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Observing dynamical phases of BCS 
superconductors in a cavity QED simulator

Dylan J. Young1,6, Anjun Chu1,2,6, Eric Yilun Song1, Diego Barberena1,2, David Wellnitz1,2, 
Zhijing Niu1, Vera M. Schäfer1,3, Robert J. Lewis-Swan4,5, Ana Maria Rey1,2 ✉ & 
James K. Thompson1 ✉

In conventional Bardeen–Cooper–Schrieffer superconductors1, electrons with 
opposite momenta bind into Cooper pairs due to an attractive interaction mediated 
by phonons in the material. Although superconductivity naturally emerges at thermal 
equilibrium, it can also emerge out of equilibrium when the system parameters are 
abruptly changed2–8. The resulting out-of-equilibrium phases are predicted to occur 
in real materials and ultracold fermionic atoms, but not all have yet been directly 
observed. Here we realize an alternative way to generate the proposed dynamical 
phases using cavity quantum electrodynamics (QED). Our system encodes the presence 
or absence of a Cooper pair in a long-lived electronic transition in 88Sr atoms coupled 
to an optical cavity and represents interactions between electrons as photon-mediated 
interactions through the cavity9,10. To fully explore the phase diagram, we manipulate 
the ratio between the single-particle dispersion and the interactions after a quench 
and perform real-time tracking of the subsequent dynamics of the superconducting 
order parameter using nondestructive measurements. We observe regimes in which 
the order parameter decays to zero (phase I)3,4, assumes a non-equilibrium steady- 
state value (phase II)2,3 or exhibits persistent oscillations (phase III)2,3. This opens up 
exciting prospects for quantum simulation, including the potential to engineer 
unconventional superconductors and to probe beyond mean-field effects like the 
spectral form factor11,12, and for increasing the coherence time for quantum sensing.

Quantum simulation offers a path to understanding a broad range of 
phenomena, from high-temperature superconductivity and correlated 
quantum magnetism in condensed matter physics13 to quarks and 
gluons in nuclei and matter under extreme conditions14, as well as the 
black hole information paradox in gravitational physics15. A fascinating 
and promising case is the prethermal dynamical phases16 predicted 
to emerge from quenches of superconductors and superfluids2–8,17–22, 
systems that feature Cooper pairing of electrons or neutral fermions. 
There has been great progress in pump-probe experiments of supercon-
ductors that induce such fast quenches using terahertz technology, in 
which signs of phases I and II have been observed. However, the intense 
pulses couple nonlinearly to the Cooper pairs in the superconductor 
and complicate a clean observation of the dynamical phases23–25. For 
these reasons, the realization of fermionic superfluids in ultracold 
atomic gases26 has generated great excitement2–8; however, to date 
observations have been limited to spectroscopic signatures rather 
than the full time dynamics27. In neither system has a systematic scan 
of the dynamical phase diagram been performed, and in fact, phase III 
has never been observed.

Here we take a step forward towards this challenge by using internal 
electronic states to encode effective Cooper pairs. At the heart of this 
implementation is the Anderson pseudo-spin mapping28 by which the 

presence or absence of Cooper pairs in a momentum mode is encoded 
in a pseudo-spin-1/2 system. We simulate Anderson pseudo-spins using 
a long-lived electronic transition in 88Sr with interactions between 
the spins mediated by a high-finesse optical cavity. As proposed in  
refs. 9,10, the scattering between Cooper pairs in condensed matter 
systems can be engineered in our system through the exchange of 
photons through the cavity (Fig. 1d). In this way, the dynamics of a 
collection of interacting spin-1/2 systems maps onto the low-energy 
physics of a superconductor or superfluid.

We probe all three dynamical phases (phases I, II and III) predicted 
to exist in Bardeen–Cooper–Schrieffer (BCS) superconductors by uti-
lizing the high degree of control and flexibility in state initialization, 
interaction control and nondestructive measurements available when 
coupling long-lived atoms to an optical cavity. Behaviours intrinsic to 
phase I (normal phase) and phase II (finite steady-state superconductiv-
ity) have previously been observed in spin systems realized in optical 
cavities29,30 and in two-level atoms interacting through collisions31–34. 
We build on this work by clarifying the connection between these 
dynamical phases from the BCS model and the physics of many-body 
gap protection in spin systems. Our results also provide a demonstra-
tion of phase III (a self-generated Floquet phase featuring persistent 
oscillations of the order parameter), which is predicted to dynamically 
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emerge in superconductors through quenches from weak to strong 
interactions3,8. In our system, we instead engineer this phase using flex-
ible control of the single-particle dispersion9,22, dynamically resembling 
the low-energy condition of a BCS superconductor. For all experiments, 
we perform real-time tracking of the superconducting order parameter, 
enabling a fast readout of the dynamics.

Experimental set-up and model system
To realize the dynamical phases of the BCS model, we laser cool  
an ensemble of N = 105–106 88Sr atoms and trap them inside a λL =  
813 nm one-dimensional optical lattice supported by a high-finesse  
optical cavity. A spin-1/2 system is encoded in the electronic ground  
state m↓⟩ = S , = 0⟩J

1
0∣  and a long-lived optical excited state ↑⟩= 

mP , = 0⟩J
3

1∣ , where mJ  indicates the Zeeman sublevel of each state.  
Along this transition, we define spin operators ̂S = |↓⟩ ⟨↑|k k k

−
 and 

S = (|↑⟩ ⟨↑| − |↓⟩ ⟨↓| )/2k
z

k k k k
̂  for single atoms with labels k ∈ {1, …, N},  

as well as the collective lowering operator ̂ ̂S S= ∑k k
− −

 and raising  
operator S S= ( )

+ − †̂ ̂ .
Assuming homogeneous atom–light coupling in the cavity and  

unitary dynamics, our system can be described by the Hamiltonian

̂ ̂ ̂ ̂∑H ħχS S ε S= + . (1)
k

k k
z+ −

The first term represents an infinite-range spin-exchange interac-
tion described by a frequency scale χ (ref. 30), realized using the col-
lective coupling between the atomic ensemble and a detuned optical 
cavity mode. Inhomogeneous atom–light coupling and dissipative 
processes (including, foremost, single-particle spontaneous decay) 
are present in the current implementation but do not largely change 
the qualitative behaviour of the targeted dynamical phases under our 
experimental conditions (Methods). Previously, we characterized this 
interaction30 and studied the collective dynamics by applying an exter-
nal drive35. In this work, we go beyond the fully collective manifold by 
engineering a spread in single-particle energies εk = ħωk using applied 
a.c. Stark shifts ωk (refs. 36,37). These shifts form the second term in 
the Hamiltonian and compete with the spin-exchange interaction.

Equation (1) is the so-called Richardson–Gaudin spin model38,39, 
which describes the low-energy physics of BCS superfluids and  
superconductors using the Anderson pseudo-spin mapping28. This 
mapping relates the presence (or absence) of a Cooper pair formed  
by a pair of electrons with momenta ±k to a spin-up (or down) at momen-
tum k, as shown in Fig. 1a. Correspondingly, annihilating a Cooper pair 
maps to a spin-lowering operator by the relation k k −k

̂ ̂ ̂S c c:=
−

, where  
kc±̂  are fermionic annihilation operators. Similarly, the spin operator 
̂ ̂ ̂ ̂ ̂k k k −k −kS c c c c2 + 1 := +
z † †  counts the number of electrons with momentum 

k or −k. Our cavity system, therefore, manifestly implements a BCS 
superconductor if one identifies the label k of an atom in the cavity 
with the momentum k of the electrons in a Cooper pair. In this way, the 
first term in equation (1) is equivalent to the attractive interaction 
between electrons in the superconductor, and the second term can be 
associated with the kinetic energy or dispersion relation of the elec-
trons. Note that the BCS model, described by equation (1), accounts 
only for the zero-momentum collective excitations present in conven-
tional superfluids and superconductors28.

The BCS order parameter in the Anderson mapping is defined by 

k k −k̂ ̂ ̂Δ χ c c χ S= ⟨∑ ⟩ = ⟨ ⟩BCS
−

, as depicted in Fig. 1b. In equilibrium, it plays 
the role of the BCS pairing gap, which energetically favours many- 
body states in which the electrons arrange in a coherent superposition 
between Cooper pairs and holes for states close to the Fermi energy. 
Away from equilibrium, ΔBCS is also predicted to characterize the three 
dynamical phases (I, II and III) that arise after quenches in superconduc-
tors and superfluids16. Such dynamical phases represent distinct 
regimes of dynamical behaviour that arise after a sudden perturbation 
of a control parameter in a closed many-body system. They are 
described using a time-averaged or steady-state order parameter that 
demonstrates non-analytic behaviour at the boundary between phases. 
In particular, the BCS model is predicted to exhibit second-order 
dynamical phase transitions.

Phase I is characterized by a steady state with a vanishing order 
parameter ∣ΔBCS(t)∣ → 0 at long times. Phase II exhibits a steady state 
with a constant non-zero order parameter Δ Δ t:= lim ( ) > 0t∞ →∞ BCS . 
Finally, phase III features oscillations in ∣ΔBCS(t)∣ that persist to long 
times, realizing a Floquet superfluid despite not being periodically 
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Fig. 1 | Engineering BCS dynamical phases. a, The Anderson pseudo-spin 
mapping encodes the presence and absence of a Cooper pair as the up and 
down states of a spin-1/2 system, respectively. Under this mapping, the attractive 
interaction χc c c c′ ′

† †
−k kk −k̂ ̂ ̂ ̂  between electrons is equivalent to an all-to-all 

exchange interaction k kχS S
+

′
−̂ ̂  between pseudo-spins. b, Model parameters.  

The top plot shows the effective dispersion relation near the Fermi surface 
engineered in our system as a function of parameters δs and EW, controlled 
using a.c. Stark shifts. The bottom plot visualizes the ground state of a BCS 
superconductor using Anderson pseudo-spins. Near the Fermi momentum,  
the pseudo-spins develop a phase-coherent superposition at a scale set by a 
non-zero BCS pairing gap ΔBCS. This gap is self-consistently defined from the 

spin coherence as shown on the Bloch sphere. c, Dynamical phase diagram.  
The three dynamical phases can be realized by varying parameters χN, δs and EW. 
Representative dynamics of the BCS order parameter ∣ΔBCS∣ for each phase are 
shown as insets. We explore cut H1 (dashed line) in Fig. 2 using a single ensemble 
of atoms and cuts V and H2 (solid lines) in Figs. 3 and 4 using two separately 
controlled subensembles. d, Cavity QED implementation of the BCS interaction. 
Coupling many strontium atoms to a detuned optical cavity generates infinite- 
range spin-exchange interactions mediated by a virtual exchange of cavity 
photons. This interaction also causes a field proportional to ΔBCS to leak out of 
the cavity, thus providing a real-time probe of the dynamics.
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driven6–8,21. The long-time behaviour of these dynamical phases admits 
a simpler description in terms of the Lax-reduced Hamiltonian, which 
is an effective Hamiltonian taking the same form as equation (1) but 
with rescaled parameters and a reduced number of spins8,16. Under this 
formulation, phases I, II and III emerge when the Lax-reduced Hamil-
tonian describes effective zero-spin, one-spin and two-spin systems, 
respectively.

Inspired by the Lax-reduced Hamiltonian and to explore all three 
dynamical phases, we engineer two subensembles of atoms with sepa-
rate control over energy shifts within each subensemble. For practical 
convenience, we introduce an experimental control in the form of an 
overall frequency splitting δs between two subensembles and an effec-
tive frequency width EW of each subensemble to engineer a tunable 
dispersion relation εk, as in Fig. 1b. Phases I and II can also be observed 
using a single ensemble of atoms, as shown in Fig. 2. Both experimental 
set-ups can, nonetheless, be described by a common phase diagram, 
as shown in Fig. 1c.

We initialize all the atoms in the ↓⟩∣  state and then apply a coherent 
π/2 pulse through the cavity in 100 ns such that Ω ≫ χN, where Ω is the 
pulse Rabi frequency and χN is the characteristic interaction strength 
for an ensemble of N atoms. This establishes a large BCS order param-
eter ΔBCS on a timescale faster than any other relevant dynamics to 
mimic the ground state of a Hamiltonian with an infinite interaction 
strength χ. We then quench the system by rapidly turning on εk, which 
sets a finite ratio χN/EW and a variable δs /EW, allowing us to explore the 
dynamical phase diagram shown in Fig. 1c.

We measure both the pre- and post-quench dynamics of ∣ΔBCS∣ by 
monitoring light emitted by the atoms into the cavity as a function of 
time (Fig. 1d). This light arises from a superradiance process that is 
suppressed when the cavity resonance is detuned from the atomic 
transition frequency by much more than κ, the cavity power decay 
linewidth40–42. In this limit, the established cavity field adiabatically 
follows ̂S⟨ ⟩

−
, which is proportional to ΔBCS. By measuring the leakage 

of light from the cavity in a heterodyne with a local oscillator, we, there-
fore, obtain a real-time probe of ΔBCS. Importantly, at the chosen detun-
ing, this probe is quasi-nondestructive, as only a small fraction of the 
atoms emit light over relevant timescales. In plots of ∣ΔBCS∣ over time, 
we normalize traces to the initial gap size Δinit measured right after the 
π/2 pulse.

Phase I to phase II
We probe the phase I to phase II transition by varying the ratio χN/EW 
between the interaction strength and the width of the single-particle 
energy distribution. As shown in Fig. 2a, we shine an off-resonant 461 nm 
beam onto a single atomic ensemble from the side of the cavity, which 
generates a distribution of a.c. Stark shifts with a spread EW. Careful 
shaping of the 461 nm beam allows us to realize a roughly flat density 
of states (Methods), resulting in a set-up consistent with the δs = 0  
line in Fig. 1c (Supplementary Information). After the initial π/2 pulse, 
we wait for 2 μs to let transient dynamics settle and then turn on the 
461 nm beam to quench on EW/2π = 0.83 MHz from an initial value 

≪E π/2 0.1W
(0)  MHz. The beam exhibits a rise time of roughly 50 ns, much 

faster than the relevant dynamics. To scan across the phase diagram 
in the inset of Fig. 2b, we vary the interaction strength χN between shots 
by changing the atom number N.

As shown in Fig. 2b,c, we observe two distinct dynamical behaviours 
corresponding to phases I and II, signalled by the decay rate of ∣ΔBCS∣. 
For experiments with sufficiently small χN, such as χN/2π = 0.19 MHz, 
∣ΔBCS∣ decays with a 1/e coherence time of 0.9 ± 0.1 μs. This coherence 
time is consistent with single-particle dephasing of ̂S⟨ ⟩

−
 set by the 

energy spread ħEW and is nearly constant throughout this regime.  
We identify the fast decay of ∣ΔBCS∣ as an experimental signature of  
phase I. For larger interaction strengths, we observe a rapid increase 
in the coherence time up to a maximum of 29 μs when χN/2π = 1.2 MHz; 
this constitutes an improvement by more than a factor of 30.  
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Fig. 2 | Phase I to phase II transition. a, Tuning the single-particle dispersion. 
We shine an off-resonant 461 nm beam onto the atoms from outside the cavity. 
This generates a distribution of a.c. Stark shifts representing a roughly uniform 
density of states ρ(ω) (bottom plot). b, Probing phase I and phase II. We apply a 
rapid π/2 pulse to prepare a highly coherent initial state, wait for 2 μs, quench 
to a variable χN/EW with δs = 0 and then let the system evolve. The inset shows 
the explored parameter cut and identifies post-quench χN/EW values with 
coloured dots. The main plot shows experimental time traces of ∣ΔBCS∣ (coloured 
curves) accompanied by numerical simulations (darker lines). Two curves are 
extended to demonstrate long-time coherence protection, with the χN/2π = 
0.19 MHz trace smoothed for clarity. For χN/2π = 1.2 MHz, we show an ideal 
simulation neglecting dissipation and motional effects (dashed line), which 

exhibits transient Higgs oscillations. Hints of these oscillations are present  
in experimental data with additional damping. c, Characterizing the phase 
transition. Blue triangles show the fitted coherence time of ∣ΔBCS∣ from t = 1 to 
30 μs. Green circles show the time-averaged ∣ΔBCS∣ between t = 3 and 8 μs, with 
the dark green line representing numerical simulations. In all cases, we identify 
a phase transition at χN/2π = 0.2 MHz. Error bars in all plots represent the 
standard deviation of bootstrap resamplings on experimental shots (400–
4,000 shots, n = 100 bootstrap resamplings). d, Varying the initial conditions. 
Before t = 0, we shine a high-intensity 461 nm beam within 300 ns, engineering 
an initial phase spread φ(ωk) ∈ [0, φ0] depicted on the Bloch sphere. The phase 
φ(ωk) applied to atom k is proportional to the post-quench frequency shift ωk. 
Traces represent different φ0 and show enhanced oscillations with increasing φ0.
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We identify this extended coherence time regime as phase II. The resid-
ual decay of ∣ΔBCS∣ in this regime can be attributed to intrinsic dissipative 
processes, including spontaneous emission, off-resonant superradiant 
emission and the scattering of 461 nm light30,42, which set a maximum 
predicted coherence time of 29 μs (Methods). All experimental obser-
vations (coloured traces) are in good agreement with numerical simu-
lations based on experimental conditions (dark lines; Methods).

Due to the separation of timescales in the decay of ∣ΔBCS∣, we are able 
to determine the boundary between phase I and phase II in our exper-
iment by calculating the average ∣ΔBCS∣ in a time window from 3 to 8 μs 
as a function of χN (Fig. 2c). In this analysis, phase I features a vanishing 
average ∣ΔBCS∣, whereas phase II has a non-zero ∣ΔBCS∣ that increases  
with χN. The sharp rise of average ∣ΔBCS∣ around χN/2π = 0.2 MHz indi-
cates a dynamical phase transition, which agrees with the point pre-
dicted by numerical simulations. In a spin-model picture, the BCS 
pairing gap corresponds to the energy gap between collective angular 
momentum states, which exists due to the spin-exchange interaction 

̂ ̂χS S
+ −

 (ref. 43). Phase II corresponds to the parameter region where 
such interactions are sufficiently strong to protect against single- 
particle dephasing. As a result, the observed transition directly relates 
to previous experiments exploring coherence protection in other  
systems29–34.

In BCS superconductors, the excitation of a Higgs mode is predicted 
to occur in phase II. This mode can be characterized by a collective 
damped oscillation of the order parameter ∣ΔBCS∣ with a characteristic 
frequency of 2Δ∞ (ref. 8). We observe hints of Higgs oscillations by com-
paring the experimental trace of ∣ΔBCS∣ at χN/2π = 1.2 MHz (red curve in 
Fig. 2b) with the dissipation-free simulation (dashed line in Fig. 2b) and 
noticing that the first dip in the experimental trace coincides with the 
first cycle of Higgs oscillations (Methods). The size of this feature can 
be increased experimentally by engineering an initial phase spread 
φ(ωk) ∈ [0, φ0] between atoms that is correlated with the post-quench 

frequency shifts ωk of the atoms, as shown in Fig. 2d. The initial state 
with a non-zero opening angle φ0 shares qualitative features with the 
BCS ground state at finite χ up to a π/2 rotation on the Bloch sphere9, 
in contrast to the initial state mimicking the BCS ground state with 
infinite χ in Fig. 2b.

Phase II to phase III
We probe the phase II to phase III transition using a vertical cut through 
the dynamical phase diagram. To realize this, we introduce an energy 
splitting ħδs between two individually addressable clouds of atoms 
along the cavity axis using a.c. Stark shifts from our 461 nm beam, as 
shown in Fig. 3a. In combination with a background energy spread 
ħEW associated with lattice shifts (Methods), this produces a bimodal 
density of states and a dispersion relation like the one proposed in 
Fig. 1b. As before, we begin the experiment with a highly coherent state 
and with δs = 0. Then, we quench on a non-zero δs and let the system 
evolve. Between shots, we scan δs while fixing χN/2π = 0.9 MHz and 
EW/2π ≈ 0.34 MHz to explore the vertical cut.

The resulting dynamics show a marked change in the dynamical 
evolution of ∣ΔBCS∣ over the scan, as shown in Fig. 3b, which we attrib-
ute to a transition between phase II and phase III dynamics. For small 
δs, we either see Higgs-like oscillations, which are damped after 3 μs 
(the trace where δs/2π = 0.6 MHz), or, for very small splittings, no 
oscillations resolvable above the noise floor (δs/2π = 0.3 MHz). We 
associate this regime with phase II, as it overlaps with the previously 
observed phase II dynamics in parameter space. For larger δs, the curves 
instead show large-amplitude oscillations that persist for more than 
5 μs (δs/2π = 1.4 MHz). We identify the long-lived oscillations in this 
parameter regime as an experimental signature of phase III.

Intuitively, we can understand the difference between the two phases 
by identifying the two subensembles of atoms with two Bloch vectors 
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Fig. 3 | Phase II to phase III transition. a, Engineering a bimodal energy 
distribution. We prepare two atomic clouds with centres separated by 3 mm 
and shine an off-resonant 461 nm beam centred on one cloud. This generates a 
density of states ρ(ω) (middle plot), equivalent to a dispersion relation εk = ħωk 
(bottom plot). b, Probing phase II and phase III. We prepare the same initial 
state as in Fig. 2b with a π/2 pulse, quench to a finite δs/EW and then let the 
system evolve. The inset shows the explored parameter cut and identifies 
post-quench δs/EW values with coloured dots. As before, coloured traces 
represent experimental time traces of ∣ΔBCS∣, and darker lines represent 
numerical simulations. c, Ideal simulations of mean-field trajectories for the 
two subensembles (solid and dashed curves) in phase II (magenta) and phase III 
(blue). The trajectories are projected onto the surface of the Bloch sphere for 
visual clarity. d, Fourier response of ∣ΔBCS∣2 for different δs, plotted as power 

spectral densities (PSDs) of the dynamics from t = 0.5 to 4.0 μs after subtracting 
slow-moving behaviour. e, Average oscillation amplitude between t = 3 and 8 μs. 
For the remaining plots, dashed lines represent ideal simulations (ignoring 
dissipation or motional effects), and solid dark lines correspond to full 
simulations. The additional dotted line represents numerical simulations 
rescaled by ×0.2, plotted to show similar trend behaviour between experimental 
data and simulations. We identify a phase transition around δs/2π = 0.85 MHz.  
f, Oscillation frequency of ∣ΔBCS∣, measured using power spectral densities 
calculated in d. We correct for systematics inferred from our data analysis  
and assume this correction has an uncertainty of 100%, as shown by the green 
band. The phase transition point observed in data in e and f agrees well with 
simulations. a.u., arbitrary units; Osc., oscillation.
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(Fig. 3c). In phase II, a finite δs causes the Bloch vectors to precess in 
different directions, but the dominant scale χN locks them together to 
form the solid and dashed magenta orbits. In the presence of a finite 
EW, the orbits decay, but the Bloch vectors maintain phase coherence. 
On the other hand, in phase III, δs is large enough that the two Bloch 
vectors accrue an unbounded relative phase, as in the blue orbits. The 
presence of interactions locks each subensemble separately against 
a finite EW, leading to persistent oscillations. This effective beating of 
two large spins in a macroscopic array of spin-1/2 particles is truly an 
interaction-driven effect as the interactions are strong enough to lock 
the spins within each subensemble but not strong enough to lock both 
subensembles together. In our implementation of phase III, the bimodal 
distribution allows us to dynamically separate the Bloch vectors of the 
two subensembles, instead of starting with an already split distribution, 
like in weakly interacting BCS ground states featuring a sharp Fermi 
edge. Despite their qualitative differences, these two situations can 
be dynamically connected (Methods).

We can experimentally define a boundary between phase II and 
phase III using the separation of timescales observed for oscillations 
in ∣ΔBCS∣. Figure 3e shows the average oscillation amplitude in a time 
window from t = 3 to 8 μs. In this analysis, we observe a sharp rise in 
the oscillation amplitude at δs/2π = 0.85 MHz ≈ χN/2π as we increase 
δs, which we identify as a dynamical phase transition. The numerical 
simulations plotted in Fig. 3e agree fairly well with the data in capturing 
the trend and estimating the phase transition point. However, we see a 
discrepancy in the absolute size of the observed and predicted oscilla-
tion amplitudes. We attribute this to an extra dephasing mechanism 
(likely residual motional effects) in our system or other imperfections 
in the experimental sequence not captured by the theoretical model.

We verify the location of the phase II to phase III transition using the 
short-time oscillation frequency (from t = 0.5 to 4.0 μs) as an additional 
experimental signature. As can be seen in the Fourier responses in 
Fig. 3d and quantified in Fig. 3f, the oscillation frequency exhibits a 
dip versus δs at the previously identified phase boundary. This dip is 
present in roughly the same location in the experimental and theo-
retical results and is expected to coincide with the phase II to phase III 
transition (Supplementary Information).

Scan across three dynamical phases
Finally, we observe all three dynamical phases in a single cut through 
the parameter space, as shown in Fig. 4a. We run the same experimental 
sequence described in Fig. 3 but instead scan χN between shots with 
δs/2π = 1.1 MHz and EW/2π = 0.46 MHz fixed. This allows us to probe 
phase I, phase III and then phase II by increasing the atom number N. 
Using order parameters established in Figs. 2 and 3, we determine the 
boundaries between the three phases. As shown in Fig. 4b, the long-time 
average of ∣ΔBCS∣ rises suddenly around χN/2π = 0.25 MHz in both data 
and simulations. This transition marks the boundary between phase 
I and phase III. Additionally, at χN/2π = 1.0 MHz, we observe a dip in 
the short-time oscillation frequency of ∣ΔBCS∣ (Fig. 4c), which marks  
the transition between phase III and phase II. For this scan, we do not 
use the long-time oscillation amplitude as an order parameter due to 
the poor signal-to-noise ratio for smaller values of χN.

Conclusion
The demonstrated capability to emulate dynamical phases of supercon-
ductors in optical cavities opens exciting prospects for the field of quan-
tum simulation. For example, it will be interesting to see if our cavity 
simulator can engineer and probe topological superfluid phases7,44–49 
or aid in understanding competing superconducting orders50,51 in a 
single system. It may also be used to enable simulations of superfluidity 
in phenomena relevant to high energy physics52,53.
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Methods

Experimental set-up for the phase I to phase II transition
To explore the phase diagram cut in Fig. 2, we first load 105–106 88Sr 
atoms from a magneto-optical trap into an 813 nm optical lattice  
supported by a high-finesse optical cavity, as in previous experi-
ments30,35,42,54. The resulting atomic cloud has a temperature of roughly 
15 μK, resulting in a Gaussian distribution transverse to the cavity axis 
with standard deviations σy = σz = 16 μm (coordinates defined in 
Extended Data Fig. 1a). Further, the cloud is extended over thousands 
of lattice sites to form a distribution along the cavity axis with a stand-
ard deviation σx = 430 μm. We measure an axial trapping frequency  
of ωx/2π = 165 kHz, which gives a Lamb–Dicke parameter of η = 0.17  
for excitation with 689 nm light. At the measured temperature, 

≪η n(2 + 1) = 0.11 12 , thus placing the atoms in the Lamb–Dicke regime. 
We set a quantization axis along y  ̂with a 2.4 G magnetic field and tune 
the lattice polarization to a ‘magic angle’ relative to this axis such that 
the differential lattice shift between the ground (∣ S ⟩1

0 ) and excited 
(∣ P m, = 0⟩J

3
1 ) states vanishes35. Using piezoelectric actuators, we sta-

bilize the cavity length to set the closest TEM00 resonance to be 51 MHz 
red-detuned from the atomic transition.

After loading them into the lattice, we initialize the atoms with a  
y-̂polarized drive through the cavity, which is nominally resonant with 
the atomic transition. Because the drive is far off-resonance from the 
cavity (which has linewidth κ/2π = 153 kHz at 689 nm), the induced Rabi 
frequency is somewhat suppressed. Nonetheless, we find that roughly 
5 mW of power is needed before the cavity is sufficient to drive the 
atoms with a π/2 pulse in 100 ns. We allow the atoms to settle for 2 μs 
to distinguish the desired physics from any transient dynamics 
observed after state initialization, which we attribute to an undesired 
excitation of sideband transitions. We then shine a 461 nm beam  
from the side of the cavity along the y  ̂direction, detuned from the  
∣ ∣S P⟩ → ⟩1

0
1

1  transition by more than 10 GHz, to induce a.c. Stark shifts 
of the ground state. The beam has waists (wx, wz) = (1,030 μm, 75 μm) 
along the ̂x and ̂z directions at the plane of the atoms, and its centre is 
displaced from the centre of the atomic cloud by x0 = 580 μm along the 
cavity axis. From these dimensions, we calculate an atomic density of 
states ρ(ω) as a function of the frequency shift which is roughly uniform 
between 0 and the maximum shift ħEW. We estimate that for the power 
and detuning used in this cut, the 461 nm beam scatters off the atoms 
with an average rate of Rsc/2π = 1.3 kHz, roughly a factor of six smaller 
than γ/2π = 7.5 kHz, the spontaneous emission rate. Combined with 
the collective emission from the atoms as described in the ‘Readout’ 
section of Methods, these dissipation processes set a maximum  
predicted coherence time in the system of 29 μs.

Experimental set-up for the cuts through phase III
For the two cuts through phase III described in Figs. 3 and 4, we load the 
atoms into two clouds separated by 3 mm, as shown in Extended Data 
Fig. 1b. The left-hand cloud has an extent described by standard devia-
tions (σx, σz) = (200 μm, 16 μm). The right-hand cloud has a similar extent 
along σz but is broader along the cavity axis. We tune the lattice polari-
zation to point along z,̂ which breaks the magic angle condition and 
introduces a differential trap depth between the ground and excited 
states of 0.47 MHz for atoms experiencing the peak lattice intensity. 
Due to their finite temperature, the atoms experience a spread in lattice 
intensities, which leads to an inhomogeneous trap depth. We estimate 
the induced distribution of energy shifts by assuming the atoms occupy 
a two-dimensional Gaussian distribution radially with standard devia-
tions σy = σz = 16 μm, compared to the lattice waists wy = wz = 80 μm. This 
produces a peaked distribution equivalent to the narrow peak in Fig. 3a.

In these experiments, we apply a π/2 pulse as before and then 
immediately shine a 461 nm beam centred on the left-hand (‘bright’) 
atomic cloud. Unlike for the previous cut, we do not wait for the 
transient dynamics to settle after state initialization, for simplicity.  

We do not see major differences between the observed and expected 
behaviour when omitting the wait period. The beam has waists 
(wx, wz) = (1,700 μm, 80 μm). We install a beam block just before the 
chamber to clip the beam tail, which otherwise would hit the right-hand 
(‘dark’) atomic cloud. The 3 mm separation between the clouds is 
sufficiently large to ensure that the beam does not significantly dif-
fract around the beam block. The beam shifts the mean energy of the 
bright cloud away from that of the dark cloud, introducing a tunable δs.  
Although we nominally hold EW fixed while scanning δs to explore the 
phase II to phase III transition, in reality the finite size of the blue beam 
introduces an additional contribution to EW for the bright cloud. As 
δs increases, therefore, both the size and shape of the single-particle 
energy distribution change. We calculate EW in a consistent manner by 
estimating the standard deviation of the bright cloud distribution and 
matching the result to a uniform distribution with the same standard 
deviation (Supplementary Information). In the main text, we report 
the value of EW obtained at the phase transition point for the phase II  
to phase III transition. As we increase the 461 nm beam power, the 
atoms also scatter more blue photons. At the largest applied a.c. Stark 
shift, we estimate that the bright cloud experiences a scattering rate 
of Rsc/2π = 3.4 kHz, resulting in lower coherence times for traces with  
large δs. However, this excess decoherence does not bias our measure-
ments of oscillation amplitude and frequency at times t ≤ 8 μs.

Readout
After the initialization in all experiments, the atomic ensemble  
establishes a small electric field inside the cavity, which adiabatically 
follows S⟨ ⟩

−̂  (ref. 30). Assuming homogeneous atom–light coupling 
(see the next section for modifications due to inhomogeneous cou-
pling), the complex amplitude of the electric field leaking out of the 
cavity is given by

̂α t
g
δ

κ S t( ) = − ⟨ ( )⟩, (2)out
c

m
−

where αout has units of photons s−1 . Here, 2g/2π = 10.6 kHz is the 
single-photon Rabi frequency for an atom maximally coupled to the 
cavity, δc/2π = (ωc − ωa)/2π = −51 MHz is the detuning between the cav-
ity resonance frequency ωc and the atomic transition frequency ωa, 
and κm/2π = 41 kHz is the rate at which photons incident on the cavity 
mirror are transmitted. αout is a form of dissipation in the system equiv-
alent to superradiance in a detuned cavity limit. Over the region of 
parameter space explored in this work, we estimate that the dissipation 
rate never exceeds γSR/2π = 2.3 kHz. We measure the detuned super-
radiant light as it leaks out of the cavity using balanced heterodyne 
detection, which provide us with a real-time probe of S Δ⟨ ⟩ ∝

−
BCS

̂ . In 
plots of ∣ΔBCS∣ in the main text, we calculate the square magnitude of 
this quantity and average over 400–1,600 shots of the experiment, 
taken within 2–10 min. We then subtract the background to remove 
the vacuum noise power from the heterodyne signal. Finally, we take 
a signed square root of the result to return an estimate of ∣ΔBCS∣ which 
averages to 0 in the absence of a real signal. This explains why some 
traces dip below zero despite representing a nonnegative quantity.

Additionally, the cavity experiences a (dispersive) shift in its reso-
nance frequency proportional to the number of atoms. We use this to 
measure the atom number by sending a pulsed probe tone through 
the cavity and measuring the frequency shift using the transmitted 
light. Since this light is spectrally resolved from the light emitted by 
the atoms, we are able to measure both signals independently on our 
heterodyne detector. The different optical frequencies involved in the 
heterodyne beat are compared in Extended Data Fig. 1c.

Dynamical phase diagram
The unitary dynamics of our system is modelled by an effective 
atom-only Hamiltonian, given by
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∑ ∑H ħχ ζ ζ S S ε S= + , (3)
jk

j k j k
k

k k
z+ −̂ ̂ ̂ ̂

where ̂Sk
+,−

 and ̂Sk
x y z, ,

 are the standard spin-1/2 operators on atom k. We 
define χ g δ δ κ= − /( + /4)2

c c
2 2 , where g and δc are as defined in the previ-

ous section, and κ is the cavity linewidth. The spatial dependence of 
the interaction term is characterized by ζ jϕ= cos( )j  with ϕ = πλL/λc, 
which arises because the lattice wavelength λL = 813 nm is incommen-
surate with the cavity wavelength λc = 689 nm. In contrast to equa-
tion (1), equation (3) becomes non-integrable due to the inhomogeneity 
in the interaction term. Nevertheless, as shown in Extended Data Fig. 2, 
equation (3) leads to a similar dynamical phase diagram as equation (1) 
if we
1.	 Use a generalized superconducting order parameter Δ χ ζ S= ∑ ⟨ ⟩k kBCS k

−̂ .
2.	Interpret the π/2 pulse as a pulse along the cavity axis under the 

Hamiltonian ̂ ̂H ħ ζ S= Ω ∑k k k
y

drive  that generates the maximum pos-
sible ∣ΔBCS∣, which occurs when Ωt = 0.586π.

3.	Replace the atomic number N by an effective atom number Neff = N/2, 
such that χNeff represents the averaged interaction strength of  
equation (3).

We can still measure the generalized order parameter ΔBCS using  
the field leaking out of the cavity as in the previous section, since  
with inhomogeneous coupling the transmitted field takes the form 
α t κ ζ S t Δ( ) = − ∑ ⟨ ( )⟩ ∝

g
δ k k kout m

−
BCSc

̂ . The dynamical phase diagram in 
Extended Data Fig. 2 is numerically calculated based on unitary evolu-
tion under equation (3), with a single-particle dispersion εk/ħ sampled 
from a uniform distribution in the frequency ranges [−δs/2 − EW/2,  
− δs/2 + EW/2] and [δs/2 − EW/2, δs/2 + EW/2]. There χN corresponds to the 
averaged interaction strength of equation (3). We identify the dynam-
ical phases based on the long-time average of ∣ΔBCS∣, given by

∫Δ
T

Δ t tAvg( ) = lim
1

( ) d , (4)
T

T

BCS
→∞ 0 BCS∣ ∣

as well as the long-time oscillation amplitude of ∣ΔBCS∣. Since the oscil-
lations of ∣ΔBCS∣ might deviate from a sinusoidal form, for theoretical 
simulations it is easier to use the standard deviation as a measure of 
the oscillation amplitude:









∫Δ

T
Δ t Δ tStd( ) = lim

1
( ( ) − Avg( )) d . (5)

T

T

BCS
→∞ 0 BCS BCS

2
1/2

When comparing with experimental data, we measure the oscillation 
amplitude using the Fourier spectrum because technical noise in the 
experiment contributes to the standard deviation of the time traces 
(Fig. 3d). The dynamical phases can be characterized in theoretical 
simulations by
•	 Phase I: Avg(∣ΔBCS∣) = 0, Std(∣ΔBCS∣) = 0.
•	 Phase II: Avg(∣ΔBCS∣) > 0, Std(∣ΔBCS∣) = 0.
•	 Phase III: Avg(∣ΔBCS∣) > 0, Std(∣ΔBCS∣) > 0.

The dynamical phase boundaries (white solid lines) in Extended 
Data Fig. 2 are analytically calculated using a Lax analysis applied 
to equation (1), like the one discussed in refs. 9,16, and take the 
following form (see Supplementary Information for a detailed  
derivation):
•	 Phase I to phase II:







χN
E

δ
E

δ
E

χN
E

=
1
π

with ∈ [0, 1],

= 1 with ∈
1
π

,
2
π

.
(6)W

s

W

s

W W

•	 Phase I to phase III:

χN
E

δ
E

=
2
π

with > 1. (7)
W

s

W

•	 Phase II to phase III:











δ
E

E
χN

χN
E

= csc with >
2
π

. (8)s

W

W

W

The analytical results agree with the numerical simulations for equa-
tion (3). The only difference is that equation (1) predicts an extra dynam-
ical phase transition marked by the white dashed line. The dynamical 
phase boundaries shown in Fig. 1c are constructed with the analytical 
formulas above.

Phase III dynamics with continuous single-particle dispersion
In this manuscript, we generate phase III using a bimodal single-particle 
dispersion, represented with idealized assumptions by Fig. 1b and 
with actual experimental conditions by Fig. 3a. Here we show that this 
experimentally convenient approach generates similar phase III dynam-
ics to the one obtained for continuous dispersion but with different 
initial conditions.

This is done by the protocol shown in Extended Data Fig. 3a, which 
uses a bimodal distribution (δs,init > EW) just to generate a state with 
minimum ∣ΔBCS∣. At this point, the system dispersion is restored to being 
continuous by setting δs,final = EW. This approach more closely resembles 
the phase III quench discussed in actual BCS superconductors, for which 
phase III is observed by quenching from a state with a weak BCS pairing 
gap ∣ΔBCS∣ to one with a strong pairing gap8. Numerical simulations based 
on equation (3) show that nearly all choices of parameters that lead to 
phase III using a bimodal distribution also lead to phase III dynamics 
when quenching to a continuous distribution. The only exception is a 
small parameter regime close to the boundary between phase III and 
phase II (Extended Data Fig. 3b). Note that here we use definitions for 
ΔBCS, the π/2 pulse, and χN that correspond to equation (3), as explained 
in the previous section.

Numerical simulations
The black dashed lines in Figs. 2, 3 and 4 are computed for a unitary 
evolution under equation (3) using a single-particle dispersion εk,  
sampled from the experimentally engineered distribution.

The black solid lines in the same figures are obtained by adding  
dissipative processes and axial motion to equation (3). The system 
dynamics is described by the following master equation for the density  
matrix ̂ρ:

L L L
̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂∑ ∑ρ

t ħ
H ρ L ρ L ρ L ρ

d
d

= −
i

[ , ] + ( )[ ] + ( )[ ] + ( )[ ]. (9)
k

k
k

kc s, el,

The Lindblad superoperator takes the form L ρ LρL( )[ ] =
†̂ ̂ ̂ ̂ ̂L

L Lρ ρL L− ( + )1
2

† †̂ ̂ ̂ ̂ ̂ ̂ . Superradiance through the cavity is described by the 
jump operator:

̂ ̂∑L Γ ζ S= , (10)
k

k kc
−

where Γ = χκ/δc. Spontaneous emission from the atomic excited state 
is described by the jump operator:

L γS= , (11)k ks,
−̂ ̂

where γ/2π = 7.5 kHz is the spontaneous emission rate out of 3P1. 
Single-particle decoherence is described by the jump operator:

̂ ̂L γ S= 2 , (12)k k
z

el, el



where γel is a fitting parameter that takes into account free-space scat-
tering from the a.c. Stark shift beam as well as other decoherence pro-
cesses in the experiment (Supplementary Information). These are the 
dominant dissipative processes in our system.

The axial trapping frequency of the lattice is 165 kHz and is, there-
fore, smaller than the spin-exchange interaction rate χN for most of 
the experiments. As a consequence, in contrast to the idealized model 
in which atoms are assumed to be frozen, motional processes need to 
be accounted for, even though they are suppressed in the Lamb–Dicke 
regime. As shown in the Supplementary Information, axial motion 
can lead to a faster damping rate of ∣ΔBCS∣ oscillations. The predicted 
dynamical phase boundaries are, nevertheless, unaffected by the axial  
motion.

All the numerical simulations are computed using the mean-field 
approximation, which replaces the operators ̂Sk

x y z, ,
 by their expectation 

values S⟨ ⟩k
x y z, ,̂  in the Heisenberg equation of motion. The mean-field 

treatment of the BCS model is predicted to be exact in the thermody-
namic limit due to the infinite-range nature of the interactions8. The 
atom number for numerical simulation is set to 5,000 for the ideal 
conditions and 2,000 for actual experimental conditions. We rescale 
χ to match χN with experimental values.

Higgs-like behaviour in short-time phase II dynamics
When quenching into phase II, we observe highly damped oscillations 
of ∣ΔBCS∣, reminiscent of the Higgs oscillations predicted to arise in this 
regime of the BCS model. Here, we analyse traces from Fig. 2d, in which 
we engineer a variable phase spread φ(ωk) ∈ [0, φ0] before quenching 
into phase II, to study this potential connection.

In the BCS model, Higgs oscillations can be characterized by their 
frequency, which should scale with the long-time BCS order parameter 
Δ∞ as ωosc = 2Δ∞ (ref. 8). We confirm this scaling in theory by measuring 
the oscillation frequency from t = 0 to t = 5 μs in idealized numerical 
simulations that ignore dissipation and motional effects (black dashed 
line in Extended Data Fig. 4a). For different values of the phase spread 
extent φ0, the system reaches its steady state at a different long-time 
BCS gap Δ∞. By parametrically plotting the oscillation frequency ver-
sus 2Δ∞ as a function of φ0 in Extended Data Fig. 4c, we observe the 
expected scaling.

As discussed in the main text, the oscillations of ∣ΔBCS∣ are consistently 
smaller and decay more quickly in the experimental data than in simu-
lations. Nonetheless, we obtain a crude estimate of the experimental 
oscillation frequency by measuring a half period from the first trough 
and peak of ∣ΔBCS(t)∣, as shown in Extended Data Fig. 4a. In Extended Data 
Fig. 4b, we compare the frequency in the experimental data to that of 
ideal simulations for different φ0, which shows that the frequencies 

agree within the error bars. This suggests that the transient dynamics 
observed in ∣ΔBCS∣ are related to the Higgs oscillations present in the 
theory.

Although the experimental oscillation frequency agrees with that 
from the simulations, the steady-state order parameter Δ∞ is much 
smaller, as can be seen in Extended Data Fig. 4a. As a result, the meas-
ured frequencies scale linearly with Δ∞ but with a different prefactor. 
In Extended Data Fig. 4c, we fit a linear relation ω Δ= (1.7 ) × 2osc −0.4

+0.7
∞ to 

the data. The uncertainty bounds for the slope are calculated by assum-
ing that the errors in ωosc are perfectly correlated. Most of the reduction 
in Δ∞ can be captured in theory by considering dissipation and motional 
effects (solid black trace). We see an additional small difference in ∣ΔBCS∣ 
between full numerical simulations and experimental data, which we 
attribute to drifts in experimental alignments and calibration factors 
over time. This difference is not apparent in Fig. 2d because we plot 
∣ΔBCS∣ in normalized units.
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Extended Data Fig. 1 | Experimental configuration. a, Detailed diagram of 
the cavity and all relevant beams. A magnetic field along y  ̂sets the quantization 
axis. The 813 nm optical lattice supported by the cavity has a tunable linear 
polarization. We drive a π/2 pulse with a beam polarized along y  ̂through the 
cavity, and during the experiment we probe the cavity resonance frequency 
using a second y -̂polarized beam to measure atom number. A 461 nm beam 
far-detuned from the S P| ⟩ → | ⟩1

0
1

1  transition shines on the atoms from the side  
of the cavity, inducing a.c. Stark shifts. We probe signals transmitted through 
the cavity using a balanced heterodyne detector. b, Fluorescence image of  
the two atomic clouds used when scanning through phase III in Figs. 3 and 4.  
c, Frequency landscape of 689 nm beams. The atomic drive frequency ωdrive is 
resonant with the atomic transition. The cavity probe frequency ωcp is nominally 
centred with the cavity resonance frequency, 51 MHz red-detuned from the 
atomic transition. The local oscillator used in heterodyne detection has 
frequency ωLO and is 80 MHz blue-detuned from the atomic transition.
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Extended Data Fig. 2 | Numerical simulation of the dynamical phase diagram 
based on equation (3). We identify the dynamical phases based on the long-time 
average (a) and the long-time standard deviation (b) of ∣ΔBCS(t)∣, normalized by 
its initial value Δinit ≡ ∣ΔBCS(0)∣. The white solid lines mark the corresponding 

dynamical phase boundaries, analytically derived from equation (1), which 
agree with the numerical results based on equation (3). The white dashed lines 
mark an extra dynamical phase transition that only exists for equation (1).
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Extended Data Fig. 3 | Alternative approach for phase III. a, Simulation of  
an alternative experimental sequence. As described by the timing sequence at 
the top, we simulate an experiment that prepares the initial state using a π/2 
pulse, lets the system evolve under a bimodal distribution of single-particle 
energy (see the inset) until ∣ΔBCS∣ reaches its minimum value and then quenches 
the system back to a continuous distribution of single-particle energies (inset). 
The theoretically predicted time trace of ∣ΔBCS∣ with χN/EW = 1.0 and δs,init/EW = 1.6 

is shown at the bottom. The blue (grey dashed) line shows phase III dynamics 
under a continuous (bimodal) distribution. b, Long-time standard deviation of 
∣ΔBCS(t)∣ after quenching to the continuous distribution shown in a. The white 
lines are dynamical phase boundaries for bimodal distributions (see Extended 
Data Fig. 2). Nearly all choices of parameters for phase III using bimodal 
distributions can lead to phase III behaviour after quenching to the continuous 
distribution.
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Extended Data Fig. 4 | Collective scaling in damped phase II oscillations.  
a, Time dynamics of ∣ΔBCS∣ measured after engineering an initial phase spread 
over [0, φ0] where φ0 = 0.8π as in Fig. 2d, plotted in absolute frequency units 
(pink trace). The solid black curve represents a numerical simulation of the full 
system, whereas the dashed curve represents an ideal simulation neglecting 
dissipation and motional effects. We obtain a crude estimate of oscillation 
frequency in the experimental data by fitting a trough and peak to smoothed 
data (after subtracting slow-moving behaviour) within the first couple μs 
(magenta points), using these points to infer a half period of oscillation, and 
with uncertainties determined using a 90% amplitude threshold (pink bands). 
b, Comparing oscillation frequency estimates of experimental data (pink 
squares) with those of ideal simulations (black dots) for different φ0. Theory 
oscillation frequencies are calculated using a Fourier transform from t = 0 μs to 
t = 5 μs. Error bars for experimental data are set by the minimum and maximum 
frequencies implied by uncertainties in the half period shown in a. The two 
frequency estimates agree within error bars. c, Collective scaling of oscillation 
frequency. For each φ0 measured in the experiment, we plot the oscillation 
frequency against the long-time BCS gap Δ∞, calculated at t = 18 μs for ideal 
simulations and at t = 3 μs for experimental data. The solid black line is defined 
by ωosc = 2Δ∞, demonstrating the expected scaling for Higgs oscillations. The 
dashed pink line represents a linear fit to the experimental data. The pink band 
shows the uncertainty in the slope assuming correlated error in ωosc, such that 
its bounds are defined by linear fits to the data assuming maximum and 
minimum values for ωosc as defined by the error bars.


