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Abstract— Reinforcement learning (RL) is a popular paradigm
for synthesizing controllers in environments modeled as Markov
Decision Processes (MDPs). The RL formulation assumes that
users define local rewards that depend only on the current state
(and action), and learning algorithms seek to find control policies
that maximize cumulative rewards along system trajectories.
An implicit assumption in RL is that policies that maximize
cumulative rewards are desirable as they meet the intended
control objectives. However, most control objectives are global
properties of system trajectories, and meeting them with local
rewards requires tedious, manual and error-prone process
of hand-crafting the rewards. We propose a new algorithm
for automatically inferring local rewards from high-level task
objectives expressed in the form of symbolic automata (SA);
a symbolic automaton is a finite state machine where edges
are labeled with symbolic predicates over the MDP states.
SA subsume many popular formalisms for expressing task
objectives, such as discrete-time versions of Signal Temporal
Logic (STL). We assume that a model-free RL setting, i.e., we
assume no prior knowledge of the system dynamics. We give
theoretical results that establish that an optimal policy learned
using our shaped rewards also maximizes the probability of
satisfying the given SA-based control objective. We empirically
compare our approach with other RL methods that try to learn
policies enforcing temporal logic and automata-based control
objective. We demonstrate that our approach outperforms these
methods both in terms of the number of iterations required for
convergence and the probability that the learned policy satisfies
the SA-based objectives.

I. INTRODUCTION

Real-world systems operate in highly uncertain environ-

ments, and it is challenging to design precise symbolic models

that capture system dynamics and environment uncertainty.

A popular abstraction to describe such real-world stochastic

systems is that of (discrete-time) Markov decision processes

(MDPs). Such MDPs capture the Markovian property that the

probability distribution of a state at any time t+ 1 depends

only on its state and control action at time t. A control policy

for an MDP is a function that maps an MDP state to the action

that should be taken in that state. Reinforcement learning

(RL) refers to frameworks that learn the control policies for

an MDP by repeated interaction with its environment [1], [2],

[3]. The typical RL formulation assumes that each state (and

action) in the MDP is associated with a local (Markovian)

reward, and RL algorithms seek to find policies that maximize

the cumulative reward on the induced system trajectories.

Modern RL approaches do not assume any prior knowledge
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of the system dynamics, and learn a control policy solely

through interactions with the environment.

A challenge for RL is that local rewards require careful

hand-crafting; poorly defined rewards can lead to the RL

agent learning policies that maximize cumulative rewards but

induce system trajectories that are undesirable or unsafe [4].

An underlying reason for such phenomena is that several kinds

of desired temporal behaviors are inherently non-Markovian.

For example, consider the property that the system should

first reach some region R1 in the state space, then enter region

R2. A local reward that attempts to move the system state

towards R1 or R2 would need to know if the system trajectory

has visited R1. Other such examples include patrolling tasks

(repeatedly visiting regions over some finite horizon), and

sequential tasks (sequentially visiting regions R1, then R2,

and then R3). Such tasks are commonly encountered when

designing control policies for robot motion.

In contrast, early works on reactive synthesis to satisfy

such temporal objectives have been successful in the context

of motion planning and controller synthesis [5], [6]. However,

these methods require fairly accurate environment models and,

additionally, face scalability challenges when the dimension

of the state-space increases.

To address these challenges, prior work has explored

expressing non-Markovian objectives using temporal logic

or automata and augmenting the state space of the MDP

with a specification state. Then, a common approach is to

propose a (local) reward function that guarantees that the

optimal policies (learned using these rewards) satisfy the

given automata/logic-based objectives with high probability.

Specifically, this line of work includes the use ω-regular

automata for infinite horizon behavior [7], [8], [9], [10],

finite horizon behavior using deterministic finite automata

(DFA) [11], [12], and the use of reward machines [13],

[14]. However, several of these methods suffer from the

inferred reward function from being sparse; most actions in the

augmented MDP may not give the agent a reward, and such

infrequent rewardful transitions in the specification automaton

can cause poor training performance. We demonstrate this

empirically in our experimental results.

Quantitative semantics of temporal logics [15], [16] such

as Metric Temporal Logic (MTL) and Signal Temporal Logic

(STL) map a given system behavior to a real-valued scalar

that measures the spatiotemporal robustness of a trajectory.

Prior work has also investigated heuristic ways to combine

such robustness semantics with RL algorithms [17], [18],

[19]. A key limitation of these approaches is that they do

not give any guarantees that optimal policies will satisfy the20
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specification.

In this paper, we propose the use of symbolic automata (SA)

[20] for specifying control objectives. SA subsume discrete-

time variants of STL and MTL while permitting quantitative

semantics [21]. Our main contribution is a reward inference

procedure that uses the transition structure of the SA to define

Markovian rewards such that a policy that maximizes the

cumulative local rewards also maximizes the probability of

satisfying the SA objective. We empirically demonstrate the

efficacy of our reward functions in reducing the training time

to find an optimal policy, and show that even suboptimal

policies have a higher probability of satisfying the objective

compared to similar approaches.

The layout of the paper is as follows. In Section II we

introduce the basic terminology, and in Section III we formally

introduce the problem. Section IV introduces the reward

functions that we infer and we empirically demonstrate their

efficacy in Section V. Finally, we conclude with a discussion

on related work in Section VI.

II. PRELIMINARIES

A. Symbolic Automata

Let X = {x1, . . . , xn} be a set of variables, where each

xi takes values in some compact space D. Let v : X → D be

a valuation function (or just valuation) that maps a variable

x ∈ X to the value of x. Given the set of variables X , we

abuse notation and use v(X) to denote (v(x1), . . . , v(xn)),
i.e., v(X) ∈ Dn.

Definition 1 (Predicate): A predicate ψ over X is defined

with the following recursive grammar:

ψ := ¦ | § | µ(X) ∼ 0 | ¬ψ | ψ ' ψ | ψ ( ψ,

where µ(X) is a symbolic function corresponding to a

hyperplane in D|X|, k ∈ D, and ∼∈ {<,f, >,g,=}. We

denote by Ψ(X) the set of all predicates over X .

We will abuse notation and let µ(v(X)) ∈ D be the

realization of the function for a valuation v such that µ :
D|X| → D is a scalar function. Then, given a valuation

mapping v : X → D, we define the semantics of ψ in terms

of a satisfaction relation v |= ψ as follows:

v |= ¦ ⇐⇒ ¦
v |= § ⇐⇒ §
v |= µ(X) ∼ k ⇐⇒ µ(v(X)) ∼ k
v |= ¬ψ ⇐⇒ v ̸|= ψ

v |= ψ1 ' ψ2 ⇐⇒ (v |= ψ1) ' (v |= ψ2)
v |= ψ1 ( ψ2 ⇐⇒ (v |= ψ1) ( (v |= ψ2)

Definition 2 (Value-Predicate Distance [21]): For a set of

variables, X , let d : D|X|×D|X| be a distance function such

that (D|X|, d) is a compact metric space. Given a predicate

ψ ∈ Ψ(X) and a valuation v, we define the value-predicate

distance as the distance between v and the set of valuations

that satisfy ψ:

vpd(v, ψ) = min
v′|=ψ

d(v, v′). (1)

q0start q1 qi qτ−1 qR

qF

x < 4 ∧ y < 4 x < 4 ∧ y < 4 x < 4 ∧ y < 4 x < 4 ∧ y < 4

x ≥ 4 ∧ y ≥ 4

x ≥
4 ∧ y ≥

4

x
≥
4 ∧

y
≥
4

x
≥
4
∧
y
≥
4

Fig. 1. Symbolic automaton for the task “reach the set represented by
the constraints x ≥ 4 and y ≥ 4 within Ä time steps”. The dotted lines
represent a continuation of states qi for all 0 ≤ 1 < Ä . The state q0 = qinit
is the initial state, qF is the accepting final state, and the state qR is the
“reject” state, to which the system will transition if the agent fails to reach
the goal state within the time bound.

Example 1: Let X = {x, y} being a set of variables

defined over D ¢ R, and let the Manhattan distance (1-norm)

between two valuations:

dman(v, v
′) =

n
∑

i=1

|v(xi)− v
′(xi)|. (2)

If we have two valuation mappings v1 and v2 defined

as: v1 : {x 7→ 3, y 7→ 5} and v2 : {x 7→ 2, y 7→ 1}, then

dman(v1, v2) = 1 + 4 = 5.

Definition 3 (Symbolic Automaton [20]): A symbolic au-

tomaton is a tuple A = (X,Q, qinit, F,∆, G), where X is a

finite set of variables, where each variable takes values in

D; Q is a finite set of locations with initial location qinit;

F ¦ Q is a set of accepting locations; ∆ ¦ Q × Q is a

nonempty set of transitions; and G : Q×Q→ Ψ(X) is the

guard labeling the transition.

We say that a symbolic automaton A is terminally accept-

ing if for every accepting state in F , all outgoing transitions

are to some state in F . Such an automaton allows us to

replace all accepting states by a single “sink” accepting state

qF , such that ∀(qF , q) ∈ ∆, q = qF . In this paper, we restrict

our attention to such terminally accepting symbolic automata.

A run of the symbolic automaton is defined as a sequence of

states and valuations for variables in X: q0
v1−→ q1 → . . .→

qn−1
vn−→ qn. Here, q0 = qinit, and for all i ∈ [0, n − 1]:

(qi, qi+1) ∈ ∆, and vi+1 |= G(qi, qi+1). A run is accepting

if for some n, qn ∈ F .

B. Reinforcement Learning

Definition 4 (Markov Decision Process (MDP) [3]): An

MDP is a tuple M = (S, sinit, A, P,R), where S is a

finite set of states with initial state sinit; A is a finite set

of possible actions; P : S × A × S → [0, 1] is a (partial)

probabilistic transition function, where P (s, a, s′) = Pr (s′ |
s, a) defines the probability of arriving in state s′ after

taking action a from state s; and R : S × S → R is a

reward function defined on M, where R(s, s′) denotes the

immediate reward received by transitioning from s to s′.

An episode ξ = (s0, . . . , sN ) is a trace of length N in

the MDP M such that s0 = sinit and for all t ∈ [0, N − 1],
P (st, at, st+1) > 0 for some at ∈ A, and N is the maximum

episode length.
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Given a set Y , we let D(Y ) denote the set of all probability

distributions over Y .

Definition 5 (Policy of an MDP): A policy π : S →
D(A) is a function that maps a state s ∈ S to a probability

distribution over the set of actions D(A).
Fixing a policy π in M induces a probability space of

episodic trajectories characterized by the distribution Mπ

where the probability of generating a trajectory ξ inM under

the policy π (denoted ξ ∼Mπ) is as follows:

Pr (ξ ∼Mπ) = Pr
(

(s0, . . . , sN )
∣

∣

∣
s0 = sinit

)

,

where for all t, the action at is sampled from the distribution

π(st), and P (st, at, st+1) > 0.1

Let Rt denote the immediate reward given to the agent at

some time t when the MDP transitions from state st−1 to st:

Rt = R(s = st−1, s
′ = st).

Definition 6 (Value function [3]): Under a policy π :
S → D(A), the state-value function V π : S → R of some

state s ∈ S at time t is the expected total reward2 induced

in Mπ starting from state st:

V π(s) = E π

[

N
∑

i=t

Ri | st = s

]

. (3)

The optimal state-value function V ∗(s) is defined as

V ∗(s) = max
π

V π(s), ∀s ∈ S.

The goal in reinforcement learning is to find a policy π∗

on M such that V π
∗

(sinit) = V ∗(sinit), or

π∗ = argmax
π

V π(sinit) (4)

III. PROBLEM STATEMENT

Definition 7 (Augmented Product MDP): Given an MDP

M = (S, sinit, A, P ) with S ¢ R
n and a symbolic automaton

A = (X,Q, qinit, F,∆, G) with a valuation function v : S ×
X → D (where D ¢ R), we can construct a product MDP

(with additional annotation of accepting states) P =M¹A
as a tuple (S¹, sinit¹, A, P¹,Acc), where:

• S¹ = S ×Q,

• sinit¹ = (sinit, qinit),
• P¹ : S¹ ×A× S¹ → [0, 1] is defined as:

P¹((s, q), a, (s, q
′))

=

{

P (s, a, s′) if (q, q′) ∈ ∆, s |= G(q, q′),

0 otherwise.

• Acc = {(s, q) | q ∈ F}.
An episode ξ = ((s0, q0), . . . , (sN , qN )) in P (with

(s0, q0) = (sinit, qinit)) is considered accepting if and only if

(sN , qN ) ∈ Acc. We use ξ |= A to denote that the episode ξ

is accepted by the specification automaton A.

1We will omit the conditions at ∼ Ã(st) and P (st, at, st+1) > 0 where
doing so is not ambiguous.

2Usually, the policy synthesis is performed for discounted, infinite
runs [3]. In this paper, we only consider the episodic reinforcement learning

setting [22], where the goal is to maximize expected total returns from
trajectories with a finite time bound N and initial state sinit.

Given a policy π : S¹ → D(A), we let Pr (π |= A) denote

the probability that an episode sampled from Pπ is accepted

by A (also called the probability of π being accepting):

Pr (π |= A) = Pr ξ∼Pπ

[

ξ |= A
]

= E ξ∼Pπ

[

1(ξ |= A)
]

,

(5)

where 1(·) is the indicator function such that

1(f) =

{

1, if f evaluates to ¦

0, otherwise.

Problem 1: Given an MDP M = (S, sinit, A, P,R) and

a terminally accepting specification automaton A, let P =
M ¹ A. Synthesize a policy π∗ : S × Q → D(A) that

maximizes the probability of acceptance.

π∗ = argmax
π

Pr (π |= A)

IV. REWARDS FOR SYMBOLIC AUTOMATA GOALS

Given a product MDP, P =M¹A, we define a reward

function R : S¹ × S¹ → R as:

R((s, q), (s′, q′)) =











dmax, if (s′, q′) ∈ Acc

and (s, q) ̸∈ Acc

0, otherwise,

(6)

where dmax is a hyperparameter for our framework and is

usually set to dmax = maxs,s′ d(s, s
′), for some distance

function d : S × S → R.

Given the reward function R, we claim that any policy

π that maximizes the expected total rewards using R will

also maximize the probability of satisfying the specification

automaton A. Formally:

Theorem 1: Let π1 and π2 be some policies on P such

that V π1((sinit, qinit)) > V π2((sinit, qinit)). Then, Pr (π1 |=
A) > Pr (π2 |= A).

Proof: For some trajectory ξ = ((s0, q0), . . . , (sN , qN ))
in Pπ , let the total return for the trajectory be

G(ξ) =

N−1
∑

t=0

R((st, qt), (st+1, qt+1))

Then, from, Eq. 6, we have

G(ξ) =

{

dmax, if ξ |= A

0, otherwise.

For notational convenience, we will use V πinit denote the state-

value function of policy π for the initial state (sinit, qinit) in

P . For some policy π, we know that

V πinit = E ξ∼Pπ G(ξ)

= E ξ∼Pπ [dmax | ξ |= A] + E ξ∼Pπ [0 | ξ ̸|= A]

= dmax E ξ|=Pπ [1(ξ |= A)]

= dmax Pr (π |= A).

Thus, if V π1

init > V π2

init, Pr (π1 |= A) > Pr (π2 |= A).
Corollary 1: Let p∗ = maxπ Pr (π |= A) be the max-

imum probability of acceptance of a policy π in P , and

let π∗ = argmaxπ V
π((sinit, qinit)) be an optimal policy
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with respect to the reward function R : S¹ × S¹. Then,

Pr (π∗ |= A) = p∗.

While the reward in Equation 6 provides theoretical

guarantees for an optimal accepting policy, this reward is

sparse, i.e., for large episode lengths or task horizons, the

agent may not see any rewards from accepting runs in the

early stages of its training. This can cause a significant

slowdown in the training process, and can potentially make

it unfeasible to use RL to synthesize such controllers in

large or continuous state spaces. To mitigate this, we will

present a reward shaping technique inspired by the results

from [23], [24] that supplements R((s, q), (s′, q′) with spatial

information from the symbolic constraints.

Potential-based Reward Shaping. To speed up the training

process, we need to make the reward function R defined in

Equation 6 more dense, i.e., each transition in P needs to

receive a reward such that the agent receives:

1) a positive reward only if it moves closer to the goal, and,

2) the shaped reward does not alter the set of optimal policies.

To this end, we define a potential-based reward shaping

method using a symbolic potential function. This symbolic

function is a heuristic that takes into account the shortest

possible accepting trajectory from the current state in P ,

solely by looking at the symbolic constraints in A.

Definition 8 (Task Progress Level, η): Given a terminally

accepting automaton A = (X,Q, q0, F,∆, g), the task

progress level is a mapping η : Q→ N∪{∞} such that η(q)
is the length of the shortest simple path from the state q ∈ Q
to the state qF ∈ F . If there is no such path from q to qF ,

then η(q) =∞.

Let Jψ(q, q′)K = {s | s ∈ S ' s |= ψ(q, q′)} be the set

of all s ∈ S that satisfy the predicate ψ(q, q′), and let

dH(ψ1, ψ2) be the Hausdorff distance between Jψ1K and

Jψ2K using some distance measure d in S.

Definition 9 (Symbolic Subtask Progress, Φsym): For

a state q ∈ Q, and a potential future state q′ ∈ Q

such that (q, q′) ∈ ∆, Φsym : ∆ → Rg0 provides an

underapproximation of the distance to the final goal state

qF ∈ F if the agent takes the transition (q, q′),

Φsym(q, q
′) =











0 if q′ ∈ F

min
q′′:(q′,q′′)∈∆

q′ ̸=q′′

dH(Jψ(q, q′)K, Jψ(q′, q′′)K)

+ Φsym(q
′, q′′)

otherwise.

(7)

Definition 10 (Symbolic Potential Function, Φ): Thus,

given an MDPM = (S, s0, A, P ) and a symbolic automaton

task specification A, we define the function Φ : S×Q→ Rg0

in the product MDP P =M¹A as:

Φ(s, q) =















0 if (s, q) ∈ Acc

min
q′:(q,q′)∈∆
η(q) ̸=η(q′)(
s ̸|=ψ(q,q′)

vpd(s, ψ(q, q′))

+ Φsym(q, q
′)

otherwise.

(8)

Using the quantity η(·), we filter out any edges in the

automaton that do not make progress towards the accepting

q0

start

q1

q2

q3

(x < 4) ∨ (y < 4)

(x ≥ 4) ∧ (y ≥ 4)

(x < 4) ∨ (y > 1)

(x ≥ 4) ∧ (y ≤ 1)

(x > 1) ∨ (y < 4)

(x ≤ 1) ∧ (y ≥ 4)

>

A

B

C

?

A

B

C

A

B

C

Fig. 2. Left: The symbolic automaton for a sequential specification for the
agent, where the goal is to visit regions A, B, and C in order. Middle: The
approximate “shortest path” for the agent to satisfy the specification from ⋆.
Right: The evaluation of Φ(s, q) from Equation 8 such that the top image
is for Φ(s, q0), the middle for Φ(s, q1), and the bottom for Φ(s, q2), for
any s.

goal, and thus, we compute the underapproximation of the

minimum length path in the MDP that leads to Acc starting

from some state (s, q). To gain some intuition behind how

this potential function works, we refer to Figure 2.

From this definition, we can define the shaped reward

function, R̂ : S¹ × S¹ → R as:

R̂((s, q), (s′, q′)) = R((s, q), (s′, q′))− (Φ(s′, q′)−Φ(s, q)),
(9)

where R((s, q), (s′, q′)) is as defined in Equation 6. Moreover,

we can show that any policy that optimizes R̂(·, ·) will remain

optimal using Corollary 1 and the policy invariance theorem

for potential functions. We formalize this in Theorem 2.

Theorem 2 (Policy Invariance under Shaping [23]): Let

p∗ be the maximum probability of acceptance. Let π

be a policy that maximizes expected total rewards with

respect to the sparse reward function R, and π̂ be one that

does so with the potential-based reward shaping R̂. Then,

Pr (π̂ |= A) = Pr (π |= A) = p∗.

V. EXPERIMENTS

Environments. In the following case studies, we consider an

agent moving through a discrete, grid environment, where the

agent can use the actions A = {↑,·,→,¸, ³,↙,←,↖, 0}
which allow also for diagonal movements and no movement

(0). We model the probabilistic transition function P in the

grid such that if the controller decides to move along a

direction, it will move to the next state (if there is no wall)

with probability 1−pslip, or move along an adjacent direction

with probability 0.5pslip each. Here, pslip is the probability

of the agent “slipping”, and is set to 0.1.

Baselines. To draw a contrast with other spatiotemporal

reward-shaping strategies, we compare the performance of

our proposed symbolic potential-based reward (Equation 9)

against the sparse rewarding baseline (Equation 6), the

automata-based reward presented in [12], and the bounded-

horizon quantitative approach presented in [17].

Authorized licensed use limited to: University of Southern California. Downloaded on May 02,2024 at 23:47:15 UTC from IEEE Xplore.  Restrictions apply. 



A

?
200 400 600

No. of Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y
o

f
S

at
is

fa
ct

io
n

Sparse

Our Method

Lavaei, et.al. 2020

Aksaray, et.al. 2016

Fig. 3. Left: The map for a simple “reach” task, where the goal is to get
the agent from ⋆ to the region labeled A within 14 time steps. Right: Plot
of the probability of the learned policy generating an accepting trajectory
vs. the training epoch.

Evaluation. For each rewarding strategy, we train a Q-

learning agent [25] and at fixed intervals, we evaluate the

learned policy 100 times, and record the number of satisfying

runs. The evaluated metrics are then aggregated across 5

training runs with different random seeds. The probability of

satisfaction is computed as a binomial distribution with 95%

confidence interval.

We will now describe the different environments and tasks

performed in these environments, and analyze the performance

of our approach and the different baselines:

a) Reachability: Here, the task of the RL agent is to

start at some initial location (s0, q0) and reach some goal set

A (represented in the automaton as a predicate). Specifically,

we are interested in synthesizing a controller in a 6× 6 grid

environment, where the agent starts at state (0, 0) and needs

to reach the states satisfying x g 4 ' y g 4 with a hard

deadline of 15 time steps. The efficacy of our approach can

be seen in Figure 3.

From Figure 3, we can see that our proposed method

for reward shaping is faster at finding a policy with an

acceptance probability equal to 1.0 than other methods. The

purely quantitative approach in [17] is the next best solution,

but suffers from poor stability in its results. Moreover, in

this scenario, the sparse rewarding strategy is exactly as

performant as the automaton potential-based reward shaping

in [12]. This is due to the fact that while a transition hasn’t

been taken in the automaton, the potential function in [12]

provides no extra information.

b) Recurrence: Based on an environment presented

in [17], the goal of the agent in this task is to repeatedly visit

two regions in the map as often as possible within a certain

time limit. Here, the goal is to visit two regions in a 4× 4
grid, labeled x = 2 ' y = 2 and x = 1 ' y = 3.

In Figure 4, we can see that the approach presented

in [12] performs poorly. This is due to the fact that in

such specifications, using η(·) to compute the potential may

mislead the agent into taking choices that are local maximums

in the rewards. This is similar to the issue present in the

“Branching Paths” task presented later.

On the other hand, increasing the task horizon (as defined

in [17]) by a few time steps causes the τ -MDP method to

perform poorly due to a state-space explosion.
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Fig. 4. Left: The map for a “recurrence” or patrolling task, where the
agent has to visit A and B within 5 time steps of each other over a span of
15 time steps. Right: Plot of the probability of the learned policy generating
an accepting trajectory vs. the training epoch.
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Fig. 5. Left: The map for a simple sequential task, where the agent has to
visit regions A, B, and C in that order. Right: Plot of the probability of
the learned policy generating an accepting trajectory vs. the training epoch.

c) Sequential: This task requires an agent to visit

regions in a strict sequence. In this example, the agent is

placed in a 25× 25 grid environment, with 3 labeled regions:

• A = {(x, y) | (x g 22) ' (y g 22)}
• B = {(x, y) | (x g 22) ' (y f 3)}
• C = {(x, y) | (x f 3) ' (y g 22)}

The goal of the agent is to learn a controller that visits region

A, then the region B, and finally region C in sequence.

Remark 1: Since the environment and the task horizon

are considerably large (even for artificially bounded task

specifications), the state space for the τ -MDP construct

presented in [17] explodes greatly. This made the experiments

unfeasible to run with this method, and thus the results for

this method are omitted from Figure 5.

In this task, we notice that the sparse reward baseline,

along with the potential-based reward shaping presented

in [12] do not learn any good information for 50000 training

epochs. This is due to the highly sparse rewards provided

by both the methods. Similar to the results in the “Bounded

Reach” task presented earlier, the method in [12] does not

provide any information to the agent until it enters the

region corresponding to the next task. On the other hand, our

proposed method learns to find satisfying traces relatively

quickly due to the information from the potential function

defined in Eq. (8).

d) Branching Paths: In this specification, the agent

operates on a 16 × 16 grid with a few obstacles, as seen

in Figure 7. The goal of the agent is to visit regions in either

of the following orders: A→ B → D or C → D. From the
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Fig. 6. This symbolic automaton represents the task “reach D by
either going through A and then B, or by going through C”. The state
q0 = qinit is the initial state, A = ((0 ≤ x ≤ 1) ∧ (14 ≤ y ≤ 15)), B =
((5 ≤ x ≤ 8) ∧ (14 ≤ y ≤ 15)), and C = ((x >= 14) ∧ (y <= 1)).
Note how the “obviously” shorter path in the automaton doesn’t necessarily
correspond to the spatially shorter path.
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Fig. 7. Left: The map for a task with two possible paths: the agent can
either take the path A → B → D or C → D. Walls and obstacles have
been intentionally placed to make one path easier than the other, but the
agent does not have any knowledge of these environment features. Right:

Plot of the probability of the learned policy generating an accepting trajectory
vs. the training epoch.

figure, we can see that one of the above orders is significantly

longer than the other, but since the agent does not have any

prior knowledge of the environment (except for the locations

of these regions), it cannot rule out either branch. We can

see from Figure 7 that our proposed method significantly

outperforms the approach presented in [12]. (Note that due

to size restrictions, we do not see that there is a small

error band around the graph for [12] for when they do find

some accepting trajectories.) Moreover, we can see that the

sparse rewarding case also performs well as it weights all the

accepting paths in the automaton equally, while the reward

function in [12] weights an unfeasible path as being better

in the automaton shown in Figure 6.

Remark 2: For the same reasons as in the “Sequential”

task, we do not evaluate the performance of the τ -MDP

approach presented in [17].

VI. RELATED WORK AND CONCLUSIONS

Related Work: Reward engineering in RL based on

formal specifications is a well-established research topic [17],

[19], [10], [26], [12]. Early work in [7] and [8] encoded

rewards using deterministic Rabin automata generated from

Linear Temporal Logic (LTL) specifications, while [9] and

[10] do so using limit-deterministic Büchi automata. These

types of automata define tasks over infinite horizon behavior.

Recent work shows that it is impossible for an RL algorithm

to provide PAC guarantees, i.e., an algorithm that guarantees

with a high probability that it learns a near-optimal policy

with only a polynomial number of interactions with the

environment [27].

In contrast, [11] and [12] use a fragment of LTL to define

finite horizon tasks, which are translated to deterministic

finite automaton (DFA). In [12], the authors propose the use

of DFAs to encode task specifications over discrete labeled

inputs, and define a state-based potential function on the

automaton. Similarly, the authors of [28], [26] propose the

use of a custom specification language to generate a similar

DFA, but rather than learning a single controller for the

entire specification, they propose to learn a controller for

each “subtask” encoded on an edge in the form of some

guard. These multiple controllers are then scheduled using the

automaton structure as a guide. In [13] and [14], the authors

propose the use of reward machines — Mealy machines with

reward functions as outputs — while their extension work

in [29] proposes to simplify these constructions as Moore

machines with numeric outputs.

In [17], the authors define an effective approach to learning

robust controllers using Q-learning [25]. The history-based

dependency of formula satisfaction is resolved by encoding

n-step history in every state. The authors use bounded horizon

robustness as a reward, which requires transforming MDP

by enhancing it with n-step MDP history. The works in [30]

and [19] use similar robustness-based approaches to defining

reward functions over bounded horizons.

In recent years, the use of control barrier functions and

control Lyapunov functions for motion planning using RL

has become popular due to their inherent potential-based

formulation [31], [32], [33], [34], [35]. In [33], the authors

propose to use neural networks to learn estimates of Lya-

punov function derivatives under uncertainty and update the

controller accordingly. Similarly, [31] and [32] try to directly

formulate the RL problem as one involving Lyapunov and

barrier certificate constraints. The work in [35] proposes an

approach similar to ours, where temporal logic specifications

are translated to DFAs, a learned controller handles the task

of reaching the accepting state, and the task of avoiding

unsafe conditions is delegated to control barrier functions.

Conclusions and Future Work: This paper presents

a novel approach to using symbolic automata as task

specifications to encode complex tasks. Compared to other

automata-based solutions, we show that the reward function

obtained from this symbolic task specification can encode rich,

quantitative information about the environment. We present

theoretical guarantees for the correctness of the constructed

reward and empirically compare the approach against related

works.In future work, we hope to 1) extend these results

in episodic reinforcement learning to infinite horizon tasks;

2) provide guarantees for this approach in continuous space

and continuous time settings; 3) study how to construct robust

plans for multi-agent systems with global and local tasks.
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