.2 MHz, we show anideal
simulation neglecting dissipation and motional effects (dashed line), which

driven®®?, Thelong-time behaviour of these dynamical phases admits
asimpler descriptionin terms of the Lax-reduced Hamiltonian, which
is an effective Hamiltonian taking the same form as equation (1) but
withrescaled parameters and areduced number of spins®'. Under this
formulation, phases|, Il and Il emerge when the Lax-reduced Hamil-
tonian describes effective zero-spin, one-spin and two-spin systems,
respectively.

Inspired by the Lax-reduced Hamiltonian and to explore all three
dynamical phases, we engineer two subensembles of atoms with sepa-
rate control over energy shifts within each subensemble. For practical
convenience, we introduce an experimental control in the form of an
overall frequency splitting 6;between two subensembles and an effec-
tive frequency width £,y of each subensemble to engineer a tunable
dispersionrelationg,, asin Fig.1b. Phasesland Il canalso be observed
using asingle ensemble of atoms, as shown in Fig. 2. Both experimental
set-ups can, nonetheless, be described by acommon phase diagram,
asshowninFig. 1c.

Weinitialize alltheatomsinthe |V) stateand thenapply acoherent
/2 pulse through the cavity in100 ns such that Q » YN, where Qis the
pulse Rabifrequency and yNis the characteristic interaction strength
for an ensemble of Natoms. This establishes alarge BCS order param-
eter Azcs on a timescale faster than any other relevant dynamics to
mimic the ground state of a Hamiltonian with an infinite interaction
strength x. We then quench the system by rapidly turning on g,, which
sets afinite ratio YN/E, and a variable §,/E,,, allowing us to explore the
dynamical phase diagram shownin Fig. 1c.

We measure both the pre- and post-quench dynamics of |4;| by
monitoring light emitted by the atoms into the cavity as a function of
time (Fig. 1d). This light arises from a superradiance process that is
suppressed when the cavity resonance is detuned from the atomic
transition frequency by much more than k, the cavity power decay
linewidth**~* In this limit, the established cavity field adiabatically
follows ¢S ), which is proportional to Ag.s. By measuring the leakage

exhibits transient Higgs oscillations. Hints of these oscillations are present
inexperimental data with additional damping. ¢, Characterizing the phase
transition. Blue triangles show the fitted coherence time of |4, from ¢ =1to
30 ps. Greencirclesshow the time-averaged |4;cs| between ¢ =3 and 8 ps, with
thedarkgreenline representing numerical simulations. In all cases, we identify
aphasetransitionat yN/2m= 0.2 MHz. Error barsin all plots represent the
standard deviation of bootstrap resamplings on experimental shots (400~
4,000shots, n=100bootstrap resamplings).d, Varying theinitial conditions.
Before ¢t = 0, we shine a high-intensity 461 nm beam within300 ns, engineering
aninitial phase spread ¢(w,) € [0, ¢ ] depicted onthe Bloch sphere. The phase
@(w,) applied toatom kis proportional to the post-quench frequency shift w,.
Tracesrepresentdifferent ¢,and show enhanced oscillations with increasing @,

of light fromthe cavity inaheterodyne withalocal oscillator, we, there-
fore, obtainareal-time probe of 4,.. Importantly, at the chosen detun-
ing, this probe is quasi-nondestructive, as only a small fraction of the
atoms emit light over relevant timescales. In plots of |4;.| over time,
we normalize tracesto theinitial gap size 4;,, measured right after the
/2 pulse.

Phaselto phasell

We probe the phase I to phase Il transition by varying the ratio yN/E,,
between the interaction strength and the width of the single-particle
energy distribution. AsshowninFig.2a, we shine an off-resonant 461 nm
beamonto asingle atomic ensemble from the side of the cavity, which
generates a distribution of a.c. Stark shifts with a spread E,,. Careful
shaping of the 461 nm beam allows us to realize a roughly flat density
of states (Methods), resulting in a set-up consistent with the §,=0
lineinFig.1c (Supplementary Information). After the initial t/2 pulse,
we wait for 2 ps to let transient dynamics settle and then turn on the
461 nm beam to quench on £,,/21t = 0.83 MHz from an initial value
E\/2 < 0.1MHz. The beam exhibits a rise time of roughly 50 ns, much
faster than the relevant dynamics. To scan across the phase diagram
intheinset of Fig. 2b, we vary theinteraction strength YN between shots
by changing the atom number N.

AsshowninFig.2b,c, we observe two distinct dynamical behaviours
corresponding to phases I and II, signalled by the decay rate of |4,|.
For experiments with sufficiently small xN, such as yN/2n = 0.19 MHz,
|4gcs| decays with al/e coherence time of 0.9 + 0.1 ps. This coherence
time is consistent with single-particle dephasing of (S ) set by the
energy spread AE,, and is nearly constant throughout this regime.
We identify the fast decay of |4, as an experimental signature of
phase I. For larger interaction strengths, we observe a rapid increase
inthe coherence time up toamaximum of 29 ps when yN/2m =1.2 MHz;
this constitutes an improvement by more than a factor of 30.
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Fig.3|Phasell to phaselll transition. a, Engineering abimodal energy
distribution. We prepare two atomic clouds with centres separated by 3 mm
andshine an off-resonant 461 nmbeam centred on one cloud. This generatesa
density of states p(w) (middle plot), equivalentto adispersionrelation &, = hw,
(bottom plot). b, Probing phase Il and phase Ill. We prepare the same initial
state asin Fig.2bwith am/2 pulse, quenchtoafinite §,/E,and thenlet the
systemevolve. Theinset shows the explored parameter cut and identifies
post-quench 6/E,, values with coloured dots. As before, coloured traces
represent experimental time traces of |A;cs|, and darker lines represent
numerical simulations. ¢, Ideal simulations of mean-field trajectories for the
two subensembles (solid and dashed curves) in phase Il (magenta) and phase I11
(blue). The trajectories are projected onto the surface of the Bloch sphere for
visual clarity. d, Fourier response of |4,.| for different &, plotted as power

We identify this extended coherence time regime as phasell. The resid-
ual decay of |4¢| inthis regime can be attributed tointrinsic dissipative
processes, including spontaneous emission, off-resonant superradiant
emission and the scattering of 461 nm light>***2, which set a maximum
predicted coherence time of 29 pus (Methods). All experimental obser-
vations (coloured traces) are in good agreement with numerical simu-
lations based on experimental conditions (dark lines; Methods).

Duetotheseparation of timescalesinthe decay of |4;.s|, we are able
to determine the boundary between phaseland phase Il in our exper-
iment by calculating the average |4, in atime window from 3 to 8 us
asafunction of yN (Fig. 2c). In this analysis, phase I features a vanishing
average |45, whereas phase Il has a non-zero |4;¢| that increases
with YN. The sharp rise of average |4;.s| around yN/2m = 0.2 MHz indi-
cates a dynamical phase transition, which agrees with the point pre-
dicted by numerical simulations. In a spin-model picture, the BCS
pairing gap corresponds to the energy gap between collective angular
momentumstates, which exists due to the spin-exchange interaction
xS S (ref.43). Phasell corresponds to the parameter region where
such interactions are sufficiently strong to protect against single-
particledephasing. Asaresult, the observed transition directly relates
to previous experiments exploring coherence protection in other
systems?® 34,

InBCS superconductors, the excitation of a Higgs mode is predicted
to occur in phase II. This mode can be characterized by a collective
damped oscillation of the order parameter |A,.s| with a characteristic
frequency of 24, (ref. 8). We observe hints of Higgs oscillations by com-
paring the experimental trace of | 45| at YN/21 =1.2 MHz (red curvein
Fig.2b) with the dissipation-free simulation (dashed linein Fig. 2b) and
noticing that thefirst dip in the experimental trace coincides with the
firstcycle of Higgs oscillations (Methods). The size of this feature can
be increased experimentally by engineering an initial phase spread
o(w,) €10, p,]between atoms thatis correlated with the post-quench
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Frequency (MHz) 8/2m (MHz)
spectral densities (PSDs) of the dynamics from ¢ = 0.5t0 4.0 ps after subtracting
slow-movingbehaviour. e, Average oscillation amplitude between ¢t =3 and 8 ps.
For theremaining plots, dashed lines representideal simulations (ignoring
dissipation or motional effects), and solid dark lines correspond to full
simulations. The additional dotted line represents numerical simulations
rescaled by x0.2, plotted to show similar trend behaviour between experimental
dataandsimulations. We identify a phase transition around 6,/2m = 0.85 MHz.
f, Oscillation frequency of |4,¢|, measured using power spectral densities
calculated ind. We correct for systematicsinferred from our data analysis

and assume this correction has an uncertainty of100%, as shown by the green
band.The phase transition point observed in datain e and fagrees well with
simulations. a.u., arbitrary units; Osc., oscillation.

frequency shifts w, of the atoms, as shown in Fig. 2d. The initial state
with anon-zero opening angle @, shares qualitative features with the
BCS ground state at finite y up to a i/2 rotation on the Bloch sphere’,
in contrast to the initial state mimicking the BCS ground state with
infinite yin Fig. 2b.

Phasell to phaselll

We probe the phasellto phaselll transition using a vertical cut through
the dynamical phase diagram. To realize this, we introduce an energy
splitting hd, between two individually addressable clouds of atoms
along the cavity axis using a.c. Stark shifts from our 461 nm beam, as
shown in Fig. 3a. In combination with a background energy spread
hE,, associated with lattice shifts (Methods), this produces a bimodal
density of states and a dispersion relation like the one proposed in
Fig.1b. Asbefore, we begin the experiment with a highly coherent state
and with §,=0. Then, we quench on a non-zero §, and let the system
evolve. Between shots, we scan §, while fixing yN/2m = 0.9 MHz and
Ey/21 = 0.34 MHz to explore the vertical cut.

The resulting dynamics show a marked change in the dynamical
evolution of |4.s| over the scan, as shown in Fig. 3b, which we attrib-
ute to a transition between phase Il and phase Ill dynamics. For small
o,, we either see Higgs-like oscillations, which are damped after 3 ps
(the trace where /21t = 0.6 MHz), or, for very small splittings, no
oscillations resolvable above the noise floor (6,/21 = 0.3 MHz). We
associate this regime with phase 1, as it overlaps with the previously
observed phase Il dynamicsin parameter space. For larger &, the curves
instead show large-amplitude oscillations that persist for more than
5 s (6421 = 1.4 MHz). We identify the long-lived oscillations in this
parameter regime as an experimental signature of phase III.

Intuitively, we canunderstand the difference between the two phases
byidentifying the two subensembles of atoms with two Bloch vectors
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Fig.4|Scanacross three dynamical phases. a, Probing phasel, Iland Il
dynamics using time traces of |4,¢|. Quenches are performed in the same
manner asinFig.3b, exceptbetween shots we hold post-quench values of §,
fixed and vary yNinstead. Theinset shows the explored cut through the phase
diagram and identifies final YN/E,, values with green (phasel), blue (phaseIl)
andred (phasell) dots. The yN/2m=0.2 MHz trace is smoothed for clarity.

b, Time average of | 45| inabin from ¢ =3 to 8 pus versusinteraction strength.
The experimental datashows signatures of a phase I to phase Ill transition at
XN/21t=0.25MHz. ¢, Oscillation frequency of |4,¢s| versusinteraction strength
inabinfrom¢=0.5t04.0 ps. Again, we correct for systematics inferred from
our data analysis and assume this correction has an uncertainty of100%, as
shownbythegreenband. Thesedataindicate aphaselllto phaselltransition at
XN/2mt=1.0 MHz. Experimental data and transitionsin both plots are consistent
with numerical simulations.

(Fig. 3c). In phasel I, a finite 6, causes the Bloch vectors to precess in
different directions, but the dominantscale yNlocks themtogether to
form the solid and dashed magenta orbits. In the presence of a finite
E,, theorbits decay, but the Bloch vectors maintain phase coherence.
Onthe other hand, in phase I, &, is large enough that the two Bloch
vectorsaccrue anunbounded relative phase, asinthe blue orbits. The
presence of interactions locks each subensemble separately against
afinite £y, leading to persistent oscillations. This effective beating of
two large spins in a macroscopic array of spin-1/2 particles is truly an
interaction-driven effect astheinteractions are strongenoughtolock
the spins within each subensemble but not strong enoughtolock both
subensembles together. In ourimplementation of phaselll, the bimodal
distribution allows us to dynamically separate the Bloch vectors of the
two subensembles, instead of starting with an already split distribution,
like in weakly interacting BCS ground states featuring a sharp Fermi
edge. Despite their qualitative differences, these two situations can
be dynamically connected (Methods).

We can experimentally define a boundary between phase Il and
phase lll using the separation of timescales observed for oscillations
in |4;cs|. Figure 3e shows the average oscillation amplitude in a time
window from ¢ =3 to 8 ps. In this analysis, we observe a sharp rise in
the oscillation amplitude at 6,/21 = 0.85 MHz = yN/21t as we increase
6., which we identify as a dynamical phase transition. The numerical
simulations plotted in Fig. 3e agree fairly well with the datain capturing
the trend and estimating the phase transition point. However, we see a
discrepancyin the absolute size of the observed and predicted oscilla-
tion amplitudes. We attribute this to an extra dephasing mechanism
(likely residual motional effects) in our system or otherimperfections
inthe experimental sequence not captured by the theoretical model.

We verify the location of the phase Il to phase Il transition using the
short-time oscillation frequency (from ¢ = 0.5t0 4.0 ps) as an additional
experimental signature. As can be seen in the Fourier responses in
Fig. 3d and quantified in Fig. 3f, the oscillation frequency exhibits a
dip versus §; at the previously identified phase boundary. This dip is
present in roughly the same location in the experimental and theo-
retical results and is expected to coincide with the phase Il to phase
transition (Supplementary Information).

Scan across three dynamical phases

Finally, we observe all three dynamical phases in a single cut through
the parameter space, as shownin Fig. 4a. We run the same experimental
sequence described in Fig. 3 but instead scan yN between shots with
6/21n=1.1MHz and E,,/21t = 0.46 MHz fixed. This allows us to probe
phase |, phase lll and then phase Il by increasing the atom number N.
Using order parameters established in Figs. 2 and 3, we determine the
boundaries between the three phases. AsshowninFig. 4b, thelong-time
average of |4,¢| rises suddenly around YN/2m = 0.25 MHz inboth data
and simulations. This transition marks the boundary between phase
Iand phase lll. Additionally, at YN/2m =1.0 MHz, we observe adip in
the short-time oscillation frequency of |4,| (Fig. 4c), which marks
the transition between phase Ill and phase II. For this scan, we do not
use the long-time oscillation amplitude as an order parameter due to
the poor signal-to-noise ratio for smaller values of yN.

Conclusion

The demonstrated capability to emulate dynamical phases of supercon-
ductorsinoptical cavities opens exciting prospects for the field of quan-
tum simulation. For example, it will be interesting to see if our cavity
simulator can engineer and probe topological superfluid phases’***

or aid in understanding competing superconducting orders***'in a

single system. It may also be used to enable simulations of superfluidity
in phenomena relevant to high energy physics®>*>.
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Methods

Experimental set-up for the phase I to phase Il transition

To explore the phase diagram cut in Fig. 2, we first load 10°-10° #Sr
atoms from a magneto-optical trap into an 813 nm optical lattice
supported by a high-finesse optical cavity, as in previous experi-
ments®**5*% The resulting atomic cloud has atemperature of roughly
15 pK, resulting in a Gaussian distribution transverse to the cavity axis
with standard deviations 0,=0,=16 um (coordinates defined in
Extended DataFig.1a). Further, the cloud is extended over thousands
of lattice sites to form a distribution along the cavity axis with astand-
ard deviation o, =430 pm. We measure an axial trapping frequency
of w,/21 =165 kHz, which gives a Lamb-Dicke parameter of n =0.17
for excitation with 689 nm light. At the measured temperature,
n?(27 +1) = 0.11 <« 1, thus placing the atoms in the Lamb-Dicke regime.
We set aquantization axis along y witha2.4 G magnetic field and tune
thelattice polarization to a ‘magic angle’ relative to this axis such that
the differential lattice shift between the ground ('S,)) and excited
(*P, m; = 0)) states vanishes®. Using piezoelectric actuators, we sta-
bilize the cavity length to set the closest TEM,, resonance tobe 51 MHz
red-detuned from the atomic transition.

After loading them into the lattice, we initialize the atoms with a
y-polarized drive through the cavity, which is nominally resonant with
the atomic transition. Because the drive is far off-resonance from the
cavity (whichhaslinewidth x/2mt =153 kHz at 689 nm), the induced Rabi
frequency is somewhat suppressed. Nonetheless, we find that roughly
5 mW of power is needed before the cavity is sufficient to drive the
atoms with att/2 pulse in 100 ns. We allow the atoms to settle for 2 s
to distinguish the desired physics from any transient dynamics
observed after state initialization, which we attribute to an undesired
excitation of sideband transitions. We then shine a 461 nm beam
from the side of the cavity along the y direction, detuned from the
['So) » [*P) transition by more than 10 GHz, to induce a.c. Stark shifts
of the ground state. The beam has waists (w,, w,) = (1,030 pm, 75 pm)
alongthe x and Z directions at the plane of the atoms, and its centre is
displaced fromthe centre of the atomic cloud by x, =580 umalongthe
cavity axis. From these dimensions, we calculate an atomic density of
states p(w) as afunction of the frequency shift which is roughly uniform
between 0 and the maximum shift iE,,. We estimate that for the power
and detuning used in this cut, the 461 nm beam scatters off the atoms
with an average rate of R,./21t = 1.3 kHz, roughly a factor of six smaller
than y/2nt=7.5 kHz, the spontaneous emission rate. Combined with
the collective emission from the atoms as described in the ‘Readout’
section of Methods, these dissipation processes set a maximum
predicted coherence time in the system of 29 ps.

Experimental set-up for the cuts through phase 11
For the two cutsthrough phaselll described in Figs.3and 4, weload the
atoms into two clouds separated by 3 mm, as shown in Extended Data
Fig.1b. Theleft-hand cloud has an extent described by standard devia-
tions (g,, 0,) = (200 pum, 16 um). The right-hand cloud has a similar extent
alongo,butisbroader along the cavity axis. We tune the lattice polari-
zation to point along 2, which breaks the magic angle condition and
introduces a differential trap depth between the ground and excited
states of 0.47 MHz for atoms experiencing the peak lattice intensity.
Duetotheir finite temperature, the atoms experience aspreadin lattice
intensities, whichleads toaninhomogeneous trap depth. We estimate
theinduced distribution of energy shifts by assuming the atoms occupy
atwo-dimensional Gaussian distribution radially with standard devia-
tions o, =0,=16 pm, compared to the lattice waists w, = w,= 80 pum. This
produces a peaked distribution equivalent to the narrow peakin Fig. 3a.
In these experiments, we apply a 1t/2 pulse as before and then
immediately shine a 461 nm beam centred on the left-hand (‘bright’)
atomic cloud. Unlike for the previous cut, we do not wait for the
transient dynamics to settle after state initialization, for simplicity.

We do not see major differences between the observed and expected
behaviour when omitting the wait period. The beam has waists
(w,, w,) =(1,700 pm, 80 pm). We install a beam block just before the
chamber to clip the beam tail, which otherwise would hit the right-hand
(‘dark’) atomic cloud. The 3 mm separation between the clouds is
sufficiently large to ensure that the beam does not significantly dif-
fract around the beam block. The beam shifts the mean energy of the
bright cloud away from that of the dark cloud, introducing a tunable &,.
Although we nominally hold £, fixed while scanning 6, to explore the
phasellto phaselll transition, inreality the finite size of the blue beam
introduces an additional contribution to £, for the bright cloud. As
6, increases, therefore, both the size and shape of the single-particle
energy distribution change. We calculate E,, in a consistent manner by
estimating the standard deviation of the bright cloud distribution and
matching the result to a uniform distribution with the same standard
deviation (Supplementary Information). In the main text, we report
the value of E,, obtained at the phase transition point for the phase Il
to phase lll transition. As we increase the 461 nm beam power, the
atomsalso scatter more blue photons. At the largest applied a.c. Stark
shift, we estimate that the bright cloud experiences a scattering rate
of R,/21t = 3.4 kHz, resulting in lower coherence times for traces with
large §,. However, this excess decoherence does not bias our measure-
ments of oscillation amplitude and frequency at times ¢t < 8 ps.

Readout

After the initialization in all experiments, the atomic ensemble
establishes a small electric field inside the cavity, which adiabatically
follows (S ) (ref. 30). Assuming homogeneous atom-light coupling
(see the next section for modifications due to inhomogeneous cou-
pling), the complex amplitude of the electric field leaking out of the
cavity is given by

o=~ & k(S O, @)

where a,,, has units of ./photons s . Here, 2g/2m =10.6 kHz is the
single-photon Rabi frequency for an atom maximally coupled to the
cavity, 6./21 = (w. - w,)/21 = =51 MHz is the detuning between the cav-
ity resonance frequency w. and the atomic transition frequency w,,
and k,,/2 = 41 kHz is the rate at which photons incident on the cavity
mirror are transmitted. a,, is aformof dissipation in the system equiv-
alent to superradiance in a detuned cavity limit. Over the region of
parameter space explored in this work, we estimate that the dissipation
rate never exceeds ysp/21 = 2.3 kHz. We measure the detuned super-
radiant light as it leaks out of the cavity using balanced heterodyne
detection, which provide us with a real-time probe of (S ) < 4. In
plots of |4,¢| in the main text, we calculate the square magnitude of
this quantity and average over 400-1,600 shots of the experiment,
taken within 2-10 min. We then subtract the background to remove
the vacuum noise power from the heterodyne signal. Finally, we take
asigned square root of the result to return an estimate of |4;.s| which
averages to 0 in the absence of a real signal. This explains why some
traces dip below zero despite representing a nonnegative quantity.

Additionally, the cavity experiences a (dispersive) shift in its reso-
nance frequency proportional to the number of atoms. We use this to
measure the atom number by sending a pulsed probe tone through
the cavity and measuring the frequency shift using the transmitted
light. Since this light is spectrally resolved from the light emitted by
the atoms, we are able to measure both signals independently on our
heterodyne detector. The different optical frequenciesinvolvedinthe
heterodyne beat are compared in Extended Data Fig. 1c.

Dynamical phase diagram
The unitary dynamics of our system is modelled by an effective
atom-only Hamiltonian, given by
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H=hx ¥ C2S/Sc+ Y &St 3)
Jk k

where Sk “and Sk ” are the standard spin-1/2 operators onatom k. We
define y= g26 /(6 +K2/4) wheregand §_are as definedin the previ-
ous section, and k is the cavity linewidth. The spatial dependence of
the interaction term s characterized by (j =cos(j¢) withg=miA, /A,
which arises because the lattice wavelength A, = 813 nmisincommen-
surate with the cavity wavelength A, = 689 nm. In contrast to equa-
tion (1), equation (3) becomes non-integrable due to theinhomogeneity
intheinteraction term. Nevertheless, as shownin Extended DataFig. 2,
equation (3) leads to asimilar dynamical phase diagram as equation (1)
ifwe
1. Useageneralized superconducting order parameter dgcs = x 3 ; G4S -
2. Interpret the 1i/2 pulse as a pulse along the cavity axis under the
Hamiltonian Ay, =hQ Y, (kﬁf that generates the maximum pos-
sible |45/, Wwhich occurs when Q¢ = 0.5861t.
3. Replace the atomic number Nby an effective atom number N = N/2,
such that YN, represents the averaged interaction strength of
equation (3).

We can still measure the generalized order parameter 4,5 using
the field leaking out of the cavity as in the previous section, since
with inhomogeneous coupling the transmitted field takes the form

Aoue() =- 5 L K Xk (k<sk(t)) Agcs- The dynamical phase diagram in
Extended Data Fig. 2is numerically calculated based on unitary evolu-
tionunder equation (3), withasingle-particle dispersion €,/Asampled
from a uniform distribution in the frequency ranges [-64/2 - E,\/2,
=642 +Ey/2]land[64/2 - E\\/2, 642 + E,,/2]. There YN corresponds to the
averaged interaction strength of equation (3). We identify the dynam-
ical phases based on the long-time average of |4;|, given by

1T
AVE (g = lim ?jo ses (0] de, 4)

as well as the long-time oscillation amplitude of |4;c|. Since the oscil-
lations of |4zcs| might deviate from a sinusoidal form, for theoretical
simulations it is easier to use the standard deviation as a measure of
the oscillation amplitude:

T 1/2
Std(|ABCS|)={;jm;—J‘OGABCS(t)l —Avg(|ABCS|))2 de . (5)

When comparing with experimental data, we measure the oscillation
amplitude using the Fourier spectrum because technical noise in the
experiment contributes to the standard deviation of the time traces
(Fig. 3d). The dynamical phases can be characterized in theoretical
simulations by
« Phase I: Avg(|4,c|) = 0, Std(|4gcs]) = O.

« Phase II: Avg(|4gcs|) > 0, Std(|4gcs) = 0.
« Phase Ill: Avg(|4gcs|) > 0, Std(|4gcs|) > O.

The dynamical phase boundaries (white solid lines) in Extended
Data Fig. 2 are analytically calculated using a Lax analysis applied
to equation (1), like the one discussed in refs. 9,16, and take the
following form (see Supplementary Information for a detailed
derivation):

« Phaseltophasell:

L with Sepo,

T Eyw )
— =1 with ﬂe{lg}
Ey |m'm

s”"”s”’\é

» Phaselto phaselll:

5—5 >1. @)

« Phase Il to phase ll:

o5 Ey . XN _2
Fu —csc(XNj with Eo > o

(8)

The analytical results agree with the numerical simulations for equa-
tion (3). The only difference is that equation (1) predicts anextra dynam-
ical phase transition marked by the white dashed line. The dynamical
phase boundaries shownin Fig. 1c are constructed with the analytical
formulas above.

Phase Ill dynamics with continuous single-particle dispersion
Inthis manuscript, we generate phase lllusing abimodal single-particle
dispersion, represented with idealized assumptions by Fig. 1b and
with actual experimental conditions by Fig.3a. Here we show that this
experimentally convenient approach generates similar phase Il dynam-
ics to the one obtained for continuous dispersion but with different
initial conditions.

This is done by the protocol shown in Extended Data Fig. 3a, which
uses a bimodal distribution (8, > Ew) just to generate a state with
minimum |4,/ At this point, the system dispersionis restored to being
continuous by setting d; s, = Ew. Thisapproach more closely resembles
the phaselll quench discussedin actual BCS superconductors, for which
phaselllis observed by quenching from a state with aweak BCS pairing
gap |4ycs| to onewith astrong pairing gap®. Numerical simulations based
onequation (3) show that nearly all choices of parameters that lead to
phase Ill using a bimodal distribution also lead to phase Ill dynamics
when quenching to a continuous distribution. The only exceptionis a
small parameter regime close to the boundary between phase Ill and
phase Il (Extended Data Fig. 3b). Note that here we use definitions for
Apcs, the /2 pulse, and YN that correspond to equation (3), as explained
inthe previous section.

Numerical simulations

The black dashed lines in Figs. 2, 3 and 4 are computed for a unitary
evolution under equation (3) using a single-particle dispersion g,
sampled from the experimentally engineered distribution.

The black solid lines in the same figures are obtained by adding
dissipative processes and axial motion to equation (3). The system
dynamics is described by the following master equation for the density
matrix g:

%’; =- %[ﬁ, P1+ LULIPT+ Y L IIP1+ Y L DIBL. (9)
k k

The Llndblad superoperator takes the form ﬁ(L)[p] LpL
—7(L ip+pi L) Superradiance through the cavity is described by the
jump operator:

=T % Se (10)
where I'= xk/6.. Spontaneous emission from the atomic excited state
isdescribed by the jump operator:

Loe=yvSi an
where y/2m=7.5 kHz is the spontaneous emission rate out of *P,.
Single-particle decoherence is described by the jump operator:

~ 4
Lel,k =, 2VeISk'

(12)



wherey, is afitting parameter that takes into account free-space scat-
tering from thea.c. Stark shift beam as well as other decoherence pro-
cessesinthe experiment (Supplementary Information). These are the
dominant dissipative processes in our system.

The axial trapping frequency of the lattice is 165 kHz and is, there-
fore, smaller than the spin-exchange interaction rate yN for most of
the experiments. Asa consequence, in contrastto theidealized model
inwhich atoms are assumed to be frozen, motional processes need to
beaccountedfor, eventhoughthey are suppressedinthe Lamb-Dicke
regime. As shown in the Supplementary Information, axial motion
can lead to a faster damping rate of |4cs| oscillations. The predicted
dynamical phase boundaries are, nevertheless, unaffected by the axial
motion.

All the numerical simulations are computed using the mean-field
approximation, whichreplaces the operators Si'“by their expectation
values <§;((,y,z> in the Heisenberg equation of motion. The mean-field
treatment of the BCS model is predicted to be exact in the thermody-
namic limit due to the infinite-range nature of the interactions®. The
atom number for numerical simulation is set to 5,000 for the ideal
conditions and 2,000 for actual experimental conditions. We rescale
xto match yN with experimental values.

Higgs-like behaviour in short-time phase Il dynamics

When quenchinginto phasell, we observe highly damped oscillations
of |4gcs|, reminiscent of the Higgs oscillations predicted to arise in this
regime of the BCS model. Here, we analyse traces from Fig. 2d, in which
we engineer avariable phase spread ¢(w,) € [0, ¢,] before quenching
into phasell, to study this potential connection.

In the BCS model, Higgs oscillations can be characterized by their
frequency, whichshould scale with the long-time BCS order parameter
A.as Wy, =2A.. (ref. 8). We confirm this scaling in theory by measuring
the oscillation frequency from t=0to ¢ =5 ps in idealized numerical
simulations thatignore dissipation and motional effects (black dashed
linein Extended Data Fig. 4a). For different values of the phase spread
extent @,, the system reaches its steady state at a different long-time
BCS gap A... By parametrically plotting the oscillation frequency ver-
sus 24.. as a function of ¢, in Extended Data Fig. 4c, we observe the
expected scaling.

Asdiscussedin the main text, the oscillations of |4;cs| are consistently
smaller and decay more quickly in the experimental data thanin simu-
lations. Nonetheless, we obtain a crude estimate of the experimental
oscillation frequency by measuring a half period from the first trough
and peak of |4;5(£)|, asshownin Extended DataFig. 4a. In Extended Data
Fig.4b, we compare the frequency in the experimental data to that of
ideal simulations for different ¢,, which shows that the frequencies

agree within the error bars. This suggests that the transient dynamics
observed in |4;¢| are related to the Higgs oscillations present in the
theory.

Although the experimental oscillation frequency agrees with that
from the simulations, the steady-state order parameter A..is much
smaller, as can be seen in Extended Data Fig. 4a. As aresult, the meas-
ured frequencies scale linearly with 4., but with a different prefactor.
In Extended Data Fig. 4c, we fita linear relation @y, = (1.7:97) x 24..to
the data. The uncertainty bounds for the slope are calculated by assum-
ingthattheerrorsin w,are perfectly correlated. Most of the reduction
inA..canbe capturedin theory by considering dissipation and motional
effects (solid black trace). We see an additional small differencein |4gc|
between full numerical simulations and experimental data, which we
attribute to drifts in experimental alignments and calibration factors
over time. This difference is not apparent in Fig. 2d because we plot
|4gcs| in normalized units.
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Extended DataFig.1| Experimental configuration. a, Detailed diagram of
the cavity and allrelevant beams. Amagnetic field along y sets the quantization
axis.The 813 nmoptical lattice supported by the cavity has a tunablelinear
polarization. We drive att/2 pulse with abeam polarized along y through the
cavity, and during the experiment we probe the cavity resonance frequency
using asecond y-polarized beam to measure atom number. A461nmbeam
far-detuned fromthe |150) > |1P1> transition shines on the atoms fromthe side
ofthe cavity, inducing a.c. Stark shifts. We probe signals transmitted through
the cavity usingabalanced heterodyne detector. b, Fluorescence image of

the two atomic clouds used when scanning through phaselllin Figs.3and 4.

¢, Frequency landscape of 689 nm beams. The atomicdrive frequency @ is
resonantwith the atomic transition. The cavity probe frequency w., is nominally
centred with the cavity resonance frequency, 51 MHz red-detuned from the
atomictransition. The local oscillator used in heterodyne detection has
frequency w, o and is 80 MHz blue-detuned from the atomic transition.
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Extended DataFig.2 | Numerical simulation of the dynamical phase diagram
based onequation (3). Weidentify the dynamical phases based onthelong-time
average (a) and the long-time standard deviation (b) of |Agcs(¢)], normalized by
itsinitial value A, = |Agcs(0)|. The white solid lines mark the corresponding
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dynamical phase boundaries, analytically derived from equation (1), which
agreewith the numerical results based on equation (3). The white dashed lines
mark an extradynamical phase transition that only exists for equation (1).
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Extended DataFig. 3| Alternative approach for phaselll. a, Simulation of
analternative experimental sequence. As described by the timing sequence at
the top, we simulate an experiment that prepares the initial state using a /2
pulse, lets the system evolve under abimodal distribution of single-particle
energy (see theinset) until |Agcs| reachesits minimum value and then quenches
the system back to acontinuous distribution of single-particle energies (inset).
Thetheoretically predicted time trace of |Agcs| with YN/Eyy =1.0 and & ;/Ew = 1.6
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isshown atthe bottom. Theblue (grey dashed) line shows phase Il dynamics
under acontinuous (bimodal) distribution. b, Long-time standard deviation of
|Agcs(t)] after quenching to the continuous distributionshownina. The white
lines are dynamical phase boundaries for bimodal distributions (see Extended
DataFig.2). Nearly all choices of parameters for phase Ill using bimodal
distributions canlead to phase Ill behaviour after quenching to the continuous
distribution.
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Extended DataFig. 4| Collective scaling indamped phase Il oscillations.
a, Time dynamics of |A;s| measured after engineering aninitial phase spread
over [0, ] where ¢,=0.8masinFig.2d, plotted in absolute frequency units
(pink trace). The solid black curve represents anumerical simulation of the full
system, whereas the dashed curve represents anideal simulation neglecting
dissipation and motional effects. We obtain a crude estimate of oscillation
frequency inthe experimental data by fitting a trough and peak to smoothed
data (after subtracting slow-moving behaviour) within the first couple ps
(magenta points), using these points to infer a half period of oscillation, and
with uncertainties determined using a 90% amplitude threshold (pink bands).
b, Comparing oscillation frequency estimates of experimental data (pink
squares) with those of ideal simulations (black dots) for different ¢,. Theory
oscillation frequencies are calculated using a Fourier transform from t=0 ps to
t=S5us.Errorbarsforexperimental data are set by the minimum and maximum
frequenciesimplied by uncertaintiesin the half period shownina. The two
frequency estimates agree within error bars. ¢, Collective scaling of oscillation
frequency. Foreach ¢, measured inthe experiment, we plot the oscillation
frequency against the long-time BCSgap A.,, calculated at ¢ = 18 ps for ideal
simulationsand at ¢ =3 pus for experimental data. The solid black line is defined
by w,.. = 2A., demonstrating the expected scaling for Higgs oscillations. The
dashed pinklinerepresentsalinear fit to the experimental data. The pink band
shows the uncertainty in the slope assuming correlated errorin w,,, such that
itsbounds are defined by linear fits to the data assuming maximumand
minimum values for w,,. as defined by the error bars.




