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ABSTRACT

Emerging generative models can create 3D objects from text prompts.
However, deploying these models on mobile devices is challenging

due to resource constraints and user demand for real-time perfor-
mance. We take a first step towards understanding the bottlenecks

by performing a measurement study of three recent text-to-3D

generative models (Point-E, Shap-E, and CLIP-Mesh) in terms of

their runtime GPU memory usage, latency, and synthesis quality.
We investigate the effectiveness of quantization and distillation

techniques to overcome these challenges by speeding up inference

execution, potentially at the expense of quality. We find that the

Shap-E model is promising for mobile deployment, but requires

further optimization in its bottleneck diffusion step for real-time

performance, as well as reduced memory usage and load times.
Further work is needed on custom optimizations for generative

text-to-3D models, including targeting specific metrics at each com-
putation stage, efficient representations of 3D objects, and adaptive

network and system support for resource-hungry models.

CCS CONCEPTS

» Computing methodologies — Artificial intelligence; « Human-
centered computing — Ubiquitous and mobile computing.

KEYWORDS

Text-to-3D, generative Al, mobile devices, latency, GPU memory

ACM Reference Format:

Xuechen Zhang" and Zheng Li*, Samet Oymak, Jiasi Chen. 2023. Text-to-3D
Generative Al on Mobile Devices: Measurements and Optimizations. In
Workshop on Emerging Multimedia Systems (EMS °23), September 10, 2023,
New York, NY, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3609395.3610594

1 INTRODUCTION

Recent advancements in Al have revolutionized various domains,
including computer vision, natural language processing, and gen-
erative AL. A notable recent development arising from the inter-
section of these fields is the emergence of text-to-3D generative
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Figure 1: Example of a text-to-3D generative model.

models. Different from popular image-to-3D generative models
such as NeRF [15], text-to-3D models [10, 11, 16, 19, 21] have the
remarkable capability to create novel 3D objects from arbitrary text
descriptions. An example is shown in Figure 1. When combined
with next-generation AR/VR mobile devices that allow users to
view and interact with the generated 3D objects from different
viewpoints [14], these generative Al models have huge potential in
education, gaming, product design, etc.

However, several challenges impede the deployment of genera-
tive Al on resource-constrained mobile devices. Mobile devices typi-
cally have less memory and compute capabilities than the powerful
servers that generative Al models are typically trained and tested
on. Some generative models could have extremely large memory
requirements (e.g., Imagen [25] used in DreamFusion [21] contains
4.6 billion parameters), making them incompatible with mobile
devices. These models typically also have high latency (e.g., 12
hours for DreamFusion to generate a single 3D object on a NVIDIA
V100 GPU) or low 3D object synthesis quality, which can hurt user
experience. Hence, it is important to investigate the influence of
these factors in order to develop effective strategies to accelerate
the deployment of text-to-3D models on mobile devices.

Towards this goal, in this paper we perform a measurement study
of three recent text-to-3D generative models with potential for mo-
bile deployment: Point-E [19], Shap-E [11] and CLIP-Mesh [16],
all released in 2022-23. We selected these models because they are
geared towards speed. Our measurements encompass three primary
aspects: hardware compatibility, 3D object synthesis quality, and
inference latency. Hardware compatibility is evaluated by tracking
the runtime GPU memory usage of these models, and synthesis
quality assessment involves measuring how well the generated 3D
objects correspond to their original text descriptions [20]. We also
investigate the effectiveness of standard quantization and distilla-
tion techniques on synthesis quality and speed of one of the models
(Point-E). Overall, this work makes the following contributions:

e We measure the memory usage, latency, and synthesis quality
of several recent text-to-3D generative models on an edge plat-
form (NVIDIA Jetson Orin) and on a less powerful server GPU
(NVIDIA T4 GPU) to understand their performance tradeoffs
and feasibility for deployment on mobile devices. (§3)

o We assess the impact of distillation and quantization techniques
to speed up deployment of Point-E on the Jetson, and find
that both techniques significantly sacrifice synthesis quality for
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Figure 2: Architectures of the generative text-to-3D models studied in this paper (Point-E, Shap-E and CLIP-Mesh).

latency. Thus custom approaches are needed for the diffusion
and transformer architectures of generative models. (§4)

e We analyze our findings and discuss future research directions.
Overall, we find that Shap-E is promising in terms of synthe-
sis quality and latency, but targeted optimizations at different
stages of its processing are needed (e.g., reduced latency of its
diffusion step, reduced memory of its post-diffusion step) to
meet end-to-end performance goals. (§5)

2 BACKGROUND AND RELATED WORK

The 3D representations used by the text-to-3D generative models
and the architecture of these models will influence their perfor-
mance. This section reviews these concepts.

2.1 3D Object Representations

Explicit representations: Point clouds represent a 3D object as
a set of 3D points in space, and can also store other features (e.g.,
color) at each point. The resolution of a point cloud is typically
measured by the number of points it contains. 3D meshes use
vertices, edges and faces to represent the geometric structure of a
3D object. Feature vectors can also be associated with the vertices.
The density of vertices, edges, and faces influences the smoothness
of the mesh. Higher density results in more detailed 3D objects.

Implicit representations: Neural Radiance Fields (NeRF)
[15] represent 3D objects as a continuous volumetric field using
a multi-layer perceptron (MLP) [1]. To render a 2D view of a 3D
object, for each pixel in the 2D view, NeRF emits a ray from the
viewpoint along the viewing direction to pass through that pixel.
NeRF subsequently queries the features (volume density and RGB
color) of the 3D points at different distances along the rays using
the MLP. Although NeRF can produce high quality 3D objects, it
is usually inefficient due to its high latency and large size [17],
which can inhibit mobile deployment. Signed Distance Fields
(SDEF) represent 3D objects by assigning a signed distance value
to each point in 3D space. The sign of the value indicates whether
the point is inside or outside the 3D object and the magnitude
represents its distance to the nearest surface.

Among these 3D representations, explicit representations usually
have low rendering latency, while implicit representations usually
have high latency and memory usage due to intense computation.
Although implicit representations are usually slower, they can pro-
duce more detailed and thus higher quality 3D objects because

arbitrary points on the object can be rendered, rather than only the
discrete locations represented by point clouds or meshes.

2.2 Text-to-3D Generative Models

Many current text-to-3D generative models rely on diffusion models
as their foundation. Diffusion models learn to generate high-quality
samples by starting from random noise and iteratively de-noising
them to produce the final result. Text-to-3D generative models can
be classified into two types based on how they utilize diffusion
models. To generate a single 3D object, the first type (e.g., Point-
E [19], Shap-E [11], CLIP-Mesh [16]), involve a single run of a
diffusion process, often acting on a representation of the 3D object.
The second type (e.g., DreamFusion [21], DreamFields [10]) employs
multiple runs of a diffusion process, acting on a representation of
the 2D rendered images of the 3D object. Since running a diffusion
model is time-consuming, the first approach typically has lower
latency (e.g., the fastest Point-E model takes 16 seconds compared
to Dreamfusion’s 12 hours on an Nvidia V100 GPU; see Table 1 for
details). As the models in the first category generally demonstrate
lower latency, they are good candidates for mobile deployment, and
we therefore focus on them in the rest of this paper.

Point-E [19] (released Dec. 2022) employs a two-step approach
to generate a 3D model, which is represented as a point cloud. As
shown in Figure 2a, it first transforms text into the corresponding
embedding, and then generates a 3D object based on this embed-
ding using a transformer-based diffusion model. In the first step, to
transform the text into its corresponding embedding, there are two
configurations that can be used, text-only and image-based. The text-
only configuration directly feeds the text into a pretrained CLIP
model [23], while the image-based configuration (shown in Fig-
ure 2a) first processes the text using a fine-tuned GLIDE model [18]
to obtain its corresponding 2D image representation, which is then
fed into a CLIP model to generate the final embedding. In the sec-
ond step, the embedding, timestep, and the noised point clouds are
encoded and fed as input to the diffusion model. The corresponding
output is used in turn to update and denoise the point cloud. To
enhance the quality of the generated point clouds, Point-E concate-
nates two diffusion models together. The first Base Model generates
a point cloud with 1K points and the second Upsampler increases
the resolution to 4K points, improving the overall object quality.

Shap-E [11] (released May 2023) has a similar transformer-based
diffusion model architecture as Point-E (see Figure 2b). Shap-E also
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has two configurations: text-only and image-based. Unlike Point-E,
which employs an explicit 3D point cloud representation, Shap-E
uses latent vectors to represent its 3D objects, requiring an extra
volume rendering/decoding step. The diffusion model of Shap-E
operates on the noised latent vectors to produce denoised latent
vectors for the corresponding 3D models. The latent vectors are
linearly projected to generate the parameters of an MLP responsible
for Decoding. This MLP takes as input the coordinates of points in
3D space and outputs the corresponding feature vectors, such as
RGB values, volume density, etc. To render the 3D model, Shap-E
uses volume rendering with two possible configurations: NeRF-
based [15] or STF-based (SDF with texture fields [5]).

CLIP-Mesh [16] (released March 2022) is a text-to-3D genera-
tive model that uses a mesh, a normal map and a texture map to
represent 3D objects. The generation process (see Figure 2c) in-
volves optimizing these three components based on an objective
function that consists of three key terms: text-image similarity,
image-image similarity, and a Laplacian regularizer. A diffusion
model is run once to generate an image embedding to compute
the image-image similarity. Text-image similarity and image-image
similarity measure the relevance between the generated 3D object
to the input text prompt. The Laplacian regularizer [8] is used to
help maintain the geometry of the 3D model.

3 MEASUREMENTS

To assess the feasibility of deploying text-to-3D generative models
on mobile devices, the models’ ability to run on different edge hard-
ware and their synthesis quality should be considered. The memory
usage of a model determines its compatibility with specific devices,
while its latency and synthesis greatly influence the overall user’s
experience. Therefore, we examine the generative models across
three key dimensions: GPU memory usage (§3.2), latency (§3.3) and
3D object synthesis quality (§3.4), to explore their tradeoffs.

3.1 Experiment Setup

We conducted experiments on a more powerful NVIDIA T4 GPU
with 4 vCPUs, and a weaker NVIDIA Jetson AGX Orin with 64
GB of memory. We chose the T4 as an approximation of limited
mobile capacity, as it is less powerful than server GPUs like A100
and V100 where generative Al models are typically evaluated. To
further assess mobile performance, we also ran the models on the
Jetson AGX Orin. Our initial experiments were conducted on the
more powerful T4, where it is easier to set up and run experiments,
in order to identify hardware-independent bottlenecks such as
memory usage. Our later experiments with the more promising
text-to-3D models for mobile were conducted on the Jetson.

GPU memory. We measured the models’ memory usage on
a T4 GPU using the NVIDIA System Management Interface tool
(nvidia-smi) that monitors the GPU status. The memory usage
measured by nvidia-smi includes the overhead from PyTorch’s
caching allocator and other runtime factors, as opposed to only
measuring the size of the model’s parameter and architecture, so
the memory usage we measured will be closer to the GPU memory
usage in real application scenarios. The measurements were taken
with batch size 1, with image size 64x64 for Shap-E. The representa-
tive memory traces of the text-only configurations were measured
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using the text input “a corgi”, while the image-based configura-
tions were measured using a corgi image as input, following prior
examples [11, 19]. The latter does not include the GLIDE model.

Latency. Total latency is the time from when a text prompt is
input to when a 3D object is output). We performed total latency
measurements on the T4 and Jetson, and reported V100 results for
comparison from [10, 11, 16, 19, 21]. All T4 results (except CLIP-
Mesh) are measured with the full 5000-caption COCO test set [3].
Models deployed on Jetson and CLIP-Mesh on the T4 are measured
using 100 random COCO test samples. For the latency breakdown
measurements, we evaluated over 100 random samples from the
COCO test set. We utilized the pre-trained models provided by
the original papers [11, 19] wherever possible, except for Point-E
(300M, text only) and GLIDE. The original large GLIDE model is
not public, so we use a smaller pre-trained version (300 million
parameters). Otherwise, we use the proper model architecture with
randomly initialized weights, which does not change the latency. To
measure loading latency, we first build the model architecture and
then subsequently load a . pt file that contains pretrained weights.
Results are averaged over 100 runs.

Synthesis quality. We adopt the CLIP R-Precision metric (ViT-
B/32) [20] for evaluating text-to-3D synthesis quality, which has
been found to have high correlation with human judgement. The
CLIP R-Precision measures the compatibility of image-text pairs,
which can also be thought of as the semantic similarity between the
image and the caption. Specifically, it uses the CLIP model [23] to
calculate the top-R retrieval accuracy when retrieving the matching
text from 100 text candidates, using the generated image as a query.
A higher score is better.

Model configurations: In order to identify potential inefficien-
cies within the models and enable future optimization efforts to
focus on specific inefficient stages, all models are divided into sev-
eral parts for measurement. For notational simplicity, we include
CLIP when measuring Point-E’s Base Model and Upsampler, and
Shap-E’s Base Diffusion. The breakdown of the models and the
configurations are described below.

e Point-E has a choice of how many parameters in the Base
Model (40, 300, or 1000 million) as well as whether text-only or
image-based configuration is used (see §2.2). Unless explicitly
noted, image-based is used.

o Shap-E similarly has text-only or image-based configurations.
There are also two decoder options with slightly different un-
derlying models, which we call Decoder 1 and Decoder 2,' each
of which has two representation options: NeRF or STF.

3.2 GPU Memory

Mobile devices are known to have limited GPU memory size, which
presents a significant constraint when deploying generative models
with large model sizes. Due to this limitation, it is essential to con-
sider GPU memory usage when evaluating the models’ feasibility
of mobile deployment.

Point-E. We measured three different Point-E models with suit-
able model size for mobile deployment. The parameter count is
shown in Table 5 in the Appendix, and traces of runtime memory

“Transmitter” and “decoder”, respectively, in the Shap-E code.
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Figure 3: GPU memory usage. The time before the square points is for model loading and building. For Point-E (Shap-E), square
points denote starting Base Model (diffusion process) execution and triangle points denote starting the Upsampler (Decoder).
Generally, the model loading and post-diffusion steps consume the most GPU memory and need further optimization.

usage are shown in Figure 3a. Larger parameter count leads to
a larger model size and thus higher memory usage, as expected.
Also, image-based models have higher memory usage than the
text-only model, even with similar model parameter counts, but
this turns out to due to the influence of a Point-E hyperparameter
(the guidance scale), which has different defaults for image-based
vs. text-only configurations. Finally, although the Upsampler only
has 40M parameters, it needs three times as much memory as the
Base Model, possibly because it has to hold a high-resolution point
cloud in memory. These results suggest that a potential area of
further optimization for Point-E is the Upsampler, as it consumes a
significant fraction of the memory and time, as does the model’s
initial load.

Shap-E. We tested eight different Shap-E configurations (see
Figures 3b, 3c and Table 6). From the results, it can be seen that
although NeRF rendering tends to produce slightly higher qual-
ity 3D objects than STF rendering, it requires substantially more
memory, which is likely due to its more complex representation
of the 3D object [11]. Further, we observe that despite the fact
that the Decoder 1 has twice as many parameters as Decoder 2, its
GPU memory usage is only slightly greater. Overall, these results
suggest that NeRF representations require significant optimization
in terms of memory usage, as does the initial model loading step.

Summary. Many models or configurations are quite large (8-
12 GB) and optimizing their memory usage on mobile devices is
needed. Popular mobile devices such as the Samsung S10 and Pixel
4a have limited available memory, with a significant portion al-
ready allocated for the baseline OS and background processes. For
example, The Samsung S10 has 7.7 GB memory, but it already con-
sumes 3.7 GB for normal usage. Regarding what parts of the models
require optimizations, our measurements of Point-E and Shap-E
show that the diffusion step is not the bottleneck for memory usage,
but rather the post-processing steps after diffusion (Upsampler or
Decoder, respectively).

3.3 Latency Measurements

When considering text-to-3D generative models for interactive
usage, low latency is a crucial factor for smooth user experience.
Thus, measuring model latency is important when evaluating the
feasibility of a model for mobile deployment. Our measurements
(total latency in Table 1, breakdown of latency in Figure 4, and
loading time in Table 2), indicate that Shap-E and Point-E have

Model V100 T4 Jetson
DreamFields [10] ~200hr / /
DreamFusion [21] ~12hr / /
CLIP-Mesh ~17min ~52min /
Point-E (40M, text-only) 16 sec 56 sec 3.1 min
Point-E (40M) 1.0 min 3.3 min 9.7 min
Point-E (300M, text-only) 25 sec 1.3 min 5.2 min
Point-E (300M) 1.2 min / /
Point-E (1B) 1.5 min / /
Shap-E (300M, text-only, de- 13 sec 34 sec 2.5 min

coder 1, NeRF)
Table 1: Average total latency of generating a single 3D object,
for different text-to-3D generative models and devices. Shap-
E generally has the lowest latency.

lower latency than CLIP-Mesh, making them more suitable for
interactive deployments.

Point-E. From Table 1, it is clear that the Point-E model variants
with more parameters have higher latency. For example, Point-E
(40M, text-only) took 3.1 minutes to generate one 3D object on
the Jetson, but Point-E (300M, text-only) took 5.2 minutes. Also,
given the same parameter count, the image-based configuration
has significantly higher latency than the text-only configuration
(for example, about 3x for Point-E (40M) on the Jetson). As shown
in the latency breakdown in Figure 4a, this difference caused by
the inclusion of the GLIDE model in the image-based configuration
and by the extra latency of the Upsampler (which in turn is due to
the associated guidance scale hyperparameter, similar to §3.2).

Figure 4a also shows that the higher output dimension of the
Upsampler causes it to have a higher latency relative to the Base
Model, despite the similarity in the number of model parameters
(also seen in the Fig. 3a trace). The ratio of the Upsampler to the
Base Model’s latency is larger when the model is smaller (green
vs. orange bars in the figure). Finally, as seen in the load time
measurements of Table 2, although model variants with higher
parameter counts have slightly higher latency, different parameter
counts do not significantly influence the loading time of the Base
Model, suggesting that most of the loading time is a fixed cost
dependent on the model architecture.

Shap-E. As seen in Table 1, Shap-E has the lowest latency among
the three candidate models for mobile deployment (Point-E, Shap-E
and CLIP-Mesh). As shown in the latency breakdown in Figure 4b,
the diffusion process is a more significant source of latency than
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Figure 4: Latency breakdown of the Point-E and Shap-E mod-
els measured on a T4 GPU, excluding loading time. Shap-E
generally has lower latency than Point-E. Image-based con-
figurations take significantly longer due to the GLIDE model.

Model Component Load Latency (s)
GLIDE 164.95

Point-E (Base Model, 40M, text-only) 12.95

Point-E (Base Model, 40M) 13.37

Point-E (Base Model, 300M) 14.14

Point-E (Upsampler) 13.24

Shap-E (Base Diffusion, 300M, text-only)  17.38

Shap-E (Base Diffusion, 300M) 17.95

Shap-E (Decoder 1) 8.51

Shap-E (Decoder 2) 5.22

Table 2: Mean latency of model loading measured on T4
GPU. Point-E and Shap-E have similar overall loading time.
GLIDE’s load time (for image-based configurations) is large.

decoding. For decoding, using the STF representation is slightly
faster than NeRF, but not by much. Similar to Point-E, for Shap-E,
the text-only model has much faster diffusion process than the
image-based model due to the inclusion of the GLIDE model.

In terms of loading latency in Table 2, Shap-E’s loading latency is
generally similar to Point-E’s overall. While Shap-E’s Base Diffusion
is slower to load than Point-E’s Base Model, the post-diffusion step
of Decoder is faster than Point-E’s Upsampler. Loading Decoder 1 is
slower than loading Decoder 2. This loading only needs to happen
once, when the text-to-3D application is first launched.

Summary. Shap-E is more promising than Point-E for mobile
deployment, taking less time for execution (at the expense of con-
suming more GPU memory). The latency is not necessarily propor-
tional to the number of model parameters, as shown by Point-E’s
Upsampler’s having a higher latency due to its high output dimen-
sion. Finally, image-based configurations are very slow due to the
high load time and execution latency of the GLIDE model.

3.4 3D Object Synthesis Quality

The preceding metrics (memory usage and latency) may trade off
with the synthesis quality of the generated 3D objects. We obtain the
CLIP-R-Precision of all three models [11, 16, 19] evaluated on the
COCO dataset and plot them alongside our latency measurements in
Figure 5, for different model configurations and devices. Data points
towards the upper left corner of the plot are desirable for lower
latency and high 3D object synthesis quality. Several observations
can be made. Although CLIP-Mesh, DreamFusion, and DreamFields
have the highest latencies, they can produce results with better
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Figure 5: Quality-latency tradeoffs of text-to-3D generative
models. Absence of a “+” or “x” means measurements from a
V100. Latency measurements are from Table 1. Shap-E and

CLIP-Mesh exhibit the best tradeoff on the Pareto frontier.

quality. Point-E and Shap-E have similar synthesis quality, and
image-based models achieve better synthesis quality than text-only
ones. Moreover, more parameters leads to better model quality
(dots connected by solid lines). Finally, running the models on T4 or
Jetson increases the latency for the same synthesis quality. Overall,
Shap-E and CLIP-Mesh exhibit good tradeoffs between quality and
time on the Pareto frontier.

4 MODEL OPTIMIZATION

To address the preceding latency challenges, we performed an initial
investigation into general model speedup techniques, specifically
distillation (§4.1) and quantization (§4.2). We focused on Point-E
(40M, text-only) as it has relatively low latency and size based on our
preceding measurements, and Shap-E was released very recently
(May 2023). Since Shap-E has a similar diffusion architecture to
Point-E, we believe that its performance would be similar. The
evaluations are conducted on 100 random test samples from COCO.

4.1 Distillation

Model distillation trains a small lightweight model to mimic the
behavior and knowledge of a larger complex model. However, stan-
dard distillation methods for classifiers [2, 9] cannot be directly
applied to the unique structure of diffusion models, which serve
as the basic architecture for most text-to-3D generative models.
This is because diffusion models require temporal continuity across
multiple steps for sampling. Later work has studied distillation for
diffusion models, with a recent work [26] successfully distilling 2D
generative diffusion models down to as few as 4 iterations while
maintaining perceptual quality, but for 2D images only. Can simi-
lar techniques work for 3D object generation? Following [26], we
distilled the behavior of original Point-E with N steps into a new
model requiring only N/2 steps for each distillation training round.
By repeating this distillation training procedure, we can potentially
create faster models capable of generating high-quality outputs.
Our experiments (see Table 3) demonstrate that even with just
one distillation training round (i.e., distilled the teacher model with
N steps into a new model with N /2 steps), the new model with 74
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Iterations Quality T Inference Latency

150 (original)  15.4% 56 sec

74 12.4% 30 sec

36 6.8% 17 sec

Table 3: Distilled Point-E (40M, text-only) on T4 GPU.

Library Layers Quality T Speed
Original n/a 15.4% x1
TensorRT Linear  10.2% Xx1.3
TensorRT All 1.7% x1.8
PyTorch (FBGEMM) Linear 11% x1.3

Table 4: Quantized Point-E (40M, text-only) on T4 GPU.

steps can accelerate the diffusion process by nearly 2x while main-
taining over 80% of the original quality. However, further distilla-
tion tends to decrease the latency and leads to greater performance
degradation, losing more than half of the original quality.

4.2 Quantization

Quantization reduces model size by representing model parameters
with fewer bits. Applying standard quantization techniques to Point-
E is nontrivial because of its unique transformer architecture and
diffusion model. For example, existing quantization packages, such
as PyTorch’s Dynamic Quantization [22], don’t support the multi-
head attention layers used in transformer architectures such as
Point-E. Diffusion models are also challenging to quantize due to
the variable output distributions of the noise estimation networks
across diffusion iterations, which are prone to degradation [13].
Recent works [13, 27] attempt to tackle these challenges, but their
focus have been primarily on classic diffusion models with the UNet
architecture for 2D images, rather than 3D objects.

We conducted experiments using integer quantization [28] on
Point-E and present the results of post-training quantization to 8-bit
integers (see Table 4). PyTorch supports multiple approaches to
quantizing a deep learning model including TensorRT and FBGEMM
(which we evaluated on the CPU as it doesn’t support GPU). The
quantization scheme in TensorRT is symmetric per-channel for
weights, and symmetric per-tensor for activations, whereas FBGEMM
is asymmetric. Compared to typical single-precision floating point
(32-bit) models, 8-bit integer quantization enables 4X reduction
in the model size. However, directly applying these techniques to
Point-E led to a significant decrease in performance with commen-
surate speed improvement.

5 DISCUSSION AND OPPORTUNITIES

Which models are most promising for mobile? Among the
recent generative models we evaluated, Shap-E exhibited the lowest
latency while delivering reasonable synthesis quality. Additionally,
the availability of multiple decoder options makes it more adaptable
to different goals and device specifications, although the memory
usage is still too high for off-the-shelf mobile devices such as smart-
phones, and mobile GPU programming is challenging. CLIP-Mesh is
another viable alternative, although significant latency reductions
are needed to be tenable on mobile devices.

The text-to-3D models generally have different configurations
(e.g., number of parameters, whether an intermediate image em-
bedding is needed, output format). Which of these configuration
options have the most impact on performance? Generally, larger
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model size somewhat increased latency or GPU memory, but not
directly proportional to the parameter count, while also improving
synthesis quality (in terms of CLIP-R-Precision). Therefore, when
deploying these methods in practice, selecting larger models is
advisable wherever feasible. A more significant configuration pa-
rameter is whether the intermediate image embedding is needed
(text-only vs. image-based configurations). Although the image-
based configurations generally had higher synthesis quality, there
was also a noticeable increase in latency. Therefore text-based con-
figurations are advisable, although further exploration is needed
on the associated configuration-specific hyperparameters (such as
guidance scale) that can also impact performance.

What are the current bottlenecks of mobile deployment?
Our study shows that different stages of the generative 3D models
have different bottlenecks. The initial model loading step generally
consumes significant memory, as does the post-diffusion step. In
general, the GPU memory usage is quite high (8-12 GB), compared
to what is currently available (e.g., 4 GB on a Hololens 2) so well-
provisioned edge devices are needed to run these generative models,
or remote help from a cloud/edge server is needed. The diffusion
step, on the other hand, consumes a significant fraction of the
latency. Overall, this suggests that a one-size-fits-all approach of
minimizing latency or memory alone will not work, and targeted
optimization with specific objectives are needed at each stage of
the model, in order to meet end-to-end performance goals.

What are the unique challenges of 3D generative AI? The
3D representation and how it is generated greatly impact overall
performance. Changing the 3D representation from implicit neural
representations [15] can significantly reduce latency (as MobileN-
eRF [4] did to textured polygons, or Point-E did to point clouds).
This points to the need for further 3D-specific optimizations to
achieve further gains, such as viewport adaptation, intelligent con-
figuration of the AI models when running locally, and dynamic
adaptive 3D streaming when network support is needed. Related
techniques have been studied in the context of 360-degree stream-
ing or 2D object detection [6, 7, 12, 24], but the rapidly changing
architectures and 3D representations in generative text-to-3D mod-
els present new challenges.

6 CONCLUSIONS

As research on generative Al and text-to-3D models specifically
is advancing rapidly, this work provides a checkpoint on their re-
source utilization (memory, latency, and synthesis quality) on server
and embedded system GPUs. Our measurements showed trade-
offs between memory, latency, and synthesis quality, with Shap-E
achieving the best balance compared to Point-E and CLIP-Mesh.
Certain compute steps of Shap-E (model loading and diffusion) con-
sumed significant resources (memory and time, respectively), moti-
vating further innovations. Application of standard distillation and
quantization techniques to the diffusion step improved speed at the
expense of lower synthesis quality. Therefore, multi-objective, cus-
tomized optimization of text-to-3D generative Al models is needed
to realize their vast potential on mobile devices.
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APPENDIX
A NUMBER OF MODEL PARAMETERS

Tables 5 and 6 show the number of parameters for each component
of the Point-E and Shap-E models, respectively.

Point-E Component Number of Parameters
Base Model (40M, text-only) 40,333,836

Base Model (40M) 40,466,956

Base Model (300M) 311,778,316

Base Model (1B) 1,244,311,564

Upsampler 40,470,540

Table 5: Number of model parameters for Point-E

Shap-E Component Number of Parameters
GLIDE ~35B

Diffusion Model (300M, text-only) 315,692,032

Diffusion Model (300M) 315,956,224

Decoder 1 443,771,357

Decoder 2 226,076,870

Table 6: Number of model parameters for Shap-E
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