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Abstract

Liquid crystal elastomers (LCEs) are a class of smart elastomers exhibiting unusual mechanical behavior,
including large energy dissipation and soft elasticity under uniaxial tensile loading. LCEs are composed
of liquid crystal molecules, called mesogens, linked by a network of polymer chains. During deformation,
the mesogens orient in the direction of the loading, leading to soft elasticity, which is an increase in strain
at constant stress. The combination of mesogen rotation and intrinsic polymer viscoelasticity leads to a
nonlinear viscoelastic soft elastic behavior. The aim of this paper is to investigate the coupling between the
viscoelastic mechanisms and soft elasticity in main chain LCEs. We propose a rheological model in which
the mesogen rotation during deformation is represented by a reversible slider while viscoelastic relaxation
mechanisms are modeled as series of Maxwell elements coupled or decoupled with mesogen rotation. Fit-
ting this model to experimental data demonstrate that the coupling between polymer chain viscoelasticity
and mesogen rotation is partial, i.e. the long-time relaxation mechanisms are coupled and the short-time
relaxation mechanisms are decoupled from mesogen rotation. Furthermore, we show that the viscosity of
mesogen rotation is not necessary to properly predict the elastic modulus during the soft elasticity but it is
needed to properly predict the initiation of the phenomenon.

Keywords: Liquid crystal elastomers, soft elasticity, viscoelasticity, mesogen, polydomain-monodomain
transition, constitutive modeling

1. Introduction

Liquid Crystal Elastomers (LCEs) are a class of smart elastomers with unique properties, combining
the rubber elasticity of the elastomer network with the anisotropic order of the liquid crystals. Thanks
to their unusual reversible shape-memory, optical properties, and biocompatibility, LCEs are advantageous
candidates for soft robotics, microfluidics, optics, and bioengineering applications [7, 19, 62, 32, 36].

LCEs are composed of mesogenic molecules or liquid crystals, linked by a network of polymer chains.
Mesogens are elongated and relatively rigid molecules that tend to form ordered configurations [10, 57].
Below the glass transition temperature (Tg), LCEs are in the glassy state and the low mobility of the polymer
chains prevents any mesogen ordering. Above Tg, LCEs are nematic and the mesogens order naturally in the
polydomain state. In this polydomain state, mesogens form micrometer-sized ordered subdomains, each with
a unique randomly-oriented director, so that the LCE remains macroscopically isotropic [14]. Stretching a
polydomain LCE leads to the orientation of the subdomains in the direction of the applied strain, resulting in
monodomain LCE. This phenomenon is denoted as the polydomain-monodomain (PM) transition. Finally,
increasing the temperature of the nematic LCE above the nematic-isotropic (NI) transition temperature Tni

prevents any ordering of the microstructure. In the isotropic state, mesogens exhibit random directors and
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LCEs are microscopically and macroscopically isotropic [56]. Each transition involving a change of order
is associated to a nonlinear mechanical behavior resulting from the coupling between the orientation of
the mesogens with the mechanical deformation of the polymer network: reversible shape-memory actuation
during the NI transition and soft elasticity during the PM transition. This paper focuses on the coupling
between polymer chain movement and mesogen rotation during soft elasticity at the PM transition.

Soft elasticity is defined as an increase in strain at constant stress [54, 50, 53]. The soft elastic tensile
curve is composed of three phases (Fig. 1). First, the material is in the polydomain state and behaves like
a classic isotropic polymer network. When the reorientation stress threshold is reached, the polydomain
LCE transitions to a monodomain LCE. During this transition, the effective modulus is close to zero and
the stress-strain curve exhibits a plateau. Finally, once the microstructure is reoriented in the direction of
the stretch, the LCE is in the monodomain phase, and further stretching results in stretching the polymer
network, which exhibits the usual hyperelastic behavior, although the mechanical behavior is now highly
anisotropic.

Figure 1: Mesogen orientation and mechanical behavior of LCEs in polydomain, PM transition, and monodomain phases. Soft
elasticity corresponds to the PM transition region.

The soft elasticity behavior of LCEs arises from the cooperative alignment and rotation of the elongated
mesogens in the direction of applied strain. This enables large deformation with minimal energy input and
is characterized by a plateau region in the stress-strain curve [54, 50, 53]. This unique response is due to
the anisotropy of the liquid crystalline phase and the coupling between mesogen orientation and polymer
chain deformation [34, 54, 14]. Although an ideal soft elasticity leads to a perfect plateau of zero modulus,
non ideal loading conditions, such as an increased strain rate, lead to a soft elastic region with a low but
non-zero modulus (Fig. 1) [4] Although the physical origin of soft elasticity as resulting from the coupling
between mesogen and polymer chains, understanding this coupling and the accompanying time-dependent
effects and integrating it in constitutive models remains challenging.

Multiple molecular and macroscopic models have been proposed to study and predict the mechanical
behavior of LCEs. At the molecular scale, the material cannot be modeled as a continuum medium and
methods such as Monte Carlo (MC) algorithms and molecular dynamics (MD) are commonly used to in-
vestigate molecular interactions and deformation mechanisms. Thus, molecular models can elucidate the
molecular origin of the highly-nonlinear macroscopic properties of LCEs [63, 40, 30, 39, 26]. For example,
researchers showed that the soft elasticity of LCEs results from the coupling between mesogen orientation
and position in the polymer network using an MC model [30] and occurs through cluster rotation and domain
growth using MD simulations [60]. MD is also an efficient method to investigate the movement of molecules
during actuation [47, 31, 20]. MC algorithms are limited to simulations under thermodynamic equilibrium
conditions, while MD methods are adequate for time-dependent and equilibrium problems [60]. However,
the computational cost of MD methods is high, making them unsuitable for large-scale simulations.

Different approaches have been reported to predict soft elasticity in hyperelastic constitutive laws. A
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general constitutive model of ideal monodomain nematic solids [57] used a neoclassical strain-energy function
[55, 58, 6] and reliably models the soft elastic behavior of LCEs in the nematic domain [11]. A coarse-grain
development of this strain energy function provided a robust simulation of soft elasticity including the lo-
cal director reorientation [9]. The neoclassical framework has also been combined with the pseudo-elastic
theory for particle reinforced rubber [28, 12] to formulate a phenomenological pseudo-energy function of
nematic LCEs, which better predicts the soft elastic behavior [25]. Slightly departing from these strategies,
a phase-field approach considered microscopic liquid crystal forces combined with a simplified Landau and
distortional energy functions and predicted the soft elasticity and the stripe domains in the microstruc-
ture [27].

In combination with soft elasticity, LCEs also exhibit viscoelasticity [45, 16, 15, 29, 8, 18, 17, 4]. To
identify time-dependent deformation mechanisms, Azoug et al. [4] studied the rate-dependent behavior of
a nematic LCE from the polydomain to the monodomain state and back over a large range of strain rates
and temperatures. Three relaxation mechanisms were detected: (i) spectrum of relaxation mechanisms
associated to the usual behavior of the polymer network, (ii) short-time relaxation mechanisms connected
to changes in director orientation in nematic domains, and (iii) a slow relaxation mechanism related to the
relaxation of the polydomain texture and cooperative motions [18, 51, 4]. A fourth small-scale mechanism
corresponding to the rotation of a mesogen on the polymer chain is discussed in the literature [35]. However,
measurements of mesogen rotation in liquid crystal polymers, i.e. non-crosslinked polymers, have shown
that the relaxation associated with this mechanisms is two orders of magnitude faster than the relaxation
of a cross-linked polymer network and, hence, insignificant in LCEs [35]. This does not imply that mesogen
reorientation has no impact on the time-dependent behavior of the LCE. On the contrary, mechanisms
associated with the director reorientation in nematic domains, measured for example in polydomain side-
chain LCEs [51] or smectic LCEs [1], are still related to mesogen rotation but involve friction with the
neighboring polymer chains because of their larger scale.

The time-dependent behavior of liquid crystal fluids has been modeled in the continuum mechanics
framework through the dissipation principle, considering them dissipative ordered fluids [22, 42, 43]. The
models combine a Rayleigh dissipative function in the Leslie-Ericksen form with a free energy function
containing an elastic and a liquid crystal contribution. This modeling approach was then extended to the
behavior of LCEs under small strain and small director rotation, differentiating the dissipations originating
from mesogen rotation from the energy dissipated by the polymer network [49]. Finally, the behavior of LCEs
in large strain and large director rotation was predicted following the same modeling approach [65, 64, 52].
As pointed out by Wang et al. [52], the Rayleigh dissipation function in the Leslie-Ericksen form [49, 65, 64]
explicitly depends on the rate of strain tensor, implying that the model does not have an instantaneous stress
response. The model developed in [52] is limited to monodomain LCEs, i.e. LCEs with a uniform director
field. Consequently, it is assumed that the order parameter remains constant and the model is not able
to reproduce the behavior of a randomly-oriented polydomain LCE or the PM transition. Notably, Wang
et al. [52] hypothesized that the viscous deformation mechanisms associated with the mesogen rotation are
independent from the viscosity associated with the polymer network.

The goal of this paper is to address the three following questions regarding the viscoelastic relaxation
mechanisms attributed to the polymer chains and to the mesogens: (1) How is mesogen rotation coupled
with polymer viscoelasticity?, (2) Is the mechanism of mesogen rotation viscous?, and (3) Is the initiation
of mesogen rotation viscous?.

The soft elasticity phenomenon is similar to the superelasticity behavior observed in shape-memory alloys
(SMAs), which originates from the phase transition between martensite and austenite [46]. In both cases,
a large increase in strain at constant stress is observed as a result of a phase transition. Although the
transition mechanisms in SMAs result from changes in atomic order rather than molecular rearrangements,
the macroscopic behavior is qualitatively similar and is well represented by the so-called Souza-Auricchio
model [3, 44, 33]. Taking inspiration from superelasticity models, we propose a phenomenological model of
LCEs where an internal variable, the transformation strain, controls the PM transition and the soft elasticity.
The model is expanded to time-dependent behavior through strategically placed Maxwell elements. The
proposed model is phenomenological and as such, is not limited to monodomain LCEs. Thus, it can predict
the soft elasticity arising during the PM transition. The mechanism of mesogen rotation is modeled as
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elastic, i.e. non-dissipative, but can be coupled to the polymer network viscoelasticity. This time-dependent
model then provides a tool to investigate the coupling between viscoelastic relaxation mechanisms and soft
elasticity in LCEs. Since modeling actuation is not an objective of the current model, the model is not
concerned with variations in temperature.

The paper is organized as follows. In Section 2, we introduce the proposed rheological model and discuss
the development of the constitutive equations. This includes an examination of three different distributions
for the viscoelastic relaxation mechanisms. In Section 3, we wish to address the discussion questions by
comparing our model with experimental data. Finally, conclusions are given in Section 4.

2. Model

The generalized plasticity model [13, 23], which efficiently models inelastic behavior, has been success-
fully adapted to the superelastic behavior of SMAs by including a sliding device between the two phases,
martensite and austenite [24, 3, 44]. Here, we extend the approach to develop a small strain model, where
the sliding device transitions between a polydomain and monodomain orientation in LCEs.

2.1. Strain decomposition

The total strain tensor ε is the control variable, additively decomposed into a volumetric tensor εvol

(equ. (1)) and a deviatoric strain tensor e (equ. (2)):

εvol =
1

3
θ1 (1)

e = ε− εvol (2)

where θ is tr(ε) and 1 is the unit tensor. The behavior is assumed isochoric. In addition, we assume
the volumetric behavior entirely linear elastic. The viscoelasticity and nonlinearity resulting from mesogen
reorientation are assumed deviatoric based on experimental evidence [59].

2.2. Rheological model and Helmholtz free energy

We propose a rheological model for the deviatoric part of nematic LCEs where (i) a single spring with
shear modulus Gtr represents the elastic response of the material, (ii) a sliding device represents the PM
transition, where the device slides at a certain stress threshold with zero friction, (iii) A series of M coupled
Maxwell elements, each composed of a spring with shear modulus Gtr

k and a dashpot with viscosity η∗k
(k = 1, ...,M), represent the coupled viscoelastic relaxation mechanisms, and finally (iv) a series of N
decoupled elements, each consisting of spring with shear modulus Gk and a dashpot with viscosity ηk
(k = 1, ..., N), represent the decoupled viscoelastic relaxation mechanisms (Fig. 2).

Figure 2: Proposed rheological model

The deviatoric transformation strain etr is an internal variable introduced to quantify the strain-induced
movement of the sliding device and represents the transformation of the LCE from polydomain to mon-
odomain. etr satisfies the saturation constraint ‖etr‖ ≤ εL, where εL is the maximum residual strain and
‖.‖ indicates the Euclidean norm.

The deviatoric strain tensor e∗ in the coupled Maxwell element k consists of the elastic strain e∗ek in the
spring and the viscoelastic strain e∗vk in the dashpot, i.e. e∗ = e∗ek + e∗vk , k = 1, ...,M . Similarly, in the
decoupled Maxwell element k, the deviatoric strain is divided in elastic eek and viscoelastic evk strains, i.e.
e = eek + evk, k = 1, ..., N . The viscoelastic strains e∗vk and evk are internal variables of the model.

The Helmholtz free energy of the material Φ is decomposed into the volumetric Ψvol, transition Ψtr,
coupled elastic Ψe, coupled viscoelastic Ψ∗v

k , and decoupled viscoelastic Ψv
k components,

Φ(θ, e, etr, e∗vk , evk) = Ψvol(θ) + Ψtr(etr) + Ψe(e, etr) +

M
∑

k=1

Ψ∗v
k (e, etr, e∗vk ) +

N
∑

k=1

Ψv
k(e, e

v
k) (3)
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where Ψvol(θ) = 1
2κθ

2 characterizes the entire volumetric response, with κ the bulk modulus. The transition
is defined by

Ψtr = τM‖etr‖+
1

2
h‖etr‖2 + εL(e

tr) (4)

where the critical stress τM determines the onset of the transition, h defines the possible hardening during
the transition, and the function εL(e

tr) is used to satisfy the saturation constraint, ‖etr‖ ≤ εL according
to

εL(e
tr) =

{

0 if ‖etr‖ ≤ εL
+∞ otherwise

(5)

The remaining elastic and viscoelastic components of the free energy are defined as

Ψe = Gtr‖e− etr‖2 (6)

Ψ∗v
k = G∗tr

k ‖e− e∗vk − etr‖2 (7)

Ψv
k = Gk‖e− evk‖

2 (8)

where G denotes a generic shear modulus and the superscript tr indicates a dependence on the transition
strain etr. Experimental measurements show that the LCE apparent modulus varies between the polydomain
and monodomain phases[4]. Consequently, we assume the modulus of the coupled elastic element Gtr is
affected by mesogen rotation and continuously evolving during the transition from a polydomain modulus
Gp at etr = 0 to a monodomain modulus Gm at ‖etr‖ = εL. Similarly, the moduli of the coupled viscoelastic
elements G∗tr

k are evolving from G∗
kp in the polydomain to G∗

km in the monodomain. The shear moduli
associated with decoupled Maxwell elements Gk are constant through the transition.

Following Auricchio et al. [2], we adopt the expressions (9) for the shear moduli of the elastic Gtr

and coupled viscoelastic elements G∗tr
k continuously evolving with etr from a polydomain value (•)p to a

monodomain value (•)m with (•)p > (•)m. This expressions ensure that ∂σ
∂ε ≈ 0 for h = 0.

Gtr(etr) =
εL

εL−‖etr‖
Gp

+ ‖etr‖
Gm

, G∗tr
k (etr) =

εL
εL−‖etr‖

G∗

kp

+ ‖etr‖
G∗

km

(9)

2.3. Constitutive equations

The constitutive equations for the volumetric p and deviatoric s part of the stress tensor σ are expressed
as

p =
∂Φ

∂θ
= κθ (10)

s =
∂Φ

∂e
= se +

N
∑

k=1

svk +

M
∑

k=1

s∗vk

= 2Gtr
(

e− etr
)

+ 2

N
∑

k=1

Gk (e− evk) + 2

M
∑

k=1

G∗tr
k

(

e− etr − e∗vk
)

(11)

As the derivatives of the elasticGtr and viscoelasticG∗tr
k shear moduli with respect to etr are ∂Gtr/∂etr =

L/Ktr2 and ∂G∗tr
k /∂etr = L∗

k/K
∗tr
k

2
, the thermodynamic stress-like quantity χ = − ∂Φ

∂etr associated with
etr is expressed as

χ = G∗tr
0

(

e− etr
)

−

M
∑

k=1

2G∗tr
k e∗vk −

(

d+ h‖etr‖+ τM + γ
)

∂‖etr‖ (12)
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where

G∗tr
0 = 2

(

Gtr +

M
∑

k=1

G∗tr
k

)

(13)

d =
L

Ktr2
‖e− etr‖2 +

M
∑

k=1

L∗
k

K∗tr
k

2 ‖e− etr − e∗vk ‖2 (14)

L = εLGmGp(Gm −Gp) L∗
k = εLG

∗
kmG∗

kp(G
∗
km −G∗

kp) (15)

Ktr = Gm(εL − ‖etr‖) +Gp‖e
tr‖ K∗tr

k = G∗
km(εL − ‖etr‖) +G∗

kp‖e
tr‖ (16)

and ∂εL(e
tr) = γ etr

‖etr‖ with

γ =

{

0 if ‖etr‖ < εL
≥ 0 if ‖etr‖ = εL

(17)

The quantity ∂‖etr‖ is not single-valued when etr = 0. According to [5],

∂‖etr‖ =

{

etr/‖etr‖ if etr 6= 0

{τ : trτ = 0, ‖τ‖ ≤ 1} if etr = 0
(18)

2.3.1. Evolution equation of etr

The model can introduce a hysteresis around the transition through the Mises-type limit function F (χ)
(equ.(19))

F (χ) = ‖χ‖ −Ry (19)

where Ry is the radius of the elastic domain during transition around critical stress that controls the width
of the hysteresis. The evolution equation for the internal variable etr is then:

ėtr = λ̇
∂F

∂χ
= λ̇∂‖χ‖ (20)

where λ̇ is the non-negative consistency parameter and ∂‖χ‖ is given as:

∂‖χ‖ =

{

χ/‖χ‖ if χ 6= 0

{τ : trτ = 0 , ‖τ‖ ≤ 1} if χ = 0
(21)

Similarly to the plasticity consistency conditions, the classical Kuhn-Tucker conditions λ̇ ≥ 0, F ≤ 0, λ̇F = 0
complete the evolution equation, with the transition strain evolving in the slider rather than plastic flow in
a classical plasticity model [38, 37]. The Kuhn-Tucker conditions express that, during the transition, λ̇ 6= 0
and etr is changing while F (χ) = 0 and ‖χ‖ = Ry. Outside of the transition, λ̇ = 0 and etr is constant
while 0 ≤ ‖χ‖ < Ry.

Following the time discretization and incremental energy minimization scheme described in detail in [33],
the updated value of etr needs to satisfy the stationary equation (equ.(22)).

0 = −χ+Ry∂‖e
tr − etrn ‖

= G∗tr
0

(

etr − e
)

+
M
∑

k=1

2G∗tr
k e∗vk +

(

d+ h‖etr‖+ τM + γ

)

∂‖etr‖+Ry∂‖e
tr − etrn ‖ (22)

where all quantities are expressed at time step tn+1 except etrn expressed at time tn, and

∂‖etr − etrn ‖ =

{

etr−etr
n

‖etr−etr
n ‖ if etr 6= etrn

{τ : trτ = 0, ‖τ‖ ≤ 1} if etr = etrn
(23)
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There are three phases in the evolution of etr. In the polydomain phase, there is no transition, i.e.
etr = 0. During the transition, etr increases up to εL. Finally, in the monodomain phase, the transition
strain is constant, i.e. ‖etr‖ = εL. Accordingly:

• Polydomain phase or elastic evolution, ‖etr‖ ≤ εL and γ = 0.

If etrn = 0, as the evolution is elastic in this case, etr = 0 and ∂‖etr − etrn ‖ = τ , leading to

G∗tr
0 e−

M
∑

k=1

2G∗tr
k e∗vk = (τM +Ry + d0) τ (24)

where

d0 = d
∣

∣

∣

etr=0
=

L

G2
mε2L

‖e‖2 +

M
∑

k=1

L∗
k

G∗2
kmε2L

‖e− e∗vk ‖2 (25)

Taking the norm on both sides on this expression gives etr = 0 if and only if
∥

∥

∥

∥

∥

G∗tr
0 e−

M
∑

k=1

2G∗tr
k e∗vk

∥

∥

∥

∥

∥

≤ τM +Ry + d0 (26)

If etrn 6= 0, two cases arise. First, if etr = etrn , there is no additional transition, ∂‖etr − etrn ‖ = τ and

∥

∥

∥

∥

G∗tr
0 (e− etrn )− (τM + dn)

etrn

‖etrn ‖
− hetrn −

M
∑

k=1

2Gke
v
k

∥

∥

∥

∥

≤ Ry (27)

where

dn = d
∣

∣

∣

etr=etr
n

=
L

Ktr2
‖e− etrn ‖2 +

M
∑

k=1

L∗
k

K∗tr
k

2 ‖e− e∗vk − etrn ‖2 (28)

Second, if etr = 0 and ∂‖etr‖ = τ , the expression becomes

∥

∥

∥

∥

G∗tr
0 e−

M
∑

k=1

2G∗tr
k e∗vk +Ry

etrn

‖etrn ‖

∥

∥

∥

∥

≤ τM + d0 (29)

(30)

• PM transition etr 6= {0, etrn }, ‖etr‖ < εL and γ = 0. These conditions directly lead to

‖etr − etrn ‖ =
‖b‖ −Ry

f
(31)

where

b = G∗tr
0 e−

M
∑

k=1

2G∗tr
k e∗vk − fetrn (32)

f = G∗tr
0 + h+

d+ τM
‖etr‖

(33)

d =
L

Ktr2
‖e− etr‖2 +

M
∑

k=1

L∗
k

K∗tr
k

2 ‖e− e∗vk − etr‖2 (34)

and finally, we obtain

etr =
1

f

(

G∗tr
0 e−

M
∑

k=1

2G∗tr
k e∗vk −Ry

b

‖b‖

)

(35)
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• Monodomain: When the polydomain phase has totally transformed into a monodomain phase, ‖etr‖ =

εL, γ 6= 0, Gtr = Gm, G∗tr
k = G∗

km, G∗tr
0 = G∗

0m = 2
(

Gm +
∑M

k=1 G
∗
km

)

, Ktr = GpεL, and K∗tr
k =

G∗
kpεL. Writing ‖etr − etrn ‖ as

‖etr − etrn ‖ =
‖b′‖ −Ry

f ′
(36)

b′ = G∗
0me−

M
∑

k=1

2G∗
kme∗vk − f ′etrn (37)

f ′ = G∗
0m + h+

d′ + τM + γ

εL
(38)

d′ =
L

G2
pε

2
L

‖e− etr‖2 +

M
∑

k=1

L∗
k

G∗2
kpε

2
L

‖e− e∗vk − etr‖2 (39)

leads to

etr =
1

f ′

(

G∗
0me−

M
∑

k=1

2G∗
kme∗vk −Ry

b′

‖b′‖

)

(40)

Finally, using ‖etr‖ = εL, we develop an expression for γ,

γ =

∥

∥

∥

∥

∥

G∗
0me−

M
∑

k=1

2G∗
kme∗vk −Ry

b′

‖b′‖

∥

∥

∥

∥

∥

− τM − d′ − (G∗
0m + h)εL (41)

2.3.2. Evolution equation of e∗vk
Since the stress s∗vk in the coupled viscoelastic element k is s∗vk =

∂Ψ∗v
k

∂e = 2G∗tr
k (e−e∗vk −etr) (equ. (11))

and the stress in the damper in the same element is s∗vk = ηkė
∗v
k , the evolution equation for the internal

variable e∗vk is expressed as:

ė∗vk =
1

τ∗k
(e− e∗vk − etr) (42)

where τ∗k = ηk/2G
∗tr
k . We can solve equation (42) with the initial conditions (43).

{

e∗vk (0) = 0

limt→∞ e∗vk = 0
(43)

Classically, we multiply equation (42) by et/τk , integrate it from 0 to time t, and obtain

e∗vk (t) =

∫ t

0

1

τ∗k
e(ξ−t)/τ∗

k (e− etr) dξ = e− etr − h∗
k(t) (44)

where

h∗
k(t) =

∫ t

0

e(ξ−t)/τ∗

k (ė− ėtr) dξ (45)

In a discrete time framework, h∗n+1
k at time tn+1 can be found from the known h∗n

k at time tn as:

h∗n+1
k = e(tn−tn+1)/τ

∗

kh∗n
k + e(tn−tn+1)/2τ

∗

k (en+1 − etrn+1 − en + etrn ) (46)

(47)
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2.3.3. Evolution equation of evk
The stress svk in the decoupled viscoelastic element k is svk =

∂Ψv
k

∂e = 2Gk(e − evk) (equ. (11)) and the
evolution equation of evk is obtained as

ėvk =
1

τk
(e− evk) (48)

where τk = ηk/2Gk. Considering the initial condition (49),

{

evk(0) = 0

limt→∞ evk = 0
(49)

the internal variable evk is explicitly expressed as:

evk(t) =

∫ t

0

1

τk
e(ξ−t)/τke dξ = e− hk(t) (50)

where

hk(t) =

∫ t

0

e(ξ−t)/τk ė dξ (51)

In a discrete time framework, hn+1
k can be found as:

hn+1
k = e(tn−tn+1)/τkhn

k + e(tn−tn+1)/2τk(en+1 − en) (52)

where hn
k is known from time tn.

2.3.4. Discrete problem

PM transition. The system of equations (53)-(57) is solved at each time tn+1 during the transition to
determine the values of the internal variables etrn+1 and e∗vk,n+1, using a Newton-Raphson method. The
stiffness matrix used for this resolution is presented in Appendix A.

(H1) x− ‖etr‖ = 0 (53)
(

H
(i)
2

)

e
∗v (i)
k − e(i) + etr (i) + h

∗(i)
k = 0 (54)

(H3) d−
L

Ktr2
‖e− etr‖2 −

M
∑

k=1

L∗
k

K∗tr
k

2 ‖e− e∗vk − etr‖2 = 0 (55)

(

H
(i)
4

)

b(i) −G∗tr
0 (e(i) − etr (i)

n ) + hetr (i)n +
τM + d

x
etr (i)
n + 2

M
∑

k=1

G∗tr
k e

∗v (i)
k = 0 (56)

(

H
(i)
5

)

etr (i) −
G∗tr

0 e(i) −
∑

2G∗tr
k e

∗v (i)
k −Ry

b(i)

‖b‖

(G∗tr
0 + h+ (τM + d)/x)

= 0 (57)

where x = ‖etr‖, and (•)(i) are the eigenvalues of the tensor (•).
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Monodomain. In the monodomain phase, the system formed by equations (58)-(62) must be solved to find
γ, etr and e∗vk .

(

H
(i)
1

)

e
∗v (i)
k − e(i) + etr (i) + h

∗(i)
k = 0 (58)

(H ′
2) d′ −

L

G2
pε

2
L

‖e− etr‖2 +

M
∑

k=1

L∗
k

G∗2
kpε

2
L

‖e− e∗vk − etr‖2 = 0 (59)

(

H
′ (i)
3

)

b′ (i) −G∗
0m(e(i) − etr (i)

n ) + hetr (i)
n +

τM + d′ + γ

εL
etr (i)
n + 2

M
∑

k=1

G∗
kme

∗v (i)
k = 0 (60)

(

H
′ (i)
4

)

etr (i) −
G∗

0me(i) − 2
∑

G∗
kme

∗v (i)
k −Ry

b′ (i)

‖b′

‖

G∗
0m + h+ (τM + γ + d′)/εL

= 0 (61)

(H ′
5) γ −

∥

∥

∥

∥

∥

G∗
0me−

M
∑

k=1

2G∗
kme∗vk −Ry

b′

‖b′‖

∥

∥

∥

∥

∥

+ τM + d′ + (G∗
0m + h)εL = 0 (62)

We will solve this system with a Newton-Raphson algorithm (derivations are detailed in Appendix A).

2.4. Coupling considerations

To investigate the influence of the coupling between the soft elasticity due to mesogen rotation and the
viscoelasticity of the polymer chains, we compare three combinations of viscoelastic elements: decoupled,
coupled, and full. In the decoupled model, all viscoelastic elements are decoupled from the soft elastic slider
(Fig. 2, M = 0). In the coupled model, they are all coupled to the soft elasticity (Fig. 2, N = 0). The
full model allows for some elements to remain decoupled while others will be coupled to the soft elasticity
(Fig. 2, M > 0 and N > 0).

2.4.1. Decoupled model

In the decoupled model, we assume that the soft elasticity is completely elastic and all viscoelastic mech-
anisms are fully decoupled from this nonlinear elastic response. When M = 0, the deviatoric constitutive
equations (11)-(12) simplify to

s = 2Gtr
(

e− etr
)

+ 2

N
∑

k=1

Gk (e− evk) (63)

χ = 2Gtr
(

e− etr
)

−

(

L

Ktr2
‖e− etr‖2 + h‖etr‖+ τM + γ

)

∂‖etr‖ (64)

2.4.2. Coupled model

In the coupled model, all the viscoelastic relaxations are coupled with the soft elastic slider. The mesogen
rotation, measured by etr, influences the response of the elastic and viscoelastic elements. When N = 0,
the deviatoric constitutive equations (11)-(12) become

s = 2Gtr
(

e− etr
)

+ 2

M
∑

k=1

G∗
k

(

e− etr − e∗vk
)

(65)

χ = G∗tr
0

(

e− etr
)

−

(

d+ h‖etr‖+ τM + γ

)

∂‖etr‖ −

M
∑

k=1

2G∗tr
k e∗vk (66)
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2.4.3. Full model

In the full model, we assume that M relaxation mechanisms are coupled to the mesogen rotation and soft
elasticity, and their modulus evolves during the PM transition. The N decoupled viscoelastic elements are
independent of soft elasticity and their modulus remains constant during the PM transition. The underlying
assumption of the partially coupled model is that some polymer chain movements occur during mesogen
rotation, while others are replaced by the rotation accommodating some of the imposed deformation.

2.5. Significance of the material parameters

Figure 3: Schematic σ − ǫ diagram of the elastic part of the behavior under uniaxial loading

LCEs are assumed perfectly incompressible materials. Consequently, their Poisson’s ratio is ν = 0.5 and
their bulk modulus κ is infinity.

The constitutive model has six material parameters for the deviatoric elastic part of the behavior (Fig. 3).
The polydomain and monodomain shear moduli, Gp and Gm, control the slope of the stress-strain curve
in the polydomain and monodomain regions. The threshold stress τM defines the stress at the onset of
transition and soft elasticity, which is then supposed independent of strain rate. The strain εL controls the
length of the transition region. More precisely, εL measures the residual strain at the end of the transition.

The parameters Ry and h define the hysteresis and hardening during the phase transition, respectively.
These material parameters will first be set at Ry = 0 and h = 0 to indicate that the hysteresis during the
transition may be well represented by the viscoelastic mechanisms already included in the model. Similarly,
the soft elasticity is first assumed leading to a perfect plateau with a slope null.

The model also has 2 × (M + N) material parameters for the deviatoric viscoelastic contribution to
the mechanical behavior, i.e. the relaxation times τk and corresponding moduli Gk of M coupled and N
decoupled viscoelastic elements.

The optimization is performed in MATLAB using the Levenberg-Marquart optimization algorithm. The
optimization process involves multiple steps, with the first step focusing on defining the polydomain behavior,
which encompasses all Gp and Gk + G∗

kp quantities. Subsequent steps involve defining Gm, G∗
km, ǫL, and

τM . Finally, all the obtained parameters are used as initial guesses, and the entire optimization is performed
to determine the best distribution of relaxation mechanisms to coupled and decoupled parts, as well as the
best fit for all parameters.

3. Results and Discussion

The aim of this paper is to (1) determine if the mesogen rotation is a relevant viscous mechanism,
(2) investigate the coupling between mesogen rotation and the viscoelasticity of the polymer network, and
(3) explore if the initiation of the mesogen rotation is a viscoelastic process. Before answering these questions,
we will fit the model with different coupling considerations to the experimental data to compare the “best
fit” behaviors.
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3.1. Calibration of the model on experimental data

3.1.1. Experimental data

The model is calibrated using Dynamic Mechanical Analysis (DMA) and uniaxial tensile tests of a
polydomain LCE. The data and its acquisition has been described in Azoug et al. [4].

For the DMA tests, a rectangular LCE specimen was subjected to a frequency sweep between 0.15 Hz and
40 Hz at 0.1 % strain amplitude. The test was repeated at several temperatures between −20◦C and 80◦C.
The time-temperature superposition was used to obtain the master curve of the storage and loss moduli at
the reference temperature of 20◦. These tests will inform the distribution of relaxation times necessary for
the model.

For the uniaxial tensile tests, a dumbbell LCE specimen was stretched from 0 to 100 % engineering strain
at room temperature at multiple strain rates (from 0.005 %s−1 to 20 %s−1) and unloaded to zero force.
These results indicate significant rate effects, where the onset, slope, and length of the soft elasticity plateau
increase with strain rate. The model aims to accurately predict these effects.

3.1.2. Relaxation spectrum
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Figure 4: Master curve of the storage modulus at 20◦C [4] and fit of a Generalized Maxwell model.

A generalized Maxwell model is fitted to the experimental master curve of the storage modulus to find
the number of Maxwell elements required to accurately represent the relaxation spectrum (Fig. 4). The
relaxation times τk are chosen as one per decade between 10−14 s and 103 s. The optimization determines
the 18 viscoelastic moduli Ēk corresponding to these relaxation times. The shear moduli Ḡk (Table 1) are
deduced from Ḡk = Ēk/2(1 + ν) where ν = 0.5 is the Poisson’s ratio of the incompressible material. The
elastic shear modulus, i.e. the modulus at infinite times, is identified as Ḡ∞ = 0.35 MPa.

Table 1: Discretized relaxation spectrum of the polydomain LCE.

k 1 2 3 4 5 6 7 8 9

log(τk) (s) 3 2 1 0 -1 -2 -3 -4 -5
Ḡk (MPa) 0.062 0.24 0.41 0.89 1.53 2.74 13.85 63.24 104.18

k 10 11 12 13 14 15 16 17 18

log(τk) (s) -6 -7 -8 -9 -10 -11 -12 -13 -14
Ḡk (MPa) 85.34 50.95 33.81 30.25 41.43 19.22 21.66 18.95 33.06
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3.1.3. Uniaxial tensile tests at multiple strain rates

In order to obtain the material parameters and the distribution of coupled and decoupled viscoelastic
elements, the model is fitted to engineering stress-strain curves at strain rates between 0.005 %s−1-20 %s−1

(Fig. 5).
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Figure 5: Fit of the full model to the experiments

At these strain rates, the relaxation mechanisms activated are the ones associated with the relaxation
times τk = 1000, 100, 10, 1, 0.1, and 0.01 s, corresponding to elements k = 1 to 6. In the polydomain
region, the values of the shear modulus Gp = 0.35 MPa and the six viscoelastic moduli Gkp = 0.062, 0.24,
0.41, 1.5, 2.7, and 2.74 MPa are obtained by least square fitting (Table 2). These values are identical to
the moduli Ḡ∞ and Ḡk (Table 1), except for the moduli associated with times 0.1 and 1 s, where the
difference could be attributed to experimental errors during uniaxial testing at high strain rates. As the
model differentiates between coupled and decoupled relaxation mechanisms, the optimization then imposes
that the optimized total Gkp = Gk +G∗

kp equals the sum of the decoupled and coupled polydomain moduli.
The distribution of the viscoelasticity between coupled and decoupled elements shows that the relaxation
mechanisms corresponding to long decoupled times and short coupled times are not necessary to correctly
represent the behavior (Table 2).

In the monodomain region, the total viscoelastic moduli are Gkm = Gk + G∗
km = 0.03, 0.12, 0.35, 1.5,

2.7, and 2.74 MPa. The fitted monodomain elastic shear modulus is Gm = 0.16 MPa and the viscoelastic
moduli for the coupled elements k = 1 − 3 become G∗

km = 0.03, 0.12, and 0.08 MPa (Table 2). This
significant decrease during the transition does not correlate with the alignment of mesogens from polydomain
to monodomain and is discussed in section 3.5.

Finally, the optimized parameters of the soft elasticity are εL = 0.35 and τM = 0.19 − 0.9 MPa. The
parameters h and Ry are set at 0 and 10−5 MPa (see discussion in Section 3.3). It was not possible to
obtain a good correlation between the model and the experimental measurements with a constant value of
τM . This will be discussed in detail in Section 3.4.

The model accurately predicts the modulus in the polydomain, PM transition, and monodomain regions
according to strain rate, in the studied range of strain rates. Because of the distribution of relaxation
mechanisms between coupled and decoupled contributions, the model is particularly efficient at determining
the slope of the soft elastic region, which increases with strain rate and corresponds to the decoupled
mechanisms only. The proper division of these six viscoelastic mechanisms into coupled and decoupled
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Table 2: Material parameters of the coupled and decoupled Maxwell elements

k 1 2 3 4 5 6
Times τk (s) 1000 100 10 1 0.1 0.01

Decoupled Gk (MPa) - - 0.27 1.5 2.7 2.74

Coupled
G∗

kp (MPa) 0.062 0.24 0.14 - - -

G∗
km (MPa) 0.03 0.12 0.08 - - -

Total
Gkp (MPa) 0.062 0.24 0.41 1.5 2.7 2.74
Gkm (MPa) 0.03 0.12 0.35 1.5 2.7 2.74

elements ensures the ability of the model to predict the influence of strain rates in both the polydomain and
soft elasticity regions of the stress-strain curve.

The strain range of the soft elastic region is overestimated in the model response at high strain rates.
This correlates with stronger viscoelastic effects leading to the soft elasticity region exhibiting a positive
tangent modulus and with a lack of experimental data in the monodomain region at high strain rates. At
low strain rates, the soft elastic region ends between 40 and 60% engineering strain, and the modulus is
measured in the monodomain state at higher strains. For high strain rates, the end of the soft elastic region
is less obvious and occurs around 80%. The prediction of the strain range of the soft elasticity region is
adequate at low and moderate strain rates, between 0.005 and 2%.s−1.

The prediction of the modulus of the monodomain LCE remains challenging, partly because of the lack
of clear experimental data in the monodomain region at high strain rates. The modulus in the monodomain
region is mostly determined by the monodomain viscoelastic moduli G∗

km, as the moduli of the coupled
elements evolve from a polydomain value to a monodomain value. These monodomain values are determined
from the experiments as the value provided the closest fit and remain tentative.

3.2. Question (1) - What is the coupling between mesogen rotation and polymer chains viscoelasticity?

The decoupled, coupled, and full models, were fitted to experimental data (Fig. 6). Parameters were
optimized to best fit the experimental curves at the strain rate of 5 %s−1.
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Figure 6: Decoupled, coupled, and full models compared with uniaxial tensile measurements at 5 %/s. For the full model,
Gp = 0.35 Mpa, Gm = 0.16 Mpa, τM = 0.9 Mpa, εL = 0.25. For the coupled and decoupled model, the viscoelastic moduli
are identical to the moduli of the full model, τM = 0.9 Mpa, εL = 0.36 and τM = 0.42 Mpa, εL = 0.28, respectively.

In the polydomain region, etr = 0, all models predict the same stress response, which closely follows the
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experimental measurement. The main challenge remains to predict the effective modulus during the PM
transition for all strain rates as well as the hysteresis.

By definition, all viscoelastic relaxation mechanisms of the coupled model are inactive during the tran-
sition, leading to almost perfect soft elasticity, meaning very low modulus. The slope is not perfectly zero
in the coupled model because the change of modulus from polydomain to monodomain value leads to a
small effective modulus and hysteresis. We measured an increase in slope with strain rate, which indicates
that viscoelastic mechanisms are active during the transition. Consequently, this model is not capable of
predicting the large change in slope and hysteresis observed with increasing strain rates.

For the decoupled model, the modulus during the transition is significantly higher than the one measured.
The elastic part of the model is similar to the one in the coupled and full models and exhibits a perfect soft
elasticity. However, in the decoupled model, all viscoelastic relaxation mechanisms remain active during the
transition, and the large viscoelastic effects dominate the material response. Consequently, the decoupled
model cannot properly predict both the softening phenomenon during the transition and the viscoelasticity
of the polydomain and monodomain phases. We conclude that some viscoelastic relaxation mechanisms are
necessarily inactive during the transition.

The viscoelastic response of the full model is the sum of the coupled and decoupled viscoelastic mech-
anisms contributions. The coupled mechanisms include evolving moduli between polydomain and mon-
odomain phases while the decoupled moduli are constant. The responses in the polydomain and monodomain
regions are similar to decoupled and coupled models. However, the stress prediction in the transition region
is fitting the experimental data very well, in terms of onset, transition modulus, and end of the transition
region. Since the N decoupled viscoelastic elements are independent of the transition, they dissipate energy
in the polydomain, monodomain, and transition region. The shear moduli of the decoupled viscoelastic
elements control the slope of the transition region. So contrary to the decoupled model where all relaxation
mechanisms would remain active during the transition and to the coupled model where no relaxation mecha-
nisms would be active during the transition, the full model allows for a few relaxation mechanisms to remain
active during the transition while the others are inactive. This partial coupling leads to better control of the
behavior of the LCE during the transition, but also of the effective onset and end of the transition region.

In conclusion, these results show that the coupling cannot be ignored, although it is not total. The
remaining question is which relaxation mechanisms should be coupled or decoupled to best represent the
observed mechanical behavior. Several relaxation mechanisms are associated with the movements of the
polymer network. Schematically, long-time relaxation mechanisms are associated with slow movements of a
large portion of the polymer chain, while short-time relaxation mechanisms are attributed to the movement of
smaller polymer segments. Interestingly, optimal material parameters distribute the relaxation mechanisms
as short-time decoupled (0.01 s - 10 s) and long-time coupled (10s - 1000 s), with an overlap for the relaxation
time of 10 s.

This indicates that the long-range movements stop during the PM transition. The displacement imposed
to the network is accommodated by the rotation of the elongated mesogens in the direction of the applied
strain. Long-range rearrangements of polymer chains are not necessary during that phase.

As the mesogens are attached to the polymer backbone, mesogen rotation does imply some movements
of the polymer segments in the direct vicinity of the mesogens, similar to the smaller movements occurring
during classic polymer network deformation. So, short-time relaxation mechanisms occur throughout the
deformation of the material, from polydomain, to PM transition, to monodomain, and are decoupled from
the sliding device.

3.3. Question (2) - Is the mesogen rotation a viscous mechanism?

The comparison of the models with experimental data (Fig. 6) brings some answers to our second
question: Is mesogen rotation viscous?. We are able to faithfully predict the stress response of the LCE
across all the strain rates without including a mesogen viscoelastic or viscous mechanism and with parameters
h and Ry essentially zero. Ry defines the hysteresis around the phase transition, introducing dissipation
in the reversible sliding device, and h the hardening as the device is sliding, thus providing a slope to the
response during the transition. Both these parameters are kept at zero for all models, indicating that those
effects are not needed to accurately represent the behavior of LCEs.
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A mesogen rotation viscoelastic mechanism would provide a time-dependent dissipation associated with
mesogen rotation, as recently introduced in [52]. This is represented by a dashpot parallel to the sliding
device. The introduction of this element would be physically relevant and accurate. However, the relaxation
time associated with such a mechanism would necessarily remain small, on the order of 10−2 s [18, 48].
This would not have a significant impact on the stress response studied here. In addition, the mesogens
are attached to a polymer chain network in LCEs, and the viscosity of the polymer chains dominates the
mechanical response. This leads to a large restoring torque exerted by the network on mesogens and prevents
an ideal soft elasticity [35]. The role of restoring torque and resistance of the network to mesogen rotation
is already included in the proposed model as decoupled viscoelastic mechanisms.

To conclude, although the viscosity of mesogen rotation is physically accurate, its influence is not sig-
nificant on the viscoelastic response of the LCE. As a result, we model the mesogen rotation as an elastic
phenomenon and suppose that no significant amount of energy is dissipated through the movement of the
mesogens. However, the polymer chains can move during the PM transition and dissipate energy, which the
decoupled mechanisms represent. This conclusion concerns mainly the slope of the transition region. The
initiation of the transition is discussed in the next section.

3.4. Question (3) - Is the initiation of mesogen rotation viscous?

In the proposed rheological model, we assume that τM is an elastic parameter representing the critical
stress under equilibrium conditions. However, for the model to properly predict the measured experimental
response, we had to consider the parameter τM varying with strain rate: τM increases from 0.19 to 0.9 with
strain rates from 0.005%s−1 to 20%s−1 (Fig. 7). The effect of the strain rate is much more pronounced at
strain rates above 1%s−1 than at lower strain rates.
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Figure 7: Rate-dependent threshold stress τM fitting the experimental data.

The stress at which the PM transition and the soft elasticity occur has been studied both numerically
[41, 61] and experimentally [34, 21]. This threshold stress results from the presence of defects, which, in
LCEs, are the crosslinks themselves. To better understand the microstructural origin of this threshold,
Fridrikh and Terentjev [14] proposed a one-dimensional theoretical study of the threshold stress in an LCE
at equilibrium in small strains. They developed a free energy with terms corresponding to the deformation
of the wall between domains A and B separated by a wall of width w and to the mismatched deformation
of the two neighboring domains when the domain A deforms softly, with no energy cost (Fig. 8a). Each
domain is oriented with a director n, perpendicular to each other. The dimensions of the domain A are l
for the initial configuration and l|| and l⊥ for the deformed configuration. The obtained threshold stress σt

is proportional to the modulus µ and the domain anisotropy r = l||/l⊥ (equ. (67)).

σt = µ(r − 1) (67)

16



(a) Representation of the deformation mismatch be-
tween domains (inspired by [14]).

(b) Rheological model of the LCE be-
havior in domains A and B

Figure 8: Theoretical study of the threshold stress for the PM transition

Following the same reasoning, we introduce viscoelastic effects into the mismatched deformation of the
two neighboring domains. The LCE viscoelastic behavior is represented by a Zener model (Fig. 8b), where
the elastic and viscoelastic shear moduli are equal to µ and εv is the strain in the viscous dashpot. We
obtain the following expression for the mechanical free energy per unit volume Ψ of the polydomain LCE
under uniaxial elongation:

Ψ =
µ

2

(

ε2 + (ε− εv)
2
)

+
µ

2

w

l

(

ε2 + (ε− εv)
2
)

+
µ

2

l

w
(r − 1)2 (68)

The first term represents the free energy associated with the deformation of domain B, the second the free
energy of the deformation of the wall, and the third the energy of the mismatch between the two domains
at the domain wall. The equilibrium domain wall width is then w∗ = [l(r − 1)] /(ε2 + (ε− εv)

2)1/2, and the
threshold stress becomes

σt =
µ(r − 1)(2ε− εv)

(ε2 + (ε− εv)2)
1/2

(69)

If εv = 0, the threshold stress σt is a constant, as established by Fridrikh and Terentjev [14]. But
otherwise, σt depends on the amount of viscous strains in the system.

Hence, this simple one-dimensional theoretical study indicates that the threshold stress should be strain
rate dependent. Although the proposed model includes the influence of the viscoelastic elements on the
threshold, in addition to τM representing a threshold intrinsic to the mesogen rotation (equ. (31)), this is
not sufficient to reproduce the time-dependency of the behavior. Additional viscous mechanisms directly
related to mesogen rotation should be integrated to the model. This will be the subject of further studies.

3.5. Limitations

This work focused on how the coupling between soft elasticity and viscoelasticity can be integrated to
constitutive equations in a tractable model. We showed that dividing viscoelastic mechanisms into coupled
long time mechanisms and decoupled short time mechanisms can properly describe the viscoelastic soft
elasticity behavior of LCEs. However, the Helmholtz free energy function and the constitutive equations
were developed in the framework of small deformation. This is not a good assumption for incompressible
materials at high elongation and it has notably proven limited in the monodomain region, past the PM
transition. In future work, we will extend the model to the framework of finite strain.

The obtained elastic and viscoelastic moduli in the polydomain phase are higher than the ones in the
monodomain phase, contrasting with previous literature and with expectations from the physics of the
material. Logically, the oriented monodomain has a higher modulus in the director’s direction than the
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polydomain that does not exhibit a preferred direction. In the case of incompressible materials under uniaxial
tension and at a 100% deformation level, the cross-sectional area significantly decreases. The engineering
stress σ is determined from the initial cross-sectional area A0, while the true stress is determined from
the current cross-sectional area A. Assuming LCEs remain perfectly incompressible, we determine the true
stress-strain curve from the current cross-sectional area (Fig. 9). At large strains, A significantly differs
from A0, leading to large differences between engineering and true stress-strain curves. Fitting the model to
the engineering and true stress-strain curves at a low strain rate of 0.005%/s leads to Gp = 0.35 MPa and
Gm = 0.16 MPa, and Gp = 0.4 MPa and Gm = 0.55 MPa, respectively. This small-strain model is unable
to capture the non-linear behavior at higher strains. Thus, we opted to fit the model to the engineering
stress-strain curve, where the significant change in cross-sectional area is disregarded. The determination of
physically meaningful monodomain parameters will be contingent upon the development of the finite strain
model.
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Figure 9: Responses of the model fitted to engineering and true stress-strain behavior at 0.005 %/s. The obtained parameters
are Gp = 0.35 MPa and Gm = 0.16 MPa for the engineering stress, Gp = 0.4 MPa and Gm = 0.55 MPa for the true stress.

Finally, similarly to [52], the model does not incorporate the change in material anisotropy due to
the transition. The polydomain LCE is macroscopically isotropic, while the monodomain LCE is strongly
anisotropic. This aspect will need to be added in the future to properly represent the response to any loading
in the nematic temperature domain.

These limitations have little impact on the current paper, which focuses on investigating the viscoelastic
behavior during the PM transition more than at predicting absolute values of stresses and strains in the
oriented high strain region.

4. Conclusion

In this paper, we addressed several key questions related to the soft elastic viscoelastic behavior of LCEs
by developing a constitutive model and comparing it with experimental data. Our investigation aimed to
explore the coupling between mesogen rotation and the polymer network’s viscoelasticity, determine the
relevance of mesogen rotation as a viscous mechanism, and investigate whether the initiation of mesogen
rotation can be considered a viscoelastic process.

The small strain relaxation spectrum was captured by a generalized Maxwell model fitted to a master
curve of the storage modulus. Uniaxial tensile tests at various strain rates provided insights into the influence
of strain rate on the PM transition behavior. Coupled and decoupled models were incapable of predicting the
time-dependent response, indicating that a combination of coupled and decoupled relaxation mechanisms is
necessary. By considering coupled and decoupled relaxation mechanisms, the full model properly captured
the behavior of LCEs in the polydomain, PM transition, and monodomain regions.
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We improved the understanding of the time-dependent mechanical response of LCEs during the PM
transition. Notably, the long relaxation mechanisms (τ ≥ 10 s) are coupled, while the short relaxation
mechanisms (τ ≤ 10 s) are decoupled. Furthermore, the initiation of mesogen rotation is strain rate de-
pendent, indicating some impact of the viscous strain on the threshold stress generally considered for the
initiation of soft elasticity. This finding enriches our understanding of the underlying mechanisms driving
the PM transition.

Future work will include extending the model to finite strain and compressive loading as well as investi-
gating a proper modeling strategy for the initiation of mesogen rotation.
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Appendix A. Derivation details

To determine the internal variables during the PM transition and in the monodomain region, a system
of equations must be solved numerically. Here we provide the derivations for the Newton-Raphson method.

PM transition. During the PM transition, the system of equations (A.1) -(A.5) must be solved:

H1(x, e
tr) = x− ‖etr‖ (A.1)

H
(i)
2 (e∗v
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∗v (i)
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The derivatives of H1, H2, H3, H4, and H5 with respect to x, e∗vk , d, b, and etr are obtained.
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Monodomain. In the monodomain phase, equations (A.7)-(A.11) must be solved to find e∗vk , d′, b, γ, and
etr.
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The derivatives of H ′
1, H

′
2 and H ′

3, H
′
4, and H ′

5 with respect to e∗vk , d′, b′, γ, and etr are
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