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1 | INTRODUCTION

| Sidharth Kumar! | Ajil Jalal?

| Jonathan I. Tamir!

Abstract

Purpose: The aim of this work is to develop a method to solve the ill-posed
inverse problem of accelerated image reconstruction while correcting forward
model imperfections in the context of subject motion during MRI examinations.
Methods: The proposed solution uses a Bayesian framework based on deep gen-
erative diffusion models to jointly estimate a motion-free image and rigid motion
estimates from subsampled and motion-corrupt two-dimensional (2D) k-space
data.

Results: We demonstrate the ability to reconstruct motion-free images from
accelerated two-dimensional (2D) Cartesian and non-Cartesian scans without
any external reference signal. We show that our method improves over existing
correction techniques on both simulated and prospectively accelerated data.
Conclusion: We propose a flexible framework for retrospective motion cor-
rection of accelerated MRI based on deep generative diffusion models, with
potential application to other forward model corruptions.
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and decreased image quality due to a variety of factors.
A common way to reduce scan time is to acquire less

MRI is a highly effective medical imaging modality which
owes much of its utility to having superior soft tissue con-
trast without any ionizing radiation. Unfortunately, MRI is
notoriously slow when compared to other imaging meth-
ods. This limitation can lead to increased operating costs

Portions of this work were presented at IEEE International Symposium
on Biomedical Imaging (ISBI) 2023' and ISMRM Workshop on Data
Sampling and Image Reconstruction 2023.2

data and thus subsample k-space. This process, however,
makes the task of image reconstruction an ill-posed inverse
problem. To better handle this task, many techniques have
been developed such as parallel imaging,3>~> handcrafted
image regularization,®® dictionary learning,’ subspace
constraints,'? and more recently deep learning.!1-7
Although highly subsampling k-space reduces the
likelihood of motion occurring during the scan, MRI is
still susceptible to subject motion due to physical con-
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straints during a given scan such as the repetition time
(TR) needed between excitations. The resulting artifacts
can often render the image nondiagnostic, and may ulti-
mately require the corrupted scan to be reacquired.'® The
severity of motion artifacts is related to a variety of fac-
tors including acquisition parameters (sampling trajectory,
echo train ordering, signal preparation) and the degree
of motion. See Figure 1 for examples of how these arti-
facts manifest. These artifacts have tangible costs in clin-
ical settings, especially when scanning pediatric patients
where motion artifacts are extremely common.!® Many
approaches to address motion corruption have been pro-
posed. These methods can be separated into two broad
categories: prospective and retrospective.

Prospective methods are categorized as those which
can be used at scan time to modify the acquisition in
response to subject motion. To measure motion during
the scan, a variety of approaches have been proposed
that either leverage additional pulse sequence actions like
motion navigators or external measurement devices such
as respiratory bellows, radiofrequency tones, nuclear mag-
netic resonance probes, and optical tracking.?°2* These
measurements can be used to correct motion by bin-
ning data into different motion states to later inform the
reconstruction process, or even discarding corrupted mea-
surements and guiding re-acquisition of corrupted data.
Due to the overhead created by additional measurement
equipment and re-acquisition of data, these methods may
still increase operating costs and even scan time, as well
as require modifications to the sequence or addition of
peripheral hardware.

Retrospective methods assume no control of the imag-
ing procedure and correct for motion artifacts after mea-
surement data have been collected. This means techniques
that require sequence modification are not possible. They
also typically assume no access to direct measurements of
the true motion states which occurred during the exam.
Retrospective techniques are more widely compatible with
existing clinical protocols but also face a more difficult task
than prospective methods.

In light of recent advancements in the area of deep
learning, perhaps the most straightforward approach to
retrospectively correct motion is to directly map motion
corrupt images to clean images. One line of such
approaches successfully trained a conditional generative
adversarial network (cGAN) to translate motion corrupt
images to clean images.?>2° This technique falls into the
class of end-to-end deep learning methods. However, as
previously stated, artifact appearance is heavily dependent
on the chosen forward operator, for example, the sampling
trajectory (Figure 1). Due to this, a network’s performance
at test time is highly dependent on how motion is synthe-
sized at training time to create training pairs, and therefore

end-to-end performance will degrade if changes to the
acquisition protocol occur such as sampling trajectory and
echo train ordering.?’

Motion can be described as an unknown perturbation
to the assumed forward model that gives rise to artifacts
at reconstruction time. This has led previous works that
aim to jointly solve an optimization problem for the tar-
get image and the unknown motion that occurred at scan
time.?8-32 These methods have primarily been applied to
the low acceleration regime. To build upon joint opti-
mization, supervised learning has been used as one step
in a larger iterative algorithm that jointly solves for the
image and the motion parameters.3* Although this method
shows notable improvements over prior methods, it is still
likely susceptible to distribution shifts in the forward oper-
ator (changes to acquisition and sampling parameters), as
to train the end-to-end network component it is neces-
sary to preselect the manifestation of the motion artifacts
to learn the proper inversion. It also still relies on a lin-
ear reconstruction backbone for solving the accelerated
reconstruction task which is not as powerful as recent deep
learning-based reconstruction techniques, and therefore
performance will degrade at higher acceleration factors.

Therefore there is an unmet need to solve acceler-
ated image reconstruction in the presence of unknown
and arbitrary motion without requiring retraining for
every possible configuration of scan parameters. In pur-
suit of this goal, in this work we propose a retrospec-
tive motion correction technique that builds off of recent
advances in deep generative models.>**> In particular, we
formulate the reconstruction under the lens of posterior
sampling.'*1617 We extend the framework to joint poste-
rior sampling over the image and motion parameters.To
demonstrate feasibility of the framework, we restrict our
focus to two-dimensional (2D) rigid motion, though exten-
sions to three-dimensional (3D) rigid and nonrigid motion
are possible. Our goal is to develop a method that is (1)
effective at correcting in-plane, rigid motion from subsam-
pled data while (2) being agnostic to choices in the forward
model which can greatly affect the manifestation of the
motion artifacts observed. We are also motivated by the
recent success of foundation models in other areas of deep
learning including vision and language, where a single
pretrained model can be used for a variety of tasks.

2 | THEORY

2.1 | Accelerated multicoil MRI
reconstruction

The goal of accelerated image reconstruction in MRI is
to recover an image x € CN from subsampled Fourier
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FIGURE 1

Cartesian
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PROPELLER

Retrospective simulation of the impact of motion on reconstruction. (Left) Motion-free image, (Center) simulated

motion-corrupt image resulting from Cartesian fast spin-echo, (Right) simulated motion-corrupt image resulting from PROPELLER fast

spin-echo. All acquisitions were fully sampled and the same motion states were used for each repetition time (TR). No motion correction was

applied.

measurements (k-space) y € CM. We can denote the mea-
surement (forward) process in MRI as

y¥ = NgSx + 1, (1)

where y is k-space of the Ith coil, Ny € C¥*¥ denotes
the (possibly nonuniform) Fourier transform operator (2D
or 3D) evaluated at coordinates K € R™M d = 2, 3 for 2D
and 3D imaging, respectively, S; € CN¥ is the Ith coil
sensitivity map, and n ~ N'(0, ¢%I) is additive noise. We
can consolidate the forward operator for all coils into one
operator A = NgS.

Viewed from the perspective of regularized inverse
problems, reconstruction can then be formulated as solv-
ing the optimization problem

x* = argmin||Ax — y||5 + AR(X), ()
X

where R(x) can be a handcrafted image regularization
term such as L1-wavelet sparsity,” or low-rank structure.%®
Reconstruction can also be solved with deep networks by
learning a mapping (fp) from measurement to image space
using training data!!!3

X" = fy(y). (3)

More recently, there has been a push to use deep
generative models to learn useful statistical priors for
regularization.!#16:1736:37 Tn these techniques, reconstruc-
tion takes on a Bayesian formulation where the goal
is to solve the inverse problem with a variety of esti-
mators such as maximum a posteriori estimation, mini-
mum mean square error estimation, or posterior sampling

which have perceptual quality benefits over many other
formulations.®

2.2 | Generative diffusion models
for inverse problems

Recent work in the deep generative modeling space
has been focused on diffusion processes.3*3>3%40 For the
remainder of this section we will adopt the notation intro-
duced in Reference 39. Generative diffusion models can be
understood through viewing two complementary stochas-
tic differential equations (SDE). The first SDE is called the
forward process. In the forward process, noise is gradually
added to the data distribution of interest:

_ s
)

dx xdt + s(t)\/ 26’ (Ho(tHde. 4

Here s(t) and o(t) are commonly called the signal scal-
ing and noise scaling schedules, respectively. Addition-
ally, % is often referred to as the drift coefficient, while

s(t)v/20'(H)o(t) is commonly called the diffusion coeffi-
cient, and ® defines a Brownian motion process. This
process can be reversed via a complementary SDE or ordi-
nary differential equation (ODE).*~*! We will focus on the
reverse ODE which is given by:

dx = (Z’((tt))x —5%(H)e’ (He(t)Vx log p(X; a(t))) dt, (5)

where X = ?X:) When run from time ¢t = T to ¢t = 0 the pro-
cedure results in sampling from the original clean data
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distribution pga(x). Here we note that s(t) and o(t) are
analytically defined in the forward equation (Equation 4),
so the only portion of the reverse ODE which needs to be
learned is the score (Vg log p(x; 6(t))) at each time t. The
score can be approximated by training a neural network
(Dg(x, 6(t))) via denoising score matching.*? For clarity in
future equations, we note here that Dy(X; o (t)) is not a
direct approximation to the score function but rather is
trained to predict the denoised signal at each noise level
leading to the following relation with the score function at
each time point during the reverse process:

Dx;0(t)) —x

2200 (6)

Vxlogp(x; o(t)) =

With access to an approximation of the true score func-

tion, the reverse ODE can be solved using ODE solvers like

Euler’s method (first order). To solve inverse problems, we
can instead use the following reverse ODE:

dx <Sﬁx — (D)0’ (1)o (1) [V log plyl%; o (1))
s(h) (7

+Vy log p(x; o(1))] )dt

Following this ODE, we will be sampling from the poste-
rior distribution p(x|y). The key issue with this approach is
that we only analytically know the form of the likelihood
at time t = 0 (e.g., p(y|X; 6(0)) = N'(AX, 6%I)). Prior works
like Diffusion Posterior Sampling*} have approximated the
likelihood at intermediate times steps with

p(yIx(t); 6(1)) = p(y|%; 6(0)), ®)

where & = E[x(0)|x(¢)] is an estimate of the denoised image
at time t = 0 and is given by Tweedie’s formula** to be

E[x(0)|x()] = S(Lt) (x(t) + s*()0?() Vx log p(x(1); o(1))).  (9)
= % (x(0) + 2 () (Dp(x(1); o (1)) — X(1))). (10)

This leads to the approximate posterior sampling (PS)
inference procedure for solving inverse problems as shown
in Algorithm 1.

2.3 | Measurement formation in the
presence of motion

We consider motion which is rigid, in-plane, and occurs
between readout lines. The assumption that motion does
not occur during the readout period is not too restrictive
as the readout duration is typically much shorter than the
time between readouts. This assumption means that issues
such as spin-history effects are not considered. Prior works

Algorithm 1. Diffusion posterior sampling*®

samplex(ty) ~ N'(0, 62(ty)s*(to)I)
forie {0,..,.N—1}do
. U))
T s
L (a(ti) + s(ti))
(=7 E,ll()ts)([l)
dp = vix(t;) — 1Dy (X; o(1y) (ot
& L : N2 5.2 Do(X50(4))—x(t;)
&= L (x(t) + 5000 2ELX)
d; = Vx|l ARx(%)) - ylI3
X(tiy1) < X(6) + (tip1 — t)dp + 7, dr
end for
end procedure

have, however, investigated the effects of spin-history for
retrospective motion correction.* Under these assump-
tions we can characterize the effects of rigid body motion
(rotation and translation) on k-space measurements using
simple Fourier theory. In particular, rotation in image
space leads to the same rotation in k-space, while transla-
tion in image space causes linear phase shifts in k-space.
Both of these effects can be captured in a modified forward
operator:

y; = Py Ng, k. Sx + 1, n ~ N'(0,0°D), 11)

where x € CN is the motion-free image, S € CNNNN
contains the N, sensitivity maps, Ry, is a rotation matrix
for the ith motion state, Py, is a diagonal matrix imple-
menting a linear phase shift describing the horizontal and
vertical translations during the ith motion state, K; are the
coordinates for the intended k-space trajectory during the
ith motion state, and Ny oK is the Nonuniform Fast Fourier
Transform of Sx at the coordinates Ry, K;. We note here that
although y; and x are linearly related, ¢;, 6; and y, are not.

For ease of notation we combine all motion states for
the rotation angles, translation distances and intended
sampling trajectories into the variables 6, ¢, and K,
respectively:

y = PgNg,xSX+ 1, n ~ N(0,0°I). (12)
To further simplify this expression we combine all

unknown motion parameters (6, ¢) into a single variable
k and get the expression

y=AXx+n, n~N©O,0%D), 13)
where A, includes all linear operators in Equation (12).

We note here that the motion operators (Ry, Py) are the
same for all coils. We also assume the coil sensitivity maps
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are the same for every motion state, which is not strictly
correct as coil maps are a function of the object’s position.*

For some of the experimentation in this paper we not
only assume constant motion states during a single read-
out but also fixed motion states for each TR. This is not
required for our method but it fits with the observation
that time between TRs is much longer, in general, than
time between readouts within a TR. This is, for example,
the case in many fast spin-echo imaging sequences. We
wish to note that although we explicitly consider 2D rigid
body motion in our forward model formulation, 3D and
nonrigid motion can also be modeled as modifications to
the forward model. However, nonrigid motion requires
parameterization of a deformation field which increases
problem complexity. We also note that other parameter-
ized corruptions in the forward process could be modeled
in a similar way, for example, to model magnetic field
inhomogeneity.

2.4 | Accelerated motion correction
with generative diffusion models

As stated above, prior works have shown promising results
when using deep generative diffusion models to solve
ill-posed inverse problems like subsampled image recon-
struction.'*1%17 In most prior work, however, the forward
model is assumed to be fixed and known throughout the
reconstruction procedure. In our work, we assume that
our forward operator A, belongs to a restricted class of
operators with unknown parameters k¥ which must be
learned during inference. Another way of viewing this
problem is as posterior sampling from the joint distribu-
tion p(x, xk|y). Under this joint posterior, we arrive at the
following reverse time ODEs:

'(t
ax = <2(Lt))x — 2o’ (Ho (1) [VX log p(y|X, k; o(t))

+Vy log p(x, &3 o (1)] >dt, "
14

K= <‘Z((:)) K —s* (o’ (Do (t) [VK log p(y|%, k; 6(t))

+V, log p(%, k3 6(1))] )dt.

If we assume independence between x and k we arrive at
the following reverse ODEs:

/(t
X = <SS(L0)X ~ ()0’ (Vo (1) | Vx log p(yl%, &3 0(1))

+Vy log p(x; o(1))] >dt, -
15

K= <i((:)) Kk — (0o’ (o (1) [ Vi log p(y IR, 3 0(t))

+V, log plic; (1))] >dt.

. . .. 5
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Algorithm 2. General Motion Informed Posterior Sam-
pling

samplex(to) ~ N'(0, 62(tp)s2(t))
samplex(ty) ~ N (0, % (t)s* (o))
forie {0,..,N—1}do
o _ X(t)
X ==L
S(li/)(t) ()
= (2% 4, S
= (,«:(ti) )
== E,[()ts)(t)
dp_ = vix(t;) — {iDy (X; 6(11))
5 L : 32 . 2Dg(i§0'(ti))_x(ti)
x= L (x(@) + stt)o ey 2ELX)
d; = Vi[[AXX(t)) - yl3
X(tiy1) < X(4) + (L1 — t)dp + 7, dr
dp_ =V, logp(x;o(t))
dLK = VK”AK)A((X(tl')) - Y||§
K(lip1) < k() + (i1 — t)dp, + & dr,
end for
end procedure

From here we note that p(y|x, k; 6(0)) ~ N'(AX, 62I) and
we arrive at the final algorithm in Algorithm 2, which we
call General motion-informed posterior sampling (MI-PS).
The formulation here is intentionally general to allow for
arbitrary drift coefficients.

Under the assumption of independence between the
image and the motion states, our method has the ben-
efit that the deep generative model can be pretrained
for the standard task of posterior sampling reconstruc-
tion using motion-free data. Incorporating motion only
requires a change to the inference algorithm and does
not require retraining the generative model, even if the
acquisition parameters change. This is in stark contrast
to end-to-end methods which must be trained with spe-
cific scan parameters in mind at inference time.?” We find
that in practice the independence assumption is not too
restrictive.

3 | METHODS

To evaluate our proposed approach, we perform both
retrospective simulated motion experiments as well as
prospectively accelerated motion-corrupt scans. In the ret-
rospective simulation, we evaluate the impact of chang-
ing sampling pattern, echo train length (ETL), and
grouping of motion states. In the prospective scanning,
we evaluate our approach on a fast spin-echo acqui-
sition without making any modifications to the pulse
sequence.
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3.1 | Evaluation methods

We investigate a variety of methods that span both non-
learned and learned retrospective motion correction. For
simulation studies where motion is generated retrospec-
tively, we use upper- and lower-bound comparisons which
use either no motion estimate, or exact motion states for
reconstruction. These provide worst-case and best-case
performance for various methods. In particular, we display
the results for seven different methods:

1. NAMER/TAMER Lower Bound (NT LB): We per-
form a linear reconstruction of the motion-corrupt data
using the Conjugate Gradient algorithm (CG-SENSE)*’
without access to the true motion states and we per-
form no motion estimation. We use this as a lower
bound for the performance of methods like NAMER
and TAMER3%33 which are based on (1) estimating
motion parameters and (2) performing a linear recon-
struction such as CG-SENSE.

2. NAMER/TAMER Upper Bound (NT UB): We per-
form a CG-SENSE reconstruction of motion-corrupt
data with access to the true motion states. We use this
as an upper bound for the performance of methods like
NAMER and TAMER3%33 as in the best case, if NAMER
and TAMER perfectly estimate the motion states then
the reconstruction will match NT UB.

3. UNet: A UNet*® model was trained on pairs of motion
corrupt and motion free images. During training, the
UNet uses as input the CG-SENSE reconstruction of
motion corrupted T2 brain images using simulated
Cartesian R = 3, ETL = 16 motion corrupt data. The
output of the network is then compared to the fully
sampled and motion-free ground truth image using an
L2 loss function as in previous work.3* The model was
trained on 14 000 image pairs from fastMRI*’ and was
trained for 10 epochs.

4. Conditional GAN (cGAN): A cGAN-based correction
method similar to References 25 and 26 was trained
on pairs of corrupted and clean images. Like the UNet,
the input is the CG-SENSE reconstruction assuming no
motion, and the data were simulated Cartesian R = 3,
ETL = 16. We use UNet*® and ResNet-18°° models for
the generator and the discriminator networks, respec-
tively. To promote better visual quality in the gener-
ated images, the training loss includes L2, adversarial,
and perceptual components through an Imagenet pre-
trained VGG model.>! We observed during training that
including the perceptual loss helps in improving the
visual quality of final motion-free images. During train-
ing the generator is given motion corrupted images,
from a given sampling pattern and acceleration level,
as inputs and trained to generate images as close as

possible to the clean images. For training the cGAN
network we followed the training pipeline from Ref-
erence 52, where the generator and discriminator are
trained alternatively. The best learning rate was deter-
mined heuristically and found to be 0.0001. Both input
and output images are normalized with the max value
before passing through the network.

5. Motion informed posterior sampling lower bound

(MI-PS LB): Diffusion-based posterior sampling
reconstruction of motion-corrupt data with no motion
correction (i.e., assumes zeros for estimated motion
parameters). The inference procedure for MI-PS LB is
shown in Algorithm 1. This serves as a lower bound
on posterior sampling reconstruction as it reflects the
result of not accounting for motion in the forward
model.

6. Motion informed posterior sampling (MI-PS):

Diffusion-based posterior sampling reconstruction of
both image and motion states using our proposed
approach shown in Algorithm 2.

7. Motion informed posterior sampling upper bound

(MI-PS UB): Diffusion based posterior sampling
reconstruction of motion-corrupt data with access to
the true motion states throughout the entire inference
procedure. The inference procedure for MI-PS UB is
found in Algorithm 1. This serves as an upper bound
of our proposed approach when motion states are per-
fectly estimated.

3.2 | Experiments
Our experiments are subdivided into retrospective simu-
lated motion and prospective in vivo scanning.

3.2.1 | Simulated motion

To test the robustness of our method at a variety of accel-
eration levels and sampling patterns, we simulated motion
on T2 brain images from the fastMRI dataset*® for two dif-
ferent sampling patterns at three different accelerations
and two different ETLs. Specifically, we use Cartesian and
PROPELLER®? based sampling patterns each at ETLs of
8 and 16 for accelerations of R = 3,4, 5. All sampling pat-
terns used a readout of 384 points. Example trajectories
for each sampling pattern and ETL are shown at R = 4 in
Figure 2. For each TR we simulate a single independent
motion state triplet (rotation, x-translation, y-translation).
This means that, for example, the case of Cartesian (or
PROPELLER) sampling at R = 4 with an ETL = 8 resulted
in 12 TRs and thus 12 motion states to estimate along
with the corrected image. The motion states for each TR
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were sampled independently from a uniform distribution.
Following previous work?’ translation was sampled from
U'(—2,2) pixels and rotation from U’(-2,2) degrees. See
Figure 2 for an example of simulated motion states for a
given (R, ETL) pair.

Prior to simulating motion corruption over the raw
k-space data we first resized the fully sampled k-space to
be 384 x 384 and performed inverse Fourier transform to
get fully sampled multicoil images. Next we calculated sen-
sitivity maps using ESPIRIT.>** We then applied motion to
k-space measurements by drawing random motion states
and passing the coil images through the motion-corrupt
forward operator. Finally, we added noise to the sampled
k-space data. We note here that some parts of the prepro-
cessing here constitute an inverse crime.”>> However, all
competing methods used the same data so our method
should not have gained an unfair advantage in this respect.

3.2.2 |
trains

Grouped versus nongrouped echo

To investigate the impact of assuming constant motion
throughout entire echo trains we also applied our method
without assuming shared motion states for all phase
encodes in one TR. For example, if a Cartesian acquisition
with ETL = 16 and TR = 8 was collected and we used a
grouped (G) motion state prior, for lines in the same TR, we
would only estimate eight motion states (one for each TR).
If on the other hand we do not assume any specific group-
ing (NG) of phase encode lines we would instead estimate
ETL x TR = 128 lines. We conducted this experiment for
all sampling patterns and accelerations listed above.

3.2.3 | Prospective motion-corrupt scanning

We acquired T2 brain scans from three healthy volunteers
with institutional review board approval and informed
consent. The data were collected on a Siemens Vida 3 Tesla
MRI scanner with a 16-channel head coil at our institution,
and we emphasize that the scanner hardware and imaging
protocol differed from the fastMRI training data. We first
collected scans at R = 3,4, 5 for each participant where we
asked the participants to stay still during the scan; we used
this as motion-free baseline. Next, we collected scans at
R =3,4,5 where we asked the participants to rotate and
translate their head (approximately) in-plane during the
scan. Scan parameters were: ETL = 16, slice thickness =
4 mm, FOV = 220 mm X 220 mm, resolution = 0.57 mm
X 0.57 mm. We applied the NT LB, UNet, cGAN, MI-PS
LB, and MI-PS methods to motion-corrupt scans while
using NT UB and MI-PS UB on the motion-free scans. For
MI-PS, instead of estimating one motion state for each TR
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we estimated separate motion states for each phase encode
(MI-PS NG).

3.3 | Implementation details

3.3.1 | Training

All model training used 14 000 T2 brain images from the
fastMRI brain dataset.*” The deep generative diffusion net-
work used a UNet style architecture with two input/out-
put channels for real and imaginary components of the
images. The network contained about 65 million train-
able parameters. Training followed the same procedure as
described in Reference 39. Specifically, we selected the fol-
lowing parameters to define the drift and diffusion coeffi-
cients in the forward process: s(t) = 1, o(t) = t with o =
5 and opin = 0.002. The UNet and cGAN methods were
trained by simulating motion corrupt-images from a Carte-
sian trajectory over the full training set with R = 3, ETL =
16. We used the Adam optimizer with a learning rate of
0.0003 and 10 epochs. Training for all models was done on
a mix of A100, A40, and RTX3090 GPUs.

3.3.2 | Inference

For both PS and MI-PS methods, inference on simulated
motion was performed by running the reverse ODE with
N =300 inference time steps and a time step schedule

1 1 ’

of t; = <o-,1n/apx + = (oéﬁn -0 where p = 7. Simi-

lar to Reference 43 we selected the likelihood weighting

", = TR As motion was simulated, we did not wish
kA VI 2

to unfairly assume a prior over motion states. There-
fore we set dp_ = 0. Finally we used a fixed step size (&)
for updating motion estimates. For Cartesian and PRO-
PELLER sampling patterns, £ = 1 and ¢ = 0.3 were used,
respectively, when we used grouped echo train assump-
tions during inference. When we did not assume grouped
echo trains £ = 10 and & = 1 were used for Cartesian and
PROPELLER, respectively. We found it best to initialize the
motion estimates to zero (k = 0). These details lead to the
final update procedure shown in Algorithm 3. We recorded
inference time for a single slice for the posterior sampling
methods.

3.4 | Image quality evaluation

We quantitatively evaluate the retrospective results using
normalized root mean squared error (NRMSE) and struc-
tural similarity index measure (SSIM) on a test set of 500
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FIGURE 2 (A) For each plot shown the differing colors denote separate repetition times (TRs). For each TR we simulate a single
separate motion state triplet (rotation, x-translation, y-translation). (Top Left) R = 4 Cartesian sampling trajectory with ETL = 8, number of
TRs = 12. (Bottom Left) R = 4 Cartesian sampling trajectory with ETL = 16, number of TRs = 6. (Top Right) R = 4 PROPELLER sampling
trajectory with ETL = 8, number of TRs = 12. (Bottom Right) R = 4 PROPELLER sampling trajectory with ETL = 16, number of TRs = 6.
Example motion states. (B) motion trajectory for R = 4, ETL = 16 (TR count = 6) sampling pattern. (C) Motion trajectory for R = 4, ETL =8
(TR count = 12) sampling pattern.
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Algorithm 3.
(MI-PS)

Motion informed posterior sampling

samplex(ty) ~ N'(0, 62(t)s*(to)I)
K'(t()) =0
forie {0,..,.N—-1}do

X =Dy (X;6(t))
dP — x(t)—X

' I
d; = VillAX&(t)) - yli3
dLK = Vi |lAcXx(t)) — Y||§
X(ti41) < X(6) + (ip1 — t)dp + 7, dp
K(tip1) < k() + & dr
end for
end procedure

T2 brain images from fastMRI (five slices from 100 differ-
ent volumes) with simulated motion. We also report peak
signal-to-noise ratio in Appendix S1. As there is an ambi-
guity between two data-consistent reconstructions with a
fixed motion offset, we first align the reconstruction to
the motion-free ground-truth before evaluating NRMSE,
SSIM, and peak signal-to-noise ratio. For the prospective
scanning, we qualitatively evaluate the image quality as we
do not have a fully sampled motion-free reference image.

4 | RESULTS

We present results comparing retrospective motion cor-
rection in both simulation and prospective in vivo scan-
ning. First, we show that MI-PS can reconstruct faithful
motion-free images without a prior motion estimate in
simulated motion corruption for various sampling trajec-
tories and without requiring retraining. Next, we show
in simulations that grouping the motion states based on
echo train in fast spin-echo provides appreciable benefits.
Finally, MI-PS removes motion artifacts from prospec-
tively accelerated in vivo scans where the subjects were
instructed to move during the scan. Inference time for
a single slice using our proposed MI-PS technique took
approximately 90 s, compared to 80 s for PS.

4.1 | Retrospective simulation

Quantitative NRMSE and SSIM metrics are shown for each
simulated motion case in Table 1 with peak signal-to-noise
ratio shown in Table S1. Example reconstructions for
simulated motion using Cartesian and PROPELLER tra-
jectories are presented in Figures 3 and 4, respectively.
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Clearly, reconstruction without accounting for motion (NT
LB and MI-PS LB) leads to large error, necessitating the
use of motion correction. The NT UB reconstruction,
which has access to ground-truth motion parameters, per-
forms poorly due to residual aliasing artifacts at higher
accelerations. While the UNet and cGAN methods are
able to remove aliasing, the resulting images are heavily
smoothed and many high frequency features are lost even
for in distribution test images that exactly match the train-
ing setting (Cartesian, ETL = 16, R = 3). Performance dips
even more for these deep learning methods when applied
to PROPELLER sampling, likely because of the differences
in both aliasing and motion artifact manifestation at test
time. Finally, MI-PS is able to handle the acceleration as
well as the motion through joint posterior sampling, and
its performance is only marginally worse than MI-PS UB
which has access to ground-truth motion states. The infer-
ence progression across different steps of the MI-PS solver
is shown in Figure S1.

Unsurprisingly, using a PROPELLER-based acquisi-
tion leads to lower error for NT UB and NT LB, likely due
to the presentation of incoherent artifacts from subsam-
pling and from motion. Interestingly, PROPELLER recon-
structions are somewhat worse quantitatively for posterior
sampling compared to Cartesian acquisition. This may be
due to the heavier subsampling of high frequency k-space.

4.1.1 | Effect of grouping motion states

Table 2 shows NRMSE and SSIM for MI-PS when motion
states are either grouped by echo train or separately esti-
mated for each phase encode (See Table S2 for peak
signal-to-noise ratio results). In the case of Cartesian sam-
pling, there is a clear benefit to grouping motion states by
echo train, likely due to the difficulty in estimating motion
from high-frequency phase encodes where signal-to-noise
ratio is low. In the case of PROPELLER, grouping the
motion states is not as crucial, likely because all readouts
have points close to the center of k-space which has higher
signal-to-noise ratio. Nonetheless, grouping motion states
still helps.

Next we show example reconstructions comparing the
impact of grouping motion states. Figures 5A and 6A show
example reconstructions for Cartesian and PROPELLER
acquisitions, respectively, for grouped versus ungrouped
motion states. Residual motion artifacts are clearly visi-
ble when motion states are not grouped. Additionally, we
show the motion estimates for each scenario in Figures 5B
and 6B. For Cartesian sampling, the motion estimates are
poor except near the center of the echo train (correspond-
ing to the center of k-space). While PROPELLER also
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Ground truth NT LB NT UB

FIGURE 3

Zoom up of example reconstruction of simulated motion for a Cartesian sampling pattern with R = 3, ETL = 16. From left

to right: motion-free fully sampled ground-truth, NAMER/TAMER lower bound, NAMER/TAMER upper bound, UNet, conditional
generative adversarial network, motion informed posterior sampling lower bound, motion informed posterior sampling, motion informed

posterior sampling upper bound. The bottom row includes difference images which are scaled 5x compared to the top row.

cGAN MI-PS LB MI-PS MiI-PS UB

FIGURE 4

Example reconstruction of simulated motion for a PROPELLER sampling pattern with R = 5, ETL = 8. From left to right:

motion-free fully sampled ground-truth, NAMER/TAMER lower bound, NAMER/TAMER upper bound, UNet, conditional generative
adversarial network, motion informed posterior sampling lower bound, motion informed posterior sampling, motion informed posterior

sampling upper bound. The bottom row includes difference images which are scaled 5x compared to the top row.

over/undershoots motion estimates when motion states
are ungrouped, the impact on image quality is small.

4.2 | Prospective in vivo scanning

Finally, we apply each of the reconstruction techniques
to the prospectively accelerated scans. For brevity, we
show results at R = 3 and R = 5 on the second subject in
Figure 7. We show results for all acceleration factors and
for each subject in Figures S2-S4. Even when the sub-
jects stayed still, a CG-SENSE reconstruction (which rep-
resents NT UB) was not able to remove all residual aliasing
artifacts. A motion-free posterior sampling reconstruction
(which represents MI-PS UB), in contrast, performs well at
R = 5, which is in line with the existing literature.'® How-
ever, when motion does occur during the scan, posterior
sampling alone (MI-PS LB) is not able to remove these
motion artifacts and thus qualitatively matches NT LB at
lower accelerations. At higher accelerations, just as in the

simulation results, MI-PS provides much higher quality
images than even NT UB due to the acceleration level and
it retains much more of the high frequency detail when
compared to the other deep learning techniques (UNet,
cGAN). Note that here the motion states were not grouped
for MI-PS due to technical reasons and thus results could
further improve.

5 | DISCUSSION

Deep generative diffusion models have recently emerged
as an extremely powerful advancement for solving inverse
problems due to their ability to decouple the measure-
ment model from the prior, which can be well-modeled
with deep neural networks. In particular, this means
that in contrast to end-to-end deep learning-based inverse
problem solvers, deep diffusion priors can be used in a
more modular fashion for a variety of imaging problems
which vary based on their measurement forward operator
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LEVAC ET AL.
TABLE 1 Quantitative results for simulated motion experiments.
R NTLB NT UB UNET cGAN

MI-PSLB MI-PS MI-PS UB

NRMSE| SSIMT NRMSE| SSIM1T NRMSE| SSIM1T NRMSE| SSIM1T NRMSE| SSIM1T NRMSE| SSIM1 NRMSE | SSIM 1

Cartesian, ETL =8

3 0352 0.430 0.212 0.577 0.242 0.817 0.229
4 0.408 0.347 0.298 0.450 0.266 0.802 0.254
5 0458 0.296 0.360 0.432  0.290 0.782 0.279

Cartesian, ETL =8

3 0354 0.422 0.211 0.580 0.236 0.819 0.228
4 0412 0.338 0.298 0.492 0.258 0.805 0.250
5 0455 0.290 0.341 0.440 0.278 0.786 0.273

PROPELLER, ETL =16

3 0.284 0.720 0.125 0.865 0.283 0.799 0.289
4 0.291 0.713 0.158 0.835 0.296 0.789 0.302
5 0.308 0.689 0.224 0.774 0.320 0.768 0.327

PROPELLER, ETL =8

3 0.286 0.706 0.122 0.874 0.272 0.803 0.280
4 0.296 0.693 0.148 0.842 0.288 0.793 0.294
5 0.302 0.684 0.180 0.804 0.299 0.785 0.305

0.846 0.289 0.559 0.074 0.897 0.071 0.894
0.830 0.290 0.576  0.085 0.882 0.082 0.878
0.808 0.294 0.579 0.100 0.866 0.095 0.866

0.843 0.293 0.552  0.073 0.892 0.071 0.894
0.828 0.294 0.568 0.087 0.872 0.082 0.878
0.807 0.297 0.571 0.096 0.859 0.087 0.872

0.810 0.292 0.771 0.101 0.887 0.099 0.885
0.801 0.299 0.772  0.116 0.887 0.112 0.885
0.780 0.304 0.767 0.162 0.868 0.157 0.870

0.814 0.298 0.706 0.112 0.861 0.110 0.862
0.805 0.308 0.717 0.117 0.873 0.114 0.875
0.797 0.311

0.730 0.127 0.878 0.123 0.880

Abbreviations: cGAN, conditional generative adversarial network; ETL, echo train length; MI-PS, motion-informed posterior sampling; NRMSE,

normalized root mean squared error; SSIM, structural similarity index measure.

(e.g., changes to acceleration factor, sampling trajectory,
ETL, etc.). In many inverse problem settings, however, the
true forward operator used to collect measurements may
be unknown as is the case in motion-corrupt MRI scans.
This motivates the use of deep generative diffusion mod-
els when correcting motion artifacts as it decouples the
learning of the image prior from a specific motion arti-
fact pattern that arises due to forward model specifics (i.e.,
sampling pattern, echo train ordering). In essence, motion
estimation comes for free if the generative model was pre-
trained for the task of motion-free image reconstruction.
Several prior methods have approached the problem
of motion correction by incorporating the parameteriza-
tion of motion in the forward operator and jointly opti-
mizing over both the image and motion variables.?>3%33
In a similar fashion, our proposed approach solves this
problem by treating the (unknown) parameterization of
the motion as a complementary random variable which
must be jointly sampled alongside the clean MR image
of interest from motion corrupted measurements (i.e.,
X,k ~ p(X, k|y)). This is similar to other recently proposed
techniques for solving blind inverse problems.>®” The
treatment of the motion correction problem enables us to
decouple the training of the prior from the motion cor-
rection task which allows our method to be transferable

between differing sampling trajectories. This is extremely
important as the manifestation of motion artifacts in the
final image is highly dependent on the sampling trajec-
tory used to collect measurements.?’ It is this property
of motion artifacts that makes it difficult to generalize
end-to-end methods to arbitrary motion corruption.

In our simulated experiments and in vivo scans, we
see that our method outperforms both prior deep learning
methods?>?® and the best-case reconstructions for previ-
ously investigated joint optimization techniques.?*3 This
can be owed to the powerful image prior provided by
the generative diffusion model which discourages motion
estimates that give rise to motion-corrupt images at recon-
struction time. Importantly, this property alone is not
enough to mitigate motion, as evidenced by the result of
diffusion posterior sampling without considering motion
(represented by MI-PS LB). In Figures S5 and S6, we also
show that L1-Wavelet regularization is similarly insuffi-
cient at R = 5, even if the subject stays still.

Although we did not use a trained prior to regular-
ize the motion variables, we did use the prior of enforc-
ing all motion states in the same TR to be the same.
We showed on prospectively acquired data that we can
drop this assumption and still obtain good reconstruction
results. However, it is clear from Figure 5 that this may not
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TABLE 2  Echo train grouping results.
MI-PS LB MI-PS (NG) MI-PS (G) MI-PS UB
R NRMSE| SSIMt NRMSE| SSIM t NRMSE| SSIM t NRMSE| SSIM t
Cartesian, ETL = 16
3 0.289 0.559 0.162 0.785 0.074 0.897 0.071 0.894
4 0.290 0.576 0.202 0.743 0.085 0.882 0.082 0.878
5 0.294 0.579 0.225 0.715 0.100 0.866 0.095 0.866
Cartesian, ETL =8
3 0.293 0.552 0.156 0.788 0.073 0.892 0.071 0.894
4 0.294 0.568 0.192 0.748 0.087 0.872 0.082 0.878
5 0.297 0.571 0.209 0.726 0.096 0.859 0.087 0.872
PROPELLER, ETL =16
3 0.292 0.771 0.129 0.872 0.101 0.887 0.099 0.885
4 0.299 0.772 0.150 0.868 0.116 0.887 0.112 0.885
5 0.304 0.767 0.194 0.850 0.162 0.868 0.157 0.870
PROPELLER, ETL =8
3 0.298 0.706 0.132 0.853 0.112 0.861 0.110 0.862
4 0.308 0.717 0.141 0.862 0.117 0.873 0.114 0.875
5 0.311 0.730 0.152 0.866 0.127 0.878 0.123 0.880

Abbreviations: ETL, echo train length; MI-PS, motion-informed posterior sampling; MI-PS LB, motion informed posterior sampling lower bound; MI-PS
UB, motion informed posterior sampling upper bound; NRMSE, normalized root mean squared error; SSIM, structural similarity index measure.

always hold for heavier motion corruption. Specifically, in
simulated motion corrupt Cartesian data we saw that a
more informative prior, for example, by explicitly grouping
the phase encodes in a single ETL, improves reconstruc-
tion quality due to more accurate estimation of motion
parameters at high frequency k-space locations, likely due
to the low signal-to-noise ratio at high-frequency k-space
regions.

Recently, adaptive end-to-end methods have been pro-
posed under the lens of hybrid networks. In these set-
tings, motion parameters are estimated and used to choose
the weights of the neural network that was trained for
those weights.>® Similarly, unrolled methods that explicitly
solve for motion using principled optimization have also
been proposed.’*° These methods may provide a solu-
tion to out-of-distribution error, though they still must be
retrained for different sampling trajectories.

We assumed a flat prior on the motion states, which is
quite naive. For example, we do not account for the likely
causal transition between one motion state and the next. A
stronger prior on the motion, for example, through a Gaus-
sian process or other Markov chains, could be a flexible
way to model such time-dependencies. However, this may
not be suitable for rapid and sporadic motion. For these
reasons, we chose to keep the prior simple. The effects of

the design choice should be explored further to determine
the potential benefits of richer motion priors.

Our prospective scan results sheds light on the power
of our framework when the training set does not match
the test set—both in protocol settings as well as scanner
hardware. In essence, it is not necessary to retrain the
model for every specific MRI protocol. However, we note
that we only scanned a single slice, whereas nearly all
MRI protocols will collect multislice data. While in prin-
ciple this could be handled by our framework, we did not
apply it to multislice data. Our framework was also for-
mulated for 2D rigid motion which occurs only between
readouts. Therefore, in its current state, our method is not
able to model out-of-plane motion, nonrigid motion, or
complicated spin-history effects. Our framework could be
easily extended to 3D rigid motion estimation by adding
additional rotation and translation parameters. Nonrigid
motion could also be handled through proper parame-
terization of the nonrigid space, for example, thorough
spline interpolation or optical flow. Deeper consideration
will need to be made to account for through plane motion
and general spin-history effects as these factors are not
modeled in our forward operator parameterization and
thus would lead to a measurement inconsistent likelihood
function at inference time. We also note that although
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FIGURE 5 (A)Reconstruction comparison between using our method with (G) and without (NG) grouped echo trains for motion
estimation at R = 4, ETL = 16 Cartesian sampling. (B) Estimated motion comparison between using our method with (G) and without

grouped (NG) echo trains.
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our method can be applied to a variety of shifts in the
forward operator without retraining (e.g., ETL, sampling
trajectory), to apply our method to different image con-
trasts or anatomies the generative model would need to be
retrained for the new target image contrast of interest. This
limitation is common to all deep learning approaches, and

could be partially mitigated by increasing the diversity in
training data.

As we used the fastMRI dataset for simulation, infor-
mation about echo train ordering was unavailable. There-
fore, a limitation of our simulation results is that the effect
of signal decay was not modeled.?’ It is possible that the
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change in contrast due to varying ETLs could lead to a
mismatch with our pretrained prior, though this would
also affect end-to-end methods similarly. In practice, we
found that prospective scanning was relatively unaffected
by these mismatches.

Another limitation of our approach is reconstruction
time. We found that a single 2D slice required about 90
s of compute on a GPU for reconstruction. The reason
for this is twofold: first, the inference procedure requires
300 passes through the deep generative model and also
includes an auto-differentiation step as part of diffusion
posterior sampling.** Secondly, the formulation of motion
corruption in k-space necessitates the use of a nonuni-
form Fast Fourier Transform operator, even for the case of
Cartesian sampling.

Posterior sampling is a promising approach to image
reconstruction from subsampled measurements compared
to other point estimators. One reason is for the ability to
quantify uncertainty in the result. Similar to conventional
posterior sampling, joint posterior sampling over image
and motion could also be used to learn uncertainty in
the motion parameters. In this work we did not explic-
itly explore uncertainty in the motion, though it could be
interesting for future work.

6 | CONCLUSION

We proposed a method to correct motion artifacts from
accelerated MRI by parameterizing motion as inconsisten-
cies in the forward operator which can be jointly estimated
as random variables alongside a clean reconstructed MR
image. To solve the joint estimation problem we leveraged
advancements in deep generative diffusion models to per-
form motion-informed posterior sampling. We displayed
our proposed technique’s ability to correct 2D rigid body
motion on both simulated and prospectively corrupted
scan data.

ﬁi")\

| st 5
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Zoomed reconstruction results for prospectively accelerated scan of subject 2 at R = 3, 5.
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Table S1. PSNR results for simulated motion experiments.
Table S2. Echo Train Grouping Results (PSNR).

Figure S1. MI-PS reconstruction across different itera-
tions at inference time. The image is initialized to all-noise
and the motion states are initialized to all-zero. Over the
iterations, the motion states begin to track the true motion
(up to a global shift), and the image progressively con-
verges.

Figure S2. Reconstruction results for prospectively accel-
erated scan of subject 1 at R =3, 4, 5.

Figure S3. Reconstruction results for prospectively accel-
erated scan of subject 2 at R = 3, 4, 5.

Figure S4. Reconstruction results for prospectively accel-
erated scan of subject 3atR =3, 4, 5.

Figure S5. Reconstruction of in vivo subject at R = 5
using L1-Wavelet regularization at various regularization
strengths when the subject stayed still. Wavelet regular-
ization is not sufficient to remove aliasing artifacts at this
acceleration factor.

Figure S6. Reconstruction of in vivo subject at R = 5
using L1-Wavelet regularization at various regularization
strengths when the subject was instructed to move during
the scan. Wavelet regularization is not sufficient to remove
aliasing and motion artifacts at this acceleration factor.
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