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ABSTRACT

We present a novel monocular localization framework by

jointly training deep learning-based depth prediction and

Bayesian filtering-based pose reasoning. The proposed cross-

modal framework significantly outperforms deep learning-

only predictions with respect to model scalability and tol-

erance to environmental variations. Specifically, we show

little-to-no degradation of pose accuracy even with extremely

poor depth estimates from a lightweight depth predictor. Our

framework also maintains high pose accuracy in extreme

lighting variations compared to standard deep learning, even

without explicit domain adaptation. By openly representing

the map and intermediate feature maps (such as depth es-

timates), our framework also allows for faster updates and

reusing intermediate predictions for other tasks, such as ob-

stacle avoidance, resulting in much higher resource efficiency.

Index Terms— Depth neural network, drone localization.

1 Introduction
For self-navigation, the most fundamental computation re-

quired for a vehicle is to determine its position and orienta-

tion, i.e., pose during motion. Higher-level path planning ob-

jectives such as motion tracking and obstacle avoidance oper-

ate by continuously estimating vehicle’s pose. Recently, deep

neural networks (DNNs) have shown a remarkable ability for

vision-based pose estimation in highly complex and cluttered

environments [1–3]. For visual pose estimation, DNNs can

learn the correlation of vehicle’s position/orientation and vi-

sual fields to a mounted camera. Thereby, vehicle’s pose can

be predicted using a monocular camera alone. In contrast, the

traditional methods required bulky and power-hungry range

sensors or stereo vision sensors to resolve the ambiguity be-

tween an object’s distance and its scale [4, 5].

However, DNN’s implicit learning of flying domain fea-

tures such as its map, placement of objects, coordinate frame,

domain structure, etc. in a standard pose-DNN also affects

the robustness and adaptability of pose estimations. The tra-

ditional filtering-based approaches [6] account for the flying

space structure using explicit representations such as voxel

grids, occupancy grid, Gaussian mixture model (GMM), etc.
[7]; thereby, updates to the flying space such as map exten-

sion, new objects, and locations can be more easily accommo-

dated. Comparatively, DNN-based estimators cannot handle

selective map updates, and the entire model must be retrained

even under small randomized or structured perturbations. Ad-

ditionally, filtering loops in traditional methods can adjudi-

cate predictive uncertainties against measurements to system-

atically prune hypothesis space and can express prediction

confidence along with the prediction itself [8]. Whereas feed-

forward pose estimations from a deterministic DNN are vul-

nerable to measurement and modeling uncertainties.

In this paper, we use integrate traditional filtering tech-

niques with deep learning to overcome such limitations of

DNN-based pose estimation while exploiting their suitability

to operate efficiently with monocular cameras alone. Specif-

ically, we present a novel framework for visual localization

by integrating DNN-based depth prediction and Bayesian

filtering-based pose localization. In Fig. 1, avoiding range

sensors for localization, we utilize a DNN-based lightweight

depth prediction network at the front end and sequential

Bayesian estimation at the back end. Our key observation

is that, unlike pose estimation, which innately depends on

map characteristics such as spatial structure, objects, coordi-

nate frame, etc., depth prediction is map-independent [9, 10].

Thus, by applying deep learning only on domain-independent

tasks and utilizing traditional models where domain is openly

(or explicitly) represented helps improve the predictive ro-

bustness. Limiting deep learning to only domain-independent

tasks also allows our framework to utilize vast training sets

from unrelated domains. Open representation of map and

depth estimates enables faster domain-specific updates and

utilization of intermediate feature maps for other autonomy

objectives, such as obstacle avoidance.

2 Monocular Localization with Depth
Neural Network and Pose Filters

In Fig. 1, our framework integrates deep learning-based depth

prediction and Bayesian filters for visual pose localization in

the 3D space. At the front end, a depth DNN scans monocu-

lar camera images to predict the relative depth of image pixels

from the camera’s focal point. A particle filter localizes the

camera pose at the back end by evaluating the likelihood ofIC
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Fig. 1: Proposed framework integrating depth estimator front-end and particle filter back-end for extremely lightweight and robust localization. DNN-based

preprocessing avoids area/power-hungry range sensors. The filtered response of the back-end predictor is robust against measurement and modeling uncertain-

ties. On the right are depth predictions from a lightweight network with varying model sizes.

3D projection of depth scans over a GMM-based map repre-

sentation of 3D space. Both frameworks are jointly trained

for the extremely lightweight operation. Various components

of the framework are discussed below:

2.1 Extremely Lightweight Depth Prediction
DNN-based monocular depth estimation has gained wide in-

terest owing to impressive results. Several fully supervised

[11], self-supervised [12], and semi-supervised [13] convo-

lutional neural network (CNN)-based depth estimators have

been presented with promising results. However, for low-

power edge robotics [14], the existing depth DNNs are often

oversized. A typical depth DNN combines an encoder that

extracts the relevant features from the input images. The fea-

tures are then up-sampled using a decoder to predict the depth

map. Skip connections between various encoding and decod-

ing layers are typically used to obtain high-resolution image

features within the encoder which in-turn helps the decoding

layers reconstruct a high resolution depth output.

In Fig. 2, we consider a depth DNN that integrates state-

of-the-art architectures for lightweight processing on mobile

devices. The depth predictor uses MobileNet-v2 as encoder

and RefineNet [15] as decoder. MobileNet-v2 concatenates

memory-efficient inverted residual blocks (IRBs). The in-

termediate layer outputs (or RGB-image features) from the

encoder are decoded through the successive channels of con-

volutional sum, chained residual pooling (CRP), and depth-

feature upsampling. This architecture uniquely utilizes only

1×1 convolutional layers in SUM and CRP blocks (replacing

traditional high receptive field 3×3 CONV layers with 1×1

CONV layers), thus significantly reducing model parameters.

Due to the modular architecture of the depth predictor in Fig.

2, its size can be scaled down by reducing the number of lay-

ers in the encoder and decoder. However, with fewer param-

eters, the prediction quality is affected. Fig. 1 (on the right)

shows the depth quality by reducing the number of model pa-

rameters. Later, we will discuss how despite lower quality

depth prediction, accurate pose localization can be achieved

by adapting maps to depth inaccuracies.

Fig. 2: Depth neural network architecture with MobileNet-v2 [16] encoder

and decoder based on RefineNet [15].

2.2 Memory Efficient Mapping using GMMs
To minimize the memory footprint of maps, we utilized a

GMM-based representation of 3D maps [17]. The point-

cloud distribution of tested maps was clustered and fitted

with a 3D GMM using Expectation-Maximization (EM) pro-

cedures. Although alternate map representations are preva-

lent, the parametric formulation of GMMs can considerably

minimize the necessary storage and extraction cost. For ex-
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ample, Voxel grids [18] use cells to represent dense maps and

are simpler to extract. However, the representation suffers

from storage inefficiency since the free space also needs to

be encoded. Surfels, 3D planes, and triangular mesh [19]

are storage efficient, however expensive to retrieve map in-

formation from. Generative map modeling using GMMs

requires only the storage of the means, variances, and mixing

proportions. GMM-maps easily adapts to scene complexity,

that is, for more complex scenes, we can use more mixture

components as necessary.

2.3 Adapting Maps to Depth Mispredictions
In Fig. 2, lightweight depth network with fewer parameters or

layers induces significant inaccuracies in the predicted depth

map. Therefore, the accuracy of pose estimation suffers. We

discuss integrated learning of depth and pose reasoning to

overcome such deficiencies of lightweight predictor.

In Fig. 1, we integrate a multi-layer perceptron (MLP)-

based learnable transform (size: 3×128×3) to the origi-

nal point-cloud (PC) map that minimizes the impact of

lightweight depth predictor by translating and/or rotating map

points adaptively to systematic inaccuracies of the predictor.

The last layer of the depth predictor is also tuned. A joint

training of map transformations and depth predictor is quite

expensive since each update iteration involves nested sam-

pling and particle filtering steps. The complexity of parameter

filtering can be significantly minimized using techniques such

as hierarchical GMM representations [7], beat-tracking [20],

etc., however, the resultant formulation is non-differentiable,

precluding gradient descent-based optimization.

To circumvent the training complexity, instead of directly

minimizing �2 norm of the predicted and ground truth pose

trajectory, we minimize the negative log-likelihood (NLL) of

input image projection via lightweight depth predictor onto

the adapted domain maps. Thus, due to the differentiability

of the corresponding loss function, the training can be effi-

ciently implemented using standard optimization tools. How-

ever, such indirect training of map transforms and depth net-

work is susceptible to overfitting. The loss function focuses

on a minimal number of mixture functions in the proximity

of ground truth, and it can significantly distort the structural

correspondence among the original mixture functions. To al-

leviate this, we also regularize the loss function by penalizing

the distance of the original and adapted map using KL (Kull-

back Leibler) divergence. Thus, the loss function for the joint

training of map transforms, and depth layer is given as:

L(θM, θD) = −
∑
i

logMA,θM
(DT i

I ,T i
L,θD

)+λDKL(M,MA)

(1)

Here, θM are the parameters for map transformation, and θD

are the parameters of the last layer of depth predictor. For

a trajectory T , TI represents the set of input images and TL
corresponding pose labels. M is the original domain map,

Fig. 3: (a) Merged original and transformed point-cloud maps. (b) Bounding

boxes of the two maps with the original map in yellow and in red is the

transformed map. (c) Relative distance coloring on the reference map data.

(d) Histogram of cloud-to-cloud distances.

and MA is the adapted map to compensate for inaccuracies of

the lightweight predictor. Both M and MA are represented

as GMMs. DT i
I ,T i

L,θD
is the projection of predicted depth map

of trajectory image T i
I to 3D space by pin-hole camera model

and assuming camera pose at the ground truth label T i
L.

In (1), the regularization term requires computing the KL

divergence between the original and adapted maps, namely

M and MA respectively. KL divergence of two Gaussian

functions is defined in closed form but cannot be analytically

extracted for two GMMs. In the proposed framework, origi-

nal and adapted maps, M and MA, have the same number of

mixture components, and with a strong enough regularization

coefficient (λ), the relative correspondence among mixture

functions maintains, i.e., for ith mixture function in M, the

nearest mixture function in MA has the same index. Lever-

aging these attributes, the KL divergence of M and MA can

be approximated using Goldberger’s approximation as [21]

DKL(M,MA) ≈
∑
i

πi

(
DKL(Mi,MA,i) + log

πi

πA,i

)
(2)

Here, Mi is the ith mixture component of M, and MA,i is the

corresponding component in MA. πi is Mi’s weight and πA,i

is MA,i’s weight. The KL divergence of Mi and MA,i, i.e.,

DKL(Mi,MA,i) is analytically defined. Thus, DKL(M,MA)
can be efficiently computed and is differentiable.

Fig. 3 shows the point cloud adaptations of Scene-02 in

RGBD dataset [22] using the method. Fig. 3(a) contains both

the original and adapted point-cloud (PC) maps. In Fig. 3(b),

the reference or original map’s 3D points are in yellow while

the adapted PC is in red to highlight the adaptation differ-

ence. In Fig. 3(c), the reference point cloud’s 3D points are

color-coded based on the relative distance of corresponding

points in the adapted map. The cloud-to-cloud (C2C) distance

histogram is shown in Fig. 3(d). Thus, the results demon-
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Fig. 4: (a) Predicted pose trajectory using the proposed integrated depth es-

timator and pose filter for varying depth network sizes without joint training

of depth estimator and pose filter. (b) Pose predictions for varying depth

network sizes using the proposed technique with jointly training learnable

map transforms and lightweight depth predictor. (c) The structural similarity

index of depth predictions reduces for a reduction in network size. (d) Com-

parison of Pose errors (RMSEs) for baseline and proposed technique.

strate that only a minimal tweaking of map data is sufficient

to improve pose accuracy (evident in later results) despite ex-

tremely lightweight depth prediction.

3 Results and Discussion

Figs. 4(a) and (b) compare the predicted pose trajectory (for

varying depth network size) from the proposed monocular lo-

calization against an equivalent framework where joint train-

ing of depth network and filtering model is not performed.

The comparison uses the RGBD scenes dataset [22]. Fig.

4(c) shows the corresponding degradation in depth images,

measured using structural similarity index measure (SSIM).

In Fig. 4(d), despite significant degradation in depth image

quality and reduction of depth predictor to one-third param-

eters, the proposed joint training maintains pose prediction

accuracy by learning and adapting against systematic inac-

curacies in depth prediction. Another crucial feature is that

the original depth predictor can be trained on any dataset,

and then tuned (on the last layer) for the application domain.

For example, in the presented results, the original depth net-

work was trained on NYU-Depth [23] and applied on RGBD

scenes [22]. Thus, the predictor has access to vast training

data that can be independent of application domain.

Fig. 5 demonstrates the resilience of proposed crossmodal

pose prediction against DNN by considering extreme lighting

variations. An equivalent MobileNet-v2-based PoseNet [1] is

Fig. 5: On top: Indoor RGB image captured in different lighting conditions.

(a) Comparison of pose trajectories for MobileNetv2-based PoseNet, base-

line GMM map-based pose filtering, and proposed integrated framework of

depth estimator and pose filter in various lighting conditions. (c) Pose error

(RMSE) plot in very dim light for various models.

Localization model # Parameters Pose RMSE Light variation tolerance

PoseNet [1] 1.7M 58.9 cm Low

Traditional GMM-based - 26.7 cm Average
Proposed (no PC adaptation) 1.65M 16.7 cm Good

Proposed (with PC adaptation) 1.8M 11.4 cm Very good

Table I: Comparison of pose trajectories from various scaled models

utilized as DNN for the comparisons. On the top, input im-

ages are subjected to extreme lighting variations using mod-

els in [22] (L1: high brightness, L2: medium light, and L3:

very dim light). Fig. 5(a) compares trajectories from PoseNet

and our framework (with and without the joint training). In all

cases, equivalent sized models are considered, shown in Table

I. In Fig. 5(b), our framework is significantly more accurate

than PoseNet in very dim light (L3) conditions due to in-built

filtering loops, demonstrating superiority of crossmodal esti-

mates than DNN-only estimates.

4 Conclusions

We presented a novel monocular localization framework by

jointly learning depth estimates and map transforms. Com-

pared to standard DNNs for pose estimates, the proposed ap-

proach is significantly more tolerant to model size scalabil-

ity and environmental variations. Open representation of map

and depth estimates in our approach also allows faster updates

and resource efficiency by availing intermediate feature maps

for other automation objectives.
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