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Climate change is increasing the frequency and severity of short-term (~1 y) drought

events—the most common duration of drought—globally. Yet the impact of this intensi-

fication of drought on ecosystem functioning remains poorly resolved. This is due in part

to the widely disparate approaches ecologists have employed to study drought, variation

in the severity and duration of drought studied, and differences among ecosystems in

vegetation, edaphic and climatic attributes that can mediate drought impacts. To over-

come these problems and better identify the factors that modulate drought responses, we

used a coordinated distributed experiment to quantify the impact of short-term drought

on grassland and shrubland ecosystems. With a standardized approach, we imposed

~a single year of drought at 100 sites on six continents. Here we show that loss of a

foundational ecosystem function—aboveground net primary production (ANPP)—was

60% greater at sites that experienced statistically extreme drought (1-in-100-y event)  tne authors declare no competing interest.

vs. those sites where drought was nominal (historically more common) in magnitude 1y aricle is a PNAS Direct Submission.

(35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single  opyright © 2024 the Author(s). Published by PNAS.

year of extreme drought greatly exceeds previously reported losses for grasslands and ~ This open access article is distributed under Creative
. . R P Commons  Attribution-NonCommercial-NoDerivatives

shrublands. Our global experiment also revealed high variability in drought response but  icerce 40 (cc BY-NC-ND).

that relative reductions in ANPP were greater in drier ecosystems and those with fewer  ,0n pnaS asks authors to adhere to United Nations

plant species. Overall, our results demonstrate with unprecedented rigor that the global naming conventions for maps  (https://www.un.org/

impacts of projected increases in drought severity have been significantly underestimated ~ £2°sPatiaVmapsgeo), our policy is to publish maps as

. . . . provided by the authors.
and that drier and less diverse sites are likely to be most vulnerable to extreme drought. 1y, ;5 .« b.w. contributed equally to this work.
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Most terrestrial ecosystems are impacted to some degree by drought, defined meteorolog- Planning mbH, Adelschlag D-85111, Germany.

ically as an anomalous period of low precipitation relative to normal (1). While droughts “Present address: National Park Service, Flagstaff, AZ
vary widely with respect to severity, duration, and spatial extent, multi-year drought events ge001.
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ref. 4; the 2001 to 2009 Millennium Drought in Australia, ref. 5; the 2015 to 2017 drought
in Cape Town, South Africa, ref. 6). Yet, globally most droughts are shors-term, lasting ~1
y in duration (7). Because short-term droughts are so numerous, they can cause substantial
loss of ecosystem functioning at local, regional, and global scales (8, 9). As Earth’s climate
continues to change, short-term droughts that are statistically extreme in intensity (e.g.,
rare with respect to the long-term climate record, ref. 10) will become more common (11,
12), with 1-in-100-y droughts potentially happening every 2 to 5 y (7). Indeed, evidence
of such drought intensification already exists for some regions (13). Unfortunately, because
of the historic rarity of extreme drought, we have limited, and primarily anecdotal, estimates
of the magnitude of their ecological consequences.

Knowledge of how short-term extreme drought may alter ecosystem functioning is
particularly important for grasslands and shrublands. These ecosystems cover more than
40% of the ice-free terrestrial land surface (14, 15) and are found in every region of the
globe (15). Grasslands and shrublands are characterized by high variability and frequent
deficits in precipitation (16), and thus, are expected to be the most vulnerable to climate
change (17). Moreover, grasslands and shrublands store more than 30% of the global
stock of carbon (15) and contribute significantly to variability in global terrestrial carbon
sinks (18) and atmospheric CO, concentrations (19). Thus, grassland and shrubland
ecosystems can be expected to cause greater variation in global carbon cycling with inten-
sifying droughts in the future.

Fortunately, many drought experiments have been conducted in grasslands and shrub-
lands, relative to other ecosystems (e.g., forests, ref. 1), and a consensus has emerged based
on recent meta-analyses of these studies. These meta-analyses show the expected—that
drought has negative impacts on multiple aspects of ecosystem functioning, particularly
those functions related to C cycling (e.g., productivity)—but also that considerable var-
iation in terrestrial ecosystem responses is observed among studies (20, 21). Much of this
variation could be caused by differences in the magnitude and duration of the droughts
(or alteration in precipitation) imposed among the experiments included in these
meta-analyses (20, 21). Although most droughts imposed are not statistically extreme,
Wang et al. (21) showed that magnitude and duration were important factors for deter-
mining variation in ecosystem responses to experimental alterations in precipitation. They
found a linear decrease in ecosystem functioning with greater reductions in precipitation;
but, over time, productivity became less responsive to altered precipitation (21). One
might conclude from this analysis that the effects of droughts, when imposed at statistically
(i.e., historically) extreme levels, would result in even further declines in function with
the greatest effects manifested in the short term. However, such extreme reductions in
precipitation are uncommon in experiments (10); instead, precipitation reductions are
for the most part within the range of nominal variability of a particular ecosystem.
Consequently, we lack the critical understanding of how grassland and shrubland ecosys-
tems will respond to a future where historically extreme droughts will become the norm
rather than the exception.

Here we report results from the first-of-its-kind coordinated distributed experiment—
the International Drought Experiment or IDE—designed to impose a statistically extreme,
short-term (~1 'y, Materials and Methods) drought across grassland and shrubland sites
globally, using a common methodology (22). At the time of analysis, IDE consisted of
44 sites that experimentally imposed a historically extreme, 1-in-100-y drought treatment
for at least a full growing season. The IDE network also provided an additional 56 sites
imposing a less severe drought treatment, one that was not extreme by our definition but
rather within the range of historic variability (hereafter referred to as nominal drought;
Fig. 1 and Materials and Methods). These 100 sites were arrayed across six continents and
spanned broad climatic (Fig. 1 and ST Appendix, Table S2) and edaphic gradients (23).
At all sites, we measured annual aboveground net primary production (ANPE, Materials
and Methods), a foundational component of the global carbon cycle, as a metric of
drought-induced loss of ecosystem functioning in these grasslands and shrublands.

The results from this globally distributed experiment allowed us to 1) quantify the
effects of short-term extreme drought on ANPP and determine if this effect differed
between grassland and shrubland ecosystems globally, 2) compare the effects of extreme
drought to less severe, nominal (or non-extreme) drought on ANPD, and 3) broadly assess
factors potentially contributing to variation in ecosystems’ responses to both extreme and
nominal drought. We expected to observe a significant loss in ANPP with extreme
drought, and that this loss in ANPP would be greater in grasslands vs. shrublands, con-
sistent with past studies (24-26). Furthermore, we expected that extreme drought would
suppress ANPP substantially more than nominal drought. We also expected that the
extreme drought effects would differ from those derived in previous meta-analyses of

20f 10 https://doi.org/10.1073/pnas.2309881120

Significance

Drought has well-documented
societal and economic
consequences. Climate change is
expected to intensify drought to
even more extreme levels, but
because such droughts have been
historically rare, their impact on
ecosystem functioning is not well
known. We experimentally
imposed the most frequent type of
intensified drought—one that is ~1
y in duration—at 100 grassland
and shrubland sites distributed
across six continents. We found
that loss of aboveground plant
growth, a key measure of
ecosystem function, was 60%
greater when short-term drought
was extreme (<1-in-100-y historical
occurrence). This drought-induced
loss in function greatly exceeds
previously reported losses for
grasslands and shrublands,
suggesting that the global impacts
of projected increases in drought
severity have been substantially
underestimated.
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Fig. 1. Geographic extent and climate space encompassed by the IDE. The 100 grasslands (green circles) and shrublands (brown triangles) included in the
analysis spanned six continents (A) and broad gradients of mean annual temperature and MAP (B). Closed symbols denote sites (n = 44) that experienced
statistically extreme 1-in-100-y drought (i.e., below average annual precipitation during the experiment year). Open symbols denote IDE sites (n = 56) that
experienced nominal (not statistically extreme) drought (i.e., average or above-average annual precipitation during the experiment year). Photos: Shown are
drought shelters at representative sites on each continent. Drought shelters were designed to exclude a fixed proportion of each rainfall event from the plots
below. The proportion excluded was selected to impose a 1-in-100-y drought for each site during years with average annual precipitation (based on long-term
precipitation records, see Materials and Methods for details; see SI Appendix, Table S2 for site codes).

experimental drought results (20, 21, 27), given that past
meta-analyses are subject to publication bias (28) and that their
effect sizes were based on studies that varied widely in the type,
duration, and magnitude of the drought imposed (29-31).

Results and Discussion

Consistent with most previous research, drought experimentally
imposed over ~1 y (<2 y), whether nominal or extreme in mag-
nitude, reduced ANPP relative to ambient conditions (Fig. 1 and
SI Appendix, Table S3). For those sites that experienced extreme
drought, ANPP was reduced on average by ~35% overall; by
~38% and 21% for grasslands and shrublands, respectively
(Fig. 24). Thus, across the 44 sites that experienced extreme
drought, grasslands incurred greater losses in ANPP than shrub-
lands, consistent with previous studies (24-26), though this dif-
ference was not statistically significant (S/ Appendix, Table S4).
For those sites that experienced nominal drought, ANPP was
suppressed by ~21%, much less (>half) than in sites experiencing
extreme drought, and there was a smaller difference between grass-
lands and shrublands in these nominal drought responses (Fig. 24).

PNAS 2024 Vol.121 No.4 e2309881120

This suggests that ANPP of grasslands and shrublands responds
similarly to drought unless droughts are extreme, in which case
these ecosystems are more likely to diverge in their average
response to even a single year of drought.

The 95% Cls for mean reductions in ANPP due to nominal
(non-extreme) droughts, and for grasslands and shrublands sepa-
rately, overlapped with the range of mean effects reported in recent
meta-analyses of drought experiments (Fig. 2A4). This equivalence
between the mean effects of nominal droughts in the IDE network
and past meta-analyses occurred despite the wide variety of exper-
imental protocols for imposing drought treatments included in the
meta-analyses. In contrast, the effect of extreme drought on ANPP
was well outside the range of these past reported effects, with the
reduction in ANPP more than 1.5-fold greater. Thus, our results
suggest that past studies have underestimated the ecosystem effects
of statistically extreme droughts—the droughts of the future.

While it is reassuring that there is similarity among the full suite
of sites in our study (n = 100), the subset of sites subjected to
nominal drought (n = 56), and the mean effect sizes of meta-analyses,
there are several reasons to view the IDE estimates as being more
robust. First, by including results from all sites (including those

https://doi.org/10.1073/pnas.2309881120 3 of 10
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Fig. 2. Response of ANPP to a standardized 1-y drought for 100 IDE sites. (A) Mean drought response for sites that experienced extreme drought or nominal
conditions for: all sites, grasslands, and shrublands (S/ Appendix, Tables S3 and S4). The gray bar indicates the range of ANPP loss from -19 to -=12.6% found in
Song et al.and Wang et al. (20, 21), respectively. Drought response is calculated as: In(average ANPPouari/average ANPP oyrro); O (black dashed line) represents
no effect of drought, and negative numbers indicate less ANPP in drought vs. control plots. (B) Mean drought response for each site ordered from negative (Top)
to positive (Bottom). Site codes and corresponding site information are listed in S/ Appendix, Table S2. Shown are 95% Cls for mean site-level drought responses.
*Indicates site with Cl that was omitted for clarity because it exceeds the x axis scale.

with no evidence of a drought effect, Fig. 2B), we eliminated the
long-standing issue of publication bias affecting meta-analysis effect
sizes (i.e., bias towards significant results, (28, 32)). In addition,
although the statistical power was relatively low for detecting
drought effects at individual sites—a concern of many global
change experiments (32)—the large number of IDE sites, almost
twice as many as included in Song et al. (20) and Wang et al. (21),
provided broader and in some cases denser geographic coverage.
Furthermore, the standardized experimental design and sampling
protocols we used ensured drought treatments were imposed, and
responses assessed comparably, across all sites. Thus, variation in
our dataset should be attributable to ecological differences among
sites and not methodological differences inherent in meta-analyses.
By reducing methodological differences, we anticipated that
site-to-site variability would be reduced in this coordinated, distrib-
uted experiment (22, 23), at least relative to previous studies.
Contrary to that expectation, a surprising amount of variation was
still observed in ANPP responses to both extreme and nominal
drought across sites (Fig. 2B). While 79 sites experienced the
expected losses in ANPD, 21 sites were insensitive to the 1-y extreme
drought, i.e., control and treatment ANPP means differed by <1%
or were slightly higher in treatment plots, suggestive of high resist-
ance to short-term drought (Fig. 2B). Variation in ecosystem
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responses was also observed with nominal drought, with 39 of 56
sites experiencing a loss in ANPP, but 17 sites displaying high
drought resistance. Thus, individual IDE sites still differed in their
responsiveness to both extreme and nominal drought despite the
use of common protocols. This begs the question: What factors are
contributing to the large variation in drought response among sites?

Determinants of Variation in Ecosystem Response to Drought.
Although there are myriad factors that may contribute to site-level
variation in the ANPP responses observed, we focused on seven
key abiotic and biotic variables that were reliably available for
>75% of the IDE sites. These included mean annual precipitation
(MAP), previous year’s precipitation (relativized by MAP), historic
variability in precipitation (expressed as the interannual coeflicient
of variation of MAP), aridity index (AI), soil texture, plant
species richness, and the dominant plant growth-form (expressed
as proportion of graminoids) of the ecosystem (Materials and
Methods and SI Appendix, Table S5).

Past empirical studies have indicated that the factors above may
underpin variations in ANPP responses among sites to drought.
For example, evidence suggests that drier and more arid sites (low
MAP and Al) tend to be more sensitive to drought than wetter
or less arid sites (33—36). But, in addition to MAP (or Al), historic
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variability in precipitation also may contribute to variation in
drought responses (37, 38). In this case, sites that experience
higher year-to-year variation in MAP are expected to be less sen-
sitive to extreme drought, a product of these ecosystems being
adapted to large interannual variations in precipitation. Research
also suggests that legacy effects of the previous year’s precipitation
may play an important role in determining plant productivity,
such that responses lag behind the increases or decreases in pre-
cipitation from the previous year (39—41). Finally, the inverse soil
texture hypothesis (42) proposes that plants growing in coarse-
textured (sandy) soils should experience less water stress than
plants growing in fine-textured soils in relatively arid ecosystems,
with the opposite pattern for ecosystems with higher precipitation.
This interaction between soil texture and MAP is expected to be
amplified with drought, but this prediction has rarely been tested
(43). With IDE spanning a broad range of edaphic conditions
(23), we provide one of the first tests of the inverse soil texture
hypothesis on drought responses.

In addition to the abiotic factors listed above, plant species
richness has been shown to influence the magnitude of ecosystem
response to drought, with more species-rich communities being
more resistant to drought than less species-rich communities (44).
There is also abundant evidence that growth forms differ in their
sensitivity to drought, with grasses and grass-like plants (i.c.,
graminoids) typically more sensitive to water deficits than woody
plants (45, 46) or forbs (47). Given that the IDE sites represent
a range of plant species richness and graminoid abundance
(SI Appendix, Table S5), we evaluated the relationship between
average plot-level species richness and abundance of graminoids
and the magnitude of the drought response observed.

Three of these potential sources of variation in drought response
had statistical support in the IDE dataset. We found weak evidence
(P =0.08) for MAP and moderate evidence (P = 0.02) for aridity

® Grassland, extreme O Grassland, nominal

(low values indicate lower plant water availability or more arid
sites) being related to magnitude of drought responses (S/ Appendix,
Table S6). Drier sites (lower MAP or greater aridity) experienced
greater losses in productivity than wetter grassland and shrub-
lands. This finding matches studies demonstrating that produc-
tion losses at more arid sites are greater in response to drought
(32, 35-37) and supports the Huxman-Smith model (35) of
greater sensitivity of ANPP to interannual variation in precipita-
tion (and dry years) in more arid sites. Finally, as demonstrated
previously (44), there was moderate evidence for more species-rich
sites being more resistant to a loss in productivity than less rich
sites (P = 0.04).

In contrast, we found no evidence that previous year’s precipita-
tion (as relativized by MAP), CV in MAD, percent sand (a key
component of soil texture), or the proportion graminoids explained
the variation in drought responses observed across all sites (Fig. 3
and S Appendix, Table S6). We also found no evidence for an inter-
active effect between MAP and percent sand on drought response
(81 Appendix, Table S7), and thus no support for the inverse soil
texture hypothesis affecting differential drought sensitivity.

The Importance of Drought Severity. As indicated above, drought
magnitude or severity (i.e., % reduction in precipitation relative
to the control) was an important predictor of ecosystem response
to drought in the recent meta-analysis by Wang and et al. (21).
Because the passive approach to imposing drought employed with
IDE (Fig. 1; Materials and Methods) relies on ambient precipitation
levels, the actual amount of precipitation that was reduced with the
drought treatment at each site (with respect to the long-term record,
i.e., MAP) varied with the amount of annual precipitation received
during the year of the experiment. We used this variation in drought
severity to determine if differences in drought responses could be
explained simply by the magnitude of drought imposed (calculated

A Shrubland, extreme /\ Shrubland, nominal
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Model results are summarized in S/ Appendix, Table S6. Drought response is calculated as: In(average ANPPypouchi/average ANPPoyrrol); O (black dashed
line) represents no effect of drought, and negative numbers indicate less ANPP in drought vs. control plots. Lines are shown only for significant relationships.
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Fig.4. Relationship between drought severity and drought response. A linear
mixed effects model found strong evidence for a negative effect of increasing
drought severity (becoming more negative) on drought response for 1y of
drought across all sites (intercept = -0.11; slope = 0.53; P = 0.009; adjusted R*
=0.06). Model results for the effects of drought severity on drought response
for extreme and nominal sites are summarized in the Main Text. Shaded
area represents the 95% Cl. Drought response is calculated as: In(average
ANPPprousnr/average ANPP o mrol)- FOr drought responses, 0 represents no
effect of drought, negative numbers indicate less ANPP in drought vs. control
plots. Drought severity is calculated as: (Precipprougr-MAP)/MAP; MAP = mean
annual precipitation. Because ambient precipitation during the experiment
year determines the severity of the imposed drought, positive drought severity
can occur during anomalously wet years when plots beneath drought shelters
also experience above average precipitation. The open symbols denote those
IDE sites (n = 56) where ambient precipitation was above average, and thus
the imposed drought was not statistically extreme (1-in-100 y). Closed symbols
denote those sites (n = 44) with average or below average annual precipitation
during the experiment year. All of these IDE sites experienced statistically
extreme drought. The filled orange square denotes the mean drought
response for sites experiencing extreme drought whereas the open orange
square is the mean for sites that experienced less severe drought. Note that
there was no relationship between drought severity and drought response
when only those sites that experienced extreme drought are considered. The
red dashed lines provide visual guides for 50% and 75% reductions in ANPP.

as drought severity = (Precipitationppoycyr-MAP)/MAP). As
expected, we found strong evidence (P = 0.009) that increasing
(more negative) drought severity led to larger reductions in ANPP
when examined across all 100 sites (Fig. 4). Further, the amount of
variability explained doubled when drought severity, MAD, previous
year’s precipitation, CV in MAD, percent sand, and proportion of
graminoids were included together in the model (S Appendix,
Table S8); though, drought severity remained the only significant
factor in the model, underscoring the primary importance of this
metric in determining the magnitude of the drought response.
One concern with passively reducing ambient precipitation is
that in particularly dry years, differences in ecosystem responses
between drought and control treatments tend to be minimized
(48). In other words, if ambient precipitation is well below aver-
age, ANPP would be expected to be low even in control treatments
and further reductions in precipitation with the drought treatment
may not cause any additional appreciable reductions in ANPP.
Thus, the difference between the drought and control treatments
would be small, resulting in an effect size close to zero. This would
give the appearance of the site being highly resistant to drought.
We examined whether this was a possibility for sites with a large
drought severity index (45% reduction in precipitation) and yet
a drought response close to zero. We found that this phenomenon
may indeed be responsible for the high resistance observed for
these few sites (n = 4), but for most sites that exhibited resistance
to drought (n = 17), this potential experimental phenomenon
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could be dismissed, suggesting that other factors are contributing
to high resistance of these sites to a single year of extreme drought.

With the above analyses, we were able to evaluate how climate,
soil texture, vegetation structure, and drought severity broadly
influence drought response. However, given that drought severity
was the primary determinant of variation in drought response,
other factors that we were unable to include in our analyses are
likely contributing to observed high variability in ecosystem
response to extreme drought. Moving forward, a key challenge is
to determine what these other factors are and identify those eco-
system attributes (e.g., soil fertility, root:shoot ratios, plant com-
munity composition, plant-microbe interactions, etc.) that may
strongly influence resistance to a single year of extreme drought.
Measurement of these factors at the site level and inclusion of
these factors in future analyses will be crucial for predicting and
mitigating the impacts of extreme drought as climate changes.

Despite the uncertainty of what may be determining variation
in drought response in grasslands and shrublands globally, our
analysis suggests that overall, ANPP declines as a linear function
of increasing drought severity (Fig. 4). In other words, there was
no evidence for catastrophic or nonlinear losses in ANPP when
single-year droughts become statistically extreme. However, the
results from this globally distributed drought experiment do indi-
cate that losses in ANPP are greater than previously expected when
drought is historically extreme. With climate change, droughts
are not only expected to become more extreme, but also more
frequent and longer in duration. It remains unknown what effects
these aspects of intensified drought may have when overlaid with
greater losses in ANPP with increased drought severity.

In conclusion, given that many ecosystems, particularly grass-
lands and shrublands, experience substantial interannual variability
in precipitation (16, 49), it is not surprising that short-term pre-
cipitation reductions that are not statistically extreme would result
in only “moderate” (~20%) losses in productivity. Even such mod-
erate responses are likely to have important implications for the
global carbon cycle and the wildlife, livestock, and human popu-
lations that rely on plant production. Of greater concern, however,
is that grassland sites and grassland and shrubland sites combined
experienced a magnified loss of function (more than 1.8- and
1.5-fold greater reduction, respectively) when drought was statis-
tically extreme for ~1 y. Clearly, with climate change increasing
drought intensity and frequency (50), and given that effects can
linger long after drought ends, even more substantial impacts on
the global carbon cycle can be expected. Indeed, reductions in
ANPP exceeding 35% are not often observed in moderate droughts
of longer duration (24, 51), and a recent study suggests that exper-
imental droughts may underestimate the magnitude of ANPP loss
by more than half when compared to naturally-occurring droughts
(52). Thus, results from our distributed experimental approach
reveal that extreme droughts are likely to substantially slow C
sequestration in grasslands and shrublands, surpassing predictions
from past meta-analyses (20, 53) and experiments (9, 52). Finally,
the underlying cause of the striking range in ecosystem responses
to short-term extreme drought, from highly resistant to highly
vulnerable, remains unresolved. Results from our globally distrib-
uted and standardized drought experiments demonstrated little to
no evidence for key factors typically thought to drive ecosystem
variability in response to drought: CV of MAP, previous year’s
precipitation, soil texture, and proportion of graminoids. Yet, we
found strong support for MAP/aridity and plant species richness
being at least partially predictive of ANPP response to extreme
drought. If traditionally invoked variables do not explain most of
the cross-site variation in responses to intensified droughts, we must
rethink our measurements and experiments to allow us to identify
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other underexplored factors. Understanding the determinants of
differences in both short- and longer-term drought vulnerability
will provide critical insight into both the mitigation potential and
adaptative capacity of ecosystems in a future where today’s extremes
become the norm rather than the exception.

Materials and Methods

The IDE. IDE was initiated in 2013 as part of the Drought-Net Research Coordination
Network, funded by the US NSF. Drought-Net s a global network of researchers com-
mitted to understanding how terrestrial ecosystems respond to extreme drought. For
all networkinvestigators, we provided and continue to provide standard experimen-
tal protocols on the DroughtNet website (droughtnet.weebly.com). Sites must follow
these protocols for their data to be included in our analyses. At the time of analysis,
141 sites had joined our network, but data from only 100 of the sites (Fig. 14 and
SI Appendix, Table S2) had been submitted and/or met our criteria for inclusion in
this analysis (S/ Appendix, Table S9). These 100 sites were well distributed across
gradients of MAT and MAP (Fig. 1B) and represented two ecosystem types: grass-
lands and shrublands. Most (>90%) of the sites were dominated by perennials.
Furthermore, like most grasslands and shrublands globally, all the sites had some
history of management (S/ Appendix, Table $10), but only 13 sites that we know of
were actively mowed (n = 6), burned (n = 5), or grazed (n = 2).

The target for the IDE drought treatment was a statistically extreme, 1-in-100-y
drought imposed year-round. To achieve the target level of extremeness, each
site's treatment magnitude (reduction in precipitation) was based on the past 100y
of climate data from the site or 100 y of interpolated data from the Terrestrial
Precipitation Analysis tool (54). Because precipitation history and variability are
unique to each site, this approach allowed us to target the common level of
statistical extremeness by allowing the proportional reduction in precipitation to
vary across sites (55 and S/ Appendix, Fig. S1). This contrasts with the alternative
approach of imposing a fixed reduction in precipitation (e.g., 50%), which can
result in very different levels of extremeness across sites (55).

The target level of extreme drought was imposed at each site using infra-
structure that is commonly used in short-statured ecosystems (56). The infra-
structure consisted of two or more open-sided shelters, each a minimum of
2'm x 2 m, with roofs that were partially covered with transparent strips of plastic
(either V-shaped or corrugated). The percentage roof coverage was dictated by
the target level of precipitation reduction (Fig. 1). This shelter design has been
shown to have minimal effects on microclimate (57-59), while matching key
characteristics (e.g., number of consecutive dry days, size of events, number of
events) of naturally occurring extreme dry years across a range of ecosystems
(55). For those sites (n = 9) with both control plots (no infrastructure) and plots
with an infrastructure control (i.e., structures that mimic the shading of shelters
but allow rain to pass through), there was no evidence that ANPP was affected by
the shelter infrastructure (mean difference = 5.25%; 95% Cl = —6.39%, 18.33%;
t-value = 0.89; df = 33; P = 0.38).This suggests an absence of significant non-
target effects of the drought shelters, which has also been demonstrated in other
experiments (57-59).

We also chose the shelter infrastructure to impose drought because itis highly
cost-effective and can be consistently deployed across a range of short-statured
ecosystems, making itamenable for use in a coordinated distributed experiment
(22). However, because we manipulate precipitation passively, the target level of
drought extremeness may or may not be achieved in any given year, depending
on ambient precipitation amount (48). For example, an above-average year of
precipitation will resultin drought treatments that are less severe, while a below-
average precipitation year will resultin an even more extreme drought than the
target level. In total, 44 of the 100 IDE sites received average or below-average
precipitation in the first year of the treatment, and thus imposed the target sta-
tistically extreme, 1-in-100-y drought (S/ Appendix, Fig. S2). The remaining 56
sites received above-average precipitation, and thus imposed a non-extreme
("nominal”) drought, which was within the range of historic variability.

To be included in this analysis, sites needed to collect peak live aboveground
biomass as an estimate of annual ANPP (60). While we recognize that there are
numerous other ecosystem processes that can be impacted by drought, ANPP
was selected because it can be comparably estimated and readily standardized
across sites. Moreover, ANPP is a low-cost measurement that requires much less
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investment of time than other measures of ecosystem functioning-a crucial fea-
ture of response variables in CDEs and other successful experimental networks,
such as the Nutrient Network (22, 61). ANPP was estimated either destructively
and/or non-destructively using methods appropriate for the particular ecosystem
as cited in Fahey and Knapp (62), with herbaceous-dominated sites encouraged to
follow the Nutrient Network's protocols (https://nutnet.org/). We relied on investi-
gators to use their expertise in determining the most appropriate methods-either
destructive or non-destructive-to estimate ANPP for their study system. Sites
then separated ANPP estimates into live and dead before further classifying live
biomass by growth form (graminoid, grass, forb, woody, etc.) and submitting
all estimates in grams of dry biomass per m?. Standing dead biomass could be
separated into current and previous year's growth where appropriate.

Drought Response Metric. For each site, we calculated relative drought
response as the ratio of average ANPP in the drought plots compared to average
ANPP in the control plots, as a metric of ecosystem response to imposed drought.
Specifically, we adapted equations from Smith et al. (63) and Kreyling et al. (64)
to define relative drought response as: In(ANPPyzou61i/ ANPP conrol)-

Drought Severity Metric. We calculated the actual severity of the drought that
wasimposed during the year of precipitation manipulation using meteorological
data that was either collected 1) on-site (site-submitted) or 2) from a nearby
weather station (mean distance = 10.2 km). The nearby weather station data
was obtained either from the Global Historical Climatology Network (GHCN, 65)
or the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS, 66).
When data from GHCN, CHIRPS, or local weather stations were not available,
we used site-submitted annual precipitation estimates. We first calculated the
amount of precipitation each site received in the 365 d preceding collection
of ANPP. We then used this precipitation calculation, the site-reported percent
reduction in precipitation imposed with the drought treatment, and days the
drought shelters were in place prior to the collection of ANPP to estimate the
total amount of precipitation reduced at each site. To qualify as 1y of drought, a
site's shelters needed to be in place for at least one full growing season (within
1 wk of 120 treatment days prior to harvest), but less than 2 y (within 1 wk of
650 d). For the drought severity metric, we compared the estimated precipitation
received in drought plots to MAP (mm) as reported by each site, and calculated
the deviation from this number: (Precipg,qn - MAP)/MAP.

Abiotic and Biotic Factors. We included in our analysis seven abiotic and
biotic factors that have been hypothesized to be important in influencing var-
iability in drought response among sites (S/ Appendix, Table S5). These factors
included: MAP (mm), previous year's precipitation (mm), historical variability
in MAP (interannual CV), Al, soil texture, proportion of graminoids, and site
richness. As indicated above, we used MAP as reported by each site. We used
either site-submitted, GHCN, or CHIRPS data to calculate how much precipita-
tion each site received in the 365 to 730 d preceding the ANPP harvest and then
relativized this value by site MAP. We refer to this as previous year's precipitation
in our analyses. Historical variability of precipitation was estimated using the
average coefficient of variation for the 30 y of precipitation from each site using
GHCN station data. The Al (an estimate of plant moisture availability), was cal-
culated as the MAP divided by potential evapotranspiration (67); Trabucco etal.
(67) uses estimates from World Clim v2 (68) to calculate these values. Lower Al
valuesindicate lower plant water availability. For the interannual coefficient of
variation in MAP, we pulled data from the Multi-Source Weighted-Ensemble
Precipitation tool (69).

Asa proxy for soil texture, we used a weighted mean for percent sand in the top
100 cm of soil for each site (n = 96) available in the ISRIC World Soil Information
(70), which yielded information for 96 sites. We used this global dataset because
site-level data was only available for 27 of the sites. However, for those 27 sites
we conducted a Pearson correlation test between site-derived values and the
global dataset to confirm whether the global dataset measures were accurate,
which we found to be the case (r = 0.67, P < 0.001).To calculate the proportion
of graminoids, we used 77 sites that submitted ANPP data for each functional
group. For each plot at a site, we divided the ANPP of graminoids by the total
ANPP (all functional groups added together). We then averaged these proportions
across plots for each site. For richness, we used plant species composition data
submitted by 68 of the 100 sites at the time of analysis. We only used data from
control plots and averaged richness at the plot level for each site.
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Statistical Analyses. For all statistical analyses, we used the language of evi-
dence(71)to describe our results as an alternative to typical statistical significance
testing (i.e., using a significance cut-off of P-value < 0.05). With this approach,
we ascribe P-values as following Muff et al. (71): >0.1 = little or no evidence,
between 0.05 and 0.10 = weak evidence, between 0.01 and 0.05 = moderate
evidence, and <0.01 = strong evidence.

To test whether ANPP in drought plots differed from that in control plots, we
used six one-sided t tests in R (version 4.0.2, 72), identifying whether responses
were significantly less than 0. We chose to use one-sided t tests given that out
a priori hypothesis was for drought to result in a reduction in ANPP (rather than
either a decrease or increase, which would be relevant for an expectation of
increased ANPP with drought). However, to examine whether results differed
based on one-sided vs. two-sided t tests, we conducted two-sided ¢ tests for the
six comparisons and found that this did not affect the results, except in the case
of the shrubland nominal drought test (one-sided P-value = 0.07, two-sided
P-value = 0.15). We tested sites with nominal and extreme droughts separately,
and tested ecosystem types together and separately (S/ Appendix, Table S3).To
test for differences in grassland and shrubland responses to drought across all
sites, we used linear regression (S/ Appendix, Table S4).

To examine whether the seven abiotic and biotic factors described above
explained any variation in the drought response observed, we used linear mixed
effects models forall 100 sites, or separately for sites that experienced extreme or
nominal drought. We built separate models that tested the following explanatory
variables: ecosystem type (grassland or shrubland), MAP (mm), previous-year's
precipitation (mm, relativized by MAP), average coefficient of variation (%) for
MAP, Al (scaled using the natural log), average percent sand, average proportion
of graminoids, and average plot-level richness. We also explored the inverse
soil texture hypothesis using a linear mixed effects model (site set as a random
effect) to test how the interaction of average percent sand and MAP affected
drought response.

We used a Pearson correlation to test collinearity among drought severity (pro-
portion), length of drought (days), and a categorical variable for whether sites had
ambient precipitation equal to or above (group 1) or below (group 2) MAP. We set
drought severity as ourfixed effect as it integrates the length of drought (r= —0.59,
P < 0.001), deviation in ambient precipitation from MAP (r = 0.60, P < 0.001),
and a site’s drought shelter design into a single variable. To test the nature of the
relationship between drought response and various factors (drought severity, MAP,
previous year's precipitation, aridity, coefficient of variation, and plant community
richness) we compared both linear and non-linear models (asymptotic regression
and general additive model with a spline function set to 3) using AIC. We did not
find evidence for a non-linear response (S Appendix, Table $11) and proceeded
with building linear models using the Imer function (package stats) in R. We also
built a multiple linear regression to see whether drought severity combined with
MAP, previous year's precipitation, proportion graminoids, CV, and average percent
sand could further explain variation in drought response.

Data, Materials, and Software Availability. Derived data are provided in
SI Appendix, Table S5. All code and derived data have been deposited in Dryad
(73).All other data are included in the manuscript and/or S/ Appendix.
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