
Results in Applied Mathematics 21 (2024) 100430

A
2
(

d
e
t
s

t

h
R

Contents lists available at ScienceDirect

Results in AppliedMathematics

journal homepage: www.elsevier.com/locate/results-in-applied-mathematics

Projection-based reduced order modeling of an iterative scheme for
linear thermo-poroelasticity
Francesco Ballarin a,∗, Sanghyun Lee b, Son-Young Yi c
a Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
b Department of Mathematics, Florida State University, Tallahassee, FL 32304, USA
c Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA

A R T I C L E I N F O

Keywords:
Linear thermo-poroelasticity
Iterative
Fixed-stress
Reduced order modeling
Proper orthogonal decomposition

A B S T R A C T

This paper explores an iterative approach to solve linear thermo-poroelasticity problems, with
its application as a high-fidelity discretization utilizing finite elements during the training of
projection-based reduced order models. One of the main challenges in addressing coupled multi-
physics problems is the complexity and computational expenses involved. In this study, we
introduce a decoupled iterative solution approach, integrated with reduced order modeling,
aimed at augmenting the efficiency of the computational algorithm. The iterative technique
we employ builds upon the established fixed-stress splitting scheme that has been extensively
investigated for Biot’s poroelasticity. By leveraging solutions derived from this coupled it-
erative scheme, the reduced order model employs an additional Galerkin projection onto a
reduced basis space formed by a small number of modes obtained through proper orthogonal
decomposition. The effectiveness of the proposed algorithm is demonstrated through numerical
experiments, showcasing its computational prowess.

1. Introduction

Thermo-hydro-mechanical (THM) processes refer to the coupled interactions between temperature, fluid flow, and mechanical
eformation that occur in a wide range of natural and engineered systems. These processes are relevant in various fields, including
nvironmental science, civil engineering, and material science, to name a few. Therefore, the ability to understand and predict
ightly coupled THM processes in natural and engineering systems has significant impacts, for example, on the environment, public
afety, and the economy.
One widely employed mathematical model for describing THM processes is based on Biot’s non-isothermal consolidation

heory [1], known as the thermo-poroelasticity model. This model extends Biot’s poroelasticity model [2], which characterizes
the interaction between a deformable porous medium and fluid flow within it under isothermal conditions. The governing system
of partial differential equations (PDEs) of the thermo-poroelasticity model consists of a heat transfer equation, mass conservation
equation, and momentum conservation equation. These equations are fully coupled through linear and nonlinear coupling terms.
For simplicity, this paper focuses on a fully-coupled, linearized thermo-poroelasticity model, where the heat transfer is assumed to
be diffusion-dominated and the coupling strength between the THM processes is rather weak.

Due to the complex nature of the mathematical model for coupled multi-physics thermo-poroelasticity, it is highly challenging to
develop an accurate and computationally efficient numerical method. There are various approaches to handling the coupled nature of
the problems. First, one can solve the coupled system using a monolithic numerical method, where all subproblems (PDE equations)
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are solved simultaneously in each time step. In general, monolithic schemes are unconditionally stable but computationally expensive
and may require some special linear or nonlinear solvers, often making them less practical. Another approach is to use a sequential
method, where the subproblems are separated and solved sequentially in each time step. This approach is much more economical
compared to the monolithic method. However, a sequential method may not converge to the right solution, or effective stabilization
is often required to make such methods unconditionally stable [3]. To overcome this limitation, one can resort to an iterative
approach, which is a staggered yet tightly coupled scheme. In iterative coupling schemes, the subproblems are solved in a staggered
way while ensuring full convergence of the solution in each time step.

Iterative coupling schemes for poroelasticity have been extensively studied in recent years [4–11]. In particular, one of the
ost successful approaches is based on the fixed-stress spitting method [12–16]. In this fixed-stress scheme, one solves the flow

problem while fixing the volumetric stress (mean stress), subsequently solving the mechanics problem using the updated pressure
solution. The convergence and stability of this fixed-stress splitting method have been studied in the context of various numerical
methods, including CG, DG, and mixed finite element methods. In contrast to poroelasticity, the subject of iterative methods for
thermo-poroelasticity has not been heavily studied. Some recent papers on this topic include [3,17,18].

This paper first describes an iterative scheme for solving the thermal-poroelasticity model based on the classical continuous
Galerkin finite element method, which is considered to be the high-fidelity solver or offline solver in the context of the reduced
order modeling approach. We especially utilize the fixed stress iterative method and derive the stability and convergence properties
that are close to those of the monolithic approach.

Next, we utilize this fixed stress iterative scheme to train a projection-based reduced order model (ROM) as outlined in [19,20].
ROMs generally consist of two distinct phases: the offline (or training) stage, and the online (or evaluation) phase. In the offline stage,
a high-fidelity scheme is employed to generate a dataset containing solutions for the specific problem. In our context, we utilize
the fixed stress iterative method, and this dataset is compressed using proper orthogonal decomposition [21], yielding a reduced
basis space of significantly lower dimension. During the online phase, the ROM incorporates a Galerkin method that leverages the
reduced basis space, in contrast to the original high-fidelity space. If the reduced basis space possesses dimensions substantially
smaller than its high-fidelity counterpart, and if the problem operators can be suitably pre-assembled, then the ROM evaluation is
anticipated to be significantly more computationally efficient than assessing the high-fidelity scheme. The application of projection-
based ROMs to THM systems is still limited, see in particular [22,23]. Furthermore, the use of iterative schemes as high-fidelity
solvers in ROMs [24–31] is not as common as monolithic ones, and none of the aforementioned references uses a scheme with the
specific properties of the fixed-stress iterative scheme. Therefore, by applying a fixed-stress iterative ROM to a THM problem, this
work advances the state-of-the-art and could pave the way for applications of the proposed ROM in geothermal flows.

The rest of the paper is organized as follows. We describe the governing equations for the thermo-poroelasticity model in
Section 2. We then introduce the high-fidelity discretization based on the fixed-stress iterative scheme in Section 3. In there, we also
prove that the solution of the iterative scheme converges to the monolithic scheme, assuming some conditions for certain physical
parameters. In Section 4, we introduce the projection-based ROM, which builds upon the fixed-stress iterative scheme, and show that
its solution converges to the one of the ROM trained on the monolithic scheme. Finally, we present several numerical experiments
in Section 5 to validate and present the capabilities of the proposed algorithm.

2. Governing equations

Let 𝛺 be a bounded, connected, and Lipschitz domain in R𝑑 , 𝑑 = 2, 3, with the boundary 𝜕𝛺 and let I = (0, 𝑇 ] with 𝑇 > 0.
Then, let 𝐮 ∶ 𝛺 → R𝑑 be the vector-valued displacement of the solid, 𝑝 ∶ 𝛺 → R the scalar-valued fluid pressure, and 𝜃 ∶ 𝛺 → R
the scalar-valued temperature. Then, governing equations for thermo-poroelasticity are derived by coupling momentum balance for
mechanics based on linear elasticity, mass balance for the pressure, and energy balance for the temperature as follows:

− ∇ ⋅ (𝝈(𝐮) − 𝛼𝑝𝐈 − 3𝛼𝑇𝐾𝑑𝑟𝜃𝐈) = 𝐟 in 𝛺 × I, (1a)
𝜕
𝜕𝑡
(𝑐0𝑝 + 𝛼∇ ⋅ 𝐮 − 3𝛼𝑚𝜃) − ∇ ⋅ (𝐊∇𝑝) = 𝑔 in 𝛺 × I, (1b)

𝜕
𝜕𝑡

(

𝐶𝑑𝜃 + 3𝛼𝑇𝐾𝑑𝑟𝜃0∇ ⋅ 𝐮 − 3𝛼𝑚𝜃0𝑝
)

− ∇ ⋅ (𝐃∇𝜃) = 𝜂 in 𝛺 × I, (1c)

In the momentum balance Eq. (1a), 𝝈(𝐮) is the standard stress tensor from linear elasticity. It satisfies the constitutive equation
𝝈(𝐮) ∶= 2𝜇𝝐(𝐮) + 𝜆(∇ ⋅ 𝐮)𝐈, where 𝝐(𝐮) ∶= 1

2 [∇𝐮 + (∇𝐮)𝑇 ] is the strain tensor, 𝐈 is the 𝑑 × 𝑑 identity tensor, and 𝜇, 𝜆 are the Lamé
onstants. The Lamé constants are assumed to be in the range 𝜇 ∈ [𝜇0, 𝜇1] and 𝜆 ∈ [0,∞) for some 0 < 𝜇0 < 𝜇1 < ∞. Also, 𝐟 is
the body force, 𝛼 is the Biot–Willis constant, 𝐾𝑑𝑟 ∶= (𝑑𝜆 + 2𝜇)∕𝑑 is the drained isothermal bulk modulus, and 𝛼𝑇 is the volumetric
keleton thermal dilation coefficient. The total stress tensor is given by 𝝈̃(𝐮, 𝑝, 𝜃) = 𝝈(𝐮) − 𝛼𝑝𝐈 − 3𝛼𝑇𝐾𝑑𝑟𝜃𝐈.
The second Eq. (1b) is the mass balance equation for the fluid, assuming the Darcy law for the volumetric fluid flux: 𝐪 = −𝐊∇𝑝.

We ignore the gravity effect and set the fluid viscosity to be one here for a simple presentation of the numerical method. However,
including the gravity term and the fluid viscosity in the numerical formulation is straightforward. Here, 𝐊 ∈ R𝑑×𝑑 is the permeability
tensor, which is symmetric and uniformly positive-definite and satisfies the following assumption: there exist positive constants
𝑘min, 𝑘max such that for any 𝐱 ∈ 𝛺,

𝑘min𝝃𝑇 𝝃 ≤ 𝝃𝑇𝐊(𝐱)𝝃 ≤ 𝑘max𝝃𝑇 𝝃, ∀𝝃 ∈ R𝑑 . (2)

In addition, 𝑐0 = 1∕𝑀 , where 𝑀 is Biot’s modulus, 3𝛼𝑚 is the thermal dilation coefficient, and 𝑔 is the volumetric fluid source/sink
term.
2
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Finally, the energy balance equation, or the heat transfer Eq. (1c), is obtained by assuming local thermal equilibrium between
solid and fluid in pores. Therefore, this energy balance equation is expressed in terms of a single temperature variable 𝜃 with the
effective total heat conductivity 𝐶𝑑 . Additionally, 𝜂 is the volumetric heat source/sink term, and 𝜃0 is a reference temperature,
which is assumed to be nonzero. In addition, the bulk thermal conductivity tensor 𝐃 is symmetric and uniformly positive-definite
and assumed to satisfy the following: there exist positive constants 𝑑min, 𝑑max such that for any 𝐱 ∈ 𝛺,

𝑑min𝝃𝑇 𝝃 ≤ 𝝃𝑇𝐃(𝐱)𝝃 ≤ 𝑑max𝝃𝑇 𝝃, ∀𝝃 ∈ R𝑑 . (3)

Note that we adopt a linearized heat transfer equation in this paper, contrary to using a nonlinear equation in other work (e.g. [3]).
This linearization of the model by introducing the reference temperature and dropping the nonlinear convection term can be justified
if we assume small magnitudes of 𝛼𝑇 and 𝛼𝑚 and that diffusion is a dominant process for heat transfer. Similar linearized models
were used in [32,33].

To complete the system of governing Eqs. (1), we have to provide initial conditions and boundary conditions. As our main
focus here is on the iterative coupling scheme, we will consider the pure homogeneous Dirichlet boundary conditions for all three
variables, whereas the initial conditions are given as

𝐮(⋅, 0) = 𝐮0, 𝑝(⋅, 0) = 𝑝0, 𝜃(⋅, 0) = 𝜃0 ∀𝑥 ∈ 𝛺. (4)

3. High-fidelity discretization

In this section, we present the discretization schemes employed during the reduced order model training in Section 4, which
will be referred to as high-fidelity schemes therein. We discuss first the monolithic scheme (Section 3.1), then introduce the proposed
fixed-stress iterative scheme (Section 3.2). In Section 3.3, we prove a convergence result for the proposed fixed-stress iterative
scheme by utilizing continuous Galerkin finite element methods.

3.1. Monolithic high-fidelity (M-HF) method

In this section, we present a weak formulation and a fully discrete continuous Galerkin method for the model problem (1). The
standard notation for the 𝐿2- and Sobolev spaces and their associated inner products and norms will be used here. In particular,
(⋅, ⋅) and ‖ ⋅ ‖ denote the 𝐿2 inner product and 𝐿2-norm, respectively, and (⋅, ⋅)1 and ‖ ⋅ ‖1 denote the (full) 𝐻1-inner product and
(full) 𝐻1-norm, respectively.

To derive a weak formulation, we multiply (1a), (1b), and (1c) by 𝐯 ∈ [𝐻1
0 (𝛺)]𝑑 , 𝑤 ∈ 𝐻1

0 (𝛺), and 𝑠 ∈ 𝐻1
0 (𝛺), respectively, and

integrate by parts, resulting in the following weak problem: At every 𝑡 ∈ (0, 𝑇 ], find (𝐮, 𝑝, 𝜃) ∈ [𝐻1
0 (𝛺)]𝑑 ×𝐻1

0 (𝛺) ×𝐻1
0 (𝛺) such that

2𝜇(𝜀(𝐮), 𝜀(𝐯)) + 𝜆(∇ ⋅ 𝐮,∇ ⋅ 𝐯) − 𝛼(𝑝,∇ ⋅ 𝐯) − 3𝛼𝑇𝐾𝑑𝑟(𝜃,∇ ⋅ 𝐯) = (𝐟 , 𝐯), (5a)

𝑐0(𝑝𝑡, 𝑤) + 𝛼(∇ ⋅ 𝐮𝑡, 𝑤) − 3𝛼𝑚(𝜃𝑡, 𝑤) + (𝐊∇𝑝,∇𝑤) = (𝑔,𝑤), (5b)

𝐶𝑑 (𝜃𝑡, 𝑠) + 3𝛼𝑇𝐾𝑑𝑟𝜃0(∇ ⋅ 𝐮𝑡, 𝑠) − 3𝛼𝑚𝜃0(𝑝𝑡, 𝑠) + (𝐃∇𝜃,∇𝑠) = (𝜂, 𝑠), (5c)

for any (𝐯, 𝑤, 𝑠) ∈ [𝐻1
0 (𝛺)]𝑑 ×𝐻1

0 (𝛺) ×𝐻1
0 (𝛺).

To present a fully-discrete method, first let 𝛥𝑡 > 0 be a time step size and 𝑡𝑛 = 𝑛𝛥𝑡, where 𝑛 = 0,… , 𝑁 with 𝑡𝑁 = 𝑇 . For temporal
discretization, we consider the backward Euler time-stepping scheme for simplicity. For spatial discretization, let us consider a shape-
regular triangulation ℎ of 𝛺. Then, we let 𝑽 ℎ,𝑊ℎ, 𝛩ℎ be finite-dimensional subspaces of [𝐻1

0 (𝛺)]𝑑 ,𝐻1
0 (𝛺),𝐻1

0 (𝛺), respectively,
on the mesh ℎ. Then, the fully-discrete monolithic CG method for (5) reads as follows: Given (𝐮𝑛ℎ, 𝑝

𝑛
ℎ, 𝜃

𝑛
ℎ) ∈ 𝑽 ℎ × 𝑊ℎ × 𝛩ℎ, find

(𝐮𝑛+1ℎ , 𝑝𝑛+1ℎ , 𝜃𝑛+1ℎ ) ∈ 𝑽 ℎ ×𝑊ℎ × 𝛩ℎ such that

2𝜇(𝜀(𝐮𝑛+1ℎ ), 𝜀(𝐯)) + 𝜆(∇ ⋅ 𝐮𝑛+1ℎ ,∇ ⋅ 𝐯) − 𝛼(𝑝𝑛+1ℎ ,∇ ⋅ 𝐯) − 3𝛼𝑇𝐾𝑑𝑟(𝜃𝑛+1ℎ ,∇ ⋅ 𝐯)

= (𝐟𝑛+1, 𝐯), (6a)

𝑐0

(

𝑝𝑛+1ℎ − 𝑝𝑛ℎ
𝛥𝑡

,𝑤

)

+ 𝛼

(

∇ ⋅ 𝐮𝑛+1ℎ − ∇ ⋅ 𝐮𝑛ℎ
𝛥𝑡

,𝑤

)

− 3𝛼𝑚

(

𝜃𝑛+1ℎ − 𝜃𝑛ℎ
𝛥𝑡

,𝑤

)

+ (𝐊∇𝑝𝑛+1ℎ ,∇𝑤) = (𝑔𝑛+1, 𝑤), (6b)

𝐶𝑑

(

𝜃𝑛+1ℎ − 𝜃𝑛ℎ
𝛥𝑡

, 𝑠

)

+ 3𝛼𝑇𝐾𝑑𝑟𝜃0

(

∇ ⋅ 𝐮𝑛+1ℎ − ∇ ⋅ 𝐮𝑛ℎ
𝛥𝑡

, 𝑠

)

− 3𝛼𝑚𝜃0

(

𝑝𝑛+1ℎ − 𝑝𝑛ℎ
𝛥𝑡

, 𝑠

)

+ (𝐃∇𝜃𝑛+1ℎ ,∇𝑠) = (𝜂𝑛+1, 𝑠), (6c)

for any (𝐯, 𝑤, 𝑠) ∈ 𝑽 ℎ ×𝑊ℎ × 𝛩ℎ.
The well-posedness and convergence of the CG method for the same model as (1) but with an extra nonlinear coupling

erm −𝐊∇𝑝𝑛 ⋅ ∇𝜃𝑛+1 in the temperature equation were studied in [34]. In their paper, they employed the standard continuous
iecewise P𝑘 finite element for all 𝑽 ℎ,𝑊ℎ, 𝛩ℎ for 𝑘 ≥ 1, where P𝑘 is a space of all polynomials of degree at most 𝑘. This space,

𝑽 ℎ×𝑊ℎ×𝛩ℎ = P𝑘×P𝑘×P𝑘, does not satisfy the inf-sup stability condition. Despite the lack of the inf-sup stability condition, however,
they proved that the resulting method is still well-posed and convergent with some constraints on the physical parameters. These
constraints are the same as the ones for the convergence of our FS-HF iterative scheme, to be established in (16).
3
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3.2. Fixed-stress high-fidelity (FS-HF) iterative scheme

Solving the monolithic system resulting from the M-HF method (6) is very expensive computationally. Our goal is to develop an
iteratively coupled method whose solutions converge to the solution of the M-HF method. To this end, we will employ a version
of the fixed-stress splitting scheme. Similarly to [3,18], the main idea behind the fixed-stress split is to fix (or lag) the total mean
stress while solving the flow and heat problems. Here, the total mean stress, 𝝈, is defined as 𝝈 = tr(𝝈̃)∕𝑑, where tr(⋅) is the trace
perator on tensors. By noting the relation between volumetric stress and strain, we can see that

𝝈 = 𝐾𝑑𝑟∇ ⋅ 𝐮 − 𝛼𝑝 − 3𝛼𝑇𝐾𝑑𝑟𝜃. (7)

In light of this relationship, let 𝝈𝑛+1
ℎ be the approximate total mean stress at time 𝑡𝑛+1, defined by

𝝈𝑛+1
ℎ = 𝐾𝑑𝑟∇ ⋅ 𝐮𝑛+1ℎ − 𝛼𝑝𝑛+1ℎ − 3𝛼𝑇𝐾𝑑𝑟𝜃

𝑛+1
ℎ .

Now, to present our fixed-stress iterative scheme, we will denote by 𝜙𝑛+1,𝑖 the 𝑖th iterate of 𝜙𝑛+1 for any variable 𝜙 = 𝐮ℎ, 𝑝ℎ, 𝜃ℎ. To
erive a fixed-stress iterative scheme, we want the condition

𝝈𝑛+1,𝑖+1
ℎ = 𝝈𝑛+1,𝑖

ℎ , 𝑖 = 0, 1, 2,…

r, equivalently,

∇ ⋅ 𝐮𝑛+1,𝑖+1ℎ = 𝛼
𝐾𝑑𝑟

(

𝑝𝑛+1,𝑖+1ℎ − 𝑝𝑛+1,𝑖ℎ

)

+ 3𝛼𝑇
(

𝜃𝑛+1,𝑖+1ℎ − 𝜃𝑛+1,𝑖ℎ

)

+ ∇ ⋅ 𝐮𝑛+1,𝑖ℎ , (8a)

while solving the flow and heat equations. Note that the flow and heat equations can be solved simultaneously or sequentially,
leading to different versions of the fixed-stress scheme. In this section, we consider a method where we solve these two problems
sequentially, solving the flow equation first, then the heat problem, before solving the mechanics problem. Since we will solve the
flow and heat equations sequentially, we will use a modified version of (8a) when solving them. Specifically, we will assume that the
temperature and pressure variables, besides the total mean stress, are fixed while solving the flow and heat problems, respectively.
This means that we use

∇ ⋅ 𝐮𝑛+1,𝑖+1ℎ = 𝛼
𝐾𝑑𝑟

(

𝑝𝑛+1,𝑖+1ℎ − 𝑝𝑛+1,𝑖ℎ

)

+ ∇ ⋅ 𝐮𝑛+1,𝑖ℎ , (8b)

when solving the flow problem and

∇ ⋅ 𝐮𝑛+1,𝑖+1ℎ = 3𝛼𝑇
(

𝜃𝑛+1,𝑖ℎ − 𝜃𝑛+1,𝑖ℎ

)

+ ∇ ⋅ 𝐮𝑛+1,𝑖ℎ , (8c)

when solving the heat problem.
Given an initialization 𝐮𝑛+1,0ℎ , 𝑝𝑛+1,0ℎ and 𝜃𝑛+1,0ℎ , the following is our FS-HF iterative scheme at each time step 𝑛 + 1 to generate

infinite sequences {𝐮𝑛+1,𝑖+1ℎ }∞𝑖=0, {𝑝
𝑛+1,𝑖+1
ℎ }∞𝑖=0, and {𝜃𝑛+1,𝑖+1ℎ }∞𝑖=0. Note that 𝐿 > 0 to appear in the algorithm is a stabilization coefficient.

If we drive a scheme using (8a) and (8b), then 𝐿 = 1. However, one can consider tuning this coefficient to achieve faster convergence,
see for instance [35].

Step 1. Given (𝐮𝑛+1,𝑖ℎ , 𝑝𝑛+1,𝑖ℎ , 𝜃𝑛+1,𝑖ℎ ) ∈ 𝑽 ℎ ×𝑊ℎ × 𝛩ℎ, solve the flow problem for 𝑝𝑛+1,𝑖+1ℎ ∈ 𝑊ℎ:

𝑐0

(

𝑝𝑛+1,𝑖+1ℎ − 𝑝𝑛ℎ
𝛥𝑡

,𝑤

)

+ (𝐊∇𝑝𝑛+1,𝑖+1ℎ ,∇𝑤) + 𝐿 𝛼2

𝐾𝑑𝑟

(

𝑝𝑛+1,𝑖+1ℎ − 𝑝𝑛+1,𝑖ℎ
𝛥𝑡

,𝑤

)

= (𝑔𝑛+1, 𝑤) − 𝛼

(

∇ ⋅

(

𝐮𝑛+1,𝑖ℎ − 𝐮𝑛ℎ
𝛥𝑡

)

, 𝑤

)

+ 3𝛼𝑚

(

𝜃𝑛+1,𝑖ℎ − 𝜃𝑛ℎ
𝛥𝑡

,𝑤

)

∀𝑤 ∈ 𝑊ℎ. (9a)

tep 2. Given (𝐮𝑛+1,𝑖ℎ , 𝑝𝑛+1,𝑖ℎ , 𝜃𝑛+1,𝑖ℎ ) ∈ 𝑽 ℎ ×𝑊ℎ × 𝛩ℎ, solve the heat problem for 𝜃𝑛+1,𝑖+1ℎ ∈ 𝛩ℎ:

𝐶𝑑

(

𝜃𝑛+1,𝑖+1ℎ − 𝜃𝑛ℎ
𝛥𝑡

, 𝑠

)

+ (𝐃∇𝜃𝑛+1,𝑖+1ℎ ,∇𝑠) + 9𝐿𝛼2𝑇𝐾𝑑𝑟𝜃0

(

𝜃𝑛+1,𝑖+1ℎ − 𝜃𝑛+1,𝑖ℎ
𝛥𝑡

, 𝑠

)

= (𝜂𝑛+1, 𝑠) + 3𝛼𝑚𝜃0

(

𝑝𝑛+1,𝑖ℎ − 𝑝𝑛ℎ
𝛥𝑡

, 𝑠

)

− 3𝛼𝑇𝐾𝑑𝑟𝜃0

(

∇ ⋅

(

𝐮𝑛+1,𝑖ℎ − 𝐮𝑛ℎ
𝛥𝑡

)

, 𝑠

)

∀𝑠 ∈ 𝛩ℎ. (9b)

Step 3. Given (𝐮𝑛+1,𝑖ℎ , 𝑝𝑛+1,𝑖+1ℎ , 𝜃𝑛+1,𝑖+1ℎ ) ∈ 𝑽 ℎ ×𝑊ℎ × 𝛩ℎ, solve the mechanics problem for 𝐮𝑛+1,𝑖+1ℎ ∈ 𝑽 ℎ:

2𝜇(𝜀(𝐮𝑛+1,𝑖+1ℎ ), 𝜀(𝐯)) + 𝜆(∇ ⋅ 𝐮𝑛+1,𝑖+1ℎ ,∇ ⋅ 𝐯)

= (𝐟𝑛+1, 𝐯) + 𝛼(𝑝𝑛+1,𝑖+1ℎ ,∇ ⋅ 𝐯) + 3𝛼𝑇𝐾𝑑𝑟(𝜃
𝑛+1,𝑖+1
ℎ ,∇ ⋅ 𝐯) ∀𝐯 ∈ 𝑽 ℎ. (9c)

Steps 1, 2, and 3 are repeated by increasing 𝑖 to 𝑖 + 1 until an appropriate stopping criterion is satisfied. The specific choice of
the stopping criterion depending on a given problem, as well as the procedure to initialize 𝐮𝑛+1,0ℎ , 𝑝𝑛+1,0ℎ , and 𝜃𝑛+1,0ℎ , will be discussed
4

in Section 5.



Results in Applied Mathematics 21 (2024) 100430F. Ballarin et al.

L

P

L

t

w

T

a

3.3. Convergence analysis of the FS-HF scheme

In this section, we will prove that the solution of the FS-HF scheme, (9), converges to that of the M-HF scheme, (6). To facilitate
the analysis, we introduce some notations for the errors in the iterates. Let 𝑒𝑛+1,𝑖𝐮 = 𝐮𝑛+1,𝑖ℎ − 𝐮𝑛+1ℎ be the error in the 𝑖th iterate of
𝐮𝑛+1ℎ for 1 ≤ 𝑛 ≤ 𝑁 and 𝑖 ≥ 1. Likewise, 𝑒𝑛+1,𝑖𝑝 = 𝑝𝑛+1,𝑖ℎ − 𝑝𝑛+1ℎ and 𝑒𝑛+1,𝑖𝜃 = 𝜃𝑛+1,𝑖ℎ − 𝜃𝑛+1ℎ are the errors in the 𝑖th iterates of 𝑝𝑛+1ℎ an 𝜃𝑛+1ℎ ,
respectively. To derive a system of error equations, subtract (6a), (6b), and (6c) from (9c), (9a), and (9b), respectively, and do some
algebraic manipulations. We note that the resulting system involves quantities only at the current time step 𝑛+ 1. Therefore, in the
following, we will use superscripts indicating only the iteration numbers. Then, the system of error equations reads as follows:

2𝜇(𝜀(𝑒𝑖+1𝐮 ), 𝜀(𝐯)) + 𝜆(∇ ⋅ 𝑒𝑖+1𝐮 ,∇ ⋅ 𝐯) = 𝛼(𝑒𝑖+1𝑝 ,∇ ⋅ 𝐯) + 3𝛼𝑇𝐾𝑑𝑟(𝑒𝑖+1𝜃 ,∇ ⋅ 𝐯), (10a)

𝑐0

(

𝑒𝑖+1𝑝

𝛥𝑡
,𝑤

)

+ (𝐊∇𝑒𝑖+1𝑝 ,∇𝑤) + 𝐿 𝛼2

𝐾𝑑𝑟

(

𝑒𝑖+1𝑝 − 𝑒𝑖𝑝
𝛥𝑡

,𝑤

)

= −𝛼

(

∇ ⋅ 𝑒𝑖𝐮
𝛥𝑡

,𝑤

)

+ 3𝛼𝑚

(

𝑒𝑖𝜃
𝛥𝑡

,𝑤

)

, (10b)

𝐶𝑑

(

𝑒𝑖+1𝜃
𝛥𝑡

, 𝑠

)

+ (𝐃∇𝑒𝑖+1𝜃 ,∇𝑠) + 9𝐿𝛼2𝑇𝐾𝑑𝑟𝜃0

(

𝑒𝑖+1𝜃 − 𝑒𝑖𝜃
𝛥𝑡

, 𝑠

)

= 3𝛼𝑚𝜃0

(

𝑒𝑖𝑝
𝛥𝑡

, 𝑠

)

− 3𝛼𝑇𝐾𝑑𝑟𝜃0

(

∇ ⋅ 𝑒𝑖𝐮
𝛥𝑡

, 𝑠

)

, (10c)

for any (𝐯, 𝑤, 𝑠) ∈ 𝑽 ℎ ×𝑊ℎ × 𝛩ℎ. For the subsequent analysis, we provide two preliminary results here.

emma 3.1. The following coercivity condition is satisfied for any 𝐯 ∈ 𝑽 ℎ.

𝐾𝑑𝑟‖∇ ⋅ 𝐯‖2 ≤ 2𝜇‖𝜀(𝐯)‖2 + 𝜆‖∇ ⋅ 𝐯‖2. (11)

roof. It is easy to check that ‖∇ ⋅ 𝐯‖2 ≤ 𝑑‖𝜀(𝐯)‖2 using Young’s inequality. Then, (11) follows from the definition of 𝐾𝑑𝑟. □

emma 3.2. The following inequality holds:

2𝜇‖𝜀(𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖
2 + 𝜆‖∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖

2

≤ 2
(

𝛼2

𝐾𝑑𝑟
‖𝑒𝑖+1𝑝 − 𝑒𝑖𝑝‖

2 + 9𝛼2𝑇𝐾𝑑𝑟‖𝑒
𝑖+1
𝜃 − 𝑒𝑖𝜃‖

2
)

. (12)

Proof. First, subtract the mechanics Eq. (10a) at the iteration 𝑖 from the iteration 𝑖 + 1:

2𝜇(𝜀(𝑒𝑖+1𝐮 − 𝑒𝑖𝐮), 𝜀(𝐯)) + 𝜆(∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮),∇ ⋅ 𝐯)

= 𝛼(𝑒𝑖+1𝑝 − 𝑒𝑖𝑝,∇ ⋅ 𝐯) + 3𝛼𝑇𝐾𝑑𝑟(𝑒𝑖+1𝜃 − 𝑒𝑖𝜃 ,∇ ⋅ 𝐯). (13)

Then, take 𝐯 = 𝑒𝑖+1𝐮 − 𝑒𝑖𝐮 in (13) and use the coercivity condition (11) on the left-hand side and the Cauchy–Schwarz inequality on
he right-hand side to obtain

𝐾𝑑𝑟‖∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖
2

≤ 2𝜇‖𝜀(𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖
2 + 𝜆‖∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖

2

≤
(

𝛼‖𝑒𝑖+1𝑝 − 𝑒𝑖𝑝‖ + 3𝛼𝑇𝐾𝑑𝑟‖𝑒
𝑖+1
𝜃 − 𝑒𝑖𝜃‖

)

‖∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖, (14)

hich leads to

‖∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖ ≤ 𝛼
𝐾𝑑𝑟

‖𝑒𝑖+1𝑝 − 𝑒𝑖𝑝‖ + 3𝛼𝑇 ‖𝑒𝑖+1𝜃 − 𝑒𝑖𝜃‖. (15)

Using (15) back in (14), we now get

2𝜇‖𝜀(𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖
2 + 𝜆‖∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖

2

≤
(

𝛼‖𝑒𝑖+1𝑝 − 𝑒𝑖𝑝‖ + 3𝛼𝑇𝐾𝑑𝑟‖𝑒
𝑖+1
𝜃 − 𝑒𝑖𝜃‖

)

(

𝛼
𝐾𝑑𝑟

‖𝑒𝑖+1𝑝 − 𝑒𝑖𝑝‖ + 3𝛼𝑇 ‖𝑒𝑖+1𝜃 − 𝑒𝑖𝜃‖
)

,

from which we can get the desired result (12) after multiplying out the terms and using Young’s inequality. □

heorem 3.1. Assume that

𝑐0 > 3𝛼𝑚, 𝐶𝑑 > 3𝛼𝑚𝜃0, (16)

nd

𝐿 ≥ 2𝛿 for some 𝛿 ≥ 1 . (17)
5

2
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For a fixed 𝑛 + 1, assume that the FS-HF solution at time step 𝑛 + 1 is initialized to the M-HF solution at time step 𝑛, i.e.

𝐮𝑛+1,0ℎ = 𝐮𝑛ℎ, 𝑝𝑛+1,0ℎ = 𝑝𝑛ℎ, 𝜃𝑛+1,0ℎ = 𝜃𝑛ℎ.

hen, the FS-HF solution defined in (9) converges to the solution of the M-HF method (6):

‖𝐮𝑛+1,𝑖ℎ − 𝐮𝑛+1ℎ ‖1 → 0, ‖𝑝𝑛+1,𝑖ℎ − 𝑝𝑛+1ℎ ‖ → 0, ‖𝜃𝑛+1,𝑖ℎ − 𝜃𝑛+1ℎ ‖ → 0

s 𝑖 → ∞.

roof. We first recall that

(𝑒𝑖+1 − 𝑒𝑖, 𝑒𝑖+1) = 1
2
(

‖𝑒𝑖+1 − 𝑒𝑖‖2 + ‖𝑒𝑖+1‖2 − ‖𝑒𝑖‖2
)

(18)

olds for any 𝑒𝑖, 𝑒𝑖+1 in 𝐿2(𝛺). Now, take 𝐯 = 𝑒𝑖+1𝐮 , 𝑤 = 𝛥𝑡 𝑒𝑖+1𝑝 , 𝑠 = 𝛥𝑡 𝑒𝑖+1𝜃 ∕𝜃0 in (10), add the three equations, and apply (18) to
obtain

2𝜇‖𝜀(𝑒𝑖+1𝐮 )‖2 + 𝜆‖∇ ⋅ 𝑒𝑖+1𝐮 ‖

2 + 𝑐0‖𝑒
𝑖+1
𝑝 ‖

2 +
𝐶𝑑
𝜃0

‖𝑒𝑖+1𝜃 ‖

2

+ 𝛥𝑡
(

‖𝐊
1
2 ∇𝑒𝑖+1𝑝 ‖

2 + 1
𝜃0

‖𝐃
1
2 ∇𝑒𝑖+1𝜃 ‖

2
)

+ 𝐿
2

𝛼2

𝐾𝑑𝑟

(

‖𝑒𝑖+1𝑝 − 𝑒𝑖𝑝‖
2 + ‖𝑒𝑖+1𝑝 ‖

2 − ‖𝑒𝑖𝑝‖
2
)

+ 9
2
𝐿𝛼2𝑇𝐾𝑑𝑟

(

‖𝑒𝑖+1𝜃 − 𝑒𝑖𝜃‖
2 + ‖𝑒𝑖+1𝜃 ‖

2 − ‖𝑒𝑖𝜃‖
2) − 𝛼(𝑒𝑖+1𝑝 ,∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮))

− 3𝛼𝑇𝐾𝑑𝑟(𝑒𝑖+1𝜃 ,∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)) = 3𝛼𝑚(𝑒𝑖𝜃 , 𝑒
𝑖+1
𝑝 ) + 3𝛼𝑚(𝑒𝑖𝑝, 𝑒

𝑖+1
𝜃 ).

The last two terms on the left-hand side of the above equation can be replaced by

−2𝜇(𝜀(𝑒𝑖+1𝐮 ), 𝜀(𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)) − 𝜆(∇ ⋅ 𝑒𝑖+1𝐮 ,∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)),

which is obtained by taking 𝐯 = −(𝑒𝑖+1𝐮 − 𝑒𝑖𝐮) in (10a). Then, applying Young’s inequality to the last two terms on the left-hand side
and to the two terms on the right-hand side, we obtain

2𝜇‖𝜀(𝑒𝑖+1𝐮 )‖2 + 𝜆‖∇ ⋅ 𝑒𝑖+1𝐮 ‖

2 + 𝑐0‖𝑒
𝑖+1
𝑝 ‖

2 +
𝐶𝑑
𝜃0

‖𝑒𝑖+1𝜃 ‖

2 + 𝛥𝑡
(

‖𝐊
1
2 ∇𝑒𝑖+1𝑝 ‖

2 + 1
𝜃0

‖𝐃
1
2 ∇𝑒𝑖+1𝜃 ‖

2
)

+ 𝐿
2

𝛼2

𝐾𝑑𝑟

(

‖𝑒𝑖+1𝑝 − 𝑒𝑖𝑝‖
2 + ‖𝑒𝑖+1𝑝 ‖

2 − ‖𝑒𝑖𝑝‖
2
)

+ 9
2
𝐿𝛼2𝑇𝐾𝑑𝑟

(

‖𝑒𝑖+1𝜃 − 𝑒𝑖𝜃‖
2 + ‖𝑒𝑖+1𝜃 ‖

2 − ‖𝑒𝑖𝜃‖
2)

− 𝛿
2
(

2𝜇‖𝜀(𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖
2 + 𝜆‖∇ ⋅ (𝑒𝑖+1𝐮 − 𝑒𝑖𝐮)‖

2) − 1
2𝛿

(

2𝜇‖𝜀(𝑒𝑖+1𝐮 )‖2 + 𝜆‖∇ ⋅ 𝑒𝑖+1𝐮 ‖

2)

≤
3𝛼𝑚
2

(

‖𝑒𝑖+1𝑝 ‖

2 + ‖𝑒𝑖+1𝜃 ‖

2 + ‖𝑒𝑖𝑝‖
2 + ‖𝑒𝑖𝜃‖

2
)

,

where 𝛿 > 0 is a positive constant. After collecting terms with the superscript 𝑖 + 1 on the left-hand side and the terms with 𝑖 on
the right-hand side, we bound the left-hand side below. Specifically, we use the assumptions in (16) for the coefficients of ‖𝑒𝑖+1𝑝 ‖

2

and ‖𝑒𝑖+1𝜃 ‖

2, and the uniform ellipticity (2) and (3), and Poincaré inequality for the flow and heat flux terms, and (12) for the terms
involving 𝑒𝑖+1𝐮 − 𝑒𝑖𝐮. Then, we can arrive at the following inequality:

(

1 − 1
2𝛿

)

(

2𝜇‖𝜀(𝑒𝑖+1𝐮 )‖2 + 𝜆‖∇ ⋅ 𝑒𝑖+1𝐮 ‖

2) +
(

3𝛼𝑚
2

+ 𝐿
2

𝛼2

𝐾𝑑𝑟
+

𝑘𝑚𝑖𝑛
𝐶𝛺

𝛥𝑡
)

‖𝑒𝑖+1𝑝 ‖

2

+
(

3𝛼𝑚
2

+ 𝐿
2
9𝛼2𝑇𝐾𝑑𝑟 +

𝑑𝑚𝑖𝑛
𝐶𝛺

𝛥𝑡
𝜃0

)

‖𝑒𝑖+1𝜃 ‖

2 +
(𝐿
2
− 𝛿

) 𝛼2

𝐾𝑑𝑟

(

‖𝑒𝑖+1𝑝 − 𝑒𝑖𝑝‖
2
)

+
(𝐿
2
− 𝛿

)

9𝛼2𝑇𝐾𝑑𝑟
(

‖𝑒𝑖+1𝜃 − 𝑒𝑖𝜃‖
2)

≤
(

3𝛼𝑚
2

+ 𝐿
2

𝛼2

𝐾𝑑𝑟

)

‖𝑒𝑖𝑝‖
2 +

(

3𝛼𝑚
2

+ 9
2
𝐿𝛼2𝑇𝐾𝑑𝑟

)

‖𝑒𝑖𝜃‖
2,

where 𝐶𝛺 is a constant from the Poincaré inequality. Now, due to the assumptions in (17), both
(

1 − 1
2𝛿

)

and
(

𝐿
2 − 𝛿

)

are
onnegative, hence we have

(

3𝛼𝑚 + 𝐿 𝛼2

𝐾𝑑𝑟
+

2𝑘𝑚𝑖𝑛
𝐶𝛺

𝛥𝑡
)

‖𝑒𝑖+1𝑝 ‖

2 +
(

3𝛼𝑚 + 9𝐿𝛼2𝑇𝐾𝑑𝑟 +
2𝑑𝑚𝑖𝑛
𝐶𝛺

𝛥𝑡
𝜃0

)

‖𝑒𝑖+1𝜃 ‖

2

≤
(

3𝛼𝑚 + 𝐿 𝛼2

𝐾𝑑𝑟

)

‖𝑒𝑖𝑝‖
2 +

(

3𝛼𝑚 + 9𝐿𝛼2𝑇𝐾𝑑𝑟
)

‖𝑒𝑖𝜃‖
2.

Now, let

𝐶̃ = min
⎧

⎪

⎨

⎪

2𝑘𝑚𝑖𝑛𝛥𝑡

𝐶𝛺(3𝛼𝑚 + 𝐿 𝛼2 )
,

2𝑑𝑚𝑖𝑛𝛥𝑡
𝐶𝛺𝜃0(3𝛼𝑚 + 9𝐿𝛼2𝑇𝐾𝑑𝑟)

⎫

⎪

⎬

⎪

. (19)
6

⎩

𝐾𝑑𝑟 ⎭
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Then, we have

(1 + 𝐶̃)
[(

3𝛼𝑚 + 𝐿 𝛼2

𝐾𝑑𝑟

)

‖𝑒𝑖+1𝑝 ‖

2 + (3𝛼𝑚 + 9𝐿𝛼2𝑇𝐾𝑑𝑟)‖𝑒𝑖+1𝜃 ‖

2
]

≤
(

3𝛼𝑚 + 𝐿 𝛼2

𝐾𝑑𝑟

)

‖𝑒𝑖𝑝‖
2 +

(

3𝛼𝑚 + 9𝐿𝛼2𝑇𝐾𝑑𝑟
)

‖𝑒𝑖𝜃‖
2. (20)

If we define a norm |||⋅||| in 𝑊ℎ × 𝛩ℎ by

|||(𝑤, 𝑠)|||2 =
(

3𝛼𝑚 + 𝐿 𝛼2

𝐾𝑑𝑟

)

‖𝑤‖

2 +
(

3𝛼𝑚 + 9𝐿𝛼2𝑇𝐾𝑑𝑟
)

‖𝑠‖2 ∀(𝑤, 𝑠) ∈ 𝑊ℎ × 𝛩ℎ,

hen, (20) can be rewritten as
|

|

|

|

|

|

|

|

|

(𝑒𝑖+1𝑝 , 𝑒𝑖+1𝜃 )||
|

|

|

|

|

|

|

2
≤ 1

1 + 𝐶̃
|

|

|

|

|

|

|

|

|

(𝑒𝑖𝑝, 𝑒
𝑖
𝜃)
|

|

|

|

|

|

|

|

|

2
. (21)

Therefore, ||
|

|

|

|

|

|

|

(𝑒𝑖𝑝, 𝑒
𝑖
𝜃)
|

|

|

|

|

|

|

|

|

→ 0 as 𝑖 → ∞, which also implies that ‖𝑒𝑖𝑝‖ → 0 and ‖𝑒𝑖𝜃‖ → 0. In order to prove the convergence of ‖𝑒𝑖𝐮‖1 → 0,
first obtain

2𝜇‖𝜀(𝑒𝑖+1𝐮 )‖2 + 𝜆‖∇ ⋅ (𝑒𝑖+1𝐮 )‖2 ≤ 2
(

𝛼2

𝐾𝑑𝑟
‖𝑒𝑖+1𝑝 ‖

2 + 9𝛼2𝑇𝐾𝑑𝑟‖𝑒
𝑖+1
𝜃 ‖

2
)

(22)

in the same manner as in the proof of Lemma 3.2, and recall Korn’s inequality, stating that there is a constant 𝐶𝑘𝑜𝑟𝑛 > 0 such that

𝐶𝑘𝑜𝑟𝑛‖𝐯‖21 ≤ ‖𝜀(𝐯)‖2 ∀𝐯 ∈ [𝐻1
0 (𝛺)]𝑑 .

sing these two results, we have

‖𝑒𝑖+1𝐮 ‖

2
1 ≤

1
𝜇𝐶𝑘𝑜𝑟𝑛

(

𝛼2

𝐾𝑑𝑟
‖𝑒𝑖+1𝑝 ‖

2 + 9𝛼2𝑇𝐾𝑑𝑟‖𝑒
𝑖+1
𝜃 ‖

2
)

.

s the quantity on the right-hand side goes to 0 as 𝑖 → ∞, ‖𝑒𝑖𝐮‖1 also goes to 0 as 𝑖 → ∞. □

emark 3.1. Similar constraints to the ones in (16) were needed to prove the well-posedness and convergence of numerical methods
or thermo-poroelasticity in [17,36,37]. On the other hand, Kim [3] proved unconditional stability for an extended fixed-stress split
or a nonlinear thermo-poroelasticity model.

. Projection-based reduced order models

In this section, we discuss projection-based reduced order models (ROMs) based on compression of the time history of the
olutions provided by one of the high-fidelity methods (either M-HF or FS-HF method) from Section 3. Such compression comprises
he offline stage (or training) of the ROM and will result in a reduced basis of small dimension 𝑟. The reduced basis will be obtained
y means of the proper orthogonal decomposition (POD) algorithm, see Section 4.1. The online stage (or evaluation) of the ROM
ill then consist of a Galerkin method applied on either the fully-coupled scheme (Section 4.2) or the fixed-stress iterative scheme
Section 4.3). Convergence of the fixed-stress iterative ROM scheme to the solution of the fully-coupled ROM scheme will be proven
n Section 4.4.

.1. Proper orthogonal decomposition

Let 𝜙 = 𝐮ℎ, 𝑝ℎ, 𝜃ℎ denote one of the components of the solution field, the displacement, pressure, and temperature, respectively.
hen, {𝜙𝑛}𝑁𝑛=0 denote the sequence obtained by collecting such a component at different times, 𝑡

0,… , 𝑡𝑁 . The proper orthogonal
ecomposition [19–21] is a data analysis method that aims to obtain an equivalent representation of the sequence {𝜙𝑛}𝑁𝑛=0 as a
inear combination of at most 𝑁 + 1 orthogonal modes 𝜑0,… , 𝜑𝑁 and define information content indices 𝜈0,… , 𝜈𝑁 associated to
ach corresponding mode. Assuming the latter to be sorted as 𝜈0 ≥ 𝜈1 ≥ … ≥ 𝜈𝑁 , POD is typically used as a data compression tool
o obtain an approximate representation in the linear space 𝛷𝑟 = span(𝜑0,… , 𝜑𝑟−1), truncating the combination to the first 𝑟 modes
or some 𝑟 ≤ 𝑁 and neglecting the modes 𝜑𝑟,… , 𝜑𝑁 associated to indices 𝜈𝑟,… , 𝜈𝑁 with small information content.
In the context of ROMs, the primary interest of the application of POD is in the generation of the space 𝛷𝑟, to be called the reduced

asis space. To this end, we will focus on the so-called method of snapshots, even though alternative presentations are possible, for
nstance by means of the singular value decomposition or the principal component analysis [19–21]. First of all, the method of
napshots requires solving the following eigenvalue problem

𝐂𝜙𝐯 = 𝜈 𝐯, where
[

𝐂𝜙]
𝑛𝑚 = (𝜙𝑛, 𝜙𝑚)1 for every 𝑛, 𝑚 = 0,… , 𝑁. (23)

Since the matrix 𝐂𝜙 ∈ R(𝑁+1)×(𝑁+1) is symmetric positive definite by construction, its eigenvalues 𝜈0,… , 𝜈𝑁 are real and positive
and, without loss of generality, can be assumed to be sorted in decreasing order. Denoting by 𝐯𝑛 ∈ R𝑁+1 the eigenvector associated
with the eigenvalue 𝜈𝑛, the 𝑛th POD mode is then computed as

𝜑𝑛 =
1

√

𝑁
∑

[

𝐯𝑛
]

𝛽 𝜙
𝛽 . (24)
7
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Indeed, the obtained POD modes are (⋅, ⋅)1-orthonormal. To see this, first note that 𝐯𝑇𝑛 𝐯𝑚 = 𝛿𝑛𝑚, where 𝛿𝑛𝑚 is the Kronecker delta
function. Then, we obtain

(

𝜑𝑛, 𝜑𝑚
)

1 =
1

√

𝜈𝑛𝜈𝑚

( 𝑁
∑

𝛽=0

[

𝐯𝑛
]

𝛽 𝜙
𝛽 ,

𝑁
∑

𝛾=0

[

𝐯𝑚
]

𝛾 𝜙
𝛾

)

1

= 1
√

𝜈𝑛𝜈𝑚

𝑁
∑

𝛽=0

𝑁
∑

𝛾=0

[

𝐯𝑛
]

𝛽

[

𝐯𝑚
]

𝛾

[

𝐂𝜙]
𝛽,𝛾

= 1
√

𝜈𝑛𝜈𝑚
𝐯𝑇𝑛 𝐂

𝜙𝐯𝑚 =
𝜈𝑚

√

𝜈𝑛𝜈𝑚
𝐯𝑇𝑛 𝐯𝑚 = 𝛿𝑛𝑚. (25)

Finally, we notice that POD modes 𝜑0,… , 𝜑𝑁 satisfy homogeneous Dirichlet boundary conditions if the input sequence 𝜙0,… , 𝜙𝑁

is zero on 𝜕𝛺. This easily follows by taking the trace of (24) on 𝜕𝛺. Therefore, any element in 𝛷𝑟 is by construction equal to zero
on 𝜕𝛺.

4.2. Monolithic reduced order model (M-ROM)

In this section, we describe a projection-based ROM, which builds upon the fully-coupled monolithic (M-HF) scheme introduced
in Section 3.1 as a high-fidelity discretization. During the offline stage, the high-fidelity discretization is queried to obtain three
sequences,

{

𝐮𝑛ℎ
}𝑁
𝑛=0,

{

𝑝𝑛ℎ
}𝑁
𝑛=0, and

{

𝜃𝑛ℎ
}𝑁
𝑛=0, representing the time history of the displacement, pressure, and temperature fields,

respectively. Upon selecting a reduced basis size 𝑟 ≤ 𝑁 and applying POD to each sequence
{

𝐮𝑛ℎ
}𝑁
𝑛=0,

{

𝑝𝑛ℎ
}𝑁
𝑛=0, and

{

𝜃𝑛ℎ
}𝑁
𝑛=0 as

discussed in Section 4.1, we obtain the following reduced basis spaces

𝑽 𝑟 = span
{

𝜑𝐮
1 ,… , 𝜑𝐮

𝑟
}

, 𝑊𝑟 = span
{

𝜑𝑝
1,… , 𝜑𝑝

𝑟
}

, 𝛩𝑟 = span
{

𝜑𝜃
1 ,… , 𝜑𝜃

𝑟
}

,

respectively.
During the online stage, the ROM is a Galerkin method for problem (5) on the reduced basis space 𝑽 𝑟 ×𝑊𝑟 ×𝛩𝑟. Therefore, the

fully-coupled monolithic ROM (M-ROM) scheme for (5) reads as follows: Given (𝐮𝑛𝑟 , 𝑝
𝑛
𝑟 , 𝜃

𝑛
𝑟 ) ∈ 𝑽 𝑟 ×𝑊𝑟 × 𝛩𝑟, find (𝐮𝑛+1𝑟 , 𝑝𝑛+1𝑟 , 𝜃𝑛+1𝑟 ) ∈

𝑽 𝑟 ×𝑊𝑟 × 𝛩𝑟 such that

2𝜇(𝜀(𝐮𝑛+1𝑟 ), 𝜀(𝐯)) + 𝜆(∇ ⋅ 𝐮𝑛+1𝑟 ,∇ ⋅ 𝐯) − 𝛼(𝑝𝑛+1𝑟 ,∇ ⋅ 𝐯) − 3𝛼𝑇𝐾𝑑𝑟(𝜃𝑛+1𝑟 ,∇ ⋅ 𝐯)

= (𝐟𝑛+1, 𝐯), (26a)

𝑐0

(

𝑝𝑛+1𝑟 − 𝑝𝑛𝑟
𝛥𝑡

,𝑤

)

+ 𝛼

(

∇ ⋅ 𝐮𝑛+1𝑟 − ∇ ⋅ 𝐮𝑛𝑟
𝛥𝑡

,𝑤

)

− 3𝛼𝑚

(

𝜃𝑛+1𝑟 − 𝜃𝑛𝑟
𝛥𝑡

,𝑤

)

+ (𝐊∇𝑝𝑛+1𝑟 ,∇𝑤) = (𝑔𝑛+1, 𝑤), (26b)

𝐶𝑑

(

𝜃𝑛+1𝑟 − 𝜃𝑛𝑟
𝛥𝑡

, 𝑠

)

+ 3𝛼𝑇𝐾𝑑𝑟𝜃0

(

∇ ⋅ 𝐮𝑛+1𝑟 − ∇ ⋅ 𝐮𝑛𝑟
𝛥𝑡

, 𝑠

)

− 3𝛼𝑚𝜃0

(

𝑝𝑛+1𝑟 − 𝑝𝑛𝑟
𝛥𝑡

, 𝑠

)

+ (𝐃∇𝜃𝑛+1𝑟 ,∇𝑠) = (𝜂𝑛+1, 𝑠), (26c)

for any (𝐯, 𝑤, 𝑠) ∈ 𝑽 𝑟 × 𝑊𝑟 × 𝛩𝑟. Even though (6) and (26) are both obtained by means of a Galerkin method, the fundamental
difference is that the reduced basis space 𝑽 𝑟 ×𝑊𝑟 ×𝛩𝑟 employed in (26) is of small dimension 3𝑟, owing to the compression carried
out by POD.

In order to highlight further differences between (6) and (26), let 𝐮𝑛+1𝑟 ∈ R𝑟 be the vector whose components are the M-ROM
degrees of freedom for 𝐮𝑛+1𝑟 ∈ 𝑽 𝑟, i.e.

𝐮𝑛+1𝑟 =
𝑟
∑

𝛽=0
[𝐮𝑛+1𝑟 ]𝛽𝜑𝐮

𝛽 .

imilarly, let 𝐩𝑛+1
𝑟

∈ R𝑟 and 𝜽𝑛+1𝑟 ∈ R𝑟 be the vector whose components are the M-ROM degrees of freedom for 𝑝𝑛+1𝑟 ∈ 𝑊𝑟 and
𝜃𝑛+1𝑟 ∈ 𝛩𝑟, respectively. The system (26) can thus be written in the following block-matrix form

⎡

⎢

⎢

⎣

𝐀𝐮𝐮
𝑟 𝐀𝐮𝑝

𝑟 𝐀𝐮𝜃
𝑟

𝐌𝑝𝐮
𝑟 𝐌𝑝𝑝

𝑟 + 𝐀𝑝𝑝
𝑟 𝐌𝑝𝜃

𝑟
𝐌𝜃𝐮

𝑟 𝐌𝜃𝑝
𝑟 𝐌𝜃𝜃

𝑟 + 𝐀𝜃𝜃
𝑟 ,

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐮𝑛+1𝑟
𝐩𝑛+1
𝑟

𝜽𝑛+1𝑟

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝟎 𝟎 𝟎
𝐌𝑝𝐮

𝑟 𝐌𝑝𝑝
𝑟 𝐌𝑝𝜃

𝑟
𝐌𝜃𝐮

𝑟 𝐌𝜃𝑝
𝑟 𝐌𝜃𝜃

𝑟

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐮𝑛𝑟
𝐩𝑛
𝑟

𝜽𝑛𝑟

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

𝐟𝑛+1𝑟
𝐠𝑛+1
𝑟

𝜼𝑛+1
𝑟

⎤

⎥

⎥

⎥

⎦

(27)

where the expressions of matrices and vectors appearing in the block formulation are summarized in Table 1. Indeed, matrices in
Table 1 can be assembled once and for all at the end of the offline stage since such computations involve integration over the finite
element mesh ℎ. Similarly, vectors in Table 1 can be pre-assembled at the end of the offline stage for every 𝑛 = 1,… , 𝑁 and stored.
During the online stage, iterating in time through (27) can finally be carried out at a vastly decreased computational cost since (i)
the assembly of the block system only requires loading 𝑟 × 𝑟 matrices and vectors of dimension 𝑟 in Table 1 from storage without
necessitating any operation involving the finite element  , and (ii) the resulting linear system is of small size 3𝑟 × 3𝑟.
8
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Table 1
Definitions of ROM matrices and vectors in (27). Here 𝛽, 𝛾 = 1,… , 𝑟.
ROM matrices ROM vectors

[𝐀𝐮𝐮
𝑟 ]𝛽𝛾 = 2𝜇(𝜀(𝜑𝐮

𝛾 ), 𝜀(𝜑
𝐮
𝛽 )) + 𝜆(∇ ⋅ 𝜑𝐮

𝛾 ,∇ ⋅ 𝜑𝐮
𝛽 ), [𝐟𝑛+1𝑟 ]𝛽 = (𝐟𝑛+1 , 𝜑𝐮

𝛽 ),
[𝐀𝜃𝜃

𝑟 ]𝛽𝛾 = (𝐃∇𝜑𝜃
𝛾 ,∇𝜑

𝜃
𝛽 ), [𝐀𝑝𝑝

𝑟 ]𝛽𝛾 = (𝐊∇𝜑𝑝
𝛾 ,∇𝜑

𝑝
𝛽 ), [𝐠𝑛+1

𝑟
]𝛽 = (𝑔𝑛+1 , 𝜑𝑝

𝛽 ),
[𝐀𝐮𝜃

𝑟 ]𝛽𝛾 = −3𝛼𝑇𝐾𝑑𝑟(𝜑𝜃
𝛾 ,∇ ⋅ 𝜑𝐮

𝛽 ), [𝐀𝐮𝑝
𝑟 ]𝛽𝛾 = −𝛼(𝜑𝑝

𝛾 ,∇ ⋅ 𝜑𝐮
𝛽 ), [𝜼𝑛+1

𝑟
]𝛽 = (𝜂𝑛+1 , 𝜑𝜃

𝛽 ).

[𝐌𝜃𝜃
𝑟 ]𝛽𝛾 = 𝐶𝑑

( 𝜑𝜃
𝛾

𝛥𝑡
, 𝜑𝜃

𝛽

)

, [𝐌𝑝𝑝
𝑟 ]𝛽𝛾 = 𝑐0

(

𝜑𝑝
𝛾

𝛥𝑡
, 𝜑𝑝

𝛽

)

,

[𝐌𝜃𝐮
𝑟 ]𝛽𝛾 = 3𝛼𝑇𝐾𝑑𝑟𝜃0

( ∇⋅𝜑𝐮
𝛾

𝛥𝑡
, 𝜑𝜃

𝛽

)

, [𝐌𝜃𝑝
𝑟 ]𝛽𝛾 = −3𝛼𝑚𝜃0

(

𝜑𝑝
𝛾

𝛥𝑡
, 𝜑𝜃

𝛽

)

,

[𝐌𝑝𝐮
𝑟 ]𝛽𝛾 = 𝛼

( ∇⋅𝜑𝐮
𝛾

𝛥𝑡
, 𝜑𝑝

𝛽

)

, [𝐌𝑝𝜃
𝑟 ]𝛽𝛾 = −3𝛼𝑚

( 𝜑𝜃
𝛾

𝛥𝑡
, 𝜑𝑝

𝛽

)

,

[𝐒𝜃𝜃𝑟 ]𝛽𝛾 = 9𝐿𝛼2
𝑇𝐾𝑑𝑟𝜃0

( 𝜑𝜃
𝛾

𝛥𝑡
, 𝜑𝜃

𝛽

)

, [𝐒𝑝𝑝𝑟 ]𝛽𝛾 = 𝐿 𝛼2

𝐾𝑑𝑟

(

𝜑𝑝
𝛾

𝛥𝑡
, 𝜑𝑝

𝛽

)

.

4.3. Fixed-stress reduced order model (FS-ROM)

In this section, we further describe a projection-based ROM built upon the fixed-stress high-fidelity (FS-HF) iterative scheme
escribed in Section 3.2. During the offline stage, the FS-HF scheme is queried to obtain the time evolution

{

𝐮𝑛,∞ℎ
}𝑁
𝑛=0,

{

𝑝𝑛,∞ℎ
}𝑁
𝑛=0

and
{

𝜃𝑛,∞ℎ
}𝑁
𝑛=0 of displacement, pressure and temperature fields, respectively, where the superscript 𝑛,∞ denotes the converged

solutions at time step 𝑛. We notice that in practice the number of iterations will not be ∞ upon defining suitable stopping criteria
in Section 5.1. Those sequences are then compressed by means of POD to obtain the reduced basis spaces 𝑽 𝐹𝑆

𝑟 ,𝑊 𝐹𝑆
𝑟 and 𝛩𝐹𝑆

𝑟 upon
proceeding as in Section 4.2. We notice that the obtained reduced basis spaces 𝑽 𝐹𝑆

𝑟 ,𝑊 𝐹𝑆
𝑟 and 𝛩𝐹𝑆

𝑟 are in principle different from
𝑽 𝑟,𝑊𝑟 and 𝛩𝑟 obtained in Section 4.2 since the former is obtained by applying POD to solutions of the FS-HF scheme, while the
latter is the result of a compression of solutions computed by the M-HF scheme. For the sake of a simpler notation, however, we
will drop the suffix 𝐹𝑆 from the reduced basis spaces 𝑽 𝐹𝑆

𝑟 ,𝑊 𝐹𝑆
𝑟 , and 𝛩𝐹𝑆

𝑟 , still understanding that reduced basis spaces employed
in this section are generated from the FS-HF scheme, rather than the M-HF one.

During the online stage, given an initialization (𝐮𝑛+1,0𝑟 , 𝑝𝑛+1,0𝑟 , 𝜃𝑛+1,0𝑟 ) ∈ 𝑽 𝑟 × 𝑊𝑟 × 𝛩𝑟, the ROM uses a Galerkin projection of a
fixed-stress iterative scheme to generate infinite sequences {𝐮𝑛+1,𝑖+1𝑟 }∞𝑖=0 ⊂ 𝑽 𝑟, {𝑝

𝑛+1,𝑖+1
𝑟 }∞𝑖=0 ⊂ 𝑊𝑟, and {𝜃𝑛+1,𝑖+1𝑟 }∞𝑖=0 ⊂ 𝛩𝑟.

Step 1-ROM. Given (𝐮𝑛+1,𝑖𝑟 , 𝑝𝑛+1,𝑖𝑟 , 𝜃𝑛+1,𝑖𝑟 ) ∈ 𝑽 𝑟 ×𝑊𝑟 × 𝛩𝑟, solve the flow problem for 𝑝𝑛+1,𝑖+1𝑟 ∈ 𝑊𝑟:

𝑐0

(

𝑝𝑛+1,𝑖+1𝑟 − 𝑝𝑛𝑟
𝛥𝑡

,𝑤

)

+ (𝐊∇𝑝𝑛+1,𝑖+1𝑟 ,∇𝑤) + 𝐿 𝛼2

𝐾𝑑𝑟

(

𝑝𝑛+1,𝑖+1𝑟 − 𝑝𝑛+1,𝑖𝑟
𝛥𝑡

,𝑤

)

= (𝑔𝑛+1, 𝑤) − 𝛼

(

∇ ⋅

(

𝐮𝑛+1,𝑖𝑟 − 𝐮𝑛𝑟
𝛥𝑡

)

, 𝑤

)

+ 3𝛼𝑚

(

𝜃𝑛+1,𝑖𝑟 − 𝜃𝑛𝑟
𝛥𝑡

,𝑤

)

∀𝑤 ∈ 𝑊𝑟. (28a)

Step 2-ROM. Given (𝐮𝑛+1,𝑖𝑟 , 𝑝𝑛+1,𝑖𝑟 , 𝜃𝑛+1,𝑖𝑟 ) ∈ 𝑽 𝑟 ×𝑊𝑟 × 𝛩𝑟, solve the heat problem for 𝜃𝑛+1,𝑖+1𝑟 ∈ 𝛩𝑟:

𝐶𝑑

(

𝜃𝑛+1,𝑖+1𝑟 − 𝜃𝑛𝑟
𝛥𝑡

, 𝑠

)

+ (𝐃∇𝜃𝑛+1,𝑖+1𝑟 ,∇𝑠) + 9𝐿𝛼2𝑇𝐾𝑑𝑟𝜃0

(

𝜃𝑛+1,𝑖+1𝑟 − 𝜃𝑛+1,𝑖𝑟
𝛥𝑡

, 𝑠

)

= (𝜂𝑛+1, 𝑠) + 3𝛼𝑚𝜃0

(

𝑝𝑛+1,𝑖𝑟 − 𝑝𝑛𝑟
𝛥𝑡

, 𝑠

)

− 3𝛼𝑇𝐾𝑑𝑟𝜃0

(

∇ ⋅

(

𝐮𝑛+1,𝑖𝑟 − 𝐮𝑛𝑟
𝛥𝑡

)

, 𝑠

)

∀𝑠 ∈ 𝛩𝑟. (28b)

tep 3-ROM. Given (𝐮𝑛+1,𝑖𝑟 , 𝑝𝑛+1,𝑖+1𝑟 , 𝜃𝑛+1,𝑖+1𝑟 ) ∈ 𝑽 𝑟 ×𝑊𝑟 × 𝛩𝑟, solve the mechanics problem for 𝐮𝑛+1,𝑖+1𝑟 ∈ 𝑽 𝑟:

2𝜇(𝜀(𝐮𝑛+1,𝑖+1𝑟 ), 𝜀(𝐯)) + 𝜆(∇ ⋅ 𝐮𝑛+1,𝑖+1𝑟 ,∇ ⋅ 𝐯)

= (𝐟𝑛+1, 𝐯) + 𝛼(𝑝𝑛+1,𝑖+1𝑟 ,∇ ⋅ 𝐯) + 3𝛼𝑇𝐾𝑑𝑟(𝜃𝑛+1,𝑖+1𝑟 ,∇ ⋅ 𝐯) ∀𝐯 ∈ 𝑽 𝑟. (28c)

Steps 1-ROM, 2-ROM, 3-ROM are repeated by increasing 𝑖 to 𝑖 + 1 until appropriate stopping criteria are satisfied. The specific
choice of the stopping criteria, as well as the procedure to initialize 𝐮𝑛+1,0𝑟 , 𝑝𝑛+1,0𝑟 and 𝜃𝑛+1,0𝑟 , will be discussed in Section 5.1.

The FS-ROM scheme can be equivalently reformulated in matrix form as follows. It generates the sequences {𝐮𝑛+1,𝑖+1𝑟 }∞𝑖=0 ⊂
R𝑟, {𝐩𝑛+1,𝑖+1

𝑟
}∞𝑖=0 ⊂ R𝑟, and {𝜽𝑛+1,𝑖+1𝑟 }∞𝑖=0 ⊂ R𝑟 containing their ROM degrees of freedom.

tep i-ROM. Given (𝐮𝑛+1,𝑖𝑟 ,𝐩𝑛+1,𝑖
𝑟

,𝜽𝑛+1,𝑖𝑟 ) ∈ R𝑟 × R𝑟 × R𝑟, solve the flow problem for 𝐩𝑛+1,𝑖+1
𝑟

∈ R𝑟:
(

𝐌𝑝𝑝
𝑟 + 𝐀𝑝𝑝

𝑟 + 𝐒𝑝𝑝𝑟
)

𝐩𝑛+1,𝑖+1
𝑟

= 𝐠𝑛+1
𝑟

−𝐌𝑝𝑝
𝑟 𝐩𝑛

𝑟
− 𝐒𝑝𝑝𝑟 𝐩𝑛+1,𝑖

𝑟

−𝐌𝑝𝐮 (𝐮𝑛+1,𝑖 − 𝐮𝑛
)

−𝐌𝑝𝜃 (𝜽𝑛+1,𝑖 − 𝜽𝑛
)

. (29a)
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Step ii-ROM. Given (𝐮𝑛+1,𝑖𝑟 ,𝐩𝑛+1,𝑖
𝑟

,𝜽𝑛+1,𝑖𝑟 ) ∈ R𝑟 × R𝑟 × R𝑟, solve the heat problem for 𝜽𝑛+1,𝑖+1𝑟 ∈ R𝑟:
(

𝐌𝜃𝜃
𝑟 + 𝐀𝜃𝜃

𝑟 + 𝐒𝜃𝜃𝑟
)

𝜽𝑛+1,𝑖+1𝑟 = 𝜼𝑛+1
𝑟

−𝐌𝜃𝜃
𝑟 𝜽𝑛𝑟 − 𝐒𝜃𝜃𝑟 𝜽𝑛+1,𝑖𝑟

−𝐌𝜃𝐮
𝑟

(

𝐮𝑛+1,𝑖𝑟 − 𝐮𝑛𝑟
)

−𝐌𝜃𝑝
𝑟

(

𝐩𝑛+1,𝑖
𝑟

− 𝐩𝑛
𝑟

)

. (29b)

tep iii-ROM. Given (𝐮𝑛+1,𝑖𝑟 ,𝐩𝑛+1,𝑖+1
𝑟

,𝜽𝑛+1,𝑖+1𝑟 ) ∈ R𝑟 × R𝑟 × R𝑟, solve the mechanics problem for 𝐮𝑛+1,𝑖+1𝑟 ∈ R𝑟:

𝐀𝐮𝐮
𝑟 𝐮𝑛+1,𝑖+1𝑟 = 𝐟𝑛+1𝑟 − 𝐀𝐮𝑝

𝑟 𝐩𝑛+1,𝑖+1
𝑟

− 𝐀𝐮𝜃
𝑟 𝜽𝑛+1,𝑖+1𝑟 . (29c)

To conclude, we note that (29) requires solving three linear systems of dimension 𝑟 × 𝑟. Matrices and vectors appearing in (29)
an be precomputed as in Table 1, where the final row of the table contains two further matrices associated with the stabilization
erms that were not required by M-ROM.

emark 4.1. Due to the evaluation of the ROM by means of a Galerkin projection, inf-sup stability does not necessarily get preserved
y the ROM, even if the HF scheme was inf-sup stable. This issue is studied especially for saddle point problems arising from
tokes and Navier–Stokes equations, see [38,39]. The typical recipe to ensure inf-sup stability is to perform enrichment of the
educed order spaces, as proposed in [38] for the Stokes problem. However, this procedure can sometimes be avoided in practice,
s discussed recently in [40–42]. The work in [41] shows how performing a Galerkin projection of a stabilized Navier–Stokes
roblem, which incorporates finite element stabilization terms, can effectively replace the enrichment of the reduced order spaces.
urthermore, [42] shows that ROM based on iterative coupling techniques for Navier–Stokes problems do not need enrichment.
ased on this experience, and the fact that (i) in [39], ROM solutions derived from spaces which lack inf-sup stability are very
isibly incorrect, with relative errors up to 100%, (ii) as in [42], our goal is to discuss a scheme with iterative coupling, and (iii)
s in [41], the iterative scheme contains some stabilization, in the next numerical results we will not perform any enrichment.
his will only empirically confirm that the resulting ROM is inf-sup stable, while further theoretical justifications are of relevant
athematical interest, but beyond the scope of this work.

.4. Convergence analysis of the FS-ROM

In this section, we retrace the convergence analysis carried out in Section 3.3 in order to adapt it to the FS-ROM introduced in
ection 4.3.

heorem 4.1. Assume that (16) and (17) hold. Furthermore, assume that the M-ROM online stage employs a Galerkin projection onto
he reduced basis spaces associated to FS-ROM. For a fixed 𝑛 + 1, assume that the FS-ROM solution at time step 𝑛 + 1 is initialized to the
-ROM solution at time step 𝑛, i.e.

𝐮𝑛+1,0𝑟 = 𝐮𝑛𝑟 , 𝑝𝑛+1,0𝑟 = 𝑝𝑛𝑟 , 𝜃𝑛+1,0𝑟 = 𝜃𝑛𝑟 .

Then, the FS-ROM solution defined in (28) converges to the solution of the M-ROM method (26):

‖𝐮𝑛+1,𝑖𝑟 − 𝐮𝑛+1𝑟 ‖1 → 0, ‖𝑝𝑛+1,𝑖𝑟 − 𝑝𝑛+1𝑟 ‖ → 0, ‖𝜃𝑛+1,𝑖𝑟 − 𝜃𝑛+1𝑟 ‖ → 0

s 𝑖 → ∞.

roof. Let 𝑒𝑖𝐮 = 𝐮𝑛+1,𝑖𝑟 −𝐮𝑛+1𝑟 ∈ 𝑽 𝑟, 𝑒𝑖𝑝 = 𝑝𝑛+1,𝑖𝑟 − 𝑝𝑛+1𝑟 ∈ 𝑊𝑟 and 𝑒𝑖𝜃 = 𝜃𝑛+1,𝑖𝑟 − 𝜃𝑛+1𝑟 ∈ 𝑽 𝑟. Upon subtracting (26a), (26b), and (26c) from
28c), (28a), and (28b) we obtain again (10), with the only exception that it must be now intended for any (𝐯, 𝑤, 𝑠) ∈ 𝑽 𝑟 ×𝑊𝑟 ×𝛩𝑟.
Also, Lemma 3.1 implies that the coercivity condition (11) also holds for any 𝐯 ∈ 𝑽 𝑟, since 𝑽 𝑟 ⊂ 𝑽 ℎ. Even with the modified
definitions of 𝑒𝑖𝐮, 𝑒𝑖𝑝 and 𝑒𝑖𝜃 defined above, the proof of Lemma 3.2 and the proof of the convergence in Theorem 3.1 follow in the
same manner as the original proofs. □

Remark 4.2. We notice that we cannot provide bounds to

‖𝐮𝑛+1,𝑖𝑟 − 𝐮𝑛+1ℎ ‖1, ‖𝑝𝑛+1,𝑖𝑟 − 𝑝𝑛+1ℎ ‖, ‖𝜃𝑛+1,𝑖𝑟 − 𝜃𝑛+1ℎ ‖ (30)

with the same technique used in the proofs of Lemma 3.2 and Theorem 3.1. Indeed, if we define our errors as 𝑒𝑖𝐮 = 𝐮𝑛+1,𝑖𝑟 −𝐮𝑛+1ℎ ∈ 𝑽 ℎ,
𝑒𝑖𝑝 = 𝑝𝑛+1,𝑖𝑟 − 𝑝𝑛+1ℎ ∈ 𝑊ℎ and 𝑒𝑖𝜃 = 𝜃𝑛+1,𝑖𝑟 − 𝜃𝑛+1ℎ ∈ 𝑽 ℎ, then we can obtain the same error equation, (10), as before but for any
(𝐯, 𝑤, 𝑠) ∈ 𝑽 𝑟×𝑊𝑟×𝛩𝑟. However, since (𝑒𝑖𝐮, 𝑒𝑖𝑝, 𝑒

𝑖
𝜃) ∈ 𝑽 ℎ×𝑊ℎ×𝛩𝑟, we cannot use these errors as test functions. As a result, the proofs

of Lemma 3.2 and Theorem 3.1 would not follow through. Instead, we will empirically quantify (30) by means of the numerical
experiments in the next section.
10
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5. Numerical experiments

In this section, we provide numerical experiments to validate and demonstrate the computational efficiency of the proposed
lgorithm. All the following computations are conducted by utilizing FEniCSx1 for HF computations, and RBniCSx2 for ROM
computations. FEniCSx and RBniCSx rely on PETSc3 for sparse and dense linear algebra, respectively. RBniCSx further queries
APACK4 for the solution of the dense eigenproblem (23)

.1. Example 1. Validation of ROM on test cases with smooth analytical solution

In this example, we validate our numerical methods against four different test cases with the given analytical solution, namely

𝐮(𝑥, 𝑦; 𝑡) = [sin(𝜋𝑥𝑡) cos(𝜋𝑦𝑡), cos(𝜋𝑥𝑡) sin(𝜋𝑦𝑡)]𝑇 𝑥𝑦(1 − 𝑥)(1 − 𝑦), (31a)

𝑝(𝑥, 𝑦; 𝑡) = cos(𝑡 + 𝑥 − 𝑦)𝑥𝑦(1 − 𝑥)(1 − 𝑦), (31b)

𝜃(𝑥, 𝑦; 𝑡) = sin(𝑡 + 𝑥 − 𝑦)𝑥𝑦(1 − 𝑥)(1 − 𝑦), (31c)

where (𝑥, 𝑦) ∈ 𝛺 = (0, 1)2 and 𝑡 ∈ I = (0, 𝑇 ] for some 𝑇 > 0 to be specified in each test case. We note that the factor 𝑥𝑦(1 − 𝑥)(1 − 𝑦)
in each solution variable guarantees that the solution satisfies homogeneous Dirichlet boundary conditions, in agreement with the
assumptions in the previous sections. The right-hand side functions 𝐟 , 𝑔, and 𝜂 in (1) are obtained from the expressions in (31).
urthermore, the physical parameters are chosen to be

𝜆 = 102, 𝜇 = 102, 𝑐0 = 1, 𝛼 = 1, 𝐾𝑑𝑟 = 𝜇 + 𝜆 = 2 ⋅ 102, 𝐊 = 10−5,

𝐶𝑑 = 1, 𝛼𝑇 = 10−3, 𝜃0 = 1, 𝛼𝑚 = 10−5, and 𝐃 = 10−5.

To compute the initial conditions at 𝑛 = 0, the M-HF and FS-HF schemes employ the linear interpolation of (31), while M-ROM
and FS-ROM employ the 𝐿2-projection of (31) on the reduced basis spaces. The stabilization parameter 𝐿 = 1 is employed in the
FS-HF and FS-ROM schemes. Initialization of the iterations at time 𝑛 + 1 is based on the assignment of the converged solution at
time 𝑛. Iterations for FS-HF will continue until the following conditions are satisfied

‖𝐮𝑛+1,𝑖+1ℎ − 𝐮𝑛+1,𝑖ℎ ‖1 ≤ 𝜖‖𝐮𝑛+1,𝑖+1ℎ ‖1,

‖𝑝𝑛+1,𝑖+1ℎ − 𝑝𝑛+1,𝑖ℎ ‖1 ≤ 𝜖‖𝑝𝑛+1,𝑖+1ℎ ‖1,

‖𝜃𝑛+1,𝑖+1ℎ − 𝜃𝑛+1,𝑖ℎ ‖1 ≤ 𝜖‖𝜃𝑛+1,𝑖+1ℎ ‖1,

where 𝜖 = 10−10. Similarly, the FS-ROM iterations will continue until

‖𝐮𝑛+1,𝑖+1𝑟 − 𝐮𝑛+1,𝑖𝑟 ‖R𝑟 ≤ 𝜖‖𝐮𝑛+1,𝑖+1𝑟 ‖R𝑟 ,

‖𝐩𝑛+1,𝑖+1
𝑟

− 𝐩𝑛+1,𝑖
𝑟

‖R𝑟 ≤ 𝜖‖𝐩𝑛+1,𝑖+1
𝑟

‖R𝑟 ,

‖𝜽𝑛+1,𝑖+1𝑟 − 𝜽𝑛+1,𝑖𝑟 ‖R𝑟 ≤ 𝜖‖𝜽𝑛+1,𝑖+1𝑟 ‖R𝑟 ,

where ‖ ⋅ ‖R𝑟 denotes the Euclidean norm; we note that such conditions still represent a stopping criteria on the relative ‖ ⋅ ‖1-norm
of the increment because, due to (25), the matrix representing the (⋅, ⋅)1 inner product on 𝑽 𝑟,𝑊𝑟 and 𝛩𝑟 is the identity. Furthermore,
we set the maximum iteration number as 20 throughout this example.

5.1.1. Example 1A. Validation of HF and ROM solvers by a mesh refinement analysis
As the first test case in Example 1, we validate the four distinct solvers discussed in the previous sections: M-HF (Section 3.1),

FS-HF (Section 3.2), M-ROM (Section 4.2), and FS-ROM (Section 4.3). In the domain 𝛺 of the unit square and for a final time
𝑇 = 1, we employ an initial spatial discretization of ℎ = 0.25, linear finite elements, and a temporal discretization of 𝛥𝑡 = 0.0025.
Subsequently, with each cycle, we reduce ℎ by half and divide 𝛥𝑡 by four. The convergence rate is then computed by employing
corresponding norms to calculate the errors (maximum over (0, 𝑇 ]) against the provided analytical solutions in (31).

To validate the ROM algorithm, for each cycle, we initially run the HF solver to generate sequences
{

𝐮𝑛ℎ
}𝑁
𝑛=0,

{

𝑝𝑛ℎ
}𝑁
𝑛=0,

{

𝜃𝑛ℎ
}𝑁
𝑛=0

in time. Then, we employ the POD algorithm as discussed in Section 4.1 to compress these sequences, focusing on retaining the first
five modes i.e., 𝑟 ≤ 5. The ROM’s performance is evaluated across five distinct scenarios, specifically for values of 𝑟 equal to 1, 2,
3, 4, and 5.

Results of the convergence analyses are plotted in Fig. 1 for the monolithic schemes (M-HF and M-ROM) and in Fig. 2 for the
fixed-stress iterative schemes (FS-HF and FS-ROM). Specifically, the left column illustrates results in the ‖ ⋅ ‖1-norm, whereas the
panels on the right show results in the ‖ ⋅ ‖-norm. The convergence analysis for the displacement 𝐮, pressure 𝑝, and temperature 𝜃
are arranged in three rows within the figure. The first row pertains to the displacement 𝐮, the second row to the pressure 𝑝, and the

1 https://github.com/FEniCS/dolfinx.
2 https://github.com/RBniCS/RBniCSx.
3 https://petsc.org.
4 https://www.netlib.org/lapack/.
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Fig. 1. Example 1A: convergence of the errors for the monolithic schemes (M-HF and M-ROM).

third row to the temperature 𝜃. For the M-HF scheme we observe a convergence rate of 2 for errors in the ‖ ⋅ ‖-norm and of 1 for
errors in the ‖ ⋅ ‖1-norm. Furthermore, since the solution of FS-HF converges to that of M-HF, as presented in Theorem 3.1, FS-HF
is expected to converge at the same rate as M-HF. Indeed, numerical results show that FS-HF achieves the same convergence rates.
Furthermore, with the exception of 𝑟 = 1, the ROM scheme also achieves identical convergence rates to the HF scheme used in its
training.

Fig. 3 highlights one of the main advantages of the ROM schemes, which is the reduction of computational cost. This advantage
becomes evident through the significant reduction in the number of degrees of freedom achieved by the ROM schemes in comparison
to the HF schemes. By accompanying this reduction with the precomputation of matrices and vectors in Table 1 we ensure that
the leading cost in the evaluation of the ROM scales only with the ROM dimension 𝑟, and is not affected by the HF mesh size.
12
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r

Fig. 2. Example 1A: convergence of the errors for the fixed-stress iterative schemes (FS-HF and FS-ROM).

Consequently, ROMs exhibit a remarkable speedup of two orders of magnitude when compared to the underlying HF discretization
for both monolithic and fixed-stress cases.

We further remark that, while decreasing the mesh size ℎ demands a higher CPU time for solving with the HF method, the
esults in Fig. 3 show that the ROM CPU time is not affected by mesh refinements. Indeed, the evaluation of the ROM only requires
solutions of 𝑟 × 𝑟 linear systems for the FS-ROM or 3𝑟 × 3𝑟 linear systems for the M-ROM regardless of the value of ℎ. Moreover,
increasing 𝑟 from 1 to 5 does not seem to increase the required CPU time either, since the solution of linear systems of dimension
at most 15 × 15 is computationally inexpensive.

On the other hand, a comparison between Figs. 3(a) and 3(b) highlights that the M-HF solver places lower computational demands
than the FS-HF solver. Indeed, the ratio between the CPU time of the M-HF solver and the FS-HF one ranges from 0.13 (largest
13
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Fig. 3. Example 1A: average CPU time per time step.

Fig. 4. Example 1A: average number of fixed-stress iterations.

value of ℎ) to 0.32 (smallest value of ℎ). We anticipate that the M-HF solver’s computational cost will eventually surpass that of the
S-HF solver in an asymptotic sense, but we refrain from further reducing the value of ℎ due to the computational costs. A similar
comparison illustrates that the M-ROM solver is an order of magnitude less expensive than the FS-ROM solver. Indeed, the ratio
between the M-ROM CPU time and the FS-ROM one is around 0.15 for every value of ℎ and 𝑟. This is again due to the fact that,
n the current realization, solving linear systems of dimension up to 15 × 15 requires a CPU time that is almost independent of the
dimension of the linear system. The M-ROM solver needs to solve only one small linear system, while the FS-ROM requires solving
3 linear systems per iteration.

Finally, Fig. 4 demonstrates that the average number of iterations necessary by FS-ROM for any given value of 𝑟 falls within the
range of 5 to 6. Moreover, except for the case when 𝑟 = 1, the FS-ROM exhibits an equivalent number of iterations as the FS-HF
solver.

5.1.2. Example 1B. Comparison of HF and ROM solvers in time
In the second test case in Example 1, we focus on the fixed stress iteration scheme and compare the errors between HF and ROM

solvers. Here, we use a mesh size of ℎ = 1∕16, linear finite elements, and a time step size of 𝛥𝑡 = 0.001. We set the final time to
be 𝑇 = 1, which is larger than the one used in Example 1A. We then train both M-ROM and FS-ROM schemes, compute at most 10
POD modes, and evaluate the ROMs on the same time interval (0, 𝑇 ] with the same time step size 𝛥𝑡. The larger number of POD
modes selected in this test case compared to Example 1A is due to the fact that the final time is now ten times larger than the one
employed in Example 1A.

First, Fig. 5 illustrates the relative errors with respect to the analytical solutions in (31) for the fixed-stress schemes. In particular,
the left column presents the results in the ‖ ⋅ ‖1-norm, whereas the right column shows the results in the ‖ ⋅ ‖-norm. The first row
pertains to the displacement 𝐮, the second row to the pressure 𝑝, and the third row to the temperature 𝜃. We observe that the ROM
14
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Fig. 5. Example 1B: relative errors (𝛿 = ℎ, 𝑟) with respect to the analytical solution for the fixed-stress iterative schemes (FS-HF and FS-ROM).

for 𝑟 = 1 is inaccurate, with relative errors up to 100% over the time interval (0, 𝑇 ], regardless of the solution component 𝐮, 𝑝 or
. For 𝑟 ≥ 3, the ROM solutions are as accurate as the HF results, with only minor discrepancies appearing at the beginning of the
ime interval (0, 𝑇 ] in Figs. 5(d) and 5(f). Furthermore, the error rises as time progresses.
Next, Fig. 6 demonstrates the performance of the FS-ROM scheme by comparing its solutions to those of the FS-HF scheme.

igs. 6(b)–6(b) show that 𝐮𝑟 converges very fast to 𝐮ℎ in the ‖ ⋅ ‖1 and ‖ ⋅ ‖-norm as 𝑟 increases. In particular, we observe an error
eduction of five orders of magnitude when increasing the value of 𝑟 from 𝑟 = 1 to 𝑟 = 5. Similarly, Figs. 6(a)–6(d) show a decrease
f more than one order of magnitude for 𝑝 within the first five POD modes, and Figs. 6(e)–6(f) a decrease of almost two orders of
magnitude for 𝜃.

Furthermore, Fig. 7 reports the comparisons of the total CPU time for both HF and ROM solvers. Analogous to Example 1A,
the ROM approach ensures a speedup of over two orders of magnitude, regardless of the specific value of 𝑟. Fig. 7 also depicts the
CPU time necessary for precomputation of the ROM operators summarized in Table 1. This observation leads us to conclude that
15
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Fig. 6. Example 1B: relative errors between the FS-ROM and the FS-HF scheme.

the precomputation of the ROM operators at the end of the offline stage is essential to achieve the desired speedup. This becomes
particularly crucial for larger values of 𝑟 as attempting to carry out ROM assembly during an online ROM solve would result in an
nline evaluation that is nearly as computationally intensive as the HF solve itself.
Lastly, we present the fixed-stress iteration counts for the FS-ROM in Fig. 8(a). Similar to Example 1A, the FS-ROM exhibits an

identical number of iterations when compared to the FS-HF solver. In addition, Fig. 8(b) presents the condition numbers for each
atrix in Step i-ROM, Step ii-ROM, and Step iii-ROM. We observe that the condition numbers increase mildly while 𝑟 increases.
urthermore, Fig. 8(c) presents the normalized eigenvalues of the POD compression, where 𝜈0 is the largest eigenvalue; the fast
16

ecay of the eigenvalues justifies limiting the ROM dimension to 𝑟 = 10 at most.
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i

Fig. 7. Example 1B: comparisons of total CPU times.

Fig. 8. Example 1B: (a) average number of fixed-stress iterations, (b) condition numbers of FS-ROM iteration matrices, and (c) POD normalized eigenvalues.

.1.3. Example 1C. ROM on a larger time interval than the HF solver
Employing ROM in Examples 1A and 1B serves well for validation purposes; however, its practical utility remains limited. This

s because the ROM, when trained on the time interval (0, 1] and evaluated on the same time interval, merely replicates pre-existing
solutions within the same time span. In the context of the third test case, we delve into the ROM’s extrapolation potential. Here,
we train the model on the time span (0, 0.1] and assess its performance on a more extensive interval, (0, 1].

First, Fig. 9 illustrates the relative errors with respect to the analytical solutions in (31) for the FS-HF and FS-ROM schemes in
the time interval (0, 1]. As in Fig. 6, the left column presents the results in the ‖ ⋅ ‖1-norm, whereas the right column shows the
results in the ‖ ⋅ ‖-norm. The first row pertains to the displacement 𝐮, the second row to the pressure 𝑝, and the third row to the
17
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Fig. 9. Example 1C: relative errors for 𝛿 = ℎ, 𝑟 with respect to the analytical solution for the fixed-stress iterative schemes (FS-HF and FS-ROM).

temperature 𝜃. We note that the errors for the FS-HF solver are now limited to the interval (0, 0.1] but the errors displayed in the
rest of the time interval [0.1, 1] is only reported for comparison purposes from the previous Example 1B.

Comparing the results in Fig. 9 to those obtained in Fig. 5 for Example 1B, one can notice that a ROM with 𝑟 = 5 is not as
accurate in Example 1B due to the errors from extrapolation. Still, increasing the reduced basis size to 𝑟 = 7 allows us to obtain a
solution that is as accurate as the solution of the FS-HF scheme.

Although this test case demonstrates a successful extrapolation in accuracy, such an achievement introduces additional challenges
for the ROM. Fig. 10(a) indicates that the average number of fixed-stress iterations from the FS-ROM is greater than that of the FS-HF
solver for 𝑟 ≥ 7. In addition, for 𝑟 ≥ 9, the FS-ROM scheme surpasses the maximum allowable limit of 20 iterations at each time
step. It is important to emphasize that this behavior does not contravene Theorem 4.1; rather, it stems from limitations in arithmetic
precision. To support this statement, we plot the condition numbers of the matrices appearing on the left-hand side of Step i-ROM,
18

Step ii-ROM, and Step iii-ROM (from the algorithm (29)) in Fig. 10(b). We notice that the condition numbers of the matrices from
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Fig. 10. Example 1C: (a) average number of fixed-stress iterations, (b) condition numbers of FS-ROM iteration matrices, (c) POD normalized eigenvalues, and
d) total CPU time.

tep iii-ROM is above 109 for 𝑟 ≥ 7 and the condition numbers of all matrices from Steps i-ROM, ii-ROM, and iii-ROM are above 109

or 𝑟 ≥ 9. From Fig. 10(c) we understand that this behavior is due to having added to the reduced basis some trailing POD modes
ssociated with eigenvalues which, in machine precision, are zero. Since such eigenvalues appear on the denominator of (24), the
mplification of numerical errors causes the trailing POD modes not to satisfy (25) anymore and may result in linearly dependent
OD modes. This behavior can be attributed to the use of a very small time interval during the training process. To observe this,
ompare Fig. 10(b) with Fig. 8(b), as well as Fig. 10(c) with Fig. 8(c). The increase in the number of fixed stress iterations also
esults in a mild increase of the CPU time required by the ROM, as shown in Fig. 10(d) for 𝑟 ≥ 7.

.1.4. Example 1D. ROM using a larger time step than the HF solver
For the last test case in Example 1, we explore the possibility of employing different time step sizes 𝛥𝑡 between the HF and the

OM solvers. Indeed, since the evaluation of the ROM still relies on time stepping through the interval (0, 𝑇 ], adopting a larger
ime step presents a way to further enhance the speed of online evaluation as it entails a reduction in the number of time instances.
ere, we set 𝛥𝑡 = 0.001 for FS-HF as in Example 1B, but FS-ROM with 𝛥𝑡 = 0.01, i.e. ten times larger than the one in Example 1B.
e consider 𝑇 = 1.
Fig. 11 displays the relative errors of the displacement, pressure, and temperature (in ‖ ⋅ ‖1 and ‖ ⋅ ‖ norms) with respect to

he analytical solutions in (31) for the FS-HF and FS-ROM schemes. Comparing Figs. 5 and 11, we conclude that employing the
S-ROM scheme with a larger time step introduces a larger time discretization error in the approximation of the pressure 𝑝 and the
emperature 𝜃. However, in Fig. 11, the errors in 𝑝𝑟 and 𝜃𝑟 still remain in the same order of magnitude as those for 𝑝ℎ and 𝜃ℎ, thus
ffering an approximation that could be accurate enough in several practical scenarios. Furthermore, the displacement 𝐮, which
xhibits minimal variation over time in this setup, can be precisely approximated even by a ROM that employs a larger time step
or time integration. In fact, there are negligible distinctions observed between 𝐮𝑟 and 𝐮ℎ.
As expected, choosing a larger time step decreases the online computational cost. Comparing Figs. 7 to 12, we realize that the

PU time is decreased by a factor of ten since the number of time instances is divided by ten. Finally, choosing a larger time step
oes not have a detrimental effect on the average number of FS-ROM iterations, which are still equal to the ones of the FS-HF
cheme, see Fig. 13.
19
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Fig. 11. Example 1D: relative errors (𝛿 = ℎ, 𝑟) with respect to the analytical solution for the fixed-stress iterative schemes (FS-HF and FS-ROM).

5.2. Example 2. A domain with parametric heterogeneities

The purpose of this example is to assess the capabilities of the proposed FS-ROM in a parametric setting with a more realistic
application problem. The domain 𝛺 = (0, 1)2 is divided into two subdomains, 𝛺1 and 𝛺2, with 𝛺1 being characterized by higher
permeability and conductivity than 𝛺2.

The heterogeneity of the domain is due to the differences in the values of 𝐃 and 𝐊 in 𝛺1 and 𝛺2, and it will be represented
by introducing a parameter 𝜔 . Specifically, 𝐃 = 1 and 𝐊 = 10−1 in 𝛺 , while 𝐃 = 10𝜔1 and 𝐊 = 10𝜔1−1 in 𝛺 . See Fig. 14(a) for
20
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Fig. 12. Example 1D: total CPU time.

Fig. 13. Example 1D: average number of fixed-stress iterations.

Fig. 14. Example 2. (a) setup of the computational domain 𝛺, (b) domain for the pair 𝝎 = (𝜔1 , 𝜔2). We note that Ptest is larger than Ptrain to consider extrapolation
of ROM.
21
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Fig. 15. Example 2. POD normalized eigenvalues 𝜈𝑘∕𝜈0.

llustration. We introduce another parameter 𝜔2 for the order of magnitude of the elastic properties of the material in 𝛺, where
= 𝜇 = 10𝜔2 . The remaining physical properties are independent of 𝜔1 or 𝜔2 and fixed as 𝛼 = 1, 𝛼𝑇 = 10−4, 𝛼𝑀 = 10−6, 𝑐0 = 10−2,

𝐶𝑑 = 1, and 𝜃0 = 1. The injection and production of the pressure and temperature are realized by the functions defined by

𝑔(𝑥, 𝑦) = 𝜂(𝑥, 𝑦) = 10−2
(

𝑒(−1000(𝑥−𝑥1)
2−1000(𝑦−𝑦1)2) − 𝑒(−1000(𝑥−𝑥2)

2−1000(𝑦−𝑦2)2)
)

,

where (𝑥1, 𝑦1) = (0.25, 0.5) and (𝑥2, 𝑦2) = (0.75, 0.5) [43]. The body force 𝐟 and the initial conditions for the displacement, pressure,
and temperature are all set to zero. As for the boundary conditions, we impose homogeneous Dirichlet boundary conditions for
the displacement and homogeneous Neumann boundary conditions for the pressure and temperature on the entire boundary, 𝜕𝛺.
Additionally, we choose a mesh size ℎ = 0.01, linear finite elements, and a time step size 𝛥𝑡 = 0.1 with the final time 𝑇 = 2, and the
stabilization parameter is again set to 𝐿 = 1.

Let 𝝎 ∶= (𝜔1, 𝜔2). During the training of the ROM, the parameter pair 𝝎 = (𝜔1, 𝜔2) is varied in a given training set Ptrain =
[−3, 0] × [−1, 1]. Then, to assess the extrapolation capabilities of M-ROM and FS-ROM, the parameter 𝝎 is allowed to have a larger
variation during the evaluation of the ROM. More specifically, 𝝎 is chosen from the test parameter space Ptest = [−4, 1] × [−2, 2],
which is larger than Ptrain. See Fig. 14(b) for illustration.

On the other hand, we let iterations continue until the relative increment in the ‖⋅‖1-norm becomes less than 𝜖 = 10−3 or it reaches
a maximum of 20 iterations, whichever is met first. We note that the value of 𝜖 is considerably larger than the one employed in the
Examples 1A-1D. Even with this larger 𝜖, however, the FS-HF scheme converges for the most challenging parametric configuration
(i.e., 𝝎 = (−3,−1)) within the maximum allowed number of iterations. Since FS-HF will need to be queried for several values of 𝝎,
by requiring a tolerance 𝜖 as tight as in the previous validation (and, thus, increasing the maximum allowed number of iterations)
we would make the training process extremely expensive.

We then define a discrete training set by sampling 25 equidistant points on a 5 × 5 uniform grid on Ptrain and proceed to train
both M-ROM and FS-ROM. The inclusion of the parameter 𝝎 in this example necessitates a slight modification to the POD method
presented in Section 4.1. This alteration is introduced to facilitate the applicability of the ROM for parameter values that may
deviate from those employed during the training phase. Consequently, the construction of the reduced basis spaces 𝑽 𝑟, 𝑊𝑟, and 𝛩𝑟
involves compressing the parametric and temporal evolution of the M-HF and FS-HF solutions at the same time. Notably, since each
parametric evaluation entails 21 time steps, this compression encompasses a sequence of 25 × 21 = 525 M-HF and FS-HF solutions.

Fig. 15 illustrates the POD normalized eigenvalues resulting from the training of the M-ROM and FS-ROM schemes. Two main
differences compared to Examples 1A-1D are observed here. First, the decay of the POD eigenvalues is considerably slower than
those observed in Examples 1A-1D due to the higher complexity of this application. Still, the 60-th, 80-th and 100-th POD normalized
eigenvalue are less than 10−12 for 𝐮, 𝑝 and 𝜃, respectively. We thus set the maximum value of 𝑟 = 100. Though 𝑟 is larger than the one
used previously, 100 ROM degrees of freedom are still a very large reduction compared to the 20402, 10201, and 10201 HF degrees
of freedom required by 𝑽 ℎ, 𝑊ℎ and 𝛩ℎ, respectively. Secondly, comparing Figs. 15(a) and 15(b) we note that the eigenvalue decay
obtained by applying POD from M-HF data and FS-HF data, respectively, is slightly different, with the pressure presenting the most
noticeable difference. This is due to the relatively large value of 𝜖 employed in the FS-HF, due to which FS-HF solutions are not as
accurate as M-HF ones.

Next, Fig. 16 demonstrates the assessment of the ROM through ‖ ⋅ ‖1-norm relative errors. This evaluation is conducted on three
22

distinct test cases, each representing progressively more demanding conditions for the ROM.
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Fig. 16. Example 2. Illustration of ‖ ⋅ ‖1-norm relative errors of ROM to HF for (a) 𝐮, (b) 𝑝 and (c) 𝜃 for the given Ptest (8 for case (i), ⧫ for case (ii), ✚ for
case (iii)). The inner black rectangle denotes Ptrain as shown in Fig. 14(b).
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• Case (i) The first testing set is composed of the same 25 parameter values used while training the ROM. These cases are
represented by star-shaped markers (8) in Fig. 16.

• Case (ii) The second testing set is obtained by taking a finer 7 × 7 uniform grid (i.e., 49 parameters) on Ptrain and discarding
any parameter values already present in the training set (e.g., a parameter 𝝎 = (−3,−1)), resulting in 40 parameter values.
This set is used to evaluate the accuracy of the ROM on parameters that were not seen during training but still belong to the
training range. The results are depicted in Fig. 16 by diamond-shaped markers (⧫).

• Case (iii) Finally, the third testing set amounts to sampling a 7 × 7 uniform grid on Ptest and discarding parameter values lying
in Ptrain, for a total of 40 parameter configurations in Ptest ⧵ Ptrain. These values are employed to assess the accuracy of the
ROM while extrapolating outside of the training range and are reported with plus-shaped markers (✚) in Fig. 16.

The evaluation of M-ROM and FS-ROM follows through as described in Section 4, with a minor modification regarding the
ssembly of the ROM operators in Table 1. Here, we consider only [𝐀𝜃𝜃

𝑟 ]𝛽𝛾 = (𝐃∇𝜑𝜃
𝛾 ,∇𝜑

𝜃
𝛽 ) for the sake of exposition. Since now

= 𝐃(𝝎), the resulting 𝐀𝜃𝜃
𝑟 (𝝎) cannot be preassembled as reported in Table 1 without knowing the value of 𝝎 a priori. To retain

the computational efficiency, the ROM makes use of the so-called affine parametric dependence or parameter separability [19,20] and
ewrites [𝐀𝜃𝜃

𝑟 ]𝛽𝛾 as

[𝐀𝜃𝜃
𝑟 ]𝛽𝛾 (𝝎) = (𝐃(𝝎)∇𝜑𝜃

𝛾 , 𝜑
𝜃
𝛽 ) = (𝐃(𝝎)∇𝜑𝜃

𝛾 ,∇𝜑
𝜃
𝛽 )𝛺1

+ (𝐃(𝝎)∇𝜑𝜃
𝛾 ,∇𝜑

𝜃
𝛽 )𝛺2

= 1 (∇𝜑𝜃
𝛾 ,∇𝜑

𝜃
𝛽 )𝛺1

+ 10𝜔1 (∇𝜑𝜃
𝛾 ,∇𝜑

𝜃
𝛽 )𝛺2

∶= [𝐀𝜃𝜃,(1)
𝑟 ]𝛽𝛾 + 10𝜔1 [𝐀𝜃𝜃,(2)

𝑟 ]𝛽𝛾 .

he matrices 𝐀𝜃𝜃,(1)
𝑟 and 𝐀𝜃𝜃,(2)

𝑟 are now independent of 𝝎 and can be preassembled at the end of the offline stage.
Fig. 16 is divided into five panels, representing five different quantities of interest. The first three panels, Figs. 16(a)–16(c),

epict the ‖ ⋅‖1-norm relative errors for 𝐮𝑟, 𝑝𝑟, and 𝜃𝑟 with respect to 𝐮ℎ, 𝑝ℎ and 𝜃ℎ, respectively. In each panel, the top row displays
he results obtained from the M-ROM, while the bottom row illustrates those from the FS-ROM. Each row contains four images,
orresponding to increasing values of 𝑟 = 10, 𝑟 = 30, 𝑟 = 60 and 𝑟 = 90. Markers are positioned at the provided 𝝎 = (𝜔1, 𝜔2)
oordinates, signifying the errors for the three distinct cases: case (i) denoted by 8, case (ii) by ⧫, and case (iii) by ✚.
In the first column of Figs. 16(a), 16(b) and 16(c), it is evident that both the M-ROM and HF-ROM with 𝑟 = 10 exhibit inaccuracies.

he relative errors are approximately 10−2 within the training range (inside the inner rectangular region) and can escalate to as
uch as 1 outside of this range. The accuracy progressively increases when increasing 𝑟 to 30,60 and 90. In particular, when 𝑟 = 90
e observe that both the M-ROM and HF-ROM become more accurate within the training range, including both seen (i.e., in the
raining set) and unseen data (i.e., not in the training set). We note that, at 𝑟 = 90, the temperature (𝜃) exhibits the lowest error
ithin the training range, reaching a maximum of 10−6 for both the M-ROM and FS-ROM. This outcome aligns with the observation
hat the POD eigenvalues associated with temperature were the ones that exhibited the most rapid decrease. On the other hand, the
isplacement 𝐮 and pressure 𝑝 show differences of up to an order of magnitude between the M-ROM and FS-ROM for parameter
alues within the training range. Nevertheless, the resulting relative errors remain at most 10−4, a value that falls below the tolerance
established by the FS-HF solver.
We also used both M-ROM and FS-ROM for extrapolation outside of the training range, which resulted in larger relative errors,

specially in the bottom left of Ptest . The highest relative error is observed at 𝝎 = (−4,−2) and is of the order of 10−2 for FS-ROM
nd 10−1 for M-ROM for the pressure approximation, i.e. the variable that was characterized by the slowest POD decay.
Finally, Figs. 17(a) and 17(b) discuss the number of iterations and the computational efficiency of the ROM. Specifically,

ig. 17(a) illustrates the ratio of the total number of FS-ROM iterations to FS-HF iterations. Apart from the smallest values, 𝑟 = 10
and 𝑟 = 30, in the extrapolation region, FS-ROM converges in a comparable number of iterations to FS-HF across the entire parameter
range. Also, Fig. 17(b) depicts the speedup offered by the ROM, representing the ratio of CPU time required for a HF solve compared
o a ROM solve. The magnitude of the speedup for the M-ROM diminishes from 104 (for 𝑟 = 10) to 103 (for 𝑟 = 90) as the reduced
asis size 𝑟 increases. On the other hand, FS-ROM exhibits a smaller speedup, approximately on the order of 102, which remains
elatively consistent across varying 𝑟 values. In summary, any ROM yields query times that are at least 100 times faster than the
orresponding HF scheme.

. Conclusions

This paper introduces a novel approach involving a fixed-stress iterative for the solution of linear thermo-poroelasticity problems
n conjunction with reduced order modeling techniques. The approach is validated by means of several numerical examples, which
lso illustrate its computational capabilities. The benefits of this methodology are two-fold. Firstly, the utilization of fixed-stress
terations aids in the management of complex multi-physics coupling scenarios. Secondly, the incorporation of reduced order
odeling significantly boosts computational efficiency. In future works we plan to demonstrate the versatility of the proposed
echniques by employing them in conjunction with various numerical discretization techniques, including mixed finite elements, as
24

ell as discontinuous or enriched Galerkin finite element methods.
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Fig. 17. Example 2. Illustration of (a) ratio of the total iteration numbers of FS-ROM to FS-HF and (b) speedup of the ROM over HF for the given Ptest (8
for case (i), ⧫ for case (ii), ✚ for case (iii)). The inner black rectangle denotes Ptrain as shown in Fig. 14(b).
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