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Abstract—The fourth industrial revolution (a.k.a. Industry
4.0) relies on intelligent machines that are fully autonomous
and can diagnose and resolve operational issues without hu-
man intervention. Therefore, embedded computing platforms
enabling the necessary computations for intelligent machines
are critical for the ongoing industrial revolution. Especially
field programmable gate arrays (FPGAs) are highly suited for
such embedded computing due to their high performance and
easy reconfigurability. Many Industry 4.0 applications, such
as predictive maintenance, critically depend on real-time and
reliable processing of time-series data using recurrent neural
network models, especially long short-term memory (LSTM).
Therefore, the FPGA-based acceleration of LSTM is imperative
for many Industry 4.0 applications. Existing LSTM models for
FPGAs incur significant resources and power and are not energy
efficient. Moreover, prior works focusing on reducing latency and
power mainly adhere to model pruning, which compromises the
accuracy. Comparatively, we propose a memory-based energy-
efficient inference of LSTM by exploiting overlay in FPGA. In
our methodology, we pre-compute predominant operations and
store them in the available embedded memory blocks (EMBs) of
an FPGA. On-demand, these pre-computed results are accessed
to minimize the necessary workload. Via this methodology, we
obtained lower latency, lower power, and better energy efficiency
than state-of-the-art LSTM models without any loss of accuracy.
Specifically, when implemented on the ZynQ XCU104 evaluation
board, a 3× reduction in latency and 5× reduction in power is
obtained then the reference 16-bit LSTM model.

Index Terms—LSTM, ML, FPGA, Memory-based Mapping,
Energy Efficiency, Computing with Memory

I. INTRODUCTION

The fourth industrial revolution (a.k.a. Industry 4.0) is
leveraging various technological advances such as artificial
intelligence (AI), internet-of-things (IoT), digital twin, and
high-performance computing to enable machines to automate,
diagnose, and resolve issues without interventions from
humans. Additionally, the embedded computing platforms to
facilitate such data processing on the intelligent machines must
operate under stringent area, power, and cost constraints. For
example, in [1], [2], predictive maintenance of wind turbines
is performed by classifying their vibration characteristics
but requires the embedded computing platform to operate
on a battery, thus under power constraints, due to remote
placement. Likewise, privacy-aware healthcare analytics for
Industry 4.0 in [3] requires health sensor data to be processed
near its user, thus constraining the embedded computing

platform to be low cost and low power.

Field programmable gate arrays (FPGAs) are highly
suited for such embedded computing on intelligent
machines due to their high performance, low cost, and
easy reconfigurability [4], [5]. Especially in many Industry
4.0 applications, such as predictive maintenance, the decision-
making can be formulated as a recurrent neural network
problem and solved using state-of-the-art models, such as
long short-term memory (LSTM). Thus, methodologies for
FPGA-based efficient acceleration of LSTM are imperative
for various Industry 4.0 applications. Present-day FPGAs
are associated with several embedded memory blocks
(EMBs) to facilitate high-speed data access. EMBs are used
for different purposes, such as the storage of inputs or
intermediate data. However, they remain under-utilized in
many computationally intensive applications, as shown in [6].
Thus, a methodology that can exploit the unused EMBs for
memory-based computing of complex functions is desirable
to improve FPGA’s resource efficiency for complex neural
network architectures [7].

Previous works mainly adhered to pruning strategies
to reduce latency and power [8], [9], [10], [11], [12] for
FPGA-based LSTM’s acceleration. Though these are suitable
for cloud environments using these for resource-constrained
and low-energy budget FPGA-based platforms is an issue.

This work proposes a methodology for memory-based
inference of complex neural network models, specifically
LSTM, on FPGAs by leveraging unused EMBs. The
fundamental computation in LSTM-based inference is
matrix-vector multiplications, followed by vector additions,
element-wise multiplication, adder, sigmoid and tanh
evaluations. Our methodology first determines the available
memory space on FPGA and divides it into several memory
access blocks (MABs) that can be loaded with pre-computed
data. Subsequently, a data flow graph (DFG) is developed
to determine the computational nodes and their dependency.
Then, when possible, we fuse the nodes in DFG and arrange
them according to their expected power consumption. Based
on the availability of MABs, we map the nodes into a single
MAB or a group of them. Our methodology is characterized



Fig. 1: (a) LSTM architecture. (c) LSTM architecture after node fusion.

by different-sized LSTMs and compared to state-of-the-art
FPGA-based computing approaches. Low latency, low
power consumption, and high energy efficiency obtained in
our experimental results demonstrate the suitability of our
methodology for FPGA-based edge computing platforms.

The key contributions of our work are as follows:

• We have proposed a memory-based inference approach
where unused EMBs on FPGA can be utilized to map
computationally intensive operations using overlay. We
have specifically demonstrated the mapping and execu-
tion of LSTM on FPGA using the proposed mechanism;
however, presented concepts can be extended to other
complex neural networks such as Transformers.

• Our experiments demonstrate a significant reduction in
resource, latency, and power, with enhancement in en-
ergy efficiency than existing approaches on FPGA-based
LSTM execution.

• By not relying on model pruning, our methodology does
not compromise accuracy under constrained latency and
power budget.

• Providing more significant insights on the proposed
method, we also illustrate how energy efficiency varies
for the availability of EMBs for the 16-bit LSTM model.

The paper is organized as follows. Section II presents a
brief background and motivation. The proposed mechanism
is presented in Section III. Section IV discusses the
implementation and results. Section V concludes.

II. BACKGROUND AND MOTIVATION

A. Fundamentals of LSTM

LSTM is a type of recurrent neural network (RNN), initially
proposed in [13]. LSTM comprises memory cells to store
information regarding long-term dependencies in time-series
data. The generic architecture of LSTM is shown in Fig. 1(a).
The basic equations of LSTM are:

it = Wi(xt, ht−1) +Bi (1)

ft = Wf (xt, ht−1) +Bf (2)

gt = Wg(xt, ht−1) +Bg (3)

ot = Wo(xt, ht−1) +Bo (4)

ct = sigmoid(ft)
⊙

ct−1 + sigmoid(it)
⊙

tanh(gt) (5)

ht = sigmoid(ot)
⊙

tanh(ct) (6)

The gates i, f, g, o control the flow of information inside
LSTM. Input gate i determines the elements that will enter
LSTM’s memory cells, while the forget gate f determines
the elements which are no longer required to be remembered.
The input modulation gate g decides whether the memory
cell needs an update, while the output gate o determines
the memory elements generated as output. Wi,Wf ,Wg

and Wo represent the respective weight vectors, while
Bi, Bf , Bg and Bo represent the related biases. ct is the cell’s
output, while ht is the hidden state passed on to the next layer.

The fundamental computation in LSTM-based inference is
matrix-vector multiplications, followed by vector additions,
element-wise multiplication, adder, sigmoid and tanh evalu-
ations.



TABLE I: Comparison of Related Works of LSTM on FPGA

[8] [9] [10] [11] [12] Proposed
Power Yes Yes Yes Yes Yes Yes

Reduction*
Latency Yes Yes Yes Yes Yes Yes

Reduction*
Unused EMB No No No No No Yes

Utilization
Result No No No No No Yes

Accuracy

*Detailed report on power and latency is given in Table II.

B. Related Works on FPGA-based LSTM Inference

Several prior works have discussed the FPGA-based
implementation of LSTMs. Authors in [8] discussed several
compression schemes to reduce LSTM’s model size and
the necessary matrix multiplications for inference, thus
allowing the models to be processed under limited storage
and computing resources. They also proposed an efficient
hardware architecture to accelerate the compressed LSTM
model. A C-LSTM model was proposed by the authors of [9]
to minimize the model parameters by approximating typical
weight matrices as block circulant matrices (BCM). A pruning
mechanism was applied by the authors of [10] to compress
large LSTMs while ensuring high prediction accuracy. Authors
in [11] proposed an E-RNN model that facilitates training
via deriving BCM-based RNN representation to improve
the performance and energy efficiency of the system. A
bank-balanced pruning approach was proposed by the authors
of [12] to implement LSTM on FPGAs, where each weight
matrix row was divided into banks to exploit parallelism for
low latency inferences. Likewise, authors of [14] proposed
a latency-hiding model based on column-wise matrix-vector
multiplication.

Table I provides a comparison of the related works. While
model pruning has been employed as a primary technique,
the rigid physical structure and processing flow of a typical
accelerator (such as FPGAs) makes it challenging to exploit
weight sparsity and doesn’t lead to proportional benefits
in energy efficiency and latency. Several other prior works
have focused mainly on minimizing data transfer between on
and off-chip memories so that the adverse impact of limited
read/write bandwidth can be mitigated for LSTM inferences.
While these techniques complement our propositions, this
paper mainly focuses on methodologies for efficient mapping
of LSTM on FPGA and exploiting memory-based inference
to minimize the necessary workload.

C. Related Works on Memory-based Computing

A typical neural network processing involves computing
the product of high-dimensional input vector and weight
matrices and evaluating activation functions such as tanh,
sigmoid, logarithm, etc. at millions of neurons, which is
overwhelming for a low resource FPGA [7]. Traditionally, the
coordinate rotation digital computer (CORDIC) approach [15]

or Taylor series expansion [16] has been used to map
transcendental functions for FPGAs but incurs a significant
computing resource. Additionally, such models are associated
with high latency and high-power consumption and, thus,
are not energy efficient. For computing with memory, a
look-up table-based approach is used where a 2D memory
array stores all outputs for a functional operation. However,
such a technique is unsuitable when the memory size grows
exponentially, increasing input operand bit width. To mitigate
this, a decomposition technique with multiple memory access
can be used [17]. In this, a table of size 2a+b is reduced to
two tables, one of size 2a and another of size 2b. Such a
strategy was adopted in [18]. However, the work considered
only application-specific integrated circuit (ASIC) platforms
and did not focus on FPGA platforms. Moreover, these works
have not concentrated on mapping LSTM or other neural
architectures on FPGAs. Nor have these works presented a
detailed characterization of how a system’s energy efficiency
varies with available EMBs.

Comparatively, our methodology pre-computes
computationally intensive operations in the LSTM model
and accesses the results in runtime. Since underutilized
memory units of FPGA are utilized, a significant reduction
in latency and power consumption can be achieved by
maximizing resource efficiency, as demonstrated in our
results. Additionally, unlike in-memory inference approaches
[19], [20], our approach doesn’t require the custom design of
memory cells and peripherals, thus, can be readily deployed
on off-the-shelf FPGA hardware for broad utility.

D. Motivation

For typical implementations, significant overhead is
associated with tanh and sigmoid operations in hardware.
However, the most critical bottleneck for efficient performance
is the matrix-vector multiplications with complex data
dependencies in LSTM. Hence, if we can pre-compute
these and store them in the MABs, the results can be
accessed at runtime. This will reduce the latency and power
consumption for performing these computations, make the
system more energy efficient, and provide high result accuracy.

In addition to this, getting accuracy in results is an
additional objective. For real-time systems, along with
deadlines, accuracy is essential. As discussed, prior works
in the field adhere to pruning techniques to achieve energy
efficiency. But in that course, they lose the accuracy of the
system. This work is associated with speed and accuracy,
as results are pre-computed. Hence, the speed of operations
is ensured, and energy efficiency can be obtained without
pruning, which provides an additional accuracy benefit.



Fig. 2: (a) Architecture of memory-based inference of LSTM. (b) Memory access pattern to multiply two 8-bit operands.

III. METHODOLOGY FOR MEMORY-BASED INFERENCE

A. Architecture for Memory-based Inference of LSTM

In Fig. 2(a), our proposed architecture for memory-based
inference of LSTM involves several iterations of a logic
computation layer (LCL) and a memory access layer (MAL).
MAL consists of several memory access blocks (MABs).
Each MAB comprises 2n address spaces, with each address
space consisting of a 2m size function word. m and n vary
with the type of FPGA and available memory. For the current
work, we consider m = n = 8. Pre-computed data is loaded
in the MABs, which can be retrieved via the read ports.
If another application needs to be loaded, MABs can be
re-loaded with a different data file via the read port. The
MAB is accessed via an n-bit address line, which can be
a combination of a set of operands, as shown in Fig. 2(a),
where two operands of size n/2 access the MAB with n
address spaces.

B. Mapping Methodology and Work Flow

1) Determining Available Memory Space and Formation
of MABs: The initial step involves determining available
memory space for a particular application and dividing it into
a set of MABs, each comprising 2n function words and each
function word of 2m bits. To perform this step, the initial
design (without memory computation lookup) is mapped on
the target FPGA. Some memory, which in the present case is
FPGA BRAM, is utilized for basic operations. The remainder
of memory is partitioned into MABs, with m = n = 8. The
MABs are loaded with different data files per the target design.

2) Determine Data Flow Graph (DFG): The target
application is initially portrayed as a data flow graph (DFG).
DFG provides the various computational operations as
nodes and the flow of data between the nodes as edges.
DFG also provides information about the operations in each
layer and related data flow among the nodes of different layers.

For LSTM, various computational nodes in each layer of
operation and the data dependencies among the nodes are
depicted in Fig. 1(b). DFG of an LSTM comprises seven
operation layers, as depicted in Fig. 1(b). Four nodes in layer
one are associated with matrix multiplications (MM), while
the four nodes in layer two consist of addition operations. The
third layer comprises four nodes, three sigmoid functions,
and tanh operation. The fourth layer consists of two nodes
that are associated with bitwise multiplications. A single node
in the fifth layer comprises a tanh functionality, and the final
layer is associated with a single node of bitwise multiplication.

3) Node Fusion: In our memory-based inference approach,
a parent and a child node can be fused if their total number
of operands is less than n bits. Thereby, in LSTM, nodes in
the second and third layers can be linked, as no new operands
are associated in the third layer. Hence, pre-computations
can be performed with input operands for the parent
nodes in the second layer, followed by their related child
node operations in the third layer. This is depicted in Fig. 1(c).

4) Node Ordering: After all possible node fusion,
computations in each node have to be mapped to one or
more MABs. However, if the number of MABs is less, it
is prudent first to map the computations that dissipate more
power. Hence, the nodes need to be ordered as per their
expected power dissipation (maximum to minimum). For
LSTM, nodes associated with matrix multiplications consume
the most power, followed by tanh, sigmoid, addition, and
element-wise multiplication.

5) Node Mapping to MABs: A single MAB can be used
for nodes whose total input bits are equal to or less than n.
However, a series of MAB accesses is required for nodes
whose total input bits are more than n. Our formulation for
such memory access was presented earlier. For example, the
multiplication of two four-bit inputs can be performed with
a MAB of n = 8, i.e., contains 28 = 256 address spaces.



Fig. 3: Mapping and workflow in the proposed memory-based inference methodology.

However, for the multiplication of two eight-bit inputs, a
series of 16 MABs of n = 8 needs to be performed [18].
Memory access for this scenario needs four multiplication
and twelve addition MABs, as depicted in Fig. 2(b). While
additions require a series of memory access per the size of
operands, a single memory access is sufficient for tanh and
sigmoid operations. A diagram of the workflow is provided
in Fig. 3.

Note: In this work, we consider that the weights are fixed,
based on which pre-computations are done and stored in
memory. Moreover, if weights are stored outside memory
and transferred during deployment, these may get leaked via
covert channels during their transmission to the memory.
Hence, storing the entire pre-computations with specific
weights is better, and when weights are changed, the memory
contents are re-loaded. Thus, if a different type of application
needs to be loaded, the MABs can be re-loaded with a
different data file via the read port. This prevents leakage of
secret weights via covert side channels.

IV. EXPERIMENTATION AND RESULTS

We have implemented the proposed mapping methodology
as a software framework integrated into commercial FPGA
tool flow and evaluated its efficacy for a set of parameters.
We have considered LSTM for sequence classification.

A. Experimentation Strategy

We developed an FPGA overlay for LSTM based on the
above methodology for experimentation. We adhere to the
LSTM design of [21] to generate this overlay. Verilog codes
are instantiated in Xilinx Vivado 2020.2 platform. This is
targeted to ZynQ XCU104 Evaluation Board, operated at
200MHz clock frequency. For the present work, we consider
m = n = 8 and divide the available memory space into
MABs that contain 256 function words, each of size 256 bits.
These MABs can be accessed via an 8-bit address line.

B. Result Analysis

1) Comparison of results with other works: Table II
provides a comparison of our work with other existing
techniques. The system’s performance is evaluated based on
the frequency of operation and per sample latency. Frames
per second (FPS) are assessed as per Equation 7, where Tk

represents the number of execution cycles for stage k. For the
present work, per-sample latency and FPS are measured under
the condition of sequentially processing a single input sample.

FPS =
Frequency

max{T1, T2, ..., Tk}
(7)

The ratio of FPS estimates energy efficiency and the power
consumed, i.e., FPS/W . As evident from the results
tabulated in Table II, energy efficiency obtained via the
proposed approach is better than all reference works, as
accessing memory blocks reduces not only latency but also
power consumption, which determines the energy efficiency
of the system. In addition, unlike other works that rely on
model pruning, our proposed method does not provide any
degradation in result accuracy. Hence, the methodology is
exceptionally suited for critical decision-making operations.
Table III tabulates the resources utilized on ZynQ XCU104
when the referenced LSTM model is implemented in the
proposed mechanism. While in the reference design, no
BRAM usage is present, the proposed model heavily uses
BRAM and reduces the utilization of LUTs. This paves the
way for multiple design implementations on the same FPGA,
where the other designs that do not use BRAMs can use the
remaining LUTs.

2) Energy Efficiency vs. Availability of EMBs: In Fig. 4,
we also analyzed how the system’s energy efficiency varies
with the availability of EMBs. The analysis is motivated
since the necessary EMBs for all design functionalities may
not always be available. Hence, it is necessary to characterize
how energy efficiency under the proposed methodology varies
with the availability of EMBs. For this, we analyzed a 16-bit



TABLE II: Comparison of Latency, Power and Energy Efficiency

[10] [9] [12] [8] [11] Implementation of [21] Proposed
Platform XCKU060 Virtex 7 Arria 10 Arria 10 Virtex 7 ZynQ XCU104 ZynQ XCU104

GX1150 SX660
Model Size 12 bit 16 bit 16 bit 8 bit 12 bit 4 bit 8 bit 16 bit 4 bit 8 bit 16 bit

Frequency (MHz) 200 200 200 200 200 200 200 200 200 200 200
Per Sample 82.7 16.7 2.4 23.9 8.3 7.59 12.6 15.4 4.303 4.5 5.044

Latency (µs)
Accuracy 0.3 0.32 0.25 0.02 0.31 0.0 0.0 0.0 0.0 0.0 0.0

Degradation(%)
Power (W) 41 22 19.1 15.9 25 5.02 17.18 21.16 0.606 1.33 4.32
Frames Per 386941 179687 416666 334728 382510 263504 158730 129870 464792 425531 396510

Second (FPS)
Energy Efficiency 9438 8167 21814 21052 15300 52490 9239 6138 766983 319948 91784

(FPS/W)

TABLE III: Comparison of Resource Utilization

[21] Proposed LUT Reduction (%)
4 8 16 4 8 16 4 8 16

bit bit bit bit bit bit bit bit bit
Platform ZynQ XCU104 ZynQ XCU104 ZynQ XCU104

LUT 109 162 234 4 8 16 96.3 95.1 92.3
BRAM 0 0 0 10 56 136 - - -

LSTM and illustrated results graphically in Fig. 4.

As evident from the illustration, energy efficiency increases
steeply in the initial phases, gradually slows down in
the middle, and steadies at the end. This is because the
high-power-consuming functionalities are mapped first;
hence, a steep decrease in power increases energy efficiency.
This is followed by mapping the low power-consuming
functionalities and, in the end, the least power-consuming
functionalities. Hence, the steep rise in energy efficiency
gradually decreases and becomes steady at the end, where
very low power-consuming functionalities are mapped.

Notably, our memory-based mapping methodology
prioritizes high-power-consuming functionalities for mapping;
therefore, under EMB-scarce mapping, judicious deployment
of computationally intensive functions results in significant
energy efficiency improvement with more EMB resources.
As evident in the figure, our methodology can enhance the
energy efficiency by 70× of a 16-bit LSTM model even when
only 40% of necessary EMBs are available.

V. CONCLUSION

Edge platforms’ strict energy and resource budget has forced
system designers to adopt model pruning to reduce power
consumption and latency; however, the technique invariably
compromises predictive accuracy. Comparatively, in this work,
we have proposed an alternative memory-based inference
methodology where unutilized memory units on FPGA can
be exploited to store pre-computed results of fundamental
computational primitives in a complex neural network model.
The pre-computed results are accessed during inference as
needed, thus minimizing the necessary workload and allow-

Fig. 4: Graphical analysis of energy efficiency for EMB
availability for 16-bit LSTM.

ing higher performance inference without compromising the
model’s accuracy. Our methodology was demonstrated on
LSTM. When implemented on the ZynQ XCU104 evaluation
board, a 3× reduction in latency and 5× reduction in power
was obtained, then the reference 16-bit LSTM model. The
proposed methodology can be successfully applied in other
complex networks. Complex networks are associated with sev-
eral power-consuming operations like matrix multiplication,
sigmoid, tanh, etc. For those cases, pre-computing the results
and storing them in memory aids in minimizing high power
dissipation and facilitates energy efficiency.
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