SEMICLASSICAL RESOLVENT BOUNDS FOR SHORT RANGE L~
POTENTIALS WITH SINGULARITIES AT THE ORIGIN

JACOB SHAPIRO

ABSTRACT. We consider, for h, E > 0, resolvent estimates for the semiclassical Schrédinger operator
—h?A +V — E. Near infinity, the potential takes the form V = Vi + Vs, where V7 is a long range
potential which is Lipschitz with respect to the radial variable, while Vs = O(|z|™!(log|x|)~")
for some p > 1. Near the origin, |[V/| may behave like |z|~#, provided 0 < 8 < 2(v/3 —1). We
find that, for any p > 1, there are C, ho > 0 such that we have a resolvent bound of the form
exp(Ch~2(log(h™*))**?) for all h € (0, ho]. The h-dependence of the bound improves if Vs decays
at a faster rate toward infinity.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let A := Z?:l 8]2 < 0 be the Laplacian on R", n > 2. In this article, we study the semiclassical
Schrodinger operator with real valued potential,

P = P(h) == —h*A +V(z) : L*(R") = L*(R"),  hec(0,1), z € R™ (1.1)

We use (1,0) = (|z|,z/|z|) € (0,00) x S"~! to denote polar coordinates on R™\ {0}. For a function
f defined on some subset of R™, we use the notation f(r,0) := f(rf) and denote the derivative with
respect to the radial variable by f':= 0, f.

We first describe the conditions we impose on the potential V. Let x € C°°([0,00);[0,1]) be
such that xy = 1 near [0, 1] while x = 0 near [2,00). We suppose that

Vo == xV € LP(R"), for some p > 2, p > n/2, (1.2)
has the bound
Vo(r,0)] < cor™®, (1.3)
for some ¢y > 0 and some
0<B<2+V3—1)~1.464. (1.4)
On the other hand, we suppose (1 — x)V may be decomposed as a sum of long- and short-range
terms:

(1-X)V=VL+Vs, Vg, VsgeL®R"). (1.5)
The long-range term V7, must satisfy, for some ¢y, > 0 and some
y:[1,00) = [0,1], lim y(r) =0, (1.6)
r—00
that
Vi(r,0)1>1 < epy(r), (1.7)

where 1,>1 denotes the characteristic function of {x € R™ : |z| = r > 1}. We also require that there
is a function V/ € L (R™\ {0}) such that, for each § € S"~1, the function (0,00) > r — Vi (r,0)
has distributional derivative equal to r — V/(r, ), and

Vi(r,0)151 < cprtmp(r). (1.8)
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2 RESOLVENT BOUNDS FOR SHORT RANGE L*° POTENTIALS

where mz,(r) : [1,00) — (0, 1] has the properties
ILm mr(r) =0, rimp(r) € L'[1,00). (1.9)

A typical example of the function my, is mp(r) = (logr + 1)~ for some p > 1.
As for the short-range term Vg, we require

Vs (r, 0)|1,21 < egma(r)r™ 70, (1.10)
for some ¢g > 0 and 0 < § < 1. Depending on the value of §, mg : [1,00) — [0, 1] should satisfy
rtm%(r) € L'[1, 00) d=1,
mg(r) =1 0<0<1, (1.11)
mg(r) = (logr +1)"7 for some p >1 §=0.

The properties (1.2) and (1.5) imply V' € LP(R™;R) + L*°(R™;R) for some p > 2, p > n/2.
Therefore, by [Ne64, Theorem 8], P is self-adjoint L?(R") — L?(R") when equipped with domain
the Sobolev space H?(R"™). Thus the resolvent (P — z)~! is bounded L?(R") — L?(R") for all
z € C\ R. Our main result is the following limiting absorption resolvent estimate.

Theorem 1.1. Let n > 2. Fiz s > 1/2 and [Enin, Emax] € (0,00). Suppose V' satisfies properties
(1.2) through (1.11). Define

g5 (h,e) = [[(z)*(P(h) — E +ie) (&) *||2@nyor2®ny, & B >0, (1.12)
where (x) = (r) == (1 +r2)1/2,
If § =1, there exist C > 0 and hs € (0,1) independent of € and h so that
g (h,e) < exp (Ch3log(h™)),  E € [Bmin, Emax), b € (0,hs], € > 0. (1.13)
If 0 < 6 < 1, then for any € > 0, there exist C > 0 and hs € (0, 1) independent of € and h so that

+ 2642
gz (h,e) < exp (Ch™25+17°), E € [Ewin, Fmax), b € (0, hs], € > 0. (1.14)

Finally, if 6 = 0, then for any p € (1, p|, there exist C > 0 and hs € (0,1) independent of € and h
so that

95 (h,e) < exp (Ch~2(log(h™))*7), E € [Euwin, Emax), h € (0, hg], € > 0. (1.15)

Remark 1.2. The proof of Theorem 1.1 in fact establishes a more complicated but slightly improved
version of (1.14). For any € > 0, there exist C' > 0 and hs € (0, 1) independent of € and h so that

4 2(1-8)+a"L

g;t(h,s) < exp (Ch7§73(1+25**’1> (log(h_l))1+€), E € [Emin, Fmax), h € (0, hs], € > 0,
where A = log(log(h™1)).

Remark 1.3. The condition p € (1, p] is needed for technical reasons in the proof of (1.15). However,
it is clear that once (1.15) holds for some p € (1, p], it holds for all p > p too (with the same constants
C and hy).

Theorem 1.1 improves upon recent work on resolvent estimates in low regularity in several ways.
When 6 = 1, the bound (1.13) was previously proved in [GaSh22b] if n > 3, Vg = O((r+1)"tmg(r)),
and V7, = 0. Second, when 0 < 0 < 1, it was established in [Vo20b] that, if n > 3, Vg =
O((r+1)7179), and V}(r,0) = O((r + 1)71=7) for some v > 0, then

g;t(h7 ) < exp (Ch_%_max{%’%}(log(h_l))max {%%})

Thus, the novelties of Theorem 1.1 are that it gives resolvent bounds for more types of decay
conditions on V7, and Vg, improves those bounds in several cases, allows V to be singular as r — 0,
and includes the dimension two case.
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Furthermore, Theorem 1.1 warrants comparison with the resolvent bounds obtained in [Vo21,
Vo22] for short-range, radially symmetric L>° potentials V:

exp (Ch™3 (log(h ™)) V=0(r+1)"17),4>3,
N exp (Ch™3) V=0(r+1)19),1<5<3,
Gs (h’a 8) < _ 2642 042 5
exp (Ch™ 2+ (log(h™1))271) V=0((r+1)7'7%),0< 4 <1,
exp (Ch™?) V =0((r+1)"tlog(r +2)7°), p > 1.

Thus, another way to interpret how Theorem 1.1 extends the previous literature is that it shows
arbitrary short-range potentials have resolvent bounds similar to those for short-range radial po-
tentials, though additional losses remain.

Bounds on g are known to hold under various geometric, regularity, and decay assumptions.
Burq [Bu98, Bu02] showed g < eC""" for V smooth and decaying sufficiently fast near infinity, and
also for more general perturbations of the Laplacian. Cardoso and Vodev [CaVo02] extended Burq’s
estimate to infinite volume Riemannian manifolds which may contain cusps. This exponential
behavior is sharp in general, see [DDZ15] for exponential resolvent lower bounds. On R", n > 2,
gf < eCh™" gtill holds if V has long-range decay and Lipschitz regularity with respect to the radial
variable [Dal4, Sh19, Vo20c, GaSh22a, Ob23]. Potentials with singularities near zero are treated

in [GaSh22a, Ob23], and in particular [Ob23] requires 9,V (r,0)1,<; = O(r—7=5), for
0<f<4(V2—1)~1657 (1.16)

and j = 0, 1. In one dimension, g& < eCh"" if V is a finite Borel measure [LaSh23].

In contrast, if V : R™ — R, n > 2, has purely L terms, it is an open problem to determine
whether the bounds (1.13), (1.14), and (1.15) have optimal h-dependence. Further works on resol-
vent estimates with little regularity assumed are [Vol4, RoTalb, DadeH16, K1Vo19, Vo19, DaSh20,
Sh20, Vo20a).

To prove Theorem 1.1, we establish a global Carleman estimate (5.1). This Carleman estimate
is the byproduct of patching together what we call the away-from-origin estimate (5.6) and the
near-origin estimate (5.7).

The away-from-origin estimate is an application of the so called energy method, a well established
tool for proving semiclassical Carleman estimates. In particular, we combine and update the
approaches from [GaSh22b, Section 3| and [Ob23, Section 3], to construct the weight w(r) and
phase ¢(r), which are key inputs to the energy method.

Near the origin, w(r) should vanish like 72, to absorb the singular behavior of both V' and, in
dimension two, the so called effective potential r~2(n—1)(n—3) (the latter arising after we separate
variables in Section 2). In our situation, V{ is only L near zero. In the proof of Proposition 4.1
below, this necessitates 8 — 43 — 32 > 0, which is a stronger requirement than what is needed if V;
has some radial regularity (see [Ob23, Section 3]). This is the source of the discrepancy between
(1.4) and (1.16).

Away from the origin, roughly speaking, w(r) > 0 should increase and have w'(r) ~ (r)=%, to
furnish the weights appearing in (1.12). Meanwhile, the main task of ¢’(r) > 0 is control Vg without
becoming too large, so as to keep ¢(r) bounded. Since Vg may decay slowly toward infinity, this is
a delicate balancing act, and the compromise we strike is that ¢/(r) have comparably slow decay
for r > h™™ and suitable M > 1, see (3.12). Our choice of M, see (3.7), is inspired by [Vo20b,
Section 2] and more refined compared to [GaSh22b, Section 3]. This is why we can handle decay
slower than that treated in [GaSh22b].

The near-origin estimate was proved by Obovu [Ob23, Lemma 2.2] using the Mellin transform,
building on an earlier study of radial potentials [DGS23]. It makes up for the loss in the away-from-
origin estimate stemming from the vanishing of w(r) as r — 0. We emphasize that this vanishing
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of w(r) is essential in dimension two, even if Vj is not singular, because in that case the effective
potential has an unfavorable sign.

Resolvent bounds like (1.13), (1.14), and (1.15) have application to local energy decay for the
wave equation

(02 — A(z)A)u(z,t) =0, (z,t) € (R"\ Q) x (0,00), n > 2,

u(z,0) = up(z),
dyul, 0) = us (x), (1.17)
u(t,z) =0, (z,t) € 99 x (0,00),

where 2 is a compact (possibly empty) obstacle with smooth boundary, and the initial data are
compactly supported. A general logarithmic decay rate was first proved by Burq [Bu98, Bu02] for
¢ smooth. Similar decay was subsequently established for Q = () and ¢ € L*(R™; (0, 00)) bounded
from above and below and identically one outside of a compact set [Sh18, Theorem 2]. See also
[Be03, CaVo04, Boll, Mo16, Gal9]. Since Theorem 1.1 allows the potential to be singular as r — 0,
we expect [Sh18, Theorem 2] extends to ¢ which tends to 0 at a point. However, for such a ¢, the
low frequency character of the solution to (1.17) still needs to be accounted for (see, e.g., [Sh18,
Section 4]). This question will be taken up elsewhere.

It’s worth mentioning that, in dimension n > 3, the hypotheses of Theorem 1.1 hold for potentials
V which are “Coulomb-like” near r» = 0, i.e., obeying V = O(r~!) as » — 0. However, the
assumption (1.2) does not capture such behavior in dimension two, because in that case r~! is not
in L? near the origin. For Coulomb-like V in dimension two, one can use a quadratic form to show
that P = —h%2A 4 V is self-adjoint with respect to D = {u € H'(R?) : Pu € L*(R?)} [Ch90,
Proposition 1.1]. However, it seems difficult to use the method of this paper to prove resolvent
estimates for (P, D). This is because our Carleman estimate holds only for functions in C§°(R?).
While it is well known that C§°(R™) is dense in H%(R™) for any n > 2, it is not evident from the
standard result on essential self-adjointness for singular potentials [Si73, Theorem 2] that a similar
class of smooth functions is dense in (D, || - ||p), where |[ulp = (| Pull?, + ||u||%2)1/2. This is a
technical but nevertheless interesting issue that warrants further study.
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2. PRELIMINARY CALCULATIONS AND OVERVIEW OF PROOF OF THEOREM 1.1

In this section, we set the stage for proving Theorem 1.1 by means of the energy method, which
has proven to be a dependable tool for establishing resolvent estimates in low regularity (see, e.g.,
[CaVo002, Dal4, GaSh22b, Ob23]). Throughout this section, we take P as in (1.1), and assume the
potential V' obeys (1.2) through (1.11).

We work in polar coordinates, beginning from the well known identity

T?(—A)r*%l = 02 + 7124,

where
(n—1)(n—3) 1
A= —Agnot +— > o 2.1
S 1 + 4 il 47 ( )
and Agn-1 denotes the negative Laplace-Beltrami operator on S"~!. Let ¢ be a soon-to-be-
constructed phase function on [0, c0), which is locally absolutely continuous, and obeys ¢, ¢’ > 0
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and ¢(0) = 0. Using ¢, we form the conjugated operator

%)

Pj(h) =ehr'T (P(h) — E +ie) rtT e

= —h?02 + 200, + W*r 2N+ V — (¢)? + h¢ — E +ie. (22)
For u € e“’/hr(”_l)/ngo(R”), define a spherical energy functional,

F(r) = Flul(r) = [[ha/(r, )| = {(h*r72A+ VE = (¢')? = E)u(r, ), u(r, ")), (2.3)
where || - || and (-,-) denote the norm and inner product on LQ(Sg_l), respectively. For a weight
w € C)0,00) that is piecewise O, the distribution (wF)’ on (0, 0) is given by

(wF) =w'F +wF’
= w'||[ld|* = w'(Pr A + Vi = (¢')? = E)u,u)
— 2w Re(Pj(h)u, ) + 2wr N (B2 2 A, w) + w((@)? = Vi) ||lu|)® 4 4h we | had || (2.4)
F 2ew Im(u, u') + 2w Re{(Vo + Vs + he" Yu,u’) '
=-2 Rew(Pj(h)u, u'y F 26w Im{u, v') + wq(h?r~2Au, u)
T (45w + ) [l |2 + (B + ()% — Vi)' Jull® + 2w Rel(Vo + Vi + h"Yu, ).
where we have put ) /
w
q=q(r) = T W (2.5)

We shall construct w so that w, w’ > 0 and ¢ > 0. Then using (2.4) and 2ab > —(ya® + v~ 1b?)
for all v > 0, we find
Yiw?
h2w'!
+ (41 =9 R g + (1= =g w) |
hwg  ypw?lh (Vo + Vs) + ¢

wF+wF > —

HPj(h)uH2 F 2ew Im(u, u')

+ ((w(B + () = Vi) —

ull?, Y1, v2 > 0.

4r? w' + 4h~1o'w
(2.6)
For v >0, put 1 = 2(1+7)/7, 72 = (1 +7), yielding
2(1 +’}/)U)2 + 2 Y 2
(wF)" > —WH% (h)ul|* F 2ew Im(u, ') + mw'HWH o
RPwqg (1 +y)w?h (Vo + V) + "2 '
+((w(B + (2 - vy - gt - W G I £

In Section 6, we show how Theorem 1.1 follows from a certain global Carleman estimate, see
Lemma 5.1. An essential ingredient for this Carleman estimate is to specify ¢ and w as precisely
as possible, in order that the second line of (2.7) has a good lower bound. More precisely, putting

h*wq w?|h (Vo + Vi) + ¢
A — E’ 2 — I B = 2.
()= B+ () =) =55t By = RS sEEL e)
we shall see that it suffices for w and ¢ to satisfy, for suitable v > 0,
E
A(r) — (1 +~)B(r) > Ew/(r), 0<h<1. (2.9)

To facilitate the proof of (2.9), we proceed, as in [GaSh22a, GaSh22b, Ob23], to analyze A and B
in terms of the auxiliary functions
o" w 1

¢ :=— = (I ") =—= 2.1
7 = (esle)s W= = (2:10)
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In particular, from (2.8) and (2.10),

A() = (14 9B 2 0! [B+ ()2 (14 298 = 201+ 1) W0l min (W, 1))

(2.11)
h h2q
_9 2 .
= 2(14 )BT WIVo o Vsl min (W, 15 = Vi = W(V] + )|
So, to show (2.9), it is enough to bound the bracketed expression in (2.11) from below by E/2.

The next section is devoted to constructing w and ¢, and their corresponding W and ®, that will
bring about (2.9).

3. DETERMINATION OF THE WEIGHT AND PHASE

In this section, we develop the functions w and ¢, and their associated W and @, as in (2.10).

They play an essential role in the proof of the lower bound (2.9) for A— (1++)B (Proposition 4.1)

and in the proof of the Carleman estimate (Lemma 5.1). We should keep in mind that A and B

(see (2.8)) depend not only on w and ¢, but also on a potential V' that obeys (1.2) to (1.11).
First, we fix

i

1
= — 3.1
o=t (3.1)
p e (1,pl, pasin (1.11). (3.2)
Using (1.7) and (1.8), fix b > 0 independent of h large enough so that
Emin
Vi, ng’ <SR > (3.3)

Next, we introduce several quantities depending on the semiclassical parameter h and on § as in
(1.10). These quantities also involve parameters 7' > 0, t > 1 that are independent of h and will
be specified in the proof of Proposition 4.1:

A :=log(log(h™1)), (3.4)
n = (log(h™1))7", (3.5)
1 §=1,
ko= Q VAT g <5<, (3.6)
3 §=0,
g 4T <
. {f:T:;\—F tn g i g,_ ) (38.7)
a=hM (3.8)

In this and later sections, we always assume h is restricted to (0, hs], where hs € (0,1) is small
enough so that

in(d, + §<1
he(0,hs] = nAe(0,1], ke[L1], andy < {Ilnm( '3) gfo =0 (3.9)
In particular, from A" =, and h" = 71, (3.7), (3.8), (3.9),
—Z2-Tnx _ -2 1T > _1 <
0 M _ hlkTA hk(lo§;(h ))1_Th3 1 O<6_1' (3.10)
h=1=ToA =t — et~V (log(h~1))T > =1 § =
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Our weight w and phase ¢ are:

() g verse (3.11)
wi\r) = r my (s) .
a2€fa max( 392(5) ’4 ELs )ds r>aq.
_B
ro2 0<r<1,
po(r) =R e % 1 <<, (3.12)
eo(@) s r>a,
T
po(r) ;:/ wo(s)ds, >0, (3.13)
0
p(r)==71h"%po(r), r>0,72>1, (3.14)
where
1 6>0
r) = ) : 3.15
o) {UOng’ §=0, (3.15)
~ 2 1
By kr(mg + x + (y + mr)licr<s) ke (0.1/8] (3.16)

11—k +x+ (Y +mL)lic<)’

. mg(r) o0=0orl,
ms(r) = {r—xlﬂ 0<d<1. (3.17)

The parameters 7 and x are independent of A and will be fixed in the proof of Proposition 4.1.
Note that the denominator of ®; is at least 1/2 since 0 < mg, x,y,mr < 1 and k € (0,1/8], where
y is given by (1.6).

Recalling that W and @ are defined by (2.10), we use (3.11) and (3.12) to calculate

5 0<r<a,
W(r) = (G B ) 1o (3.18)
2 > 2my, (7) )
(—% 0<r<l,
__k
o(ry={ T bersa (3.19)
—Ltn 0<d6<1,r>a,
_Aapllogr) T 5 0, r > a.

\ s

To conclude this section, we collect several basic properties of w, and an elementary Lemma
about @1, which are important to the proofs of the lower bound (2.9) and the Carleman estimate.

Lemma 3.1. There ezists C independent of h so that for all h € (0, hs],

w(r) < Ch=272M, r >0, (3.20)
w'(r) > (log(h™1))~Cr=tn, r>a, (3.21)
w(r)? < C(log(h~1))Ch—2-2M 14, r+a. (3.22)
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Proof. To see (3.20), note that from (3.11) w is clearly increasing, so we need only compute
limsup,_,., w(r). By (3.5), (3.8) and (3.15), for some C > 0 independent of h € (0, hs],

T 4cpmy (s)
lim sup w(r) = lim sup aZela max( g2y, “LpLE) ) ds
r—00 r—00
< Ca2e2/n — Oh—2-2M 5~ 0
- CaQZCh—2M 6:0

For (3.21), we use (3.11) to compute w’ for r > a:

2 Admp(r)
rG(r)”  Er
for some constant C' > 0 independent of h € (0, hs], where when 6 = 0 we have used that

2 4mL(S))d8

w/(r) — a2€f;maX(T(s)’ Es max( ) > (log(hfl))forflfn’

o (ny oty

- = = > 1.
(log )P logr logr pr’ "
Finally, (3.22) follows from (3.20) and
5 O<r<a
Low<{ns r>a, 0<5<1.
w
7T(IO§T)5 r>a, =0
]
Lemma 3.2 ([GaSh22b, Lemma 2.1]). It holds that
T
1
—logr<— | ————ds< -1 29 : 3.23
ogr < = [ s < —logr + 720191010 (3.23)

Proof. We note first that ||s™®1(s)||11(1,00) < 00 thanks to (3.16), (3.17), and (1.11). The estimate
(3.23) follows by combining

r 1 "1 1
1 — ———ds = - d
0g(r) /1 s+ ®q(s) 5 /1 s s+ Dq(s) y

with

G 5
< N ds < .
0= /1 s(s+ @1(3))d8 < s (I)l(s)HLl(Loo)

4. PROOF OF THE MAIN ESTIMATE

Proposition 4.1. Suppose V satisfies (1.2) through (1.11). Fiz [Emin, Emax] C (0,00), € € (0,1),
pe(,p], and
0<y<(8—48-p%/8% (4.1)
Let w and ¢ be as constructed in Section 3.
There exist T >0 and t > 1 as in (3.7), 7 > 1 as in (3.14), k € (0,1/8] as in (3.16), C5 > 0,
and hs € (0,1), all independent h, so that

A(r) — (1 +4)B(r) > Er;nw’(r), F € [Buins Fows h € (0,0, 7 # 1,0, (4.2)
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and
Cslog(h™1) §=1
2(1-8)+x" 1L
lpo(r)l < § Csh~ 502557 (log(h"1))*e 0<s<1>  he(0,hs],r>0. (4.3)
Csh™5 (log(h~1))1+7 §=0

Proof. We prove Proposition 4.1 over the course of subsections 4.1, 4.2, and 4.3. Throughout
the proof, C' denotes a positive constant whose value may change from line to line, but is always
independent of T, t, 7, k, and h. Initially, we take hs € (0,1) small enough so that (3.9) holds. At
several steps of the proof, we further decrease hg if necessary.

4.1. Proof of (4.2), small r region.
Case 0 <r < 1:
When 0 < r < 1,

W=1, ¢=0 (see (2.5)), o—_D o = Th=y B/,

2’ 2r’
Using these, 0 = 1/3, and that |Vp| < cor™® and V7, = Vg = 0 in a neighborhood of 7 < 1 (see
(1.3) and (1.5)), we revisit (2.11) and find

1+2W<I)zlf§,
h 1 2
2“+7WW@%mnO%@ﬂ)sm1+wmﬂ¢Ps(*gm3,

2
< (1+7) Xp2ori =%,

h
4 ’) 4T

hq):o.

In the second estimate, we used that the minimum is less than W, but in the third estimate, we
used that it is less than h/(4¢"). Therefore

2 1-8
A= (14+7)B 2w/ [B+ (1= § = 14 0)5) - 1+ 7)),
E € [Enin, Fmax|, h € (0,hs], 0 <r < 1.
Since 8 < 2 (see (1.4)), and since (4.1) implies 8 — 43 — (1 +v)3% > 0, we may choose 7 > 1 large
enough, independent of A, so that (4.2) holds for 0 < r < 1.

Case 1l <r <a:
When 1 < r < a,

2(1 +~)h*WI|Vy + Vs|? min (W,

VL +W(Vp +

r k — —frik ds
W= - =0, o=—— — 1 stey(s) 7 4.4
q ’ , (1)1( )’ p =1h™%e 1 (4.4)

We first derive some bounds on ¢{ = exp(— [’ s+<1> G )ds) (see (3.12)), and for this we use Lemma

3.2. By (3.23),
klls 721 ()l 11,00
I1<r<a.

1

— < pp(r) <

,r_k = 900(7’) — ’r‘k )
Next, we bound the exponent kHS_Q(I)l(S)”LI(l,OO) depending on the value of §. If § = 0 or 1,

then both k and ®;(s) are independent of h (see (3.6) and (3.16), respectively), thus we simply

have kl|ls™2®1(s)|[1(1,00) < C. On the other hand, when 0 < § < 1, both k and ®1(s) depend on
h. But in this case 1/3 < k < 1 thanks to (3.9), and, by (3.16), (3.17) and A = log(log(h™!)),

572013 lr) < OO+ [ 5717 ds) < O+ wloglog(h ™))
1
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Thus we conclude
FllsT2 1) L1 (1 00

1
Tk < 906(7‘) < rk

el 5=0orl (4.5)
, h e (0,hs], 1 <r<a.
o —1\\«C
Clogh )™ g <§<1

The estimate (4.5) informs our choice of k. If 6 =0or 1, fix k =1/8. If 0 < § < 1, fix k € (0,1/8]
small enough so that the factor (log(h~!))*“ in (4.5) is bounded from above by (log(h~'))!, where

~—

€
€1 ‘*— ? (46)
So with k now fixed, we have
1, < §=0orl
< . he(0,hs],1<r<a. 4.7
Tk — QOO( ) C(log(h_l))el 0 < 5 < 1 ( 6] r a ( )

rk

As in the previous case, we estimate each of the terms on the right side of (2.11), keeping in
mind that now 1 < r < a. By W =r/2, (3.19), (3.16), the lower bound in (4.7), and ¢’ = Th™%¢y,

! / kr / —k)r
(214 208) = ()2 (1 - =) = (¢ )2(17~+)<1:(I)1

T2h720 @ 2kh727
=2k 4@ =% (Mg +x+ (y+ mr)Li<r<p)-
Continuing on, we use W = r/2, (3.19), the upper bound in (4.7), min(W, h/(4¢’)) < h/(4¢'),
¢ =Th ¢, and k <1 to find

h k%r h
/N2 2 N2 : l1-0o —1\e
2(1 4 7)(¢")*W|®|* min (W, 4—@/) < (1+9)(¢) e min (W, 47,0’) < Cth "7 log(h™ ).
To estimate the next term, we use W = /2, [Vs + Vo[> < O(m% + x)r 2P for 1 < r < a,
¢ =7h7¢), 7> 1, and

min(W, h/(4¢')) < < pitopk 1<r<a,

to see
) ' h Ch= 7 (m2 + x)
2(1 + )h 2 W|Vs + Vo[* min (W, 470/) = r1+25*€“

Ch71+cr 2 Ch71+a ~ 2
i) _ OVIORSTY 5 g or 1

Ch=t7(m%+x) _ Ch~ 7 (m2+x) '
T < pore 0<o<1

To finish the estimate we used (1.11), (3.6) and (3.17). In particular, when d =0or 1, 14+20—k = 2k

and mg = mg; when 0 <3 <1,14+25 —k=2k+ A1, mg=1, and g =r—>" /2.
To estimate the final term we use W = /2, ¢ = 0, and (3.3), yielding

Emin
1

h2
Vi +W(VL + 47(21) =VL+ gVL/ < (eLy+ %LmL)lkrgb +
Putting the above bounds into (2.11) and recalling o = 1/3 yields

3E  h7% 3 s e
A—(1+~v)B>uw [— + W(T% —C)(mE 4+ X+ (y+mp)licr<p) — OTh =7 (log(h™1)) 1},

4
E € [Ewin, Fmax), h € (0,hs], 1 <7 < a.
(4.8)



RESOLVENT BOUNDS FOR SHORT RANGE L*° POTENTIALS 11

Modify 7 to be the maximum of (C/ Ii)l/ 2 and its value assigned previously. Restricting h further
so that C7h!=(log(h™1)) < Ewyin/4, we arrive at (4.2) when 1 < r < a.

4.2. Proof of (4.2), large r region.

When r > a,
r

) E
Wzimm(g(r),m), q:(;_w)7
{—H" 550 aG(a) (4.9)

O(r) :=

r /! _ ,—0o /
_ 14p(logr)~? §5=0" ¢ =h T(AOO(Q) T’g(T‘) :

=
Combining the two identities in the first line of (4.9), and substituting the expression for G (see
(3.15)), shows

_ —n_2cLmp(r)
fqzl—max( 1 ’2chL(7“)): 1 —max (r", ~E2c7)n(r) 0<(5<1‘
G(r) E 1 — max ((logr) ™7, =£5E2) 5 =0.

2

Recall from (2.6) that we need to have ¢ > 0. Since we have previously arranged a > h~'/3 for
all 0 <0 <1 (see (3.10)), and because lim,_,oo mz(r) = 0 (see (1.9)), we may take hs smaller, if
needed, so h € (0, hs] and r > a imply ¢ > 0.

From the second line of (4.9),

2 1
——<P(r) L —— . 4.1
Lot r>a (4.10)
From ¢{(r) = ¢y(a)aG(a)/(rG(r)) for r > a and (4.7), we also find
alfkg(a)
A A
Tg('l“) = ()OO(T)
%’(@%(a) < Ca™* d=0orl (411)
= 7:) a e_al—k a ) hE(U,hé]JZa-
Cloalh a8 < Clog(h 1) a™ 0<d<1

We now make additional calculations involving @ = A~ that are crucial below. This is where
we make use of the parameters T > 0, ¢ > 1 that were introduced in the definition of M, see
(3.7). First, consider when 0 < 6 < 1. By our standing assumption (3.9), we have 1/3 < k <1 and
2k —n > 1/3. Using the definition of k (see (3.6)), it is straightforward to verify that 1420 —k > 2k
too. Thus, from K" =1, k" = e~', M = (o /k) + TnX (see (3.7)), and a = h™ % (log(h~'))T > h=3
(see (3.10)),

20 g —2k+n — h—2a(h%(log(h—l))—T)2k—n < 6% log(h—l)

h—20’a—1—26+k+7] < h—QJa—2k+n < C’log(h_l)

_T _T
3 3

< Clog(h™1)~3,
o (4.12)

We will fix the parameter T for this case later.
Second, consider when ¢ = 0. Then k = 1/3 and we fix 7' = p/2k = 3//2 at once. Furthermore,
M =1+ (3pn\/2) +tn (see (3.7)) and a = eth_l(log(h_l)% > h~! (see (3.10)). Then for hs small

enough and h € (0, hs], 1 < M < Ct. Using also o = 1/3,
~ 2 2 ~ 2 35

h=2a"%*(loga)? = h™ 3073 (loga)’ = h_§(e_th(log(h_l))_T)%(log a)?
(4.13)

2t

h=2a 1k (loga) ™ = h*%(e*th(log(hfl))*?)g(log a) P <e s,

Once more, our goal is to control the terms on the right side of (2.11), but this time for r > a.
First, by W < rG/2 (see (4.9)), |®| < 2/r (see (4.10), ¢’ = Th™ ¢y, and the upper bound in (4.11),
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Cr2h=20 g2k 5=1
2(¢")PWI@| < 2(¢')%G < CT2h 2 (log(h™1))?0a= 21 0 <5< 1.
C1?h=27a=%(log a)? =0

Note that in the last step we used G = r" for 0 < 6 < 1 while G = (log 7’)’3 for 6 = 0. Using now
the first line of (4.12) and the first line of (4.13),

_T
3

Ct%log(h™1) 0=1
2(¢")°W|®| < { O72 log(h_l)%l_% 0<d<1.
Crithe=% §=0

Next, by W < rG/2, |®| < 2/r, minOV, h/(4¢")) < h/(4¢"), ¢’ = Th™ ¢}, the upper bound in
(4.11),

Crhl=0q 1=kt =1
< CTh=7¢)G

<< Cr(log(h~Y)ahl=oq= 17k o< < 1.
Cth'=a=1"*(loga)? 0=0

. h
2(1 —|—’y)(g0/)2W]<I>\2m1n (W’Tgp’) "

Since a > h™'/3 for all 0 < § < 1 (see (3.10)), by further decreasing hs as needed we attain
(log(h=1))1a=t=*+7 < 1for 0 < § < 1 and h € (0, hs]. On the other hand we attain a~'~*(log a)? <
1 for § =0 and h € (0, hs]. So, overall,

2(1+7)(¢")*WI[* min (W, 4};,) < Crhte,

Continuing on, we decrease hy if necessary, so Vp(z) = 0 if || = r > a. Complementing this
with W < 7G/2, |Vs| < csmg(r)r™17% min(W, h/(4¢")) < h/(4¢'), ¢' = Th=7¢), T > 1, the lower
bound in (4.11), and 0 = 1/3,

gm% < Ch*QU (msg)2 —1+k

P20 = G(a)r?

Recalling mg < 1 and G = 7" for 0 < § < 1, while mg = (log(r) + 1) and G = (logr)? for 6 = 0,
we substitute,

h
2(1 +~)h ™ *W|Vs|? min (W, 4TD,) < Ch~te

(msG)? | < a=mp2n=20 < g=204n 0<6<1
G(a)r? | = (logr)~?((logr)?(log(r) + 1)7")2r=2° < (loga)™ §=0

Here, we also used that, when 0 < 6 <1, § > 7 (see (3.9)), and when 6 = 0, p < p. Combining this

with the previous estimate, the second line of (4.12), and the second line of (4.13),

L

74@/

Ch=20q~1=2+k+n < Clog(h™1)"% 0<6<1

2(1 +~)h ™ *W|Vs|? min (W

< i
Ch~20aq=k(loga) =P < 3! §=0

The final term we need to estimate is,
h?q, _3E h?

!
VL +W(VL + w) < Y +erylicr<y + 273
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where we used that, for r > a, 0 < ¢ <2/r, Vi, < (Emin/8) + cryli<,<p (see (3.3)), and

r FE c¢ymp, FE
WV < - = —.
L= 22cymyp 7T 4

From the above, and taking hs smaller so that a > b, we conclude,
A—(1+~)B
w[3E — (P (og(h )P~ F a4 02)] 0<6<1

o , (4.14)
w' [% — C(T2tp€_§t +7hl=7 + hz)} d=0

E € [Emin, Fmax], h € (0, hs], 7 > a.

If0 < § < 1, fix T = 9e¢1, and further decrease hs as needed, in particular so that C'(72(log(h™1)) =€ 4
Th'=% 4+ h?) < Enin/8, to arrive at (4.2) for » > a. If § = 0, pick t large enough so that

CtPe 3t < FEmin/16, and then further decrease hs so that C(7h!'=7 + h?) < FEu,;,/16, to attain
(4.2) for r > a.
Thus, by subsections 4.1 and 4.2, we have demonstrated (4.2).

4.3. Bounding the phase.

Our remaining goal is to show (4.3). Recall (4.7) and (4.11):

, Tgk 6=0orl
0< < . he(0,hg],1<7<a,
— <100(",-) — C(log(rfz’l))el 0 < 5 < 1 ( 5] T a
, alr_gk(%a) 6=0orl
0< < , h € (0, hs], r > a.
R O e e R (Ofalr =@
rG(r)
We also have, from a = h™™ G =717 for 0 < 6 <1, and G = (logr)? for § = 0,
< Gla) o~ =log(h™h) § >0,
e sG(s) (1 —=p)tloga=M(1-p)tlog(h™t) §=0.

Using these, we estimate ¢q(r),

o0

wulr) < | eh(s)ds + [ ebtsids+ [ iispas

Ca'=Flog(h™1) §=1 (4.15)
<< Ca' Flog(h Hl*e 0<d<1, h € (0, hs].
CMa'"*log(h™') 6=0
Recall that we found,

RE T = =% (log(h~1))%T 0<d6<1
a= ,

h=1=TmA=tn = etp=l(log(h=1))T 6 =0
where we used that we have fixed T'= 9¢; when 0 < 6 <1 and T'= 3p/2 when § = 0. Combining
this with (3.6):

1 6=1
— 14+26—-A"1
k=452~ 0<6<1,

1 —
1 5=0
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and 1/3 < k <1, we see that

al—k
1 §=1
" 2(1-8)+r"1
=\ h=F0 P (log(h=1))21-Ma < p7 302523 D (log(h~ 1)) 0<d <1+ he(0,hs],m>0.
(4G (—k) — o5th =3 (log(h 1)) §=0

In the case 6 = 0, we have already fixed t > 1 independent of h. Therefore, for some Cs5 > 0
independent of h,

Cslog(h™1) 0=1
_21-8)+2"t
wo(r) < § Csh~ 307252 (log(h~))H71 0<§<1> h € (0, hs), 7 > 0.
Csh™3 (log(h~1))1+7 5§=0

Noting €1 = €/7 (see (4.6)), we have arrived at (4.3).

5. CARLEMAN ESTIMATE

Our goal in this section is to prove Lemma 5.1, which is a Carleman estimate from which Theorem
1.1 follows.

Lemma 5.1. Suppose the assumptions of Proposition 4.1 hold. There exist C > 0 and hs € (0,1),
both independent of h and e, so that

_1+n 147 .
)™ 2" /M0 gny < €MI() 2 P (P(R) = B £ie)v|7agn) + e el 0] oy (5.1)

for all E € [Emin, Emax], h € (0,hs], 0 <e < h, and v € C°(R").

There are three steps to the proof of Lemma 5.1. First, by way of Proposition 4.1, we establish
a Carleman estimate which is similar to (5.1) but has a loss at the origin, because the weight w
vanishes quadratically as r — 0 (see (3.11)). We call this the away-from-origin estimate. Second,
we use Obovu’s result [Ob23, Lemma 2.2], which is based on Mellin transform techniques, to obtain
an estimate for small 7 which does not have loss as 7 — 0. In fact, the pertinent weight in Obovu’s
estimate is unbounded as 7 — 0. We call this the near-origin estimate. The third and final step is
to glue together the near- and away-from-origin estimates.

Proof of Lemma 5.1. We give the proof of Lemma 5.1 over the course of subsections 5.1, 5.2, and
5.3. The notation f'r,@ denotes the integral over (0,00) x S*~! with respect to the measure drd6.
Throughout, C' > 0 and hs € (0,1) are constants, both independent of h and e, whose values may
change from line to line.

5.1. Away-from-orgin estimate.

We begin from (2.7). Applying (4.2), we bound the right side of (2.7) from below. For some
hs € (0,1),

21+ 7w

2
|1P5 (h)ul® F 2ew Im (u, u') + 7

~vyh2w' 2(1+7)
E € [Enin, Pmax|, h€(0,hs], r#1l,a, u= e?/hp(n=1)/2y,

E .
(wF) = - R

(5.2)



RESOLVENT BOUNDS FOR SHORT RANGE L*° POTENTIALS 15

Next, we integrate both sides of (5.2). We integrate [;° dr and use wF, (wF)" € L'((0,00);dr),
and wF(0) = wF(c0) = 0, hence [;°(wF)'dr = 0. Using also (3.22) yields
€
o (e Py < 0 [ @ Eml 5 [l + ),
E € [Enin, Pmax), h € (0, hs].

The remaining task is to absorb the term involving u’ on the right side of (5.3) into the left side.
To this end, let 1(r) € C*°([0, 00); [0, 1]) with ¢ = 0 near [0,1/2], and ¢ = 1 near [1,00). We have

g g g
S wh? < / w|hu'y2+/ wlh(tu)' 2
h/r,o h Jo<r<1, hJre
1
< / w'\hu'[Q—i—E/ w|h(u) 2.
2 Jo<r<10 h Jrg

Ty

(5.3)

(5.4)

To get the second line, we used € < h and 2w < w' for 0 < r < 1, see (3.11). The first term in the
second line of (5.4) is easily absorbed into the left side of (5.3). As for the second term, integrating
by parts,

\h(ypu)'|? + Re/

r,0

2! () T + / (h2r2A(pu))u

r,0

Re [ (REMYw)Tu = [

) 70

" 2 (2 2
+/T9h<p [ +/T9(V+E ()2 [,

and
[ meou = ~Re [ 2ty
r,0 r,0
These two identities, together with the facts that ¢ < h, A > —1/4, r=2 is bounded on supp ¥,
w' =2r > 1 onsupp?/, and |V + E — (¢')?| < e€/" on supp ¥ for E € [Ewin, Emax] and h € (0, k],
imply

£ / wlh(gu)? < ecC/h / WP+ C [ (o ) PE
h r,0 r,0 r,0 (5 5)

+ Ch? // whi'[2,  E € [Emin, Fmax), h € (0,hs], 0 < e < h.
1/2<r<1,0

For h sufficiently small, the second line of (5.5) is readily absorbed into the right side of (5.3).
Therefore, (5.3), (5.4), and (5.5) imply

/ o (Juf? + [ ?) < eC/h/e(r—l—1)1+’7\Pj(h)u\2+sec/h/6|u]2, -

)

E € [Enin, Fmax], h€(0,hs], 0<e<h.
5.2. Statement of the near-origin estimate.

Lemma 5.2 ([Ob23, Lemma 2.2]). Fiz ty € (—1/2,0). There exist C > 0 and ag, hs € (0,1), all
independent of € and h, so that for all E € [Enin, Emax), h € (0,hs], 0 <e <1, and v € C§°(R"),

/ |7‘_%_t°rn7—1v]2 < Ch_4(/ |r%_torn7_1(P — E +ie)v]?
0<r<1/2,0 0<r<1,0

+/) P20V — E +ie)r"z vf? (5.7)
a<r<1,0

wrt [ et [ s o),
1/2<r<1,0 1/2<r<1,0
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where ,
a = agh?-5. (5.8)

5.3. Combining the near- and away-from-origin estimates.
n—1
For v € C§°(R"), set & =r 2 v. We have

1+ 14n _ _14n _14n
[ el = [ e e [ e [ o ap
0<r<a,b a<r<a,l r>a,0 (5 9)
< Oél+2t0/ |T—%—toa‘2 + a—l/ w/|fL|2 + log(h_l)c/ w'|11\2,
0<r<a,f a<r<a,f r>a,0
where we used (3.21) and
w' = 2r, 0<r<a. (5.10)
Furthermore,
/ 31" (P~ B+ i)o? g/ ()55 (P — B4 o)l (5.11)
0<r<1,0 r,0
/ P30 (V — B 4 ie)af < a22t02’3/ W |if?, (5.12)
a<r<1,0 r,0
[ preape [ bt [ wul ), (513)
1/2<r<1,0 1/2<r<1,0 r,0

where, as in subsection 5.1, u = e?/hr("=1/2y = ¢#/hi1. To get (5.12), we used (1.2) and (5.10). To
get (5.13), we used (5.10), (3.12), and (3.14), hence

r2 R |2 = |2 (e b — e hu) |2 < Cw'(Juf? + max @' | |2) < 7! (jul? + [had)?).

Consider now the second line of (5.9). We bound the first term appearing there using (5.7) and
(5.11) through (5.13) (o < 1/2 for h small enough, see (5.8)). We bound the second and third
terms using (5.6). Since negative powers of a are bounded from above by eC/M for h small, we
conclude, for E € [Emnin, Emax), h € (0, hs], and 0 < € < h,

)~ 5 ]2 < eO7R( / ()2 (P — Bt ie)of + / W (jul? + ')
r,0 r,0

+eC/h/ (r+1>l+n|pj(h)u|2+se0/h/ uf?
r,0 r,0 (514)

< () F P (P() — B £ ie)olffa + ¢ Pelle Mol 3,

+eC/h/ o (Juf? + b ]2),

1+n
9— 5" << {r) > .
“A\r+1

Employing (5.6) once more, to bound the last line of (5.14), we arrive at (5.1) as desired.

where we have used

6. RESOLVENT ESTIMATES

In this section, we deduce Theorem 1.1 from the Carleman estimate (5.1). This same argument
has been presented before, see, e.g., [Dald, GaSh22a, GaSh22b, Ob23]. But we include it here for
the sake of completeness. The constants C' > 0 and hs € (0,1) may change between lines but stay
independent of F, €, and h.
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Proof of Theorem 1.1. By the spectral theorem for self-adjoint operators, the bounds (1.13), (1.14),

and (1.15) clearly hold for € > h. Therefore, to prove Theorem 1.1, it suffices to consider 0 < ¢ < h.
Since increasing s in (1.12) decreases the operator norm, to establish a certain estimate for (1.12)

for fixed s > 1/2 independent h, it suffices to show the same estimate for h small enough and an

h-dependent s of the form (1 +7)/2 < 1. For the rest of the proof, we assume s has this form.
By Lemma 5.1,

e (@) v)132 < e“M[(@)* (P(h) — B % ig)v||72 + e/ |v]|32, (6.1)
for all £ € [Ewin, Emax), b € (0,hs], 0 < e < h, and v € C§°(R"), and where C, = C,(h) =
2max ¢. Moreover, for any v > 0,

2¢||v]|22 = —2Tm((P(h) — E £ ic)v, v) 2
<y H[@)*(P(h) = E £ ie)v||72 +]|(z) "] 72.

Setting v = e~ (€+C)/h and using (6.2) to estimate e|[v]|32 from above in (6.1), we absorb the
||{x)~*v||;2 term that now appears on the right of (6.1) into the left side. Multiplying through by
2¢C#/" and applying (4.3), we find, for E € [Ewmin, Emax), h € (0,hs], 0 <e < h, and v € C(R™),

(6.2)

() ~*v]172
exp (Ch™*/3(log(h~ ))||< )*(P(h) — E £ie)v||7, 0=1, (6.3)
S | exp (Ch 5= %(log(h_l))lﬁ)||<33>5(P(h) — E+ie)|2, 0<46<1,
exp (Ch™2(log(h™1))'?) |(z)*(P(h) — E +ie)v|3, 5 =0.

The final task is to use (6.3) to show, for E € [Emin, Fmax), h € (0,hs], 0 < e < h, and f € L?(R"),
{z)=*(P(h) — Bie) ™ (z) " fI|72

exp (Ch=*/3(log(h 1)) - §=1,
_ szt (6.0
> exp (Ch 3 30+26-270) (log(h~! ))HE)H]”H%2 0<d<l,

exp (Ch~(log(h™1))147) | 112, 5=0.

from which Theorem 1.1 follows. To establish (6.4), we prove a simple Sobolev space estimate and
then apply a density argument that relies on (6.3).
The operator

[P(h), (2)*(2)™° = (=h*Alz)* — 20*(V(2)*) - V) (2)~°
is bounded H?(R") — L%(R"). So, for v € H?(R"™) such that (z)%v € H*(R"),
[{z)*(P(h) — E +ig)vl| 2 < [[(P(h) = E £ ie)(x) v 12 + [[[P(h), (x)°]{z) "> (x) 0] 12
< Chaee h|[{2) 0] 2,
for some constant Cg,, . n > 0 depending on Eyax, € and h.
Given f € L?(R"), the function u = (z)*(P(h) — E i)~ Yz)~*f € H*(R") because
u=(P(h)=Exie)  (f—w),  w=(2)*[P(h), (&)"(2)* () *u,
with (x)*[P(h), (z)~*](z)* being bounded L?(R") — L?(R") since s < 1.
Now, choose a sequence vy, € C§° such that vy, — (z)*(P(h) — E+ie)~Y(x)~*f in H?(R"). Define
U = (x) " *vg. Then, as k — oo,
()™ 0k = (2)=*(P(h) = E +ie) ™ (@) ™" f 2
<l = (2)*(P(h) — E £ie) ™ (@) 7 fllg= — 0.

(6.5)

Also, applying (6.5),
[(2)*(P(h) — E £ i)tk — fllz2 < Chpaenllvr — (@)°(P(h) — E £ie) ™ @)™ fll g2 — 0.
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We then achieve (6.4) by replacing v by 0 in (6.3) and sending k£ — oo.
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