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Abstract

Rapid analysis of materials characterization spectra is pivotal for preventing accumulation of
unwieldy datasets, thus accelerating subsequent decision-making. However, current methods
heavily rely on experience and domain knowledge, which not only proves tedious but also is hard
to keep up with the pace of data acquisition. In this context, we introduce a transferable Vision
Transformer (ViT) model for identification of materials from their spectra, including XRD and
FTIR. First, an optimal ViT model was trained to predict metal organic frameworks (MOFs) from
their XRD spectra. It attains prediction accuracies of 70%, 93%, and 94.9% for Top-1, Top-3, and
Top-5, respectively, and a shorter training time of 269 seconds (~30% faster) in comparison to a
convolutional neural network model. The dimension reduction and attention weight map underline
its adeptness at capturing relevant features in the XRD spectra for determining the prediction
outcome. Moreover, the model can be transferred to a new one for prediction of organic molecules
from their FTIR spectra, attaining remarkable Top-1, Top-3, and Top-5 prediction accuracies of
84%, 94.1%, and 96.7%, respectively. The introduced ViT based model would set a new revenue
to handling diverse types of spectroscopic data, thus expediting the materials characterization
processes.
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1. Introduction

Global challenges in clean energy, sustainability, medicine and healthcare have sparked an
unprecedented demand for innovative functional materials.! Given the urgency of these challenges,
there is a compelling need to transition the research paradigm from a labor-intensive and empirical
one to an autonomous one. This transformation spans several crucial stages, encompassing
synthesis, characterization, performance testing, and informed decision making.>> Within these
stages, collection of characterization data assumes a paramount role. Spectroscopic techniques
including X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Raman, nuclear magnetic
resonance (NMR), and mass spectrometry (MS), as well as microscopic methods like scanning
electron microscopy, transmission electron microscopy, and atomic force microscopy, witness an
exponential surge in acquisition. This necessitates real-time processing of this characterization data
to prevent accumulation of the massive datasets, which otherwise could significantly impede the
momentum of subsequent decision-making steps. But current mainstream data analysis practices
predominantly lean on experience and domain knowledge, a process that is not only monotonous
but also is incapable of matching the data acquisition pace. Consequently, it is highly desirable to
establish a rapid and precise technique for processing characterization data with automation to
expedite advancement of novel materials.

Recent advances in machine learning (ML), especially deep learning (DL), offer an exciting
opportunity to reshape scientific research within the domains of chemical and materials science.®
8 This is particularly evident in facilitating rapid analysis of intricate data, including but not limited
to XRD,” ! IR/FTIR,!"'? Raman,'*'* and MS data.!*>!® For example, Oviedo and coworkers have
demonstrated deployment of convolutional neural networks (CNNs) to effectively classify the

dimensionalities and space groups of thin-film metal-halides from XRD spectra.” This application



showcases the potential of utilizing advanced DL techniques to enhance the accuracy and
efficiency of materials characterization. Fine et al. developed CNNs for identifying functional
groups of unknown compounds from fused FTIR and MS spectra.!! Despite much progress,
application of DL in spectrum analysis still faces several challenges. First, with the increase in
input data size, CNNs may not be ideal for chemical spectra analysis because its filters have a local
receptive field, limiting its ability to capture global patterns in the data.!” Furthermore, in the past
studies, the DL models lack generality to be transferred across different material or/and spectrum
types. Consequently, one would need to initiate the training process for a new model from scratch
for each distinct application.

Transformer, initially introduced in 2017 for sequential data processing,'® has become a
predominant architecture for natural language processing (NLP). This is attributed to its adeptness
in extracting broadly applicable representations from the textual information that it encodes. The
self-attention layers inherent in the Transformer enable simultaneous handling of sequential data,
overcoming challenges associated with long-range dependencies. This in turn facilitates efficient
training of neural networks using extensive datasets. Built upon the foundation of the Transformer
architecture, large language models like ChatGPT, Bard, LLaMA, and CLAUDE'*-*? have shown
surprisingly emergent ability in generating text and perform zero- and few-shot learning scenarios.
They hold significant promises across different application domains.?* For instance, Transformer
have paved a way to image recognition. This diversification into visual modalities is prominently
illustrated by Vision Transformer (ViT).

With its success in processing the sequential data, Transformer has recently demonstrated its
versatility and far-reaching impact in chemical and materials sciences, spanning from literature

mining to physiochemical property prediction.?**® An exemplary promise is reflected in its power



for data analysis.!” 2°3¢ In a recent study, a Mass2SMILES model based on Transformer was
employed to predict functional groups and SMILES descriptors from the high-resolution MS/MS
spectra,”’ showing mean square errors (MSE) of 0.0001 and 0.24 for the functional groups and
SMILES descriptors, respectively. Another Transformer model was trained to predict molecular
structures from the 'H/!3C NMR spectra, showing a Top-1 accuracy of 67 %.>° When the input 'H
NMR spectra are combined with a set of likely compounds, the Top-1 accuracy is increased to a
remarkable value of 96%. In contrast to the MS and NMR spectra showing sharp, discrete peaks
corresponding to the molecular features, XRD, Raman, and FTIR spectra often produce broader
absorption or emission bands, reflecting a range of various features. These much-broadened bands
would make it difficult for many ML/DL models to predict accurate results but could be well suited
for the ViT models to handle. Very recently, a ViT model was developed to identify bacterial Gram
types, species, and antibiotic-resistant strains in bloodstream infections from the Surface-
Enhanced Raman Scattering (SERS) spectra, achieving accuracies of 99.30% for classifying the
Gram types and 97.56% for the species.>* Despite the progress, application of ViT in
characterization data analysis is still in its infancy. Particularly, exploration of their genericity for
applications from one material to another and from one spectrum type to another has been quite
limited if not any.

Herein, we demonstrate a transferable ViT model for accurate and rapid identification of metal
organic frameworks (MOFs) and organic molecules from XRD and FTIR spectra, respectively.
ViT for XRD (ViT-XRD) achieved prediction higher accuracies of 70%, 93%, and 94.9% for Top-
1, Top-3, and Top-5, respectively, and a shorter training time of 269 seconds (~30% faster) than
those of CNN-XRD (60.4%, 88.1%, 89.9%, and 378 seconds, respectively). Fine hyperparameter

tuning reveals that length of the segmented spectra plays a critical role in determining the predicted



outcomes. Dimension reduction by t-SNE shows that the ViT-XRD model is more adept at
classifying these XRD spectra than the CNN-XRD model. The derived attention weight heatmap
reveals that the ViT-XRD model exhibits concentrated attention on the minor peaks to distinguish
very close spectra showing close characteristics of the primary peaks, while the CNN model more
relies on the primary peaks to do so. Furthermore, the ViT-XRD model can be transferred for FTIR
spectra classification of a different material type (organic molecules). This model is denoted as
VIiT-TL-FTIR. Classification of the FTIR spectra is a more difficult task since the characteristics
of the FTIR spectra are much more irregular than those of the XRD spectra. Nevertheless, the ViT-
TL-FTIR model achieved prediction accuracies of 84%, 94.1%, and 96.7% for Top-1, Top-3, and
Top-5, respectively, which are much higher than those of non-transferred one and the transferred
one from the CNN model (CNN-TL-FTIR). It is worth noting that these results were attained
without the noise reduction in the raw spectra, thereby drastically expediting the data analysis.
The contribution of this work can be summarized as follows. First, we innovated a use of a
Vision Transformer architecture for classifying XRD spectra of MOFs, demonstrating higher
prediction accuracies compared to those of the CNN models. Second, results from the dimension
reduction and the attention weight map uncover the mechanism of discerning key features of the
XRD spectra, thus improving the interpretability of the model. Third, transferability of a pretrained
model to a new one for analyzing the FTIR spectra of a different material type accentuates the
generality of Transformer for this purpose, thus opening a new avenue to future research in
integrating and synthesizing the diverse spectroscopic data sources, e.g., Raman, NMR, and MS.
This integration can further be enriched by combining other chemical information, such as
structures and properties of the materials, thereby developing a comprehensive and multifaceted

approach to materials discovery.



Results and Discussion

Development of CNN and ViT models. The architectures of CNN-XRD and ViT-XRD models
are illustrated in Figure 1. Derived from the LeNet-5 architecture, the CNN-XRD model is
composed of multiple layers, each contributing to the overall model's functionality (Figure 1a).
This architecture includes an input layer, four convolutional blocks, one flattened layer, three fully
connected layers, and an output layer. The input layer processes the complete XRD spectra
spanning 2theta (20) in a range of 5-50 degrees. Subsequently, the data undergoes a series of
transformations with four consecutive convolution blocks. Each block comprises a convolutional
layer responsible for feature extraction, a max pooling layer for spatial down-sampling, and a
dropout layer to prevent overfitting. Following these convolutional operations, the data passes
through a flattened layer followed by three fully connected layers. These layers enable the model
to comprehend patterns within the data. Finally, the output layer affords the classification of the
input data based on the operations in the preceding layers. The detailed architecture of the CNN-
XRD model can be found in Figure S1.

The ViT-XRD model is constructed as a deep neural network, leveraging a self-attention
mechanism as its foundation (Figure 1b). It begins with segmenting the XRD spectra as the input.
For the spectra that cannot be evenly segmented into an integer, the trailing portion of the data is
discarded. Specifically, embedding of the spectra adds a class [CLS] token to symbolize the start
of embedding. To capture positional information, position encoding is added into each segmented
spectrum. Then, the embedding is processed by a sequence of the Transformer encoder stacks,
each of which comprises a multi-head attention (MHA) layer and a multilayer perceptron (MLP)
layer (right panel of Figure 1b) with both residual connection and layer normalization. In each

attention head, the input embedding is multiplied by three learnable weight vectors Wy, Wi, and



W,, transforming it into a query, key, and value vector (Q, K, and V). The scaled dot-product
attention A is calculated by the equation: A = softmax ((Q x K")/(dx)""?) x V, where di denotes the
dimension of QO and K. The randomly initialized W,, W, and W, vectors enable the ViT-XRD model
to grasp contextual information in the segmented spectra. All attention heads are concatenated and
then passed through the MLP for projecting the output to match the dimension of the embedded
input. The self-attention mechanism permits the incorporation of information from the full spectra
into individual embeddings. Consequently, each of these embeddings stands as a representative of
the entire sequence. The encoder iterates this process through a defined number of layers, where a
stochastic depth dropout is incorporated at each layer for additional regularization. Ultimately,
only the [CLS] token enter an MLP regression layer for the output classification.

Datasets and data preprocessing. A total of 2000 theoretical MOF XRD spectra were sourced
from Cambridge Crystallographic Data Centre (CCDC) website and subsequently truncated to fit
within a 20 range spanning from 5 to 50°. Then, they were augmented by a factor of 200 using a
physics-informed, three-step approach of peak elimination, scaling, and shift (Figure S2).” Details
can be referred to Supplementary Note S1. Inspired by the augmentation techniques such as
random crop and erasing in the domain of image classification,?” instead of augmenting data in a
fixed 20 range’, we augmented it in a randomized 20 range to obtain more diverse training data.
As a result, the trained model affords higher prediction accuracies, as depicted in Figure S3. To
test the models, 30 experimental XRD spectra were collected from ten well-known MOFs that
were synthesized by three different methods.!? These experimental XRD spectra were subjected
to subsequent preprocessing steps of Savitzky-Golay smoothing and background subtraction
(Supplementary Note S2).° Figure S4 shows augmented, theoretical, and experimental XRD

spectra of the ten representative MOFs. The augmented theoretical XRD spectra are split into



training and validation datasets with a ratio of 4:1, while the experimental XRD spectra serve as

the testing data.
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Figure 1. Pipelines of (a) CNN-XRD and (b) ViT-XRD models.

Performance of ViT-XRD and CNN-XRD models. Figure 2 depicts the performance of both
CNN-XRD and ViT-XRD models. Each model was trained 100 times with slightly varied
prediction accuracies and training durations each time. Their statistical results are reported here.

The optimal ViT-XRD model shows average prediction accuracies for Top-1 (69.1%), Top-3
(93.2%), and Top-5 (94.9%), respectively, which are higher than those of the CNN-XRD model
(60%, 87.6%, and 89.5%, respectively). This indicates that the ViT-XRD model can extract more
critical features from the XRD spectra than the CNN-XRD model can. It is noteworthy that the
ViT-XRD model requires an average training duration of 269 seconds, which is 110 seconds (~30%)

shorter than that of the CNN-XRD model. In comparison to the CNN-XRD model, the superior



performance of the ViT-XRD model can be attributed to key factors such as the self-attention
mechanism and parallelism.'® The self-attention mechanism in the Transformer architecture allows
for efficient capture of long-range dependencies within the spectra, thereby facilitating faster
convergence. Unlike CNNs that rely on local sliding windows to process sequences, Transformer
is inherently designed for high parallelism. This enables them to perform computations
simultaneously at different positions in a sequence, thus significantly reducing the training time.
In addition to the CNN-XRD and ViT-XRD models, five traditional ML models including
Naive Bayes (NB), k-nearest neighbors (KNNs), logistic regression (LR), random forest (RF),
extreme gradient boosting (XGB) were also trained to classify the XRD spectra. As summarized
in Table S1, though impressive performance in performing various tasks,” *® the ensemble models
including RF and XGB were found to be entirely inappropriate for spectra identification, requiring
exorbitant computational times and yielding near-zero accuracies. NB exhibited prediction
accuracies of less than 20% across Top-1 to Top-5 and training time of ~ 4 seconds, while KNN
showed higher prediction accuracies (36.7%, 63.3%, and 66.7%) and shorter training time (1.8
seconds). In contrast, LR, previously used for materials spectra analysis,**** demonstrated pretty
high prediction accuracies. However, it required training time of 4100 seconds, which is > 10 times
longer than those of the CNN-XRD and ViT-XRD models. This is mainly because LR does not
inherently support parallel computation and cannot fully utilize the advantage of parallelization

capabilities embedded in modern GPUs.
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Figure 2. Comparison performance of the CNN-XRD and ViT-XRD models in terms of prediction

accuracies and training time.

Hyperparameters tuning for the ViT-XRD model. To improve model’s generalizability and
robustness, tuning the hyperparameters of the ViT-XRD model was performed using a grid search
technique. Figure 3 shows the prediction accuracies when three hyperparameters of Embed dim,
Depth, and Num_head are tuned. The Embed dim sets the length of the segmented XRD spectra,
directly influencing their positional information. As shown in Figure 3a, the prediction accuracies
increase with the increased Embed_dim, peaking at 66.9%, 94.6%, and 96.2% for Top-1, Top-3,
and Top-5, respectively, when Embed dim is 120. But further increase in Embed dim decreases
the accuracies. Notably, the corresponding training time shows the opposite trend. Embed dim of
120 requires the lowest training time of ~ 420 s. Depth signifies the number of the Transformer’s
encoder stacks in deciphering intricate relationships within the spectra. As depicted in Figure 3b,
an optimal value of 7 for Depth achieves the satisfactory prediction accuracies although a training
time of 336 s is slightly larger than that achieved in the model trained with Depth of 4. Num_head
governs the number of self-attention heads for parallel processing. The prediction accuracies for

Top-1, Top-3, and Top-5 occur when Num_head is 4 without significantly increasing the training
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time (Figure 3c). Hence, the optimal three hyperparameters was determined to be 120 for
Embed dim, 7 for Depths, and 4 for Num head. To investigate the importance of these
hyperparameters on performance, a set of decision trees were trained (Supplementary Note S3 and
Figures S5-S7). Results from Figure S5-S7 are summarized in Figure 3d, revealing that
Embed dim plays the most important role in classifying the XRD spectra as it occupies an
importance score of ~ 90%, consistent with the analysis shown in Figure 3a. When the number is
larger or less than 120, the prediction accuracies are greatly reduced. Num_head takes ~ 10% in
the importance score, while the importance of Depth is negligible. It is worth noting that we tried
many reasonable hyperparameter combinations. The afforded prediction accuracies by the ViT-

XRD model are consistently higher than those by the CNN-XRD model.
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Figure 3. Performance of the ViT-XRD models in terms of prediction accuracies and training time
when trained with varied hyperparameters of: (a) Embed dim while setting Depth and Num_head

to be 10 and 10, respectively; (b) Depth while setting Embed dim and Num_head to be 120 and
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10, respectively; and (¢) Num_head while setting Embed and Depth to be 120 and 7, respectively.

(d) Hyperparameter importance scores among Embed dim, depth, and Num_head.

Visualization of attention weight maps output from the ViT-XRD model. Understanding how
the ViT model can efficiently classify the XRD spectra is quite desired. To do that, t-distributed
stochastic neighbor embedding (t-SNE) was first employed. t-SNE is a dimensionality reduction
technique commonly used in data visualization and pattern recognition.*! It represents the high-
dimensional data in a lower-dimensional space while preserving the pairwise similarities among
them. The t-SNE plot can reveal clusters, patterns, or structures that might appear in the original
high-dimensional space. The t-SNE plot of the 2000 theoretical XRD spectra is depicted in Figure
4a. It 1s evident that the XRD spectra sharing similar patterns are clustered together while those
less similar spectra are furthered away, e.g., the dots representing MOF-2, MOF-5, ZIF-71, and
ZIF-90 are scattered apart. Close observation shows that the dots belonging to ZIF-8 and ZIF-67
are overlapped, like those of ZIF-7 and ZIF-9, MOF-74 and MOF-199, which is consistent with
the results shown in Figure S3, indicating similarity of their XRD spectra. The close similarity
leads to the decreased prediction accuracy by the CNN-XRD model. But the ViT-XRD model
seems to easily distinguish them. It inspires us to explore the mechanism behind it.

To do that, representations of the corresponding spectra learned by the CNN-XRD and ViT-
XRD models were visualized by t-SNE (Figure 4b-c). Surprisingly, ZIF-8 and ZIF-67, MOF-74
and MOF-199, and ZIF-7 and ZIF-9 no longer overlapped. Instead, they are scattered and easily
dispersible. But the representations extracted from the CNN-XRD model for ZIF-8, ZIF-67, and
ZIF-90 still overlapped. This suggests that the ViT-XRD model is more adept at classifying these

XRD spectra with higher accuracies than the CNN-XRD model is. To test this hypothesis, two sets
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of spectra for a total of 10 MOFs were chosen. Details of selection criteria are explained in
Supplementary Note S4, and their full names are listed in Table S2. The first set contains the five
MOFs that are maximally distant from their nearest neighbors (yellow dots in Figure 4a), which
still maintain a distinguishable distance with other MOFs in t-SNE maps (yellow dots in Figure
4b-4c). The second set comprises another five MOFs that are the most closely clustered together
(purple dots in Figure 4a), which are widely distributed across the feature space by the CNN-XRD
model with reduced localized concentration (purple dots in Figure 4b). But the ViT-XRD model
succeeds in dispersing them while still maintaining them within the same region, thereby retaining

a visible indication of their intrinsic similarities (purple dots in Figure 4c).
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Figure 4. t-SNE plots of (a) theoretical XRD spectra of 2000 MOFs, representations learned from

(b) the CNN-XRD model and (c¢) the ViT-XRD model. Red: ten representative XRD spectra of

MOFs. Purple: five MOFs with maximal distance to their respective nearest neighbors. Yellow:

five most clustered MOFs. The CCDC numbers and full names of these 10 MOFs are listed in

Table S2.
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To deeper understand how these two models identify XRD spectra, two representative ZIFs
including ZIF-8 and ZIF-67 sharing nearly similar XRD spectra were chosen. Figures 5a presents
the XRD spectra of ZIF-8 and ZIF-67, annotated with crystal planes at respective peaks. Obviously,
three primary peaks at 7.4° and 12.8°, corresponding to the (011) and (012) planes are virtually
identical for two ZIFs. In contrast, a few minor peaks located at 16.5°, 18.1°, 24.6°, and 26.8°,
corresponding to the (013), (222), (233), and (134) planes, exhibit different intensities, which are
the main disparities between these two spectra. Since CNN can’t classify them while ViT can,
herein, we aim to disclose how they make such different decisions. Heatmap, a graphical
representation to visualize the intensity or importance of certain values/regions, is useful for
interpreting the outcome of neural networks. For CNNs, a class activation map (CAM),
highlighting the regions in the input spectra that most influences the classification result, was used
for a comparative analysis.*> The CAMs for ZIF-8 and ZIF-67 were plot by utilizing the output of
the last convolutional layer of the CNN-XRD model, and the details can be found in Method. As
shown in Figure 5b-c, the red regions in CAMs reveal that CNN-XRD model predominantly
focuses on the two primary peaks at 7.4°, 12.8° with a slight blue-shift (~3°) when making the
classifying decision. Such mechanism may lead to the wrong classification when the model is fed

with very similar spectra in the primary peaks like the ones of ZIF-8 and ZIF-67.
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Figure 5. (a) XRD spectra of ZIF-8 and ZIF-67. Class activation maps derived from the CNN-

XRD model on (b) ZIF-8 and (¢) ZIF-67.

In the context of the ViT model, the learned attention weights can be visualized to investigate
the attention allocated to different regions of the input XRD spectra, highlighting the extent to
which each input element contributing to the model's decision-making process.*** For each XRD
spectrum, a total of 28 attention weight maps can be obtained from the seven encoder layers and
four attention heads. Figure S8 showcases the attention maps for ZIF-8 and ZIF-67 as well as
MOF-74 and MOF-199 as these respective XRD spectra are similar with closed primary peaks.
Additional examples are available in GitHub. In the first layer, attention disperses across the
spectra segments, implying the model's effort in understanding the primary patterns. As the ViT-
XRD model delves into deeper encoder layers, the attention shifts noticeably to the
interrelationships among different spectra segments, leveraging the inherent advantages of the
Transformer's attention mechanism. This transition signifies model’s encompassment of various

data slices from their simple patterns to complex ones, from a localized relationship to a global
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one. Close observation found that the attention maps for ZIF-8, ZIF-67, MOF-74, and MOF-199
share similar trends in the first few layers, indicating a broad focus on key features. However, a
divergence in attention patterns between ZIF-8/ZIF-67 and MOF-74/MOF-199 becomes evident
in the deeper layers. Given that the XRD spectra of MOF-74 and MOF-199 are totally different
from those of ZIF-8 and ZIF-67, such divergence highlights the capability of ViT model to fine-
tune its focus on subtle peak differences. The attention mechanism in the Transformer architecture
allows the model to capture long-range dependencies and contextual information of the XRD
spectra, resulting in higher prediction accuracies.

When it evolves to the last encoder layer (Figure 6a-b), different attention heads play diverse
roles. As for the attention weight map of ZIF-8 and ZIF-67, Heads 1, 3 and 4 exhibit a few obvious
vertical patterns, while Head 2 focuses on more specific regions. For instance, Head 1 shows two
vertical patterns located at the regions of 5°~7.4° and 14.6°-17°, corresponding to the (011) plane,
(022)/(013) planes, respectively. Head 3 possesses an obvious vertical pattern located at the regions
01 9.8°-12.2° corresponding to the (022)/(013) planes. Head 4 focuses more on the peaks at 21.8°—
24.2° for ZIF-8 while the peaks at 7.4°-9.8° and 26.6-29 for ZIF-67. As for the specific regions of
ZIF-8, in Head 2, the peaks at the 9.8°-12.2° region correspond to the (022) plane. For ZIF-67, two
large attention weights in Head 1 are related to the peaks of the (011) and (044) planes and the
peaks of the (114) and (044)/(344) planes. Head 2 shows the large attention weights to the peaks
of the (112) and (114) planes. Head 3 shows large attention weights to the peaks of the (114) and
(123) planes, while Head 4 exhibits the large ones to the peaks of the (011) and (233)/(224) planes.

To directly compare how attention is distributed across the regions of the spectra, an attention
rollout map (ARM), as shown in Figure 6c¢, is averaged from first rows of the attention weights

from the XRD spectra of ZIF-8 and ZIF-67 (red squares in Figure 6a-b).** It represents the attention
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weights of the [CLS] token query over the spectra segments, offering interpretability into the
mechanism of a Transformer model on making decision. The ARM clearly show the highest (~30%)
attention from VIT-XRD model were concentrated on the (022)/(013) peaks, while the rest
attentions are paid to the other peaks. There results indicated that the ViT model can detect less
apparent but potentially relevant peaks by detecting the relevance of the distances and intensity
ratios between the peaks when classifying the spectra, thus uncovering the mechanism how the

ViT model can better distinguish very similar spectra than the CNN does.

@ Head 1

Head 2 ~ Head 3 Head 4

—0.25

(022)
(013)

Figure 6. Heat maps of the learned attention weights from the ViT-XRD model’s last layer over
the XRD spectrum of (a) ZIF-8 and (b) ZIF-67. Normalized attention rollout map of (¢) ZIF-8 and

(d) ZIF-67.

Reduced 260 Range. Visualization of self-attention weights reveals that the ViT-XRD model
focuses more on the initial segments of XRD data for making decisions. This observation prompts
us to assess the balance between accuracy and the range of the 20 angle. Because narrowing the
range will reduce data amount and subsequently the model training time. Herein, we investigated
how narrowing the 26 range would change the predictive accuracy of the ViT-XRD model (Figure
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S9). The initial 20 range in 5°-50° serves as a baseline. Then it is narrowed to 5°—45°, 5°—40°, 5°—
35°, and 5°-30° by directly truncating the datapoints out of these ranges. Subsequently, the ViT-
XRD models were retrained using these reduced datasets. In comparison with the original model,
the prediction accuracies for Top-1, Top-3, and Top-5 from the retrained models is marginally
decreased, but the training time is significantly decreased, highlighting the robustness of the model
for rapid classification. For instance, if taking the model trained with 20 in the range of 5°-30° as
an example, the Top-1 accuracy slightly decreases from 96.7% to 92%, while the acquisition time
is shortened from 11.25 to 6.25 minutes given a scan rate of 4°/minute, which may be further
reduced by increasing the scan rate. These results prove that the crucial characteristic features

required for MOF classification are predominantly contained within the smaller 20 ranges.

Transfer Learning from XRD to FTIR. The ViT model has exhibited remarkable prediction
accuracy in classification of the XRD spectra. Retraining a new model for application in different
types of spectra, e.g., FTIR, for a different type of material can be time-consuming, labor-intensive,
and often impractical due to the challenges of gathering and curating extensive data. This limitation
poses a substantial obstacle to the application of DL in chemical and materials science, where data
limitation is an issue. An alternative solution to this issue is to use transfer learning (TL). TL
leverages knowledge gained from a source domain and adapts it to another one. This approach has
garnered much attention as it mitigates the need for massive datasets and reduces computation.
Tian et al. demonstrated a TL strategy to improve the accuracy of classifying Raman spectra trained
by limited data.*> Another work by Kim and colleagues showcased a universal transferability of a
MOFTransformer model.** They achieved this by fine-tuning an already trained model for

predictions of diverse MOF properties like gas adsorption, diffusivity, and electronic properties.
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These accomplishments motivate us to investigate the transferability of our ViT-XRD model to
classify another type of spectrum, e.g., FTIR, for a different type of material. The FTIR spectra
provides intricate insights into chemical bonding and molecular structures. Each chemical bond
possesses distinct light absorption frequencies, resulting in an FTIR spectrum that acts as a
molecular "fingerprint". It can be used to identify unknown substances and quantify specific
compounds within mixtures. However, it poses a challenge in analysis and interpretation due to
irregular peak shapes, containing various absorption originated from the distinct functional
groups.*”*® These functional groups are inevitably subjected to varying degrees of influence from
nearby molecular features and environmental conditions. Moreover, the presence or absence of a
particular functional group is not solely determined by the presence or absence of a single spectral
band; it is also by intricate spectral regions. These complexities make the analysis of FTIR time-
consuming and error-prone, necessitating the development of powerful and robust analysis
techniques to expedite this process.

Given the complexities associated with FTIR analysis, it was chosen as a demo to evaluate
the transferability of the ViT-XRD model. Figure 7a depicts the TL procedure, wherein the ViT-
XRD model that was originally trained by the XRD spectra was transferred to classify the
experimental FTIR spectra of 3753 organic molecules. They were selected by criteria on the
presence of carbon, hydrogen, nitrogen, sulfur, and fluorine atoms while the number of carbon
atoms ranges from 6 to 20. Subsequently, these FTIR spectra underwent a series of preprocessing
steps, encompassing transmission-to-absorption conversion, wavelength-to-wavenumber
conversion, truncation, interpolation, and normalization. It is worth mentioning that neither noise

nor background reduction was employed to preprocess the raw FTIR spectra.
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The transferred ViT model can harness its prior understanding from the XRD spectra to
effectively classify the FTIR spectra, even though they differ largely in the spectra characteristics.
To train a new ViT model for the FTIR classification by TL, the weights, and biases of the pre-
trained ViT-XRD model were used as initial parameters without any subsequent modification or
changes of the model components. This model is denoted as ViT-TL-FTIR. As a control, a separate
VIiT-FTIR model was trained from scratch using the same FTIR spectra. It is worth noting that the
configurations with the 10 attention heads and 10 encoders were set for both the ViT-TL-FTIR and
VIiT-FTIR models. As a control study, a transferred CNN-XRD model, denoted as CNN-TL-FTIR,
was also trained, while a CNN-FTIR model without TL was developed. Figures 6b-c show the
Top-1, Top-3, and Top-5 prediction accuracies from these models. Generally, the transferred
models show enhanced prediction accuracies compared to the non-transferred ones.*>**® Notably,
the ViIT-TL-FTIR model outperforms the CNN-TL-FTIR model, with Top-1, Top-3, and Top-5
prediction accuracies of 84%, 94.1%, and 96.7%, respectively, highlighting the inherent
advantages of the Transformer architecture, while the ViT-FTIR model affords much lower
corresponding accuracies of only 72.5%, 85.4%, and 88.9% (Figure 7b). Similarly, the CNN-TL-
FTIR model delivers prediction accuracies of 50.6%, 66.9% and 73.1% for Top-1, Top-3, and Top-
5, respectively, which are higher than those predicted by the CNN-FTIR model (Figure 7c). But
they are respectively lower than those afforded by the ViT-TL-FTIR model, agreeing well with the
conclusion that Transformer is superior to CNN for this application.

Furthermore, effects of Embed_dim, augmentation times, and classification categories on the
prediction accuracies of the ViT-TL-FTIR model were investigated (Figures S10-S12). Figure S10
shows that the reduction of Embed dim to 120 decreases the prediction accuracies to 65.5%,

80.2%, and 84.4% for Top-1, Top-3, and Top-5, respectively. Decrease of the augmentation times
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reduces the prediction accuracies as well as the training time (Figure S11). For instance, if the
model is trained by data augmented for 10 times, the accuracies for Top-1, Top-3, and Top-5
decrease to 68.7%, 83.7%, and 88.5%, and the training time decreases from 420 to 132 seconds.
We also investigated the effect of classes (the number of organic molecules) on the model
performance. As shown in Figure S12, the Top-1 prediction accuracy afforded from the model
trained for 500 molecules is 94.4%, which reduces to 84.7% when the number of the molecules
increases to 3000. The decrease in the Top-1 prediction accuracy as the increase of classes is

common in a classification task.'®
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Figure 7. The workflow and results of the transferred ViT model for FTIR classification. (a)
Sources of XRD and FTIR spectra and the schematic of transfer learning the ViT-XRD model to
the ViIT-TL-FTIR model. Prediction accuracies and training times of the ViT-FTIR and ViT-TL-
FTIR models (b) as well as the CNN-FTIR and CNN-TL-FTIR models (¢) for classifying 3753

molecules.
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Conclusions

In this study, we demonstrate an interpretable and transferrable ViT model for material
classification from their spectra. The ViT model first trained by the XRD spectra of MOFs
performs better than the CNN model. Visualization of the attention weight maps illustrates that the
self-attention mechanism helps the model to capture long-range dependencies of the tokens in the
XRD spectra. Then, the pretrained ViT-XRD model was successfully transferred to classify the
FTIR spectra of organic molecules. Despite the higher characteristic complexity in the FTIR
spectra, the transferred models exhibit superior performance to the non-transferred ones. It
indicates that by leveraging the TL strategy, the issues of lacking enough high-quality data in the
chemical and material fields can be mitigated. This ViT model provides an accurate and
interpretable approach to identify materials from their spectral fingerprints, laying a broader
platform for analyzing other spectroscopic modalities, such as Raman and NMR. Importantly, the
inherent structure of the Transformer models holds a great promise for multimodal learning by
fusing diverse types of characterization data. Such a multimodal Transformer model, coupled with
transferability as demonstrated in this study, would lead to a new route to comprehensive structure-

property analysis.

Methods

Theoretical and experimental XRD data: collection and processing. A total of 2000
theoretical XRD spectra in Crystallographic Information File (CIF) were sourced from an open-
source database of Cambridge Crystallographic Data Centre (CCDC). Then, all CIFs were
converted in a batch mode to a tab-separated format by Mercury software for subsequent data

processing. To collect the experimental XRD, ten MOFs (ZIF-7, ZIF-8, ZIF-9, ZIF-67, ZIF-71,
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ZIF-90, MOF-2, MOF-5, MOF-74 and MOF-199) were synthesized by three common methods,
resulting in a total of thirty MOFs samples.'? Then experimental XRD spectra were collected from
these samples by a Bruker D8 Advance XRD. The spectra underwent processing procedures of
noise reduction and background subtraction, and then were augmented. Details are explained in
Supplementary Note S2. To keep consistent, all XRD spectra were truncated to the same 20 range
of 5°-50°, and then rescaled to a range of 0-1.

FTIR data collection and processing. A total of 3753 organic molecules were sourced from
the National Institute for Science and Technology (NIST) Chemistry WebBook. Specifically, the
molecules that contain 6-20 carbon atoms, hydrogen, nitrogen, sulfur, and fluorine were selected.
These FTIR spectra were standardized to the absorption type with the same wavenumber unit.
Subsequently, a three-step data processing by truncation, interpolation, and intensity normalization
was employed to ensure a constant wavenumber in the same range of 700-3500 and a standardized
absorption intensity in the range of 0-1. Note that they did not undergo noise or background
reduction. Note that among the 5-10 FTIR spectra for each molecule, one spectrum was designed
as the test set. The remaining ones were randomly selected for augmentation to a total of 50 spectra.
These augmented datasets were subsequently partitioned into training and validation subsets with
a ratio of 4:1.

Model training. NB, KNN, LR, RF, XGB, CNN, and ViT were trained. A grid-search strategy
was applied to find the optimal hyperparameters. To prevent overfitting, an early stopping strategy
was implemented when training the CNN and ViT models. The training was terminated
prematurely if it surpassed a patience level of 3 epochs without a significant decrease in the loss.
Unless specified, for each model, the training was replicated ten times to obtain mean and standard

deviations of the prediction accuracies. The model performance was evaluated using Top-N
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accuracy on the test datasets. In detail, Top-1 accuracy refers to the ViT model’ capability to
correctly rank an MOF sample at the first position. Meanwhile, Top-3 and Top-5 accuracies assess
the model’s accuracy in ranking the sample within the top three and top five positions,
respectively.'” All computations were conducted on a desktop equipped with an Intel Core i7-
12700K processor, an NVIDIA GeForce 2080 GPU, and 64GB of RAM, running on the Ubuntu
22.04.2 operating system. The codes were implemented using Python 3.7.9. For data processing,
we utilized NumPy version 1.19.2 and Pandas version 1.2.1. The data processing and analysis on
the traditional ML models were undertaken using Scikit-learn 1.0.2. The CNN model was
constructed using the TensorFlow 2.2.0 framework, while the ViT model was built using PyTorch
1.13.1+cull7.

Heatmap. ARM and CAM for ViT-XRD and CNN-XRD models, respectively, were plotted.
For the ARM, the attention weights associated with the 'CLS' token were extracted from each
attention head in the last layer of the Transformer encoder. These attention weights indicate the
importance of different positions in the input sequence relative to the 'CLS' token. These weights
were averaged across all attention heads to create a composite attention vector, which illustrates
the cumulative attention in the model allocated to the CLS token. Each composite vector was
mapped to the corresponding XRD spectrum. The CAM was plot by utilizing the output of the last
convolutional layer of the CNN-XRD model. Specifically, we took the weights from the fully
connected layer and performed a matrix multiplication with the feature maps from the last

convolutional layer.
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