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Abstract.

The online list-labeling problem is an algorithmic primitive with a large literature of upper
bounds, lower bounds, and applications. The goal is to store a dynamically-changing set of n items
in an array of m slots, while maintaining the invariant that the items appear in sorted order, and
while minimizing the relabeling cost, defined to be the number of items that are moved per inser-
tion/deletion.

For the linear regime, where m = (1 4+ ©(1))n, an upper bound of O(log? n) on the relabeling
cost has been known since 1981. A lower bound of Q(log? n) is known for deterministic algorithms
and for so-called smooth algorithms, but the best general lower bound remains (logn). The central
open question in the field is whether O(log? n) is optimal for all algorithms.

In this paper, we give a randomized data structure that achieves an expected relabeling cost of
O(log®/? n) per operation. More generally, if m = (1+ €)n for € = O(1), the expected relabeling cost
becomes O(e~1 log®/2 n).

Our solution is history independent, meaning that the state of the data structure is independent
of the order in which items are inserted/deleted. For history-independent data structures, we also
prove a matching lower bound: for all e between 1/711/3 and some sufficiently small positive constant,
the optimal expected cost for history-independent list-labeling solutions is ©(¢~1 logS/2 n).
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1. Introduction. The online list-labeling problem is one of the most basic
and well-studied algorithmic primitives in data structures, with an extensive literature
spanning upper bounds [3,7,10,12,16-18,34,41-43,76-78], lower bounds [23,27-29,66,
79], variants [2,3,8,18,25,26,34,65], and open-problem surveys [33,66]. The problem
has been independently re-discovered in many different contexts [2,34,65,75], and it
has found extensive applications to areas such as ordered maintenance [9, 10,16, 26],
cache-oblivious data structures [12-14,17,21], dense file maintenance [75-78], applied
graph algorithms [46,48,61,72-74], etc. (For a detailed discussion of related work and
applications, see Section 8.)

The list-labeling problem was originally formulated [42] as follows. An algorithm
must store a set of n elements (where n changes over time) in sorted order in an array
of m > n slots. Elements are inserted and deleted over time, with each insertion
specifying the new element’s rank r € {1,2,...,n + 1} among the other elements
that are present (e.g., inserting at rank 1 means that the inserted element is the new
smallest element). To keep the elements in sorted order in the array, the algorithm
must sometimes move elements around. The cost of an algorithm is the number of
elements moved during the insertions/deletions.!

The list-labeling problem is well understood in the regime where m > n. In
the pseudo-exponential regime, when ™ = 2"9(1), it is possible to achieve O(1)
amortized cost per operation [7]. In the polynomial regime, when * = n®M | the
amortized cost becomes O(logn) [2,34,45]. These bounds are known to be tight for
both deterministic and randomized algorithms [6,7,24].

It has remained an open problem, however, what happens in the linear regime,
where m = (1+¢€)n for some € = ©(1). In 1981, Itai, Konheim, and Rodeh [42] showed
how to achieve amortized cost O(log2 n), and posed as an open question whether any
algorithm could do better. Despite a great deal of subsequent work on alternative
solutions (including deterministic, randomized, and deamortized algorithms) for the
same problem [8,10,16,18,41,43,76-78], the bound of O(log? n) has remained unim-
proved for four decades.

Starting in 1990, there has been a long line of work towards establishing a match-
ing Q(log® n) lower bound [23,24,27-29]. It is known that any deterministic algorithm
requires Q(log® n) amortized cost per insertion [23]. And the same lower bound holds
for smooth algorithms, where the relabelings are restricted to evenly rebalance el-
ements across a contiguous subarray [29]. This second lower bound is surprisingly
strong: it applies even to randomized algorithms and even to the offline problem,
where the entire sequence of operations is known a priori. However, the best general
lower bound remains Q(logn) [24].

These lower bounds tell us that, if an algorithm is to beat the O(log?n) bound,
then the algorithm must be both randomized and non-smooth. Whether or not any
such algorithm is possible has remained the central open question [23,24,27-29, 42]
in this research area (see also discussion of the problem in open-problem surveys and
textbooks [33,50,66]). Several sources [27-29] have conjectured that ©(log® n) cost is
optimal in general.

Breaking through the log”n barrier.. We present a randomized list-labeling al-
gorithm that achieves expected cost O(10g3/ 2n) per insertion/deletion in the linear

1To accommodate the many ways in which list labeling is used, some works describe the problem
in a more abstract (but equivalent) way: the list-labeling algorithm must dynamically assign each
element z a label £(z) € {1,2,...,m} such that z <y <= {(x) < {(y), and the goal is to minimize
the number of elements that are relabeled per insertion/deletion—hence the name of the problem.
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regime (Corollary 5.11). In breaking through the log®n barrier, we establish that
there is a fundamental gap between deterministic and randomized algorithms for on-
line list labeling. Our result is the first asymptotic improvement in the linear regime
in the 40-year history of the problem.

The original O(log? n) upper bound by Itai et al. [42] also extends to the dense
regime of € = o(1), where the bound on amortized cost becomes O(e~!log?n) [3,
19, 79]. Extending our algorithm to the same regime, we achieve expected cost
O(e*log®? n) (Theorem 5.10).

Applying our result to the insertion-only setting, the array can be filled from
empty to full (i.e., n = m) in total expected time O(nlog®® n) (Corollary 5.12). This
improves over the previous state of the art of O(n log® n), which was known to be
optimal for deterministic algorithms [23]—again we have a separation between what
can be achieved with deterministic and randomized algorithms.

A surprising aspect of our results is how they contrast with the polynomial regime
m = n'T®M  where randomized and deterministic algorithms are asymptotically
equivalent [6,7,24]. Our final upper-bound result considers a continuum between
these regimes, where m = w(n) N n'T°M). In this sparse regime there is a folklore

bound [2,34,45] of O (%) , which continuously deforms between O(log2 n) for the

linear regime and O(logn) for the polynomial regime. Using our techniques (Theorem
7.2), we achieve expected cost
0 logg/ *n .
Tog(m,/n)

Thus we achieve asymptotic improvements for list labeling for all m = n!to(1),

An unexpected tool: history independence.. One research area that our algorithms
build directly upon is the study of history-independent data structures: a data struc-
ture is said to be history independent [51,54] if its current state reveals nothing
about the history of the past operations beyond the current set of elements that are
present.

History independence is typically viewed as a security guarantee, with the in-
tent being to minimize the risk incurred by a security breach. Research on history-
independent data structures [20,22,35,36,39,51,53,54] (as well as on history-independent
list labeling [8] specifically) has focused on history independence as an end goal, with
the question being whether history independence can be achieved without any increase
in running time.

We find that, in the context of list labeling, history independence is actually
a valuable algorithmic tool for building faster randomized data structures. History
independence allows for us to have a data structure with vulnerabilities (i.e., certain
spots where an insertion would be expensive) while (1) keeping those vulnerabilities
hidden from the adversary; and (2) preventing the adversary from having any control
over where those vulnerabilities appear. This simple paradigm plays an important
role in allowing our randomized data structures to bypass the log? n barrier.

A matching lower bound for history-independent data structures.. Finally, we
show that our bounds in the dense regime are asymptotically optimal for any history-
independent data structure: there exists a positive constant ¢ such that, for all
1/n'/3 < € < 1/c, the expected insertion/deletion cost when m = (1 4 €)n is neces-
sarily at least Q(e~*log®?n) for any history-independent data structure (Theorem
6.1).
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This means that, if there exists a randomized data structure that achieves better
bounds than those in this paper, then the data structure must fundamentally be
adaptive in how it responds to the history of the operations being performed. Of
course, by being adaptive, such a data structure would also implicitly surrender the
structural anonymity that history independence offers, revealing information about
where the “hotspots” are within the data structure. Our results suggest that log3/ n
is a potentially fundamental barrier—whether or not the bounds achieved in this
paper are optimal in general remains an enticing open problem.

Paper outline.. The rest of this paper proceeds as follows. Section 2 gives prelimi-
naries. Section 3 gives an intuitive overview of our upper bound and proof techniques.
Sections 4 and 5 present our upper bounds for the linear/dense regime. A key techni-
cal idea is to control the local density of the array via a random process that we call
a Zeno random walk—we describe and analyze this random walk in Section 4. Sec-
tion 5 then gives our (history-independent) list-labeling data structure and uses the
bounds on Zeno random walks to analyze it. Section 6 presents our lower bound for
history-independent list-labeling data structures. Section 7 gives a black-box reduc-
tion for transforming dense list-labeling solutions into sparse list-labeling solutions—
this yields our upper bound for the sparse regime. Finally, Section 8 discusses related
work in more detail.

2. Preliminaries. In this section, we formally define the list-labeling problem
and history independence—we then outline the classical O(log® n) solution [42] and a
more recent history-independent variation on that solution [8].

The list-labeling problem.. A list-labeling data structure stores a dynamically
changing set of size n < m in an array of m slots. It supports two operations:

e INSERT(r), r € {1,2,...,n+ 1}: This operation adds an element whose rank
is r. This increments n and also increments the ranks of each of the elements
whose ranks were formerly in {r,... ,n}.

e DELETE(r), r € {1,2,...,n}: This operation removes the element whose
rank is r. This decrements n and also decrements the ranks of each of the
elements whose ranks were formally in {r +1,...,n}.

The list-labeling algorithm must maintain the invariant that the elements appear in
sorted order (by rank) within the array. The cost of an insertion/deletion is the
number of elements that are moved within the array during the insertion/deletion
(including the element being inserted/deleted). In the case where n = Q(m), we
will further guarantee (for our upper bounds) that the maximum gap between any
two consecutive elements in the array is at most O(1) positions—this extra guarantee
is often required for applications of list labeling in which algorithms perform range
queries within the array, e.g., [12,13,61,73,74].

We will typically use an additional parameter e such that either n < (1 — €)m or
m > (14 €)n (the specific convention that we follow will differ from section to section
to optimize for simplifying the algebraic manipulation in each section).

From the perspective of the list-labeling data structure, the elements that it
stores are black boxes—the only information that the data structure knows about its
elements is their sorted order. This allows for list labeling to be used in applications
where the elements are from arbitrary universes.

Finally, it is important to emphasize that the insertions/deletions are performed
by an oblivious adversary, who does not get to see the random decisions made by
the list-labeling data structure. If the adversary were to be adaptive, then, trivially,
no randomized list-labeling data structure could incur expected cost any better than
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the worst-case cost of the best deterministic list-labeling data structure.

History independence.. A data structure is said to be history independent
[8,20,22,35,36,39,51,53,54] if, given access to the current state of the data structure,
the only information that an adversary can deduce is the current set of elements; that
is, the adversary gains no information about the history of operations performed. In
the list-labeling data structure the current set of elements is specified only by their
relative ranks, so the only information that an adversary can deduce is the number of
elements.

History independence plays an important supporting role throughout this paper.
Indeed, although history independence does not on its own improve the asymptotics
of list labeling, it does create a natural abstraction for how to separate the behavior
of the data structure that we are designing from the actions of the user.

There are several basic mathematical properties of history independence that will
be useful in both our upper and lower bounds. Define the array configuration of
a list-labeling data structure to be the boolean vector in {0,1}™ indicating which
n positions of the array contain elements. We have the following properties of a
history-independent data structure for list-labeling;:

PROPERTY 2.1.

(a) Whenever the array contains n elements, its array configuration A satisfies
A ~ Cp m, where Cp m, is some probability distribution over array configura-
tions.

(b) Whenever an insertion is performed at rank r € {1,2,...,n+ 1} in an array
with n elements, the array configurations Ay and Ay before and after the in-
sertion satisfy (Ao, A1) ~ Ly m.r, where Ly, m » is a joint distribution between
Cnom and Cn+1,m.2

(¢) Whenever a deletion is performed at rank r € {1,2,...,n+ 1} in an array
with n + 1 elements, the array configurations A1 and Ag before and after
the deletion satisfy (Ao, A1) ~ Dpm,r, where Dy s o joint distribution
between Cy, p, and Cri1,m.-

These properties imply that the (probability distribution on the) behavior of
the algorithm on any given operation is fully determined by m, m, the operation
(insertion or deletion), and the rank r of the element being inserted/deleted. In our
upper bounds, we will further have that D,y » = Zpm,»; we call any list-labeling
data structure with this property insertion/deletion symmetric.

2.1. The Classical Solution and its History-Independent Analogue.

List labeling with weight-balanced trees.. The original solution to list labeling [42],
due to Itai et al. [42] in 1981, can be described in terms of weight-balanced trees [34,
59,60]. For brevity, we will describe the solution here for the linear regime, where
m = (14+06(1))n, but the same solution directly generalizes to all regimes from dense
(n = (1 — €)m) to polynomial (m = n'+t®W),

Consider an array of size m, and impose a tree structure on it, where the root node
represents the entire array, the nodes in the i-th level of the tree represent disjoint
sub-arrays of size m /2!, and the leaf nodes represent sub-arrays of size ©(logn).
We keep the tree tightly weight balanced, meaning that, for any pair of sibling nodes
x and y, their densities are always within a 1 + O(1/logn) factor of each other. In
particular, whenever an insertion or deletion breaks this invariant for some pair of

2A probability distribution X is a joint distribution between distributions A and B if (4, B) ~
X = A~ A, B~ B.
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siblings « and y, we take the elements in the sub-array Uy and rearrange them to
be distributed evenly across that sub-array.

This tight weight balancing ensures that all of the nodes in the tree have densities
that are within a factor of (14 O(1/logn))?(°8™) = O(1) of each other. By selecting
the constants in the algorithm appropriately, one can ensure that every leaf has more
slots than it has elements, which guarantees the correctness of the data structure. On
the other hand, in order to maintain such tight weight balancing, one must rebuild
nodes a factor of O(logn) more often than in a standard weight-balanced binary
search tree [34,59,60], leading to an amortized cost of O(log® n).

Intuitively, the above data structure would seem to be the asymptotically opti-
mal approach to maintaining tightly-balanced densities within an array—the known
lower bounds for list labeling [23,27-29] confirm that this is the case for both deter-
ministic and smooth data structures. The upper bounds in this paper reveal that,
perhaps surprisingly, it is not the case for randomized data structures. Randomization
fundamentally reduces the cost to maintain a tightly weight-balanced tree.

History-independent list labeling.. To understand how history independence can
be achieved in the context of list labeling, it is helpful to first understand it in the
context of balanced binary search trees. The classic example of a balanced binary tree
with a history-independent topology is the randomized binary search tree [5,67)
(or, similarly, the treap [5,67]), which maintains as an invariant that, at any given
moment, the structure of the tree is random (i.e., that within each subtree, the root
of that subtree is a random element). This can be achieved with reservoir sampling
[5,8,49,67,71]—in particular, whenever a new item is added to a subtree of (former)
size r, the element becomes the new root with probability 1/(r 4+ 1) (in which case
the subtree is rebuilt from scratch). This simple approach yields an expected time of
O(logn) per operation.

As shown by Bender et al. [8], the same basic approach can be used to achieve
history-independent list labeling. Now, the tree is random across all tightly balanced
trees—that is, within each subtree T containing elements z; < x5 < --- < z, the
root is a random element x; of those satisfying |¢ — k/2| € O(k/logn). As before,
this structure can be maintained using reservoir sampling. However, the restriction
that the tree must be tightly balanced increases the frequency with which subtrees
are rebuilt, so that the expected cost per operation becomes O(log2 n), just as for the
standard solution to list labeling.

Resizable arrays.. In the list-labeling problem, n is defined to be the maximum
number of elements that can be present at any time, a convention we follow in this
paper. Alternatively, one could define n to be the current number of elements present,
in which case m, the size of the array, would need to change to track n.

The solution we present in this paper also works for this second definition, using
standard array resizing techniques to ensure the array size and number of elements
are always within the constraints of the density regime being studied. For example,
in the dense regime, whenever the number of elements in the array grows such that
m < (1 + e)n, the contents of the entire array are copied to a list-labeling data
structure on an array of size (1 + 2¢)n. The array size can be decreased analogously
when the number of elements becomes too low. This resizing scheme incurs an additive
amortized cost of O(1/€) per operation, which is a low order term in the cost when
e =w(1/log" " n).

3This approach is both deterministic and smooth, and thus consistent with the assumptions made
by lower bounds [6,27-29].
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We note that while this deterministic array resizing scheme is not history inde-
pendent, we only use history independence, as we will see, to hide dense regions from
the adversary, a guarantee that still holds even if the adversary knows the size of the
array. This property still holds even if the array size is allowed to vary. If history
independence of the entire data structure is desired, the array resizing can be handled
in a history-independent manner [38] with the same asymptotic cost, in expectation.

3. Technical Overview. In this section, we present an intuitive overview of our
upper bound and proof techniques. Comprehensive technical details can be found in
Sections 4 and 5. For simplicity, we shall assume in this section that m = 2n.

Intuitively, our starting point is the history-independent list labeling solution by
Bender, et al. [8]. As described in Section 2, in [8], the root of any subtree of size k
is a random element of the middle O(k/logn) elements of the subtree. We call this
middle set of elements the candidate set.

A natural idea for decreasing the cost of this algorithm is to increase the size
of the candidate set to dk for some § = w(1/logn). This way, the root would be
resampled less often, resulting in fewer total rebalances. However, there is a problem
with this approach: the subarrays representing the nodes in the i-th level of the tree
have densities bounded between (1 — §)" and (1 + 6)’, but this means that nodes
in the ©(logn)-th level can overflow with a density of 1(1 + §)®U°€™) = (1). Thus,
having § = w(1/logn) violates the correctness of the algorithm.

Notice, however, that most nodes in the i-th level of the tree avoid a density of
the form (1+6)’. Indeed, if we were to perform a random walk down the tree, then
the node that we encountered on our i-th step would likely have a density bounded
above by %(1 + 5)O(ﬁ). This means that, if we only wanted most nodes to behave

well, then we could set ¢ close to Jléﬂ'

In order to obtain the benefits of § &~ 1/4/logn while maintaining the correctness
of 6 ~ 1/logn, we smoothly adjust the candidate set size for each subtree as a
function of the subtree’s density. We show that almost all subtrees are sparse enough
to support a “large” candidate set (6 ~ 1/+/logn), while only a small fraction of
subtrees require “smaller” candidate sets (with 0 closer to 1/logn). This means that
most parts of the array support fast insertions/deletions, while only a small portion
of the array is slow to insert/delete to.

While we have made progress by ensuring that most of the array can support fast
updates, this is not sufficient to prove the final bound. Specifically, if the adversary
knows which parts of the array are slow to update, they could simply focus all of their
insertions/deletions on these slow parts of the array, causing the total cost to be large.
Instead, we would like to hide the slow parts of the array from the adversary. More
precisely, we are concerned about two distinct problems: the adversary could create
dense regions through their insertion sequence (e.g., by concentrating insertions in
one location), or, the adversary could detect dense regions created by the algorithm
(e.g., through prior knowledge of the algorithm’s distribution of states.)

History independence comes into play in guarding against these problems. By def-
inition, the first problem cannot happen with a history-independent algorithm, since
the configuration of the array does not depend on the adversary’s specific sequence of
insertions. For the second problem, we add an additional layer of randomness called
a random shift. At the start of the algorithm, we insert random number k € [m] of
dummy elements at the front of the array, and m — k at the end. This converts a
potentially adversarial insertion at rank j to a uniformly random insertion of rank
between j and j + m. Together with history independence, the random shift ensures
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that the adversary cannot target specific regions of the array.

To analyze our algorithm, we introduce the notion of a Zeno random walk, which
is a special type of bounded random walk where the step size decreases as the distance
to a boundary decreases. The Zeno walk captures the way in which the densities of
subproblems evolve if we perform a random walk down our tree. Our analysis of this
random walk (Proposition 4.3) allows us to bound the cost of a random insertion
(Lemma 5.8). Finally, we extend this analysis for a random insertion to an arbitrary
insertion using the ideas outlined above of history independence and a random shift,
achieving an expected O(logg/ 2 n) cost for any insertion/deletion.

4. Zeno’s Random Walk. This section describes and analyzes a simple but
somewhat unusual type of random walk that we will refer to as a Zeno walk—this
random walk will play an important algorithmic role in later sections.

Let 6 € (0,1/2]. A Zeno walk Zy, Z1, Zs, . .. starts at Zp = 0 and deterministically
satisfies Z; € (—1,1) for all i. We define a; =1 — |Z;| to be the distance between Z;
and the nearest boundary 1 or —1. We determine Z;; from Z; as follows:

e An adaptive adversary selects a quantity d; < §, possibly as a function of
20,21y 2y
e 7,11 is then set to be one of Z; +«;6; or Z; —a;6;, each with equal probability.

What makes the Zeno walk unusual is that, the closer it gets to —1 or 1, the
smaller its steps become (since the i-th step has its size multiplied by «;). The result
is that (as in Zeno’s paradox), the walk can get arbitrarily close to £1 but can never
reach +1.

We will be interested in Zeno walks Z7, ..., Z;, where the relationship between §
and the length £ of the walk is § = O(1/v/¥). To gain some intuition here, consider
the case where §; = 6 = 1/\/@ for all 7, and let us compare the Zeno walk Z1,...,Z,
to a standard unbiased random walk Xi,..., X, that changes by :I:l/\/z on each
step. After ¢ steps, the random walk X7, ..., X, deviates from the origin by O(1) in
expectation (but could deviate by much more) and has the property that each step
is deterministically the same size. The Zeno walk does the complement of this: it
deviates from the origin by at most 1 deterministically, but to do this it decreases
the size of the i-th step by a factor of 1/c;. The key property that we will prove
(Proposition 4.2) is that, although the multiplier 1/c; can potentially be large, the
expected value satisfies E[1/a;] = O(1) for ¢ € [¢]. With this intuition in mind, we
can now begin the analysis.

Define Y; :=In(1/(1 — Z;)). Rather than analyze the Z;’s directly, we will instead
analyze the Y;’s. We will see that the sequence Y7,Y5s,... behaves similarly to the
standard random walk X1, X, ... that we described in the previous paragraph (except
that (1) Y; is slightly biased and (2) Y; can never go below In(0.5)). To make this
more precise, the next lemma shows that the random walk Y7, Y5, ... takes steps of
size at most O(§) and has bias at most O(42) per step.

LEMMA 4.1. For i > 0, we have that
(4.1) Yip1 — Yi[ = 0(0)
deterministically, and that

(42) E[}/i-‘rl -Y | Yi,.. 71/;’51} = 0(52)
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Proof. Define

a0
1-2Z
Note that, if Z; > 0, then v; = §;, and otherwise v; < §;. Since Z;11 = Z; £(1— Z;)vi,
we have that

i

1
Yig =1
i n(l—Zz‘i(l—Zi)%)

T G N
N 1-2Z; 1+~
1 1
=1 1
n(l—Zi>+ n(lﬂ:w)

1
:Yi—&—ln< ) 0
L+

By a Taylor approximation, we know that In (ﬁ) is within O(y?) of +v;. That

is, Y;41 can be computed from Y; by first adding +v; at random to Y;, and then
adding/subtracting an additional O(v?). We therefore have that

Yip1 = Vil <%+ 0(77) < 6+ 0(67) < 0(9)
and that
EYiy1 —Yi | Y,..., Y5 vl| < O(7)) < O(57) < O(6%).
Using Lemma 4.1, we can now bound E[1/ay] for the £ = O(1/6%)-th step of a
Zeno walk:
PROPOSITION 4.2. For ¢ = O(1/6?), we have E[1/ay] = O(1).
Proof. By symmetry, it suffices to show that

E[l/a; - Iz,>0] = O(1),
where Iz,>0 is 0-1 indicator random variable for the event Z, > 0. Note that

E[l/ag - lIz,>0] = E[1/(1 = Z;) - 1z,0]
< B[1/(1 = Z)],

so we can complete the proof by showing that
(4.3) E[1/(1 - Z)] = O(1).

Let ¢ be a sufficiently large positive constant and define the sequence X1, Xo, ...,
where
X, =Y, —i-co’

This means that X; 1 — X; = Y;11 — Y; — ¢02, so we can think of the X;’s as being
a modification of the Y;’s that eliminates any upward bias that the Y;’s might have
(recall by Lemma 4.1 that the Y;’s have bias at most O(52)).

Formally, one can apply Lemma 4.1 to deduce that the X;’s are a supermartingale
with bounded differences of O(4). That is, by (4.2) we have E[X,; 11 | X1,..., X;] < X;
(so the X;’s form a supermartingale) and by (4.1) we have | X;11 — X;| < O(9) (so
the martingale has bounded differences of O(0)).
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We can apply Azuma’s inequality for supermartingales with bounded differences
to deduce the following tail bound. For k > 1, we have

Pr[X; > ki) < e~ 20,
Unrolling the definition of X;, we get that
Prlln(1/(1 — Z)) > 6kvi + icd?] < e~ 2+,
Plugging in i = ¢ = O(1/4?), we conclude that
Prlln(1/(1 — Z2)) > Q(k)] < e,
This further simplifies to

Pr|1/(1—2) > em’ﬂ < e~k

which implies (4.3), and completes the proof. a0

We conclude the section by generalizing Zeno walks to take place in an arbitrary
interval (A — €, A 4+ €). This works exactly as before, except that now the Zeno walk
begins at Zy = \; it deterministically stays in the interval (A — e, A + €); it sets
a; = € — |Z; — \| to be the distance from Z; to the nearest boundary A — € or A + ¢;
and then Z; 11 = Z; + a;0; where §; < d is selected by an adversary. Equivalently, a
sequence {Z;} is a Zeno walk in the interval (A — e, A + €) if {(Z; — A)/e} is a Zeno
walk in (—1,1) (and the two Zeno walks have the same parameter § as each other).
Thus we get the following generalization of Proposition 4.2.

PROPOSITION 4.3. Consider a Zeno walk in (A — e, A+ ¢€). For £ = O(1/62), we
have E[1/ay] < O(e™1).

5. The Zeno Embedding: a Data Structure for m > (1 + €)n. In this
section, we give a list-labeling solution for m > (1 + €)n that achieves expected cost
O(e~'1og®/? n) per insertion and deletion. We will treat m € N and € € (0,1) as being
fixed, and we will allow the number n of elements to vary subject to the constraint
that m > (1 + ¢)n. We will also assume without loss of generality that n is at least a
sufficiently large positive constant.

We construct and analyze the data structure in three phases. First, we describe
a certain type of static construction, which we call the Zeno embedding, for how
to embed n elements into m slots. Then we show how to dynamize the Zeno em-
bedding in order to efficiently implement random insertions/deletions. Finally, we
present one last modification to the Zeno embedding in order to implement arbitrary
insertions/deletions efficiently.

5.1. The Static Zeno Embedding. The Zeno embedding treats the array as
having a simple recursive structure: the level-0 subproblem consists of the entire ar-
ray; and the level-i subproblems each consist of either [m/2¢| or [m/2] contiguous
slots in the array.

Each level-i subproblem S is either a base case (meaning it does not have child
subproblems) or has two recursive children. If S has ¢ € {|m/2¢,[m/2%]} slots,
then the children of S have |¢/2] and [q/2] slots, respectively. Here we are taking
advantage of the basic mathematical fact that

{Llm/2'] /2], [Tm/2°1/2], [lm/2] /21, [[m/2'1/21} € {Im/2F ], [m/2"F 11}
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For each level-i subproblem S, define |S| to be the number of elements stored in
that subproblem, and define the density ug of the subproblem to be
L
n/2t

us

Note that in the definition of pg, the denominator is the average number of
elements per level-i subproblem, which means that g can be greater than 1. In fact,
we will guarantee deterministically that pus € [1 —€/2,1 4 ¢/2]. The upper bound
will ensure correctness (i.e., that no subproblem overflows), and the lower bound will
ensure that every pair of consecutive elements are within O(1) slots of each other.

We can now describe how to implement a given level-i subproblem S. Define

as =€/2 — |1 — ps|

to be the distance between ug and the nearest boundary {1 — ¢/2,1 + ¢/2}. Let
r1,...,7 g denote the elements of S in sorted order. Define the pivot candidate
set for S to be

o S| n  as cic \S|+n as
=% | — — = - < i< =4 = .
o 2 20 logn 2 20 logn

Roughly speaking, C's consists of the elements representing the middle ©(«g/+/logn)-
fraction of the subproblem.

If |Cs| < 4, we declare S to be a base case, and we spread the elements of S
evenly across its slots. Otherwise, we define the pivot pg for S to be an element of
Cys chosen uniformly at random. The elements x; < pg are recursively placed in S’s
left child, and the elements z; > pg are recursively placed in S’s right child.

Later on, when we discuss the dynamic Zeno embedding, we will see several ways
that one can implement the random choice of pg. For concreteness, we will mention
one natural approach here: define ho, hi,ha,...,ho@ogn) to be an independent se-
quence of hash functions* where each h; maps each element to a uniformly random
real number in [0, 1], and set

ps = argmin, ¢ o, hi(z).

The key property of the Zeno embedding is that if we perform a random walk
down the recursive tree, then the densities pg that we encounter form an O(logn)-step
Zeno walk in the interval [1 —€/2,1 + €/2]:

LEMMA 5.1. Fiz any outcomes for the hash functions hg,hi,ho,.... Consider a
random walk Sy, S1,S2,...,S¢ down the recursion tree, where each S;11 is a random
child of S;, and Sy is a base-case subproblem. Then the sequence {usl}le is a Zeno

walk on [1 —€/2,1 4 €/2] with 6 = O(1/+/logn).

Proof. Recall that a Zeno walk on [1 — €/2,1 4 ¢/2] is any walk Zy, Zy,... that
starts at 1 and takes the following form: each step Z;11 — Z; is randomly +a;d; for
some ¢; < § (that may be chosen by an adversary) and where «; = ¢/2 — |1 — Z;|. Or,
equivalently, each step Z;11 — Z; is randomly +4; for some 8; < § (/2 — |1 — Z;]).

4Technically, our data structure does not necessarily have access to the internal values of elements,
so it cannot compute a hash h;(x) of any given element. However, we can simulate a hash function
h; by assigning each element = a random value h;(z) when the element is inserted.
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Consider a non-base-case subproblem S;, and let A and B be the child subprob-
lems of S;. By construction,

_ofn . _as
41181 = 0 (5 s )

Since |A| + |B| = |S;|, we have that ps + up = 2ug, and
sy 2 AI=1B as
ATHEB n/2¢+1 Viegn )’

Thus, since S;+1 is randomly one of A or B, we have that ug,,, is randomly one of

i1

where

&=AM—MBQZO(Jﬁ%>=0@@ﬂ—H—Mm%

Thus the sequence {us} is a Zeno walk on [1 — €/2,1 + €/2] with § = O(1/+/Togn).
For clarity, we remark that the definition of the Zeno walk includes an adaptive
adversary who chooses §; < §. The adversary for the Zeno walk in this lemma simply
chooses a pivot uniformly at random from the pivot candidate set, which determines
;. |
The reason that Lemma 5.1 is important is that it allows for us to bound the
quantities ozgl. Indeed, we use Proposition 4.3 to prove the following inequality.

LEMMA 5.2. Let S; be the set of level-i subproblems. Then

1 _ -
5 Z agl =0(h).

SES;
Proof. Fix any outcomes for the hash functions hg, h1, hs, . ... Consider a random
walk Sg, 51,54, ...,S5¢ down the recursion tree, where each S; 1 is a random child of

S;, and Sy is a base-case subproblem. Lemma 5.1 tells us that {us,}f_; is a Zeno
walk on [1 —€/2,1 + €/2] with 6 = O(1/y/logn) (and, moreover, ag, corresponds to
a; in the Zeno walk).

For ¢ € [0,logm], define @&; to be ag, if S; exists and 0 otherwise (i.e., if i > £).
Proposition 4.3 tells us that, for each i € [0,logm],

(5.1) E[l/a;] = O(e™ ).

On the other hand, each level-i subproblem has probability exactly 1/2¢ of being S;.
Thus

(5.2) E[l/@;] = 2i > agh

SES;

Combined, (5.1) and (5.2) imply the lemma. O

It is interesting to note that, whereas Lemma 5.1 is a statement about random
walks, Lemma 5.2 is a deterministic bound on the ozgls, even though it uses a prob-
abilistic argument to derive the bound.

Lastly, we also need to explicitly show that no subproblem ever overflows:
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LEMMA 5.3. Each level-i subproblem S satisfies |S| < [m/2¢].

This lemma is a technicality that is essentially immediate from the fact that each
subproblem S has density pgs < 1+ €/2. The only difficulty in the proof comes from
the necessity to carefully handle floors/ceilings. We defer the proof to Appendix A.

5.2. Dynamizing the Zeno Embedding. We now describe a dynamic version
of the Zeno embedding; we will treat m and e as fixed, and allow n to vary subject
to the constraint that m > (1 + €)n.

We note that, in this section we will focus on analyzing random insertions/deletions,
that is, an insertion/deletion that is performed at a random rank (in an array with
arbitrary contents). Our solution will be history independent, and we will see in the
next subsection that this allows the random-rank assumption to be removed.

Implementing insertions and deletions.. To implement an insertion/deletion in
the Zeno embedding, we simply update the embedding to account for the element
being added/removed. More concretely, we can implement an insertion/deletion of
an element = as follows. We will describe the process recursively, focusing on how
to insert/delete x into a given level-i recursive subproblem S. The insertion/deletion
of x may change the values of ug,ag,Cs, and pg. Note that the values of Cy and
ps can change regardless of whether the insertion/deletion of z takes place in the
candidate set. If it changes the pivot pg, or if S is a base-case, then we implement
the insertion/deletion by rebuilding the entire subproblem from scratch, incurring a
cost of O(n/2%). Otherwise, we recursively insert/delete x into either the left child (if
x < pg) or the right child (if z > pg). Once the insertion/deletion is complete, the
Zeno embedding will be the same as if it were constructed from scratch on the current
set of elements.

As described in the static Zeno embedding, there are multiple ways to implement
randomly choosing a pivot. One way is to use the hash functions h; described in the
previous subsection. This means that a level-i subproblem S being inserted/deleted
into gets rebuilt if argmin;{h;(z) | * € Cs} is changed by the insertion/deletion. We
note that, in this construction, the hash functions are fixed at the very beginning and
are never resampled (even when subproblems are rebuilt).

Another way to implement the random choice of pivot is to use reservoir sampling
[5,8,49,67,71]. This means that, when a subproblem is first built (or rebuilt), it
picks a random z € Cg to be the pivot; whenever an element z is added to Clg, it
has probability 1/|Cs U {z}| of becoming the pivot; and whenever an element z is
removed from Cg, if = was the pivot, then a random element in Cg \ {z} is chosen as
the new pivot. Like the hashing method, reservoir sampling maintains as an invariant
that each candidate in Cg is equally likely to be the pivot.

Each of the two methods (hashing and reservoir sampling) have their own benefits:
reservoir sampling can be used to immediately obtain an algorithm in the RAM-model
that has the same asymptotic running time as its list-labeling cost, while hashing, on
the other hand, ensures that the embedding is deterministic after fixing the hash
functions. In our formal arguments, we use the hash function method, but this can
easily be replaced with reservoir sampling.

Analyzing a random insertion/deletion.. To begin analyzing the dynamic Zeno
embedding, we observe that, by construction, the dynamic Zeno embedding is inser-
tion/deletion symmetric and history independent.

OBSERVATION 5.4. The dynamic Zeno embedding is insertion/deletion symmetric
and history independent.
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Due to the insertion/deletion symmetry, the expected cost of a random insertion
on an array with n elements is the same as the expected cost of a random deletion
on an array with n + 1 elements. Thus we need only analyze the expected cost of a
random deletion.

We will analyze the probability that the deletion of an element z causes the
rebuild of a subproblem. More precisely, we say that a subproblem S is rebuzilt if the
pivot of S changes, while the pivots of all of the ancestors of S do not change.

Next, we will prove that, if we delete an element x, and S is the level-i subproblem
that contains x, then the probability that S is rebuilt is O(|Cs|™1).

LEMMA 5.5. If an element = is deleted from a subproblem S, then S is rebuilt
with probability
O (ICs|).

Proof. If S is a base-case subproblem, either before or after the deletion, then
|Cs| = O(1), and the lemma is trivial. Now, suppose S is not a base-case subproblem.

Let Cg denote the pivot candidate set prior to the deletion of =, and let C'g denote
the pivot candidate set after the deletion. Each time that we add/remove an element
to/from Cg, the probability that ps = argmin,.o_ hi(z) changes is ©(1/[Cs|). It
therefore suffices to show that Cs and Cs have a symmetric difference of at most
O(1) elements.

We can think of the transformation of Cg into C's as taking place in three steps.
First we update

S|
—e/2-|1- 2L
as =€/ ' o
to become 51
T
s =ef2 |- B

1

This changes ag by at most in/zﬂ

which changes the set

S| n  ag }

S| n  ag
2 2t /logn 2 * 2t \/logn
by at most O(1) elements. Second, we replace |S| in (5.3) with |S| — 1. This again
changes the set Cg by at most O(1) elements. Third, we remove the element x; if
x = x; for some j, then the removal of x has the effect of decrementing the index of
each z; with ¢ > j. This again changes Cg by at most O(1) elements.

Combined, the three steps complete the transformation of C's into C'g, meaning
that Cs and Cg have a symmetric difference of O(1) elements, as desired. |

<i<

(5.3) Cs = {:v

Lemma 5.5 immediately implies a bound on the expected cost incurred from
rebuilding S.

LEMMA 5.6. If an element x is deleted from a level-i subproblem S, the expected
cost incurred from possibly rebuilding S is

o(i2)

Proof. A rebuild of S costs ©(n/2%). Thus the lemma follows from Lemma 5.5.0
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Observe that, by design,

n2 O(ag'+y/logn).

ICs|
This is where Lemma 5.2 comes into play: it tells us that even though %
large for some subproblems S, it cannot be consistently large across all subproblems.
Using this, we can analyze the expected cost to delete a random element.

may be

LEMMA 5.7. The expected cost to delete a random element x from the Zeno em-
bedding is O(e ' log®? n).

Proof. Let S; denote the set of level-i subproblems (prior to the deletion). Each
S € S; contains ©(n/2") elements, so

Prjx € 5] :6(211.)

If x € S, then we have by Lemma 5.6 that .S incurs expected rebuild cost

0 (”/T) = O(ag"/logn).

|Cs]

The expected cost from rebuilds in the i-th level of recursion is therefore at most

O (Z 21i~a§1\/logn> ,

SES;

which by Lemma 5.2 is at most
@) (6_1\/logn) .

Summing over the O(logn) levels of recursion, the total expected cost of the deletion
is O(e " log®/? n). d

Due to the previously described symmetry between insertions and deletions, the
same lemma is true for insertions.

LEMMA 5.8. The expected cost to insert an element x with a random rank in
{1,2,...,n+ 1} into the Zeno embedding is O(c ' log®? n).

5.3. Achieving a Bound on Arbitrary Insertions/Deletions.. So far, we
have only analyzed random insertions/deletions. At first glance, this may seem like
an insignificant accomplishment. (Indeed, it is already known that random inser-
tions/deletions can be supported in O(e~!) amortized time per operation [15].)

What makes the Zeno embedding special is that it is history independent. We will
now show how to reduce the list-labeling problem (with arbitrary insertions/deletions)
to the problem of constructing an insertion/deletion-symmetric history-independent
embedding that supports efficient random insertions/deletions.

Within any history-independent data structure, the expected cost to perform a
deletion at rank r on an array of size m containing n elements can be expressed by
a cost function T(m,n,r) only dependent on m, n and r. Moreover, if the data
structure is insertion/deletion symmetric, then the same cost function 7" expresses the
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expected cost for an insertion; specifically, the expected cost to perform an insertion
at rank r on an array of size m containing n elements is T'(m,n — 1,7).

To reduce from the arbitrary insertion/deletion case to the random insertion/deletion
case, we will show that given any (insertion/deletion-symmetric) history-independent
algorithm A with cost function T'(m,n,r), we can construct a history-independent
algorithm B with cost function T”(m,n,r) such that for each individual rank r, the
cost T'(m,n,r) is upper bounded by the average of the costs T'(m,n,r) across all
ranks (up to constant factors).

LEMMA 5.9. Suppose there is an insertion/deletion-symmetric history-independent
algorithm A whose cost is determined by a function T'(m,n,r). Then we can construct
a new insertion/deletion-symmetric history-independent algorithm B with cost func-
tion T'(m,n,r) satisfying

2m

1
T (m,n,r) = O ZT(Qm,ern,j)
j=1

m—+1 4

for all r.

Proof. Fix a history-independent algorithm A. We will construct a history-
independent algorithm B. We will describe the behavior of the algorithm B on an
array of size m with an arbitrary sequence S of insertions/deletions.

To do so, we will construct from S an input to A. The input to A is an array
of size 2m with the following insertion/deletion sequence. First we insert m dummy
elements as follows. Let ¢ be a uniformly random integer in [0, m]. Insert ¢ dummy
elements that are treated as taking infinitely small values (i.e., —o0), and insert m —gq
dummy elements that are treated as taking infinitely large values (i.e., o). Now,
execute the sequence S.

Now, define B as the algorithm that behaves identically to A on A’s subarray
[¢,q + m] (that is, A’s subarray from the ¢'" slot to the g + m!" slot), ignoring the
dummy elements. That is, for all i, after the i*" insertion from S, the subarray
[q,q + m] of A’s array with the dummy elements removed, is identical to B’s array.

We note that B is well defined in the sense that all elements of S always appear
in A’s subarray [q, ¢+ m]. This is simply due to the existence of the dummy elements
in A’s array.

Now let us bound the expected cost T'(m, n,r) for B to perform a deletion at rank
r. This corresponds to a deletion at rank r+¢ in A, which has cost T'(2m, m+n,r+q).

Notice, however, that r + ¢ is a random element in {r,r + 1,...,r +m}. Thus,
r4+m
T (m,n,r) = —— T(2m,m+n, j),
( )= 2 (2m, J)

which in turn is at most

2m
1 .
O\t ;:1: T(2m,m+mn,j)

In the case where A is the Zeno embedding, we refer to B as the shifted Zeno
embedding. Now, we are ready to put everything together and prove our main
theorem, that the shifted Zeno embedding incurs expected cost O(e~!log®?n) per
insertion/deletion.
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THEOREM 5.10. Let ¢ € (0,1), and suppose m > (1 + €)n, where m is a static
value while n changes dynamically. The shifted Zeno embedding on an array of size
m with n elements incurs ezpected cost O(e™1 logg/2 n) per insertion/deletion.

Proof. Let T(m,n,r) be the cost function associated with the Zeno embedding,
and let T'(m,n,r) be the cost function associated with the shifted Zeno embedding.
From Lemma 5.9, we know that

(5.4) T (m,n,r) =0 [ —— Z T(2m,m +n,j)

The right side of Equation 9 is within a constant factor of the average value of
T(2m,m + n,j) over all ranks j. Thus, it is within a constant factor of the ex-
pected value of T'(2m,m+n, j) where j is chosen uniformly at random over all ranks,
which we know from Lemmas 5.7 and 5.8, is O(E‘llogs/2 n). Thus, T'(m,n,r) =
O(e~'1og®/? n), as desired. n]

The following corollary follows immediately by applying Theorem 5.10 to an n(1+
€) sized subarray of a linearly sized array for any € < 1.

COROLLARY 5.11. There exists a list-labeling algorithm for an array of size m =
n(1+ O(1)) with expected cost O(log®?n) per insertion/deletion.

We can also use the theorem to bound the total cost to insert into every slot in
an array.

COROLLARY 5.12. There exists a list-labeling algorithm to fill an array of size m
from empty to full with expected total cost O(mlog®® m).

Proof. We will apply a shifted Zeno embedding in ©(logm) phases, using an ¢;,
defined below, for phase i and rebuilding the array between phases. The first phase
consists of the first m /2 insertions, and each phase inserts half as many elements as
the preceding phase. This continues until n > m — logm, at which point the final
phase consists of inserting the remaining at most log m elements.

More precisely, let & = [logm — loglogm|, and define

m(2t — 1)

5 fori=0,1,...,k,

n; =
and ngy1 = m.
Items are inserted by ranks, specified by r1, ..., r,, so that for example, since the
first insertion is into an empty array, r; = 1. Phase F; is defined by the insertions r;
with j € (n;_1,n;]. We define ¢; = (20 —1)~! for i > 1, and &1 = mTfl

Let C(P;) denote the expected total cost of the insertions in phase P;. For ¢ > 1
and for all j € (n;—1,n4],

(146)j < (1+e)n; = <1 +5 1_ 1) (m<2;;_ 1)) —m.

Similarly, in phase P;, we have

-1
(1+ei)j§<1—|—m >.m§m.
m 2
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Therefore, we can apply Theorem 5.10 to say that for all ¢, an insertion during phase
P; incurs expected cost

O(e; log®/? n) = 0(2"1og®? m),

and
C(P)=0 (2i : g -log®/? m) = O(mlog*?m). 0

Summing over the first £ = O(logm) phases, this gives expected total insertion cost
O(mlog*® m).

By construction, the final phase has at most log m insertions, and thus has total
expected cost O(mlogm). Finally, since the total number of elements in the array is
bounded by m, the rebuilds between phases incur total cost O(mlogm), completing
the proof.

We conclude the section with a remark.

REMARK 5.13. Many applications of list labeling require that, if m = ©(n), then
the number of empty slots between any two consecutive elements is at most O(1). The
Zeno embedding satisfies this property by design, since each subproblem has density at
least 1 — €/2. The shifted Zeno embedding therefore also satisfies the same property.

6. A Lower Bound for History-Independent Solutions. The shifted Zeno
embedding (Theorem 5.10) has the property that it is history independent, mean-
ing that the state of the data structure does not reveal any information about the
history of insertions/deletions. In this section, we prove that the e~* 10g3/ 2 n bound
achieved by the shifted Zeno embedding is, in fact, optimal for history-independent
data structures.

The main result of this section will be the following lower bound:

THEOREM 6.1. Consider any history-independent list-labeling data structure. Let
m be the size of the array and let n = (1 —¢€)m, where € is at most some small positive
constant and is at least m~Y/3. The expected cost to insert an element with a random
rank in {1,2,...,n+1} and then delete the element with rank n+1 is Q(e~*log®? n).

Throughout the rest of the section, let ¢ be a large constant, and assume that m
is sufficiently large as a function of ¢. Let m~/3 < ¢ < 1/c, and set n = (1 —¢)m. We
shall consider sequences of insertions/deletions, where each insertion is into an array
of n elements and each deletion is from an array of n + 1 elements.

To aid in the proof of Theorem 6.1, let us take a moment to establish several
definitions and conventions. Let J = {2,4,8,...,2l°8™ =21 For each j € [m], define
a j-block to be a block of j consecutive slots in the array, allowing for wrap-around
(so there are m possible j-blocks).

Define the density of a j-block to be k/j, where k is the number of elements in
the j-block. Call a j-block live if it has density at least 1 — ce, and dead otherwise.
Note that this definition of density is slightly different from that used for recursive
subproblems in the upper-bound section (Section 5) in that we define the density to
be between 0 and 1—this difference will make the algebraic manipulation cleaner in
several places.

For each j € J, define the émbalance of a j-block to be |1 — ua|, where p is the
density of the first j/2 slots in the block, and puo is the density of the final j/2 slots
in the block. Define the adjusted imbalance A(x) of a j-block x to be the block’s
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imbalance if the block is live, and 0 if the block is dead. Finally, define the boundary
set B(x) to be the set of up to three elements in positions {1,j/2,j} of x.

For a given array configuration A, define A;(A) to be the average adjusted im-
balance across all j-blocks. Finally, define A; = Ea~c, . [A;(A)].

We will split the proof of Theorem 6.1 into two key components. Section 6.1
proves the following combinatorial bound, which holds deterministically for any array
configuration.

PROPOSITION 6.2. For any array-configuration A with n = (1 — €)m elements,

jeJ

Section 6.1 also uses Cauchy-Schwarz to arrive at the following corollary.

COROLLARY 6.3. For any array-configuration A with n = (1 — e)m elements,

T}I S A5(4) = O(e/\/Togn).

jeJ

Section 6.2 then gives a lower bound in terms of the A;’s on the expected cost
that any history-independent data structure must incur.

PROPOSITION 6.4. Suppose n = (1 — €)m, where m~Y3 < e<1/c and ¢ is some
sufficiently large positive constant. Suppose we perform an insertion at a random rank
r €40,...,n+1} and then delete the element with rank n+1. The expected total cost
of the insertion/deletion is at least

1

Q —
ey AJ‘ -l-l/j

Note that the expected cost in Proposition 6.4 is with respect to the randomness
introduced by both the random rank r and the randomness in the history-independent
data structure.

Intuitively, the above results tell us that any optimal history-independent data
structure must behave a lot like the Zeno embedding. Indeed, Corollary 6.3 tells us
that, no matter how we configure our array A, it is impossible to achieve imbalances
that are consistently w(e/+/logn)—so, if our goal is to maximize the imbalances in our
array, we can’t hope to do any better than the Zeno embedding already does. Propo-
sition 6.4 then tells us that small imbalances are necessarily expensive to maintain
(and, in fact, the asymptotic relationship between cost and imbalance is the same as
the one achieved by the Zeno embedding). Combining the propositions, we can prove
the theorem as follows.

Proof of Theorem 6.1. By Corollary 6.3, we have

1 1
(6.1) i S A =Eaec,,, O S a,4)| <0 (e/\/log n) .

jeJ jeJ
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By Proposition 6.4, the expected cost of the insertion/deletion is at least

1
(6.2) 0 -
j;] AJ‘ + 1/]

Qe log®? n) (since

1/4/n for all j > /n,

If A; <1/y/n for any j > y/n, then (6.2) becomes Q(y/n)
€ > Q(n~1/3)), and we are done. On the other hand, if A,
then (6.2) is at least

(AVAV]

(6.3) ol > 1. a

& A
JEJj>/n

By (6.1), we know that at least half of the A;’s in the above sum satisfy A; =
O(e/+/logn). Thus the expected cost comes out to at least

Qe log®? n).

6.1. Proof of Proposition 6.2. Although Proposition 6.2 is a deterministic
statement, we will prove it with a probabilistic argument.

For j € J, define the children of a j-block to be the j/2-blocks consisting of
the first and last j/2 slots of the block, respectively. Also, let j* = gllogm| =2 he the
largest element of J.

For a j-block x with density u, define the potential ¢(x) to be

b(z) = 0 if z is dead
) (p—(1—ce))?  otherwise.

For a random j-block z, one should think of ¢(z) as measuring something similar
to (but not quite equal to) the variance of . The key differences between what ¢
and variance measure is that (1) ¢ evaluates directly to 0 on any j-block x that is
dead (i.e., has density less than 1 —ce), and (2) ¢ examines the square of the distance
between p and the death-threshold 1 — ce, rather than the square of the distance from
wtoEp]=1—e

Note that 0 < ¢(z) < O(e?) deterministically. On the other hand, we will now
see how to relate the expected potential ¢(z) of a random 1-block to the quantity

Y jes(Bj(A))?.

LEMMA 6.5. Let x be a random 1-block. Then

Elp(e)] = [ D (A;(4))°

JjeJ

Proof. Let xy be a random j*-block, and for i € [logj*], let z; be a random
child of #;_;. This means that each z; is itself a random 2!°8J" ~i_block, and that
X 1= Tlog ;+ is a random 1-block. Define p; to be the density of x;.

We will argue that

(6-4) E[¢(l’i) - ¢(93i—1)] =Q ((Ag‘*/m (A))2) .
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This would imply that

Elo(2)] = Elg(z0)] + 3 Elo(ws) — dzi1)] = @ | D _(A5(4)* |,

jeJ

as desired.

For the rest of the proof, consider some ¢; and set j = j*/2!. We claim that with
probability at least 1 — 1/¢ > 0.9, ;1 is live. Indeed, in expectation at most an e
fraction of the slots in x;_; are free, so by Markov’s inequality the probability that
more than a ce fraction of the slots in z;_; are free is at most 1/¢ < 0.1.

If we condition that ;1 is live, then its imbalance A satisfies E[A] = ©(A+ /9i-1(A)).
Furthermore, if x;_; is live, then we have that ¢(x;) is randomly one of

(Vo(zi1) + A/2)?

or
(max{0, \/é(z;_1) — A/2})2.

Note that the average of these is
0.5(v/b(xi_1) + A/2)% + 0.5(max{0, /o (z;_1) — A/2})2.
If 0 < \/é(xi—1) — A/2, this average is
B(zi_1) + A? /4.

On the other hand, if 0 > \/¢(z;_1) — A/2, this average is

0.5 ¢(zi—1) + Av/d(wi_1)/2 + A?/8

>1.5-¢(zi_1) + A?/8.
Thus, in either case, this average is

> ¢(wi1) + A?/8.

It follows that

Elé(z;) | ¢i—1 live] [p(zi_1) | 2i1 live] + -E[A? | ;1 live]/8

>E
> Elp(xi_1) | i1 live] + E[A | 2,1 live]?/8
> ]E[d)( 1) | ziz1 hve] + Q(A]’*/Qi—l(A)Q).

On the other hand,

E[é(z;) | ¢i—1 not live] > 0
= E[é(zi—1) | zi—1 not live].
So we can conclude that
El¢(zi)] > E[¢(xi-1)] + Pr[z;_1 live] - QA+ j2: (A)?)
> ]E[(b( )] +0.9- Q(AJ‘*/Qi—l (14)2)7

hence (6.4). d
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We can now prove Proposition 6.2.
Proof of Proposition 6.2. Let x be a random 1-block. Then by Lemma 6.5,

El¢p(z)] =2 | Y A4

jeJ
On the other hand, ¢(z) = O(€?) deterministically. Combined, these imply

D A(A)? =0(e).

I

Proof of Corollary 6.3. Cauchy-Schwarz implies

2 2

DAAP= | D AA) | /= Do AA) ] /O(logn).

jeJ jeJ jeJ

Thus we have

jeJ

>~ 45(4) < O(Viogn) [37A;(A) < O (ev/logn) |
JjeJ

where the final inequality uses Proposition 6.2. Dividing by |J| = ©(logn), we have

T}II > " Aj(A) = O(e/\/logn).

jeJ

6.2. Proof of Proposition 6.4. In this section, we prove Proposition 6.4. All
of the lemmas in this section assume an array of size m that initially contains n
elements, where n = (1 — €)m.

We begin by establishing that, if we consider an element with random rank ¢ €
[n/2], and we examine the j-block beginning at that element, then there are several
basic properties that hold with probability at least 0.9.

LEMMA 6.6. Let j € J and consider a random t € [n/2]. Define x to be the
j-block whose first position contains the current rank-t element. With probability at
least 0.9, the following all hold:

e 1 is live;
o 1B() = 3;
o Az) < cAy,

Proof. Tt suffices to show that each individual property holds with probability at
least 0.97. Observe that x is chosen at random from one of n/2 > m/3 j-blocks. It
therefore suffices to show that, if we define x’ to be a uniformly random j-block, then
each property holds with probability at least 0.99 for z’.

Note that 2’ contains at most €j free slots in expectation, so by Markov’s inequal-
ity the probability that 2’ contains > cej free slots is at most 1/¢ < 0.01. Thus 2’ is
live with probability at least 0.99.

We claim that E[3—|B(z’)|] = 3e. This is because the probability that a given slot
is occupied is 1 —¢, so E[|B(2")|] = 3(1 —€) = 3 —3e. Thus, E[3—|B(2)|]] = 3¢ < 3/c.
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Thus, by Markov’s inequality we have Pr[3 — |B(z')] > 1] = 3/¢ < 0.01. Thus
|B(z")| = 3 with probability at least 0.99.

Finally, observe that E[A(z")] = A}, so by Markov’s inequality we have Pr[A(z') >
cA;] <1/¢ <0.01. Thus A(z") < cA; with probability at least 0.99. 0

Call an insertion/deletion eritical to a j-block x if: z is live when the operation
is performed; and the operation leads to at least one of the elements in B(z) being
rearranged. The next lemma argues that, if we perform enough insertions/deletions
inside a random j-block, then at least one of them will likely be critical.

LEMMA 6.7. Let j € J, let s € [j/6,7/3], and consider a random t € [n/4 —
s,n/2 — s]. Define x to be the j-block whose first position contains the element with
rank t. Suppose we perform |cjA;]+1 insertion/deletion pairs, where each insertion
adds a new element with rank t + s and each deletion removes the highest-ranked
element (i.e., the element with rank n+ 1). With probability at least 0.6, at least one
of the insertions/deletions is critical to x.

Proof. We know that, with probability at least 0.6, the properties in Lemma
6.6 hold for x both before the insertions/deletions are performed and after the in-
sertions/deletions are performed. Suppose for contradiction that none of the inser-
tions/deletions are critical to x.

Thus, we know that none of the operations rearrange any of the elements in B(x).
We additionally claim that none of the elements in B(z) are deleted. This follows
from the fact that we always delete the element of rank n+ 1, while the highest-ranked
element in z is has rank less than n + 1 for the following reason. The first element of
x is at rank at most n/2, and z contains at most j* = gllogm| =2 < 4(1716) elements.
So the last element of z has rank at most 5 + ﬁ, which is less than n + 1 since
e<1/2.

Additionally, we claim that all of the insertions go into the first j/2 slots of z.
This is because otherwise there would be at most s < j/3 elements in the first j/2
slots, which means that there would be least j/6 empty slots, which contradicts the
fact that x is live.

Thus, during the course of the insertions/deletions, the first j/2 slots in x gain
lcjA; | + 1 elements, while the second j/2 slots of & remain stable in their number of
elements. We know that A(z) < c¢A; both before and after the insertions/deletions
are performed. So, over the course of the insertions/deletions, the density of the first
j/2 slots in = changes by less than 2¢A ;. This means that the number of elements in
the first j/2 slots of = changes by at most j/2 - 2cA; = c¢jA;, which contradictions
the fact that the first j/2 slots in « gain |¢jA; | + 1 elements. d

Using symmetry, we can reinterpret the previous lemma as a statement about a
single insertion/deletion pair.

LEMMA 6.8. Let j € J, let s € [j/6,7/3], and consider a random t € [n/4 —
s,m/2 — s]. Define x to be the j-block whose first position contains the element with
rank t. Suppose we perform a single insertion/deletion pair, where the insertion adds
a new element with rank t + s and the deletion removes the current highest-ranked
element (i.e., the element with rank n + 1). With probability Q( ), at least

one of the insertion/deletion is critical to x.

1
LA ]+1

Proof. By history independence, the probability distribution of array configura-
tions is only dependent upon n, m, and 7, and these quantities are the same after
each insertion/deletion pair in Lemma 6.7. Thus, Lemma 6.7 immediately extends to
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each individual insertion/deletion pair. |

The previous lemma analyzes for a specific block x the probability that a specific
insertion/deletion pair is critical to z. Notice, however, that a given insertion/deletion
pair can be critical to many j-blocks simultaneously. Indeed, by applying Lemma 6.7
simultaneously for multiple different values of s, we can deduce a lower bound on the
expected number of elements that are rearranged at distance ©(j) (in rank) from the
element currently being inserted.

LEMMA 6.9. Let j € J. Suppose we perform an insertion at a random rank r €
[n/4,n/2] and then we delete the highest-ranked element (i.e., the element with rank
n+1). Let q; be the number of elements that are rearranged by the insertion/deletion,
and that have ranks v’ satisfying |r —r'| = ©(j) after the insertion. Then

e

Proof. For s € [j/6,7/3], define 5 to be the j-block beginning with the element
whose rank is r — s. Note that the sets B(xs) are disjoint across s € [j/6,5/3]. Let
B; be the number of elements in B(x;) that are rearranged by the insertion/deletion;
and let E be the event that both B, > 1 and that z4 is live.

If x5 is live then the elements of B, have ranks 7’ satisfying |r —’| = ©(j). Since
the By’s are disjoint, it follows that

Elg]> » PrE).

s€[j/6,5/3]

For each s € [j/6,7/3], we have by Lemma 6.8 that

Elg;] = Q (UAJ‘YJJFJ =1 <A]i1/3) ’

as desired. O

Thus

Finally, we can deduce a lower bound on the total number of elements that are
rearranged by a random insertion/deletion.

LEMMA 6.10. Suppose we perform an insertion at a random rank r € [n/4,n/2]
and then we delete the highest-ranked element. The expected total cost of the inser-
tion/deletion is at least

1
Q —
jze;]Aj—’_l/j

Proof. Let ¢ be the number of elements that are rearranged by the insertion/deletion.
For each j € J, define ¢; as in Lemma 6.9. Each element that is rearranged by the in-
sertion/deletion has a rank r’ satisfying |r’ —r| = ©(j) for at most a constant number
of j € J. That is, each rearrangement is counted by at most O(1) of the ¢;’s. Thus

g=2(> g
j
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By Lemma 6.9, it follows that

1
Elq] = Q _—
ey Aj + ]./j
Lemma 6.10 considers an insertion with a random rank r € [n/4,n/2], but this
trivially implies the same claim for a random rank r € {0,...,n} (i.e., Proposition
6.4). Thus the section is complete.

7. Upper Bound For Sparse Arrays. Define the 7-sparse list-labeling
problem to be the list-labeling problem in the regime of n < m/7. Previously in
this paper, we studied the setting where 7 = O(1). In this section, we extend our
upper bounds to apply to the sparse regime where m = 7n for some 16 < 7 < n°(),
We do this via a simple general-purpose reduction from the sparse setting to the linear
setting.

We will prove the following proposition:

PROPOSITION 7.1. Let T be a non-negative convez function satisfying T(0(i)) =
O(T(d)) for alli and satisfying T(0) = 0. Let 16 < 7 < n°1Y). If there exists a 2-sparse
list-labeling solution whose expected amortized cost is upper bounded by T(logn), then
there exists a T-sparse list-labeling solution whose expected amortized cost is upper

bounded by
1
0] (T ( 0gn> ~10g7‘) .
log T

Combining Proposition 7.1 and Corollary 5.11, we obtain the following upper
bound for the sparse regime:

THEOREM 7.2. For 16 < 7 < n"(l), there exists a solution to the T-sparse list-
labeling problem with expected amortized cost upper bounded by

0 10g3/ Zn
Viegt |-

To prove Proposition 7.1, we introduce an intermediate problem that we call
the bucketed list-labeling problem. In this problem, there are m buckets and up
to N = Q(m) elements at a time, with elements being inserted and deleted as in
the classical list-labeling problem. Elements must be assigned to buckets so that,
if two elements a and b are assigned to buckets u # v, then a < b <= u < v.
The cost of adding/removing an element to/from a bucket is 0 when that element is
inserted/deleted, but the cost of rearranging items is equal to the sum of the sizes
of the buckets containing those items. (So even moving one item from a bucket u to
a bucket v costs |u| + |v]). Finally, each bucket has a maximum capacity of 8N/m

elements.
Our next lemma reduces bucketed list labeling to 2-sparse list labeling.

LEMMA 7.3. Let T be a mon-negative convex function. If there exists a 2-sparse
list-labeling solution whose expected amortized cost is upper bounded by T (logn), then
there exists a bucketed list-labeling solution whose expected amortized cost is upper
bounded by

O (T (logm)) .
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Proof. An important component of our bucketed list-labeling solution is to par-
tition the elements into up to m/2 disjoint blocks, where each block contains up to
8N/m consecutive elements. We maintain these blocks using hysteresis: every time
that a block’s size falls below 2N/m (due to deletions), we merge it with an adjacent
block (unless there is only one block in the system); and every time that a block’s size
exceeds 8N/m (due to insertions or merges), we split that block into two blocks of
equal size. Note that a block’s size can never exceed 10N/m because a block of size
< 8N/m can be merged with a block of size < 2N/m, and there is no way to create a
larger block. Thus, after a split, the size of each resulting block is between 4N/m and
5N/m. Starting from an empty array, during a sequence of k insertions/deletions, the
number of block splits/merges will be at most O(km/N).

To construct a bucketed list-labeling solution, we treat the m buckets as slots
in an array of size m, and we treat the up-to-m/2 blocks as elements that reside
in that array. This allows for us to treat the bucketed list-labeling problem as a 2-
sparse list-labeling problem: block splits corresponded to element insertions in the
2-sparse list-labeling problem; and block merges correspond to element deletions in
the 2-sparse list-labeling problem.

If an operation incurs cost S in the 2-sparse list-labeling problem, then it incurs
cost O(S-N/m) in the bucketed list-labeling problem (since each element in the former
problem corresponds to a block of O(N/m) elements in the latter problem). On the
other hand, starting from an empty array, if k insertions/deletions are performed in the
bucketed list-labeling problem, the number of insertions/deletions in the 2-sparse list-
labeling problem will only be O(km/N). Combining these with the assumption that
the 2-sparse list-labeling problem incurs cost T'(logn), we have that the total cost of
the bucketed list-labeling problem is O(T'(log(m/2))-N/m-k-m/N) = O(kT (logm)),
thus the amortized cost of the bucketed list-labeling problem is O(T'(log m)). 0

Next we reduce sparse list labeling to bucketed list labeling.

LEMMA 7.4. LetT be a non-negative convez function satisfying T(0(i)) = O(T(i))
for all i and satisfying T(0) = 0. Let 16 < 7 < n°1). If there exists a bucketed list-
labeling solution whose expected amortized cost is upper bounded by T(logm), then
there exists a T-sparse list-labeling solution whose expected amortized cost is upper

bounded by
1
@) (T ( 0gn> ~10g7‘) .
log T

Proof. We may assume without loss of generality that 7 is a natural number. We
prove the result by induction on 7. The base case of 16 < 7 < O(1) is trivial, since we
can break the array into ©(n) chunks of size ©(1) and treat each chunk as a bucket
in the bucketed list-labeling problem.

Now suppose that w(1) < 7 < n°d). Let ¢ be a large positive constant (to be
selected later), and partition the array into n® 1987 chunks of size m’ = [m/n¢/1°87 |
slots each (possibly orphaning O(n®/'°87) slots due to rounding errors). Treat each
of the n¢/1°87 chunks as a bucket, and assign elements to chunks using bucketed list
labeling. By assumption, bucketed list labeling has expected amortized cost T (logm)
where m is the number of buckets, and plugging in the value n¢/ 87 for m we get
that the expected amortized cost of the bucketed list labeling instance is:

1
T(logn® 1087y =T <C 0gn>
log T
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per operation. Since T'(6O(i)) = O(T(i)), we can further bound the above cost to be
at most

logn
7.1 T
(7.1) ¢ <log7')’

where ¢’ is a constant determined by c.
By design, each chunk contains at most n’ = 8n/ n¢/ 1987 elements, so

m/
!

c/logT
Lm/n® °57 ] > 7/16.

DL
= 8n/nc/legT T 16n —

Y

n

Thus we can recursively implement each chunk as an instance of {z-sparse list labeling.
By our inductive hypothesis for 7/ = {5, we have that for every sufficiently large
positive constant @), the expected amortized cost of performing an insertion/deletion

in a given chunk is at most

li
Q-T (logn ) log T’

log 7’
_Q.T <(1 —c¢/logT + 3/logn)logn
(1—4/logT)logT
(1-1/logT)logn
log T

) -(1—4/logT)logT

§Q~T< )~log7' (since ¢ > 8)

logn
<Q-(1-1/1 T ——
Q-0 1/ogr) 7 (22

1 1
<Q -T2 logr—q.-T(28"),
log T log 7

) -logT  (since T is convex and T'(0) = 0)

Combining this with (7.1), the total expected amortized cost of an insertion/deletion
is at most
1 1 1
d-T 081 +Q-T 087 logr—Q - T og .
log T log T log T

Choosing Q to be at least ¢/, this is at most

1
QT ( ogn) -log T,

log T

which completes the proof by induction. 0
Lemmas 7.3 and 7.4 directly imply Proposition 7.1, completing the section.

8. Related work.

Formulations and reformulations.. The list-labeling problem has been indepen-
dently formulated several times and under various names. It was first studied by
Itai, Konheim and Rodeh [42] as a sparse table scheme for implementing priority
queues. Willard [75] considered the file-maintenance problem, where records are in-
serted and deleted in a sequentially ordered file. Dietz [26] formulated the similar
order-maintenance problem of maintaining order in a linked list with efficient inser-
tions. Andersson [2] and Andersson and Lai [3] studied a version of the problem in the
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context of balanced binary search trees, which Galperin and Rivest [34] independently
studied under the name scapegoat trees. Raman [65] posited an analogous problem
related to building locality preserving dictionaries.

This problem has mainly been studied in four regimes for the size m of the label
array: dense (m = (14 0(1))n), linear (m = (1+©(1))n), polynomial (m = n'+€1),
and superpolynomial (m = n®()).

Upper and lower bounds in the linear regime.. In the linear regime, Itai, Kon-
heim and Rodeh [42], first proved that items can be inserted with O(log®n) amor-
tized cost. Various subsequent works have made improvements or simplifications to
the algorithms achieving this cost, but the upper bound has remained unchanged.
Willard [76-78] deamortized this result to a O(log? n) worst-case cost. Bender, Cole,
Demaine, Farach-Colton and Zito [10], Bender, Fineman, Gilbert, Kopelowitz and
Montes [16] and Katriel [43] provided simplified algorithms for this result for the
order-maintenance problem. Itai and Katriel [41] additionally simplified the algo-
rithm for the amortized upper bound.

The list-labeling problem where m = (1 + &)n, and where the gap between any
two inserted items is O(1) is often called the packed-memory array problem, for which
bounds of O(¢~'log®n) are known [11,12,17]. Bender and Hu [18] provided an
adaptive packed-memory array algorithm, that is, it matches the O(log2 n) worst case
insertion cost in the linear regime while achieving cost of O(logn) on certain common
classes of instances. Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon,
Singh and Zage [8] presented a history-independent packed-memory array which again
matches the existing upper bound in the linear regime.

Dietz and Zhang [29] proved a lower bound on insertion costs of Q(log®n) amor-
tized per insertion in the linear regime for the natural class of smooth algorithms,
where the relabelings are restricted to evenly rebalance elements across a contigu-
ous subarray. Bulanek, Koucky and Saks. [23] showed a Q(log®n) lower bound for
deterministic algorithms in the linear regime, and thus proved that the best known
upper bounds were tight for deterministic algorithms. The best general lower bound
is Q(logn) in the linear regime [24].

Other upper bounds.. In the dense setting, Andersson and Lai [3], Zhang [79], and
Bird and Sadnicki [19] showed an O(nlog®n) upper bound for filling an array from
empty to full for m = n. For arrays of polynomial size, it was known as a folklore
algorithm that an amortized O(logn) insertion cost can be achieved by modifying
the techniques in [42]. Kopelowitz [45] extended this to a worst case upper bound.
This bound was also matched in the balanced search tree setting [2,34]. In the

superpolynomial array regime, Babka, Buldnek, Cundt, Koucky and Saks [7] showed
an algorithm with amortized O(logn/loglogm) cost when m = (210g ™), which
implies constant amortized cost in the pseudo-exponential regime of m = o,

Devanny, Fineman, Goodrich and Kopelowitz [25] studied the online house numbering
problem, which is similar to the list-labeling problem, except with the objective to
minimize the maximum number of times an element is relabeled.

Other lower bounds.. Dietz and Zhang [29] proved a lower bound of Q(logn)
per insertion in the polynomial regime for smooth algorithms. Buldnek, Koucky and
Saks [23] showed an Q(nlog®n) lower bound for n insertions into an initially empty
array of size m = n + n'~¢. Dietz, Seiferas and Zhang [28] proved a lower bound
of Q(logn) in the polynomial regime for general deterministic algorithms, with a
simplification by Babka, Buldnek, Cunét, Koucky, and Saks [6]. Bulanek, Koucky
and Saks [24] also proved that the Q(logn) lower bound for the polynomial regime
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extends to randomized algorithms. In the superpolynomial regime, Babka, Bulanek,

Cuniit, Koucky and Saks [7] showed a lower bound of § (joeg i) for m from

n'+¢ to 2", which reduces to a bound of Q(logn) for m = n!*+¢.

Theoretical Applications.. Applications of list labeling include the diverse moti-
vating problems under which it was first studied, such as priority queue implementa-
tion, ordered file maintenance, etc. Hofri and Konheim [40] studied a similar array
structure for use in a control density array, a sparse table that supports search, in-
sert and deletion by keys. Fagerberg, Hammer and Meyer [32] used upper bounds
from [42] for their rebalancing scheme, which maintains optimal height in a balanced
B-tree.

Bender, Demaine and Farach-Colton [12] used the packed-memory array in their
cache-oblivious B-tree algorithm, so our result directly implies an improvement in that
scheme. Specifically, insertions into their B-tree take O(loggz N + (log® N')/B) 1/Os,
and using our list-labeling algorithm, this is improved to O(logz N + (log®/% N)/B)
I/Os. Brodal, Fagerberg and Jacob [21] and Bender, Duan, Tacono and Wu [13] inde-
pendently simplified the cache-oblivious B-tree algorithm. Bender, Fineman, Gilbert
and Kuszmaul [17] presented concurrent cache-oblivious B-trees for the distributed
setting. Bender, Farach-Colton and Kuszmaul [14] described cache-oblivious string B-
trees for improved performance on variable length keys, compressed keys, and range
queries. All of these cache-oblivious algorithms use packed-memory arrays.

In their results on the controller problem for managing global resource consump-
tion in a distributed network, Emek and Korman [31] reduced the list-labeling problem
to prove their lower bounds. Bender, Cole, Demaine, Farach-Colton and Zito [10] also
applied list labeling lower bounds to the problem of maintaining a dynamic ordered
set which supports traversals in the cache-oblivious and sequential-access models.
Kopelowitz [45] studied the predecessor search on dynamic subsets of an ordered dy-
namic list problem, which combines the order-maintenance problem with the predeces-
sor problem of maintaining dynamic sets which support predecessor queries. Nekrich
used techniques for linear list labeling from [42] in data structures supporting various
problems related to querying points in planar space, such as orthogonal range report-
ing [55,56], the stabbing-max problem [58], and the related problem of searching a
dynamic catalog on a tree [57]. Mortensen [52] similarly considered applications to
the orthogonal range and dynamic line segment intersection reporting problems.

Practical Applications.. Additionally, a variety of practical applications use the
packed-memory array as an algorithmic component. Durand, Raffin and Faure [30]
proposed using a packed-memory array to maintain sorted order during particle move-
ment simulations for efficient searching. Khayyat, Lucia, Singh, Ouzzani, Papotti,
Quiané-Ruiz, Tang and Kalnis [44] applied it to handle dynamic database updates
in their inequality join algorithms. Toss, Pahins, Raffin and Comba [70] presented a
packed-memory quadtree, which supports large streaming spatiotemporal datasets.
De Leo and Boncz [47] presented the rewired memory array, an implementation
of a packed-memory array which improves on its practical performance. Several
works [46, 48,61, 72-74] implemented parallel packed-memory arrays for the purpose
of storing dynamic graphs with fast updates and range queries. Assessing whether
our results can be used to obtain practical speedups for these applications remains an
interesting direction for future work.

Related work on history independence.. History independence has been studied
for data structures in both internal and external memory models [8,20,22, 35, 36, 39,
51,53, 54]. Even prior to the formalization of history independence [51,54] in the
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late 1990s, there were several notable early works on hashing and search trees that
implicitly achieved history-independent topologies [1,4,5,62-64,68,69]. The notion
of history independence studied in this paper is sometimes referred to as weak history
independence—for a survey of stronger notions of history independence, along with
other related work, see recent work [37] by Goodrich, Kornaropoulos, Mitzenmacher
and Tamassia. (Note that, the weaker the notion of history independence that one
uses, the stronger any lower bound on history-independent data structures becomes.)

History independence is typically treated as a security property: the goal is to
minimize the amount of information that is leaked if an adversary sees internals of the
data structure. To the best of our knowledge, the results in this paper are the first to
use techniques from history independence in order to achieve faster algorithms than
were previously possible.
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Appendix A. Proof of Lemma 5.3.
LEMMA A.1. Each level-i subproblem S satisfies |S| < [m/2!].

We remark that Lemma 5.3 is essentially immediate from the fact that each

subproblem S has density ugs < 1+ ¢/2. The only difficulty in the proof comes from
the necessity to carefully handle floors/ceilings.

Proof. By construction, each level-i subproblem S has

n n
|Cs|§2as-§§6-§.

Thus, if [Cs| > 4 (i.e., S is a non-base-case subproblem), we must have en/2" > 4.
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Since every base-case subproblem is the child of a non-base-case subproblem, we have
that for base-case subproblems en/2°~! > 4. This means that every subproblem S is
in a level 7 satisfying

en
> 2.

(A1) 5

We wish to show that | 57| — [S]| > 0. We know that
m m n_m n (I1+e)n—psn
5] 181= 5] sy 2 g ey 12
Since pug < 14 ¢/2, it follows that
m en/2
7] 1512
By (A.1), we can conclude that |5 ] —|S| > 0, as desired. O
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