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Abstract— Non-cooperative games serve as a powerful frame-
work for capturing the interactions among self-interested play-
ers and have broad applicability in modeling a wide range of
practical scenarios, ranging from power management to drug
delivery. Although most existing solution algorithms assume
the availability of first-order information or full knowledge of
the objectives and others’ action profiles, there are situations
where the only accessible information at players’ disposal is
the realized objective function values. In this paper, we devise
a bandit online learning algorithm for merely coherent games
that integrates the optimistic mirror descent scheme and multi-
point pseudo-gradient estimates. We further demonstrate that
the generated actual sequence of play can converge a.s. to
a critical point if the sequences of query radius and sample
size are chosen properly, without resorting to extra Tikhonov
regularization terms or additional norm conditions. Finally, we
illustrate the validity of the proposed algorithm via a Rock-
Paper-Scissors game and a least square estimation game.

I. INTRODUCTION

Recent years have witnessed considerably increasing in-

terest in the analysis of multi-agent systems and large-scale

networks, which find a wide range of applications such

as thermal load management of autonomous buildings [1],

power management in sensor network [2], optimal drug deliv-

ery in the treatment of disease [3], control of environmental

pollution [4], etc. One primary objective in multi-agent sys-

tems is to devise local protocols for each agent, by following

which, the resulting group behavior is optimal as measured

by a certain system-level metric [5]. With its origins in [6],

game theory offers the theoretical tools to model and examine

the strategic choices and associated outcomes of rational

players who make decisions in a non-cooperative manner.

In particular, in the Nash equilibrium problem (NEP), this

group of players seeks to reach a stationary point known

as Nash equilibrium (NE), where no rational player has any

incentive to unilaterally deviate from it.

In order to devise an algorithm for the NEP or its variants,

it is crucial to have access to the first-order information, i.e.,

the partial gradient of the local objective function of each

player, the evaluation of which nevertheless usually requires

the action profile from all players. In view of this, in some

studies [7], [8], [9], the availability of first-order oracles is

taken as a given, whereas some other studies [10], [11], [12]

investigate network games where a communication network

exists and players are willing to communicate with their
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trusted neighbors and keep local estimates of others’ action

profiles. Despite the notable progress discussed above, there

are many real-world scenarios where players only have access

to the observed objective values of selected actions, which

makes the bandit/zeroth-order learning strategy a compelling

choice. Our primary objective in this work is to develop an

online learning algorithm for multi-player continuous games

that possess mere coherence with bandit information.

Related Work: There have been several recent notable

contributions to the field of bandit learning in games. In their

work [13], Bravo et al. proposed a bandit version of mirror

descent (MD), which guarantees a.s. convergence to an NE

when the game is strictly monotone and achieves a conver-

gence rate of ċ (1/Ī1/3) for strongly monotone cases. Concern-

ing the study of convergence rates in the realm of strongly

monotone games or strongly variationally stable Nash equi-

librium seeking, [14], [15], [16], [17] have succeeded in

elevating the convergence rates from ċ (1/Ī1/3) to ċ (1/Ī1/2).

Huang et al. [18] developed two bandit learning algorithms

by integrating residual pseudo-gradient estimates into single-

call extra-gradient schemes that ensure a.s. convergence to

critical points of pseudo-monotone plus games. Moreover,

in strongly pseudo-monotone plus games, by employing the

proposed algorithms, the convergence rate is further elevated

to ċ (1/Ī1−Ċ ).

To extend the analysis beyond the realm of strictly mono-

tone and pseudo-monotone plus games, Tatarenko et al. [19]

utilized the single time-scale Tikhonov regularization and a

doubly regularized approximate gradient descent strategy to

develop an algorithm that converges to NEs in probability

when the game is monotone and four decaying sequences are

tuned properly. In a recent study [20], Gao et al. introduced

an algorithm that integrates second-order learning dynamics

and Tikhonov regularization and established the a.s. conver-

gence of the sequence of play under the assumption that there

exists at least one interior variationally stable state (VSS).

Yet, the convergence is contingent on the norm condition

that the ℓ2-norm of the state sequence should be greater than

that of the VSS, which can be challenging to verify during

the iterative process.

In the literature of variational inequalities (VIs) and their

stochastic versions (SVIs), Mertikopoulos et al. [21] showed

that the vanilla MD converges when the problem is strictly

coherent, a relaxed variant of strict monotonicity, but fails

to converge in merely coherent VIs. In contrast, the extra-

gradient (EG) method is capable of achieving convergence

to a solution in all coherent VIs, but it requires the ex-

act operator values. In the presence of random noise in20
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operator values, strict coherence is necessary to establish

the convergence of the EG iteration. Similar convergence

analysis is also reported in [22] for pseudo-monotone plus

SVIs. To address the challenges posed by random noise,

Iusem et al. [23] developed an extra-gradient method for

pseudo-monotone SVIs that incorporates an iterative vari-

ance reduction procedure and established both asymptotic

convergence and non-asymptotic convergence rates for the

proposed algorithm.

Contributions: In this work, we develop a bandit online

learning algorithm and establish the a.s. convergence of the

generated sequence of play under the regularity condition

that the game is merely coherent, which is broader and

more general than the games investigated in [9], [13], [14],

[18]. The proposed algorithm leverages the optimistic mir-

ror descent (OMD) [24], [25], a single-call extra-gradient

scheme, as the backbone, which enables us to contend with

the absence of strict coherence and reduces the query cost

induced by the extra step. Alongside the OMD updates, the

multi-point pseudo-gradient estimation is employed and the

decaying rate of the variance of zeroth-order estimations

can be controlled by properly tuning the query count per

iteration. Furthermore, the validity of the proposed algorithm

is verified through a Rock-Paper-Scissors game and a least

square estimation game. All the proofs are included in [26]

due to the page limit.

Basic Notations: For a set of vectors {Ĭğ}ğ∈ď , [Ĭğ]ğ∈ď or

[Ĭ1; · · · ; Ĭ |ď |] denotes their vertical stack. For a vector Ĭ and

a positive integer ğ, [Ĭ]ğ denotes the ğ-th entry of Ĭ. We let

∥·∥ denote the ℓ2-norm and ï, ð represent the canonical dot

product. Let cl(S) denote the closure of set S, int(S) the

interior, and ĉS the boundary.

II. SETUP AND PRELIMINARIES

A. Game Formulation

In a multi-player non-cooperative game G with the pres-

ence of Ċ players, indexed by N B {1, . . . , Ċ}, each player

ğ ∈ N aims to optimize its own local objective Ćğ by adjusting

its action Įğ ∈ Xğ ¦ RĤğ
, which can be described as follows:

minimizeĮğ ∈Xğ Ćğ (Įğ; Į−ğ), (1)

where Į−ğ B [Į Ġ] Ġ∈N−ğ denotes the stack action of other

players that parameterizes the objective Ćğ with N−ğ B N\{ğ}

and Į B [Į Ġ] Ġ∈N; Xğ denotes the feasible set of player ğ,

and for brevity, we let X B
∏

Ġ∈N X
Ġ ¦ RĤ represent the

global strategy space and X−ğ B
∏

Ġ∈N X
Ġ ¦ RĤ−ğ with

Ĥ B
∑

Ġ∈N Ĥ Ġ and Ĥ−ğ B
∑

Ġ∈N−ğ Ĥ
Ġ . Our blanket assumptions

for the objective functions Ćğ’s and the local feasible sets Xğ’s

will be as follows:

Assumption 1: For each player ğ, the local objective func-

tion Ćğ is continuously differentiable in Į over the global

strategy space X. Moreover, its individual strategy space Xğ

is compact and convex, and has a non-empty interior.

Given the smoothness posited in Assumption 1, a single-

valued operator that we will leverage extensively throughout

is the pseudo-gradient operator Ă : RĤ → RĤ. It is defined as

the concatenation of all the partial gradient operators, i.e.,

Ă : Į ↦→ [∇Įğ Ć
ğ (Įğ; Į−ğ)]ğ∈N . (2)

Before proceeding, we remark that Assumption 1 implic-

itly implies that Ă is Lipschitz continuous on X with some

constant Ĉ, i.e., for any Į and Į′ ∈ X, we have

∥Ă (Į) − Ă (Į′)∥ f Ĉ∥Į − Į′∥. (3)

As for the solution concept, we focus on critical points

(CPs) [27, Sec. 2.2], a more relaxed solution concept than

Nash equilibria (NEs), whose definition is given as follows.

Definition 1: (Critical Points) A decision profile Į∗ ∈ X

is a critical point of the game G if it is a solution to the

associated (Stampacchia) variational inequality (VI), i.e.,

ïĂ (Į∗), Į − Į∗ð g 0, ∀Į ∈ X. (4)

We postulate that the games discussed in this work admit at

least one critical point inside X. A well-known result is that

CPs coincide with NEs when Ćğ is convex and continuously

differentiable in Įğ for all ğ [28, Sec. 1.4.2].

In this work, our aim is to propose a new algorithm that

is applicable to a broader class of games as compared to

strictly monotone games and pseudo-monotone plus games.

Moreover, we intend to further relax pseudo-monotonicity

assumptions that are usually imposed upon the structure of

the game to the ones merely upon equilibria.

Assumption 2: (Mere Coherence) The game G is merely

coherent if every critical point (CP) Į∗ of G is merely

variationally stable, i.e., ïĂ (Į), Į − Į∗ð g 0 for all Į ∈ X.

Before we proceed, it is pertinent to make a few comments.

Our analysis primarily lies within Euclidean space; however,

we recognize the potential for extending its applicability

to finite-dimensional Hilbert spaces. In addition, we em-

ploy mere coherence rather than pseudo-monotonicity as the

standing assumption, as the former one is less restrictive.

Recall that an operator Ă is pseudo-monotone if for all

Į, į ∈ X, ïĂ (į), Į − įð g 0 =⇒ ïĂ (Į), Į − įð g 0. Nonetheless,

the latter is generally the more readily verifiable assumption

in practical applications, since it does not needs the CPs Į∗’s

to be known a priori.

B. Optimistic Mirror Descent

In this subsection, we shall provide a brief overview of

the optimistic mirror descent algorithm, as well as related

concepts and results. As an extension of the Euclidean

projection, the mirror map ∇ć∗ : R → R is defined as:

∇ć∗ (İ) = argmaxĮ∈X{ïİ, Įð − ć(Į)}, (5)

where ć : domć → R is a so-called distance-generating

function (DGF) with domć denoting a convex and open

set where ć is well-defined. The DGF fulfills the following

conditions [29, Sect. 4.1]: (ğ) ć is differentiable and č̃-

strongly convex for some č̃ > 0; (ğğ) ∇ć(domć) = R
Ĥ;

(ğğğ) cl(domć) § X and limĮ→ĉ(dom ć) ∥∇ć(Į)∥∗ = +∞. The
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definition of DGF ć allows us to introduce a pseudo-distance

called the Bregman divergence, which is defined as:

Ā (Ħ, Į) = ć(Ħ) − ć(Į) − ï∇ć(Į), Ħ − Įð,∀Ħ, Į ∈ domć. (6)

To let Ā (Ħ, ·) represent a certain distance measure to Ħ and

use this measure to define a neighborhood of Ħ, we make

the following assumption.

Assumption 3: (Bregman Reciprocity) The chosen DGF ć

satisfies that if the sequence (Įġ)ġ∈N+ converges to some point

Ħ, i.e., ∥Įġ − Ħ∥ → 0, then Ā (Ħ, Įġ) → 0.

Then, the Bregman divergence generates the prox-mapping

ČĮ,X : H → domć∩X for some fixed Į ∈ X∩domć that plays

a critical role in mirror descent and its variants:

ČĮ,X (į) = argminĮ′∈X{ïį, Į − Į
′ð + Ā (Į′, Į)}. (7)

With all these in hand, the optimistic mirror descent

(OMD) [24], [25] can be expressed as below:

Ĕġ+1/2 = ČĔġ ,X (−ăġĂ (Ĕġ−1/2))

Ĕġ+1 = ČĔġ ,X (−ăġĂ (Ĕġ+1/2)),
(8)

where (ăġ)ġ∈N+ denotes a proper sequence of step sizes.

The update consists of the following two steps. Given the

base state Ĕġ at step ġ, in the look-forward step, the leading

state Ĕġ+1/2 is procured by updating Ĕġ with the proxy

Ă (Ĕġ−1/2) queried at Ĕġ−1/2 rather than the exact pseudo-

gradient Ă (Ĕġ) queried at Ĕġ to reduce the oracle call per

iteration. This step is essential in anticipating the landscape

of Ă and facilitating the convergence when Ă is merely

monotone, i.e., ïĂ (Į) − Ă (į), Į − įð g 0, for all Į and į

feasible. In the state-updating step, the base state Ĕġ is revised

to Ĕġ+1 following the pseudo-gradient information Ă (Ĕġ+1/2).

The OMD falls into the single-call category, distinguishing

itself from the conventional extra gradient algorithm [23]

by exclusively utilizing the first-order information at Ĕġ+1/2,

without requiring information from both Ĕġ and Ĕġ+1/2.

III. MULTI-POINT PSEUDO-GRADIENT ESTIMATION

In this paper, we examine the scenario where the first-order

information at the leading state, i.e., Ă (Ĕġ+1/2) is not readily

available, and players need to estimate them based on the

realized objective function values. A prevalent technique in

the literature of first-order information estimation methods

is the simultaneous perturbation stochastic approximation

(SPSA) approach [13]. For each ğ ∈ N , let Bğ , Sğ ¦ R
Ĥğ

denote

the unit ball and the unit sphere centered at the origin. At

each iteration ġ, before implementing the SPSA estimate, we

initially undertake the following perturbation step:

Ĕ̂ ğ
ġ+1/2 = (1 −

ąġ

Ĩ ğ
)Ĕ ğ

ġ+1/2 +
ąġ

Ĩ ğ
(Ħğ + Ĩ ğīğġ) = Ĕ̄ ğ

ġ+1/2 + ąġī
ğ
ġ , (9)

where īğ
ġ

is randomly sampled from Sğ ¦ R
Ĥğ

and we define

īġ B [īğ
ġ
]ğ∈N; ąġ represents the random query radius at

iteration ġ; B(Ħğ , Ĩ ğ) ¦ Xğ is an arbitrary fixed Euclidean

ball within the feasible set Xğ that centers at Ħğ with radius

Ĩ ğ; Ĕ̄ ğ
ġ+1/2

B (1 − ąġ/Ĩ
ğ)Ĕ ğ

ġ+1/2
+ (ąġ/Ĩ

ğ)Ħğ. Denote Ĕ̄ġ+1/2 B

[Ĕ̄ ğ
ġ+1/2
]ğ∈N . In the merit of the feasibility adjustment in

(9), the action to be taken will sit within the feasible

set, i.e., Ĕ̂ ğ
ġ+1/2

∈ Xğ and Ĕ̂ġ+1/2 B [Ĕ̂
ğ
ġ+1/2
]ğ∈N ∈ X. With

this in hand, the SPSA estimation can be expressed as
Ĥğ

ąġ
Ćğ ( Ĕ̂ġ+1/2)ī

ğ
ġ
. Nevertheless, as previously noted in [13],

the SPSA approach incurs a larger estimation variance with

a decrease in query radius aimed at improving estimation

accuracy, which results in conservative choices of updating

step sizes ăġ and significant degradation of the convergence

rate. To resolve this conundrum, there has been increased

consideration given to schemes such as two-point estimation

and residual estimation to keep the variance bounded. On

account of this, we consider the multi-point pseudo-gradient

estimation (MPG) scheme, the counterparts of which in the

field of optimization can be found in [30]. At every iteration

ġ, each player ğ executes the perturbation step in (9) (Đġ + 1)

times in an independent manner, takes the action Ĕ̂ ğ
ġ+1/2,Ī

, and

observes the associated realized objective function values

Ćğ ( Ĕ̂ġ+1/2,Ī ), where the variable Ī ∈ N is an index of the

multiple samples taken per iteration. The multi-point pseudo-

gradient estimate can be formulated as below:

ăğ
ġ B

Ĥğ

ąġĐġ

Đġ∑

Ī=1

(
Ćğ ( Ĕ̂ġ+1/2,Ī ) − Ćğ ( Ĕ̂ġ+1/2,0)

)
īğġ,Ī , (MPG)

where (īğ
ġ,Ī
)Ī=0,...,Đġ

are i.i.d. random variables uniformly

distributed over Sğ; the action taken by player ğ is given

by Ĕ̂ ğ
ġ+1/2,Ī

B (1 −
ąġ
Ĩğ
)Ĕ ğ

ġ+1/2
+

ąġ
Ĩğ
(Ħğ + Ĩ ğīğ

ġ,Ī
) = Ĕ̄ ğ

ġ+1/2
+ ąġī

ğ
ġ,Ī

;

Ĕ̂ġ+1/2,Ī B [Ĕ̂
ğ
ġ+1/2,Ī

]ğ∈N . To simplify the presentation, we will

henceforth use Ć̂ğ
ġ,Ī

to represent the realized objective value

Ćğ ( Ĕ̂ġ+1/2,Ī ) for the Ī-th sample at iteration ġ. Prior to delving

into the properties of MPG, we first outline the probability

setup to streamline our later discussion. Let (¬, F ,P) denote

the underlying probability space. The filtration (Fġ)ġ∈N+ is

constructed as Fġ B Ă
{
Ĕ0, {ī1,Ī }

Đ1

Ī=0
, . . . , {īġ−1,Ī }

Đġ−1

Ī=0

}
, which

captures the update that results in Ĕġ , i.e., the entire informa-

tion up to and including iteration ġ−1. . Then to characterize

MPG, we start by considering the following decomposition

of it:

ăğ
ġ =∇Įğ Ć

ğ (Ĕġ+1/2) +
(
ăğ

ġ − E [ă
ğ
ġ | Fġ]

)

+
(
E [ăğ

ġ | Fġ] − ∇Įğ Ć
ğ (Ĕġ+1/2)

)
.

For brevity, we let þğ
ġ
B E [ăğ

ġ
| Fġ] − ∇Įğ Ć

ğ (Ĕġ+1/2) represent

the systematic error and Ē ğ
ġ
B ăğ

ġ
− E [ăğ

ġ
| Fġ] the stochastic

error. To facilitate later analysis, for each Ćğ, we introduce

the ą-smoothed objective function Ć̃ğ
ą
:

Ć̃ğą (Į
ğ; Į−ğ) B

1

V
ğ
ą

∫

ąS−ğ

∫

ąBğ

Ćğ (Įğ + ẵğ; Į−ğ + ă−ğ)ĚẵğĚă−ğ , (10)

where S−ğ B
∏

Ġ∈N−ğ S Ġ ¦ R
Ĥ−ğ ; Vğ

ą
B vol(ąBğ) · vol(ąS−ğ).

The lemmas presented below provide an examination of the

properties of þğ
ġ

and Ē ğ
ġ
, which will be later employed in the

proof of the main theorem.

Lemma 1: Suppose that Assumption 1 holds. Then at each

iteration ġ, the conditional expectation satisfies E [ăğ
ġ
| Fġ] =

∇Įğ Ć̃
ğ
ąġ
( Ĕ̄ġ+1/2) a.s. for every ğ ∈ N . Moreover the systematic

error þġ B [þ
ğ
ġ
]ğ∈N possesses a decaying upper bound ∥þġ ∥ f

Ăþąġ for some positive constant Ăþ.

Proof: See [26, Appendix A].
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In contrast to the single-point or two-point estimates, the

advantage of utilizing MPG is primarily demonstrated in the

following lemma, which measures the decaying rate of the

stochastic error w.r.t. the number of samples.

Lemma 2: Suppose that Assumption 1 holds. Then at

each iteration ġ, the squared norm of Ēġ B [Ē
ğ
ġ
]ğ∈N satisfies

E [∥Ēġ ∥
2 | Fġ] f ĂĒ/Đġ for some positive constant ĂĒ .

Proof: See [26, Appendix B].

IV. A VARIANCE-REDUCTION LEARNING

ALGORITHM AND CONVERGENCE ANALYSIS

In view of the convergence properties of OMD introduced

in Sec. II-B, we design a zeroth-order algorithm for merely

monotone games by incorporating MPG into OMD, the pre-

cision of which can be controlled by adjusting the sample size

per iteration. Each player of the group possesses their own

local č̃ğ-strongly convex DGF, denoted by ćğ. Additionally,

the function ć(Į) B
∑

ğ∈N ćğ (Įğ) with Į B [Įğ]ğ∈N represents

the group DGF, which is č̃-strongly convex. The proposed

approach is outlined in Algorithm 1.

Algorithm 1 Zeroth-Order Variance-Reduced Learning of

CPs Based on Optimistic Mirror Descent (Player ğ)

1: Initialize: Ĕ ğ
0
= Ĕ ğ

1/2
= Ĕ ğ

1
∈ Xğ ∩ domćğ arbitrarily; ăğ

0
=

0Ĥğ ; Ħğ , Ĩ ğ to be the center and radius of an arbitrary ball

within the set Xğ

2: procedure At the ġ-th iteration (ġ ∈ N+)

3: Ĕ ğ
ġ+1/2

← ČĔğ
ġ
,Xğ (−ăăğ

ġ−1
)

4: for Ī = 0, . . . , Đġ do

5: Randomly sample the direction īğ
ġ,Ī

from Sğ
6: Ĕ̂ ğ

ġ+1/2,Ī
← (1 −

ąġ
Ĩğ
)Ĕ ğ

ġ+1/2,Ī
+

ąġ
Ĩğ
(Ħğ + Ĩ ğīğ

ġ,Ī
)

7: Take action Ĕ̂ ğ
ġ+1/2,Ī

8: Observe the realized objective function value

Ć̂ğ
ġ,Ī
B Ćğ ( Ĕ̂ ğ

ġ+1/2,Ī
; Ĕ̂−ğ

ġ+1/2,Ī
)

9: end for

10: ăğ
ġ
← Ĥğ

ąġĐġ

∑Đġ

Ī=1
(Ć̂ğ

ġ,Ī
− Ć̂ğ

ġ,0
)īğ

ġ,Ī
=

1
Đġ

∑Đġ

Ī=1
ăğ

ġ,Ī

11: Ĕ ğ
ġ+1
← ČĔğ

ġ
,Xğ (−ăăğ

ġ
)

12: end procedure

13: Return: {Ĕ̂ ğ
ġ+1/2
}ğ∈N

The Robbins-Siegmund (R-S) theorem serves as a heavy-

lifting tool in the field of stochastic optimization to examine

the convergence of sequences. Its formal statement is pre-

sented as follows.

Lemma 3: ([31, Thm. 1]) Let (¬, F ,P) be a probability

space and (Fġ)ġ a filtration of F . For each ġ = 1, 2, . . ., Ėġ , ăġ ,

ďġ , and ćġ are non-negative Fġ-measurable random variables

that satisfy E [Ėġ+1 | Fġ] f (1+ ăġ)Ėġ + ďġ − ćġ . If
∑

ġ∈N+
ăġ < ∞

a.s. and
∑

ġ∈N+
ďġ < ∞ a.s., then limġ→∞ Ėġ exists and is finite

a.s. and
∑

ġ∈N+
ćġ < ∞ a.s.

To employ the theorem, it is necessary to guarantee that∑
ġ∈N+

ďġ is finite a.s. Recall from Lemma 2, in the variance

reduction scenario, the decaying upper bound is constructed

for E [∥Ēġ ∥
2 | Fġ] rather than the random variable ∥Ēġ ∥

2. In the

meantime, unlike the typical extra-gradient method, OMD

leverages the pseudo-gradient Ă (Ĕġ−1/2) from the last iteration

when updating to the leading state Ĕġ+1/2. This approximation

brings the stochastic error ∥Ēġ−1∥
2 into the recurrent inequal-

ity which, due to the absence of the averaging effect, does

not possess a decaying upper bound and prevents us from

applying the R-S theorem. Motivated by the consideration

above, our next step will be establishing a variant of the

R-S theorem by relaxing the condition imposed upon the

sequence (ďġ)ġ∈N+ .

Theorem 1: Let (¬, F ,P) be a probability space and (Fġ)ġ
a filtration of F . For each ġ = 1, 2, . . ., Ėġ , ďġ , and ćġ are non-

negative Fġ-measurable random variables that satisfy E [Ėġ+1 |

Fġ] f Ėġ+ďġ−ćġ with E [Ė1] < ∞. If
∑

ġ∈N+
E [ďġ] < ∞, then Ėġ

converges a.s. to some random variable Ė∞ with E [Ė∞] < ∞

and
∑

ġ∈N+
ćġ < ∞ a.s.

Proof: See [26, Appendix C].

With this conclusion available, we can establish the fol-

lowing results about the convergence of Algorithm 1 and the

sufficient conditions to guarantee it.

Theorem 2: Consider a multi-player game G. Suppose that

Assumptions 1 to 3 hold. In addition, the sequence of query

radius (ąġ)ġ∈N+ and the sequence of the reciprocal of sample

size (1/Đġ)ġ∈N+ are monotonically decreasing and satisfy
∑

ġ∈N+

ąġ < ∞,
∑

ġ∈N+

1/Đġ < ∞. (11)

The step size ă satisfies (ăĈ/č̃)2 f 1/12. Then the base state

(Ĕġ)ġ∈N+ as well as the leading state (Ĕġ+1/2)ġ∈N+ converge a.s.

to a CP Į∗ of G. Moreover, the actual sequence of play also

satisfy limġ→∞ Ĕ̂ġ+1/2,Ī = Į∗ a.s., for arbitrary sample Ī.

Proof: See [26, Appendix D].

V. NUMERICAL EXPERIMENTS

A. The Rock-Paper-Scissors (RPS) Game

Consider the zero-sum rock-paper-scissors game between

two players. The payoff matrices ýė and ýĘ of player ė and

Ę are set respectively as

ýė
B



0 −1 1

1 0 −1

−1 1 0



and ýĘ
B



0 1 −1

−1 0 1

1 −1 0



= −ýė,

which further give rise to the objective functions: Ćė (Įė; ĮĘ) =

−(Įė)ĐýėĮĘ and ĆĘ (ĮĘ; Įė) = −(Įė)ĐýĘĮĘ. The associated

strategy spaces are the probability simplices, i.e., Xė
= XĘ

B

{Į ∈ R3 | 0 f Į f 1, 1ĐĮ = 1}. The RPS game is merely

monotone and admits a unique CP/NE at [1/3; 1/3; 1/3] for

both players. To fulfill the requirement about the non-empty

interior in Assumption 1, taking player ė as an example, we

can employ a simple coordinate transformation ą : R2 → R3

with ą : [į1; į2] ↦→ [į1; į2; 1 − į1 − į2] = [Į1; Į2; Į3] and

ą−1 (Xė) = X̃ė
= {į ∈ R2 | 0 f į f 1, 1Đ į f 1}. Then MPG

is applied to obtain a pseudo-gradient estimate ẵġ ∈ R
2, and

we use another map č : R2 → R3 to pull the pseudo-gradient

from į-coordinate system back to Į-coordinate system. The

map č is defined as č : [ĝ̃1; ĝ̃2] ↦→ [2/3ĝ̃1 − 1/3ĝ̃2;−1/3ĝ̃1 +

2/3ĝ̃2;−1/3ĝ̃1 −1/3ĝ̃2], which is derived from the observation
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Fig. 1: Performance of Algorithm 1 in the RPS Game

that

ĝ̃ğ =
∑

Ġ=1,2,3

ĉĆė

ĉĮ Ġ

·
ĉĮ Ġ

ĉįğ
=

∑

Ġ=1,2,3

ĝ Ġ ·
ĉĮ Ġ

ĉįğ
and

∑

Ġ=1,2,3

ĝ Ġ = 0.

A similar procedure can be applied to player Ę to guarantee

the fulfillment of the assumption.

In the numerical simulation, we choose ă = 0.1, the

decaying query radius ąġ = 0.1×(ġ+20)−1.1, and the increasing

number of queries per iteration Đġ = +10−3 × ġ1.1 + 20,. Since

the negative entropy ℎ(Į) =
∑

ğ=1,2,3 [Į]ğ log[Į]ğ is 1-strongly

convex in ∥·∥ and satisfies all the requirements discussed in

Sec. II-B, it can be chosen as a DGF for player ė and Ę.

The simulation results are illustrated in Fig. 1, with Fig. 1

(a) and (b) visualizing the actual sequences of play of player

ė and Ę. To compare with [20] (MD2-rb), Fig. 1 (c) and

(d) illustrate the relative distance ∥ Ĕ̂ġ+1/2 − Į∗∥/∥Į∗∥ to the

CP/NE Į∗, where the Į-axis denotes the sample count and

iteration index, respectively. The selection of parameters for

[20] (MD2-rb) adheres to the specifications provided in its

corresponding section. As depicted in the figure, [20] (MD2-

rb) displays a faster decline in the early iterations, whereas

Algorithm 1 achieves a superior convergence rate as the

progress advances.

B. Least Square Estimation in Linear Models

In this numerical experiment, we convert the linear re-

gression to a zero-sum bilinear game between two players

[32, Sec. VI]. Given a set of data samples {(İ Ġ , į Ġ)}
ĉ
Ġ=1

where

İ Ġ ∈ R
Ċ and į Ġ ∈ R represent the input feature vector and the

output scalar, respectively. In addition, į Ġ = ĭ0+ĭ
Đ İ Ġ+ď Ġ , with

ĭ̃ B [ĭ0;ĭ] ∈ [−ĭ̄, ĭ̄]
Ċ+1 ¦ RĊ+1 denoting the parameters

to be determined and ď Ġ some random noise. Here, the

region [−ĭ̄, ĭ̄]Ċ+1 with ĭ̄ ∈ R+ is enforced to ensure the

strategy space is bounded. For brevity, denote İ̃ Ġ B [1; İ Ġ],

Ė̃ B [İ̃1, . . . , İ̃ĉ] and į = [į1; · · · ; įĉ]. We can then formulate

this least square estimation problem as:

minimize
ĭ̃∈ [−ĭ̃,ĭ̃ ]Ċ+1

1

2
∥ Ė̃Đ ĭ̃ − į∥22. (12)

To convert it into a two-player game, we leverage an aux-

iliary variable Č ∈ Rĉ and the fact that 1
2
∥ Ė̃Đ ĭ̃ − į∥2

2
=

maxČ∈Rĉ ČĐ (Ė̃Đ ĭ̃ − į) − 1
2
∥Č∥2

2
= maxČ∈Rĉ Ć (ĭ̃, Č). Taking the

boundedness of ĭ̃ into account, it can be asserted that there

exists a bounded set [−Č̄, Č̄]ĉ such that the solution Č to the

maximization problem above satisfies Č ∈ [−Č̄, Č̄]ĉ . As such,

let Ć1 (Į1; Į2) = Ć (Į1, Į2) and Ć2 (Į2; Į1) = −Ć (Į1, Į2), and this

game can be formulated as follows:

Player 1: minimize
−ĭ̄fĮ1fĭ̄

Ć1 (Į1; Į2), Player 2: minimize
−Č̄fĮ2fČ̄

Ć2 (Į2; Į1).

For the verification of the remaining assumptions, showing

the uniqueness of the CP, and other detailed discussions, we

refer the interested reader to [18, Sec. V-B][32, Sec. VI].

When implementing the experiments, we choose Ċ = 5,

ĉ = 20, and ĭ̄ = Č̄ = 5. Then random noise ďğ is uni-

formly distributed over the interval [−0.6, 0.6]. We compare

different sets of the sequences of query radius ąġ and query

samples per iteration Đġ . In Fig. 2 (a), the original curve

to fit, the noisy data samples used, the optimal solution

that can be procured from the existing data, and one OMD

solution generated by Algorithm 1 are illustrated. Comparing

the results with different choices of ąġ , we note that for

this problem when ąġ decays comparable to or faster than

ċ (ġ−1.1), further increasing the decaying rate contributes little

to speed up the convergence rate of the sequence. As for the

influence of different Đġ , when Đġ is a small constant, the

generated sequences will diverge; when Đġ = 10 increases

to some sufficiently large constant Đġ = 15, the associated

sequences demonstrate the trend of convergence to some Ċ-

neighborhood of the CP; when Đġ decays no slower than

ċ (ġ−1.1), as reflected in Fig. 2 (c) and (e), the fluctuations

of the relative step sizes are mitigated; yet little difference

can be observed regarding the relative distance to the CP, as

shown in Fig. 2 (b) and (d).

VI. CONCLUSION

In this work, we investigate bandit learning in multi-player

continuous games with an emphasis on handling merely co-

herent cases. A new learning algorithm is proposed, by inte-

grating the idea of optimistic mirror descent and multi-point

pseudo-gradient estimation. Under the assumptions posited

and the conditions that the sequences of query radius ąġ and

the reciprocal of sample size Đġ are absolutely summable, the

actual sequence of play generated by the proposed algorithm

is shown to converge a.s. to a CP of the game. There are

several potential directions for future exploration. The first

one is relaxing the requirements for the number of samples

per iteration Đġ , since the superlinear growth of Đġ may

prevent the application of the proposed algorithm when the
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Fig. 2: Performance of Algorithm 1 in the Least Square

Estimation: in Panel (a), the optimal solution is obtained by

solving (12) analytically; the OMD solution corresponds to

the case when ąġ = ċ (ġ−1.1) and Đġ = +0.1 × (ġ + 50)−1.1,;

Panel (b) and (d) visualize the relative distance to the

unique CP, i.e., the metric is given by ∥ Ĕ̂ġ+1/2 − Į∗∥2/∥Į∗∥2;

Panel (c) and (e) report the relative updating step sizes per

iteration, i.e., ∥ Ĕ̂ġ+1/2−Ĕ̂ġ−1/2∥2/∥ Ĕ̂ġ−1/2∥2. The rolling averages

with a window size of 100 and the original fluctuations

are illustrated in solid curves and semi-transparent curves,

respectively.

bandit feedback is inadequate. Furthermore, when it comes

to a large-scale player network, the asynchronicity of the

updates is a prevalent issue and the cost of synchronization

is prohibitive, which is further exacerbated by the multi-point

scheme considered. We intend to address these questions in

future work.
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