2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) | 979-8-3503-9509-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/CG057630.2024.10444869

Instruction Scheduling for the GPU on the GPU

Ghassan Shobaki'!, Pinar Muyan—Ozgelikl, Josh Hutton!, Bruce Linck!,
Vladislav Malyshenko', Austin Kerbow?, Ronaldo Ramirez-Ortega', and Vahl Scott Gordon'

'Department of Computer Science, California State University, Sacramento, United States
2GPU—Compute Compiler Team, Advanced Micro Devices, United States
ghassan.shobaki@csus.edu, pmuyan@csus.edu, gordonvs@csus.edu

Abstract—In this paper, we show how to use the GPU to
parallelize a precise instruction scheduling algorithm that is based
on Ant Colony Optimization (ACO). ACO is a nature-inspired
intelligent-search technique that has been used to compute precise
solutions to NP-hard problems in operations research (OR). Such
intelligent-search techniques were not used in the past to solve
NP-hard compiler optimization problems, because they require
substantially more computation than the heuristic techniques used
in production compilers. In this work, we show that parallelizing
such a compute-intensive technique on the GPU makes using it
in compilation reasonably practical. The register-pressure-aware
instruction scheduling problem addressed in this work is a multi-
objective optimization problem that is significantly more complex
than the problems that were previously solved using parallel
ACO on the GPU. We describe a number of techniques that we
have developed to efficiently parallelize an ACO algorithm for
solving this multi-objective optimization problem on the GPU.
The target processor is also a GPU. Our experimental evaluation
shows that parallel ACO-based scheduling on the GPU runs
up to 27 times faster than sequential ACO-based scheduling
on the CPU, and this leads to reducing the total compile time
of the rocPRIM benchmarks by 21%. ACO-based scheduling
improves the execution-speed of the compiled benchmarks by
up to 74% relative to AMD’s production scheduler. To the best
of our knowledge, our work is the first successful attempt to
parallelize a compiler optimization algorithm on the GPU.

Index Terms—parallel compiler optimization, instruction
scheduling, Ant Colony Optimization (ACO), GPU computing,
multi-objective optimization

I. INTRODUCTION

Some important compiler optimization problems, such as
instruction scheduling and register allocation, are NP-hard
problems [1]. An NP-hard problem has no known polynomial-
time algorithm that computes the exact solution to every
instance of the problem. Production compilers solve these NP-
hard optimization problems using heuristic approaches, as it
has been widely believed that implementing precise algorithms
for NP-hard problems within a compiler is impractical.

In Operations Research (OR), researchers have successfully
computed precise, and often exact, solutions to NP-hard
problems using Artificial Intelligence (AI) techniques, including
Branch-and-Bound (B&B), Constraint Programming (CPR)
and Ant Colony Optimization (ACO). Such techniques are
based on intelligent searches that require substantially more
computation than heuristic approaches. Despite the success
of these intelligent-search techniques in OR, they have not
been applied to NP-hard compiler optimization problems,

because that was not feasible in the past. However, today’s
powerful computing platforms have motivated some researchers
to explore applying Al techniques to NP-hard problems in
code optimization [2]-[11]. The results of this recent research
show that applying Al techniques may produce code with
significantly better performance. For example, Shobaki et al.
show that solving instruction scheduling using B&B gives
significantly better performance than a well-tuned heuristic on
an AMD Graphics Processing Unit (GPU) target [10].

Recent research on applying Al techniques to compiler
optimizations shows that the increase in compile time caused by
using such expensive techniques can be controlled by applying
them selectively to the hot code and setting reasonable time
limits [8], [9]. Although such measures can limit the increase
in compile time, using Al techniques still leads to a significant
increase in compile time relative to using heuristics.

In this work, we explore using the GPU to parallelize an Al
technique for solving the register-pressure-aware (RP-aware)
instruction scheduling problem. The Al technique that we
parallelize is ACO [12]. We perform ACO-based scheduling
on the GPU, while the rest of the compilation stages are
performed on the CPU. The GPU is also the target processor
that we generate code for. So, we show how to schedule for the
GPU using an Al technique that is parallelized on the GPU.

In RP-aware instruction scheduling, the objective is finding
an instruction order that achieves the best possible balance
between the two conflicting objectives of minimizing the sched-
ule length and minimizing register pressure. Minimizing the
schedule length can be also viewed as maximizing instruction-
level parallelism (ILP). Maximizing ILP is important on a GPU
target, because a GPU does not reorder instructions within a
thread. Register pressure (RP) is the number of virtual registers
that have overlapping live ranges, and thus must be assigned
to different physical registers. Minimizing RP is particularly
important on a GPU target, because the number of registers
used in each thread determines occupancy, which is the number
of thread groups that may run concurrently, as detailed in the
body of the paper.

Balancing ILP and RP is a challenging problem, because
executing more independent instructions in parallel (maximiz-
ing ILP) tends to increase the demand for registers. Even
optimizing one of these two objectives (ILP or RP) is NP-hard
[1]. Current production compilers solve this problem using
heuristics (usually greedy heuristics). However, recent research

979-8-3503-9509-9/24/$31.00 © 2024 IEEE 435
Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

on both CPUs [7], [9] and GPUs [10], [13] has shown that these
heuristics may, in some cases, produce poor schedules that
significantly degrade performance. Previous work shows that
instruction scheduling has a higher impact on the performance
of GPU programs than on the performance of CPU programs.

ACO is a population-based optimization technique inspired
from nature. Ants in nature find short paths between a food
source and their nest by depositing pheromones as they carry
food. In an ACO algorithm, a pheromone table is used to
simulate the deposition and dissipation of pheromones. Dorigo
et al. [14] introduced ACO and applied it to the Traveling
Salesman Problem (TSP). In later research, ACO was applied
to other combinatorial optimization problems.

In previous work, an ACO algorithm was proposed for
solving the RP-aware instruction scheduling problem [11] based
on the ACO algorithm described by Gambardella and Dorigo
[15] for solving the Sequential Ordering Problem (SOP), which
is a generalization of the TSP [16]. The ACO algorithm for the
RP-aware scheduling problem capitalizes on the similarities
between scheduling and the SOP.

Despite these similarities, the RP-aware instruction schedul-
ing problem is much more complex than the SOP. First, the SOP
is a single-objective optimization problem, while the RP-aware
scheduling problem is a multi-objective optimization problem
(MOQP) [17], [18]. The first objective is minimizing RP and
the second objective is minimizing the schedule length. Second,
the RP-aware scheduling problem involves latency constraints,
and thus the solution to a given instance of the problem is a
schedule (an assignment of a cycle to each instruction) not
just an order as in the SOP.

These complexities make parallelizing the ACO-based
scheduling algorithm much more challenging than parallelizing
the ACO algorithm for the SOP. Not all the techniques that
have been proposed to parallelize the ACO algorithm for the
SOP can be applied to RP-aware scheduling.

Parallelizing ACO-based scheduling is particularly challeng-
ing on the GPU, because different schedules may have different
lengths, which increases thread divergence, a GPU-specific
factor that affects performance. A main contribution of this
paper is proposing a number of techniques for minimizing this
divergence in ACO-based scheduling (Section V-B)

Parallel compilation has been tackled by researchers since
the 1970s [19]. After the advent of GPU computing, GPUs
have been used to accelerate some compiler algorithms. Most
of these algorithms are analyses, such as the points-to analysis
[20]-[22], inter-procedural data-flow analysis [23], higher-order
control-flow analysis [24] and inter-procedural static analysis
of large-scale system code [25].

To the best of our knowledge, our work is the first work
on parallelizing a compiler optimization on the GPU. Some
previous research tackled compiler-related algorithms, such as
graph coloring [26], [27]. However, that work was applied to
general graphs, not to conflict graphs in a compiler. Our work
directly addresses a compiler optimization problem.

The results of our experimental evaluation show that parallel
ACO-based scheduling on the GPU runs up to 27 times faster

than sequential ACO-based scheduling on the CPU, and this
leads to reducing the total compile time of the rocPRIM
benchmarks [28] by 21% relative to using sequential ACO-
based scheduling on the CPU. ACO-based scheduling improves
the execution speed of the compiled benchmarks by up to 74%
relative to AMD’s production scheduler.

II. BACKGROUND
A. Problem Definition

Instruction scheduling is a compiler optimization in which
instructions are reordered to achieve better performance. Better
performance is achieved by hiding latencies and minimizing
register pressure. This paper focuses on the instruction schedul-
ing pass that is invoked before register allocation (pre-allocation
instruction scheduling).

In many compilers, including the LLVM compiler used in
this work, scheduling is done within a basic block [1]. The
input to the instruction scheduler is an instruction sequence
with dependencies represented by a data dependence graph
(DDG). In a DDG, a node represents an instruction, an edge
represents a dependency and an edge label represents a latency.
An example DDG is shown in Figure 1. The output is a
schedule, which is an assignment of a machine cycle to each
instruction. The objective is finding a schedule that achieves
the best possible balance between minimizing the schedule
length and minimizing RP. The schedule length is the number
of cycles used in the schedule, and RP is modeled using the
cost function described below.

The number of cycles in the schedule depends on the machine
model. Our implementation of the proposed algorithm supports
a general machine model. The experimental results, however,
were produced using a simple machine model, in which the
processor can issue one instruction of any type in each cycle.
This simple model still captures instruction latencies, and this
appears to be the most important consideration.

RP computation is based on the Def and Use sets of the
scheduled instructions. The Def set of an instruction is the set
of registers that are defined by that instruction, and the Use
set is the set of registers that the instruction uses. Given an
instruction schedule, the RP for a given data type at a given
point in the schedule is the number of registers of that type
that are live at that point.

Multiple cost functions have been used for representing RP
during scheduling [8]-[10]. In this work, we use the adjusted
peak register pressure (APRP) cost function that was introduced
by Shobaki et al. [10] specifically for a GPU target.

The peak register pressure (PRP) of a given data type in a
given schedule is the maximum value of that type’s RP at any
point in the schedule. On a GPU, multiple PRP values may
give the same occupancy. The APRP of a given PRP value x
is defined as the maximum PRP that gives the same occupancy
as x. For example, on the AMD GPU used in this work, a PRP
of 24 vector general-purpose registers (VGPRs) or less gives
the maximum occupancy of 10, while PRP values in the range
[25-28] give an occupancy of 9. Therefore, PRP values in the

436

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

range [1-24] are mapped to an APRP of 24 and PRP values
in the range [25-28] are mapped to an APRP of 28.

In previous work, two different approaches have been
explored for solving the RP-aware scheduling problem, which
is a two-objective optimization problem. The first approach is
minimizing a weighted sum of the schedule length and the RP
cost [8], [9]. The second approach is a two-pass approach in
which RP is treated as a primary objective that is minimized
in the first pass (the RP pass), while schedule length is treated
as a secondary objective that is minimized in the second pass
(the ILP pass) [10]. Since the two-pass approach was found to
work better on the GPU [10], we use it in this work.

B. GPU Computing

In GPU computing, the GPU is utilized to accelerate
compute-intensive applications with data parallelism in many
different areas, including computer vision, machine learning
and many more [29]. An ACO algorithm is a compute-intensive
algorithm that involves data parallelism, since all ants perform
the same computation but on different data.

HIP [30] is a GPU programming environment introduced by
AMD, which allows writing portable code that can run on AMD
or NVIDIA GPUs. A HIP application consists of a sequential
part that is run on the CPU and a data-parallel part that is
launched on the GPU as a kernel. A kernel is launched on the
GPU as a grid of blocks with each block consisting of the same
number of threads. Each thread executes the kernel code using
a different data element, and all threads are executed on the
Compute Units (CUs) in parallel. The GPU thread scheduler
assigns different blocks to different CUs.

A block consists of wavefronts. A wavefront is a group
of threads that are executed in lockstep. The corresponding
term on NVIDIA GPUs is a warp. On the GPU used in this
work, a wavefront consists of 64 threads. Each wavefront is
executed by a single SIMD unit. In order to efficiently utilize
the multiple SIMD units within a CU, each CU should have
multiple wavefronts, preferably from different blocks. The
SIMD occupancy of a kernel running on an AMD GPU is the
number of wavefronts that can be resident on each SIMD unit.
Hence, occupancy determines the number of wavefronts that
can run concurrently on the GPU.

III. PREVIOUS WORK

ACO is a population-based technique that was introduced by
Dorigo et al. [14] for solving hard combinatorial optimization
problems. Since an ACO algorithm has an inherent parallel
nature, different parallelization strategies have been proposed.
Pedemonte et al. [31] provide a comprehensive survey and a
taxonomy of ACO parallelization strategies.

Many of the previously proposed parallel ACO algorithms
target the TSP [14], [32]-[47]. However, parallel ACO algo-
rithms have also been proposed for solving other optimization
problems, including the Maximum-Weight Clique Problem [48],
the Quadratic Assignment Problem [49], designing multiproduct
batch plants [50] and resource-constrained job scheduling [S1].
These approaches use different parallel architectures, including

supercomputers [32], multi-core CPUs [36], [48], [49], [51],
[52] and GPUs [34], [37]-[47], [50], [52], [53].

Because ACO is a computationally expensive technique, only
a limited number of attempts have been made to apply it to a
compiler optimization problem. Lintzmayer et al. apply ACO
to register allocation [54], and Shobaki et al. apply ACO to
RP-aware instruction scheduling [11]. In the current paper, we
describe how to parallelize the ACO instruction scheduling
algorithm of Shobaki et al. on the GPU.

The RP-aware scheduling problem addressed in this work
is a multi-objective optimization problem with precedence
constraints. These two characteristics make this problem more
complex than most of the other problems that have been solved
using parallel ACO. As indicated by Falc6n-Cardona et al. [55],
the parallelization of ACO has not been yet properly exploited
in a multi-objective optimization context. Mora et al. [56]
present a study on colony-level parallelization schemes for
multi-colony, multi-objective ACO algorithms. In our work,
we use ant-level rather than colony-level parallelization.

Cano et al. [57] propose a GPU parallelization of the
multi-objective grammar-based Ant Programming algorithm
for classification introduced by Olmo et al. [58]. However, the
problem that they target (classification), is a machine-learning
problem not an optimization problem.

Parallel ACO approaches for precedence-constrained prob-
lems are also limited. Among the above-mentioned approaches,
only Thiruvady et al. [51] tackle a precedence-constrained
problem, but they use multi-core CPUs not GPUs. The
instruction scheduling problem is similar to the SOP since it has
precedence constraints. Although sequential ACO approaches
have been proposed for solving the SOP [15], [59], [60], we
are not aware of any parallel ACO approach for solving the
SOP.

Because the RP-aware scheduling problem is both a multi-
objective problem and a precedence-constrained problem,
none of the previously proposed parallel ACO approaches
directly applies to it. For instance, the work of Cecilia et
al., who propose a fine-grained parallel ACO approach for
solving the TSP [37], [38] would not work efficiently for a
precedence-constrained problem. In the TSP, which does not
have precedence constraints, the number of candidate cities is
always equal to the number of unvisited cities, which provides
a high degree of data parallelism in the next-city-selection step.
In the instruction scheduling problem, precedence constraints
limit the number of candidate instructions, and thus limit the
degree of data parallelism in the next-instruction-selection
step. Therefore, applying the algorithm of Cecilia et al. to a
precedence-constrained problem would result in a substantial
amount of unnecessary computation.

Menezes et al. [43] perform a comparison between a coarse-
grained parallel ACO approach (mapping an ant to a thread, as
we do in this paper) and a fine-grained parallel ACO approach
(mapping an ant to a block or a wavefront, as proposed by
Cecilia et al.) for solving the TSP. Their results show that there
is no clear best strategy and that the performance depends on
the problem size and the number of ants.

437

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

IV. ALGORITHM DESCRIPTION
A. Sequential Algorithm

On a high level, the sequential ACO scheduling algorithm
proposed by Shobaki et al. [11] consists of two passes. In
the first pass (the RP pass), ILP is ignored and the algorithm
searches for a schedule that minimizes RP. In the second
pass (the ILP pass), latencies are taken into account, and the
algorithm searches for the shortest schedule that maintains the
best RP found in the first pass. Thus, in the second pass, the
best RP found in the first pass is treated as a constraint.

The ACO algorithm is an iterative algorithm. In each
iteration, it simulates a certain number of ants, each of which
constructs a candidate schedule. Each schedule is dependent
on the pheromone values stored in the pheromone table, the
guiding heuristic and a random factor. With this randomization,
each ant is likely to produce a different schedule. At the end
of each iteration, the best schedule produced by any ant in that
iteration (the iteration winner) is used to update the pheromone
table. The algorithm terminates when the cost of the global best
schedule is equal to a pre-computed lower bound (LB) or when
a certain number of iterations, called the termination condition,
have been performed without finding an improvement.

The pheromone table guides the construction of candidate
schedules. It is a two-dimensional table with n rows and n
columns, where n is the number of instructions. For any two
instructions i and j, the value 7;; in the table is the amount of
pheromone placed on the link between instructions i and j.

At the end of each iteration, the pheromone table entry of
each link (7, j) in the iteration winner is incremented according
to a certain formula [11] to increase the chances of constructing
similar schedules in the next iterations.

A candidate schedule is constructed by selecting one
instruction at a time from the ready list. The ready list is a list
containing the unscheduled instructions whose dependencies
have been satisfied. Selecting the next instruction is done
randomly, but with a bias that takes into account the pheromone-
table entries and the guiding heuristic. The formula for
performing this may be found in the original paper [11].

That selection formula is designed to balance exploitation
and exploration. Exploitation refers to using the pheromone
table to bias the search towards selecting schedules that are
similar to the best schedules found so far. Exploration refers to
using randomization to bias the search towards discovering new
schedules. In the second pass, the iteration winner is selected
from the schedules that satisfy the RP constraint.

At the end of each iteration, another formula is used to
reduce the amount of pheromone in each table entry to
simulate the decay of pheromones [11]. This formula involves
a parameter, called the decay factor, that controls the rate at
which pheromones are dissipated. Experimentally, we used a
decay factor of 0.8.

Before the ACO search starts, an initial schedule is con-
structed using a heuristic, such as the Critical-Path (CP)
heuristic [1], the Last-Use-Count heuristic [61] or AMD’s
heuristic. Initially, this schedule is the global best schedule.

B. Parallelization on the GPU

In the above-described ACO algorithm, it is noted that the
schedule construction performed by each ant is independent
of other ants, and thus ants can construct their schedules in
parallel. To exploit this, we parallelize the ACO algorithm by
mapping each ant to a GPU thread. Whenever ACO is invoked
on a scheduling region, we launch a GPU kernel that performs
the schedule construction using multiple ants in parallel and
then updates the pheromone table at the end of each iteration.

Our parallel algorithm is implemented in HIP for an AMD
GPU. The GPU is both the target processor and the processor
that is used to perform scheduling during compilation. An AMD
GPU is used because AMD’s GPU compiler is an open-source
LLVM-based compiler. The parameters of our scheduling kernel
are selected to achieve the following:

e Avoiding block-level synchronization by ensuring that
all the threads in a block execute in lockstep. This is
achieved by setting the number of threads per block to
the wavefront size, which is 64 threads on the GPU that
we use.

« Distributing the work across multiple CUs to better utilize
the CU resources. This is achieved by selecting the number
of blocks (which is equal to number of wavefronts in our
case) to be greater than the number of CUs. Since the
GPU that we use has 60 CUs, we launch 180 blocks.

With the above two settings, each launch of the scheduling
kernel has a total of 11,520 threads, which corresponds to
11,520 ants constructing schedules in parallel.

After completing memory allocation and data transfer from
the CPU to the GPU, we launch a cooperative GPU kernel.
The kernel has a main loop that is repeated until a schedule of
cost equal to the LB is found or the termination condition is
satisfied. In each iteration, all threads construct their schedules
in parallel. A different random seed is input to each thread
to maximize the chances of constructing a different schedule
from other threads.

After the schedule construction stage is complete, all threads
are synchronized. At that point, all threads cooperate to find
the best schedule constructed in that iteration using a parallel
computational pattern called a reduction [62]. Then all threads
are synchronized again to work in parallel on updating the
pheromone table based on the iteration’s best schedule.

After completing the pheromone table update, the first thread
compares the iteration’s best schedule with the global best
schedule found so far. If the iteration’s best schedule is better,
the first thread updates the global best schedule. If the cost of
this schedule is equal to the pre-computed LB, the first thread
sets a flag for terminating the whole kernel with an optimal
solution. Otherwise, the first thread increments the variable
that counts the number of iterations without improvement
(the termination condition). At the end of the iteration, all
threads are synchronized, and each thread resets its schedule to
start constructing a new schedule. After the kernel completes
executing, the global best schedule is copied from the GPU to
the CPU and memory is freed.

438

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

C. Example

The proposed algorithm is illustrated by the example shown
in Figure 1 [10]. The Def and Use sets of each instruction are
shown in the DDG, where rl, 12, ..., 17 are virtual registers.
For simplicity, we assume that scheduling is done for a single-
issue machine and that the ACO algorithm performs only one
iteration in each pass with two ants per iteration.

In the first pass, the algorithm ignores latencies and focuses
on searching for a minimum-RP schedule. The schedule found
by each ant is shown in Figure 1.b. The details of constructing
these schedules are omitted to focus on the high-level ideas. The
schedule of Ant 1 has a PRP of 4, because each of Instructions
A, B, C, and D opens a new live range. The schedule of Ant
2 has a PRP of 3, because Instruction F in Cycle 3 closes the
live ranges of C and D. Therefore, the best PRP at the end of
the first pass is 3.

In the second pass, latencies are considered. Stalls are added
to the best-RP schedule found in the first pass (the schedule of
Ant 2) to satisfy latency constraints. This produces the leftmost
schedule in Figure 1.c. This schedule is the initial schedule in
the second pass, and its PRP of 3 is set as the target PRP.

Next, each ant constructs a schedule that meets the PRP
target, and the shorter schedule is selected as the iteration’s
best schedule. If at any point in the construction of an ant’s
schedule, the PRP exceeds 3, that ant is terminated. In this
example, both ants manage to find schedules that meet the PRP
target of 3. These schedules are shown in Figure 1.c. Since the
schedule of Ant 2 is shorter (it uses only 10 cycles, while the
schedule of Ant 1 uses 12 cycles), that schedule becomes the
iteration’s winner. Furthermore, since that schedule is better
than the global best schedule at that point, the global best
schedule is updated to the schedule of Ant 2.

Since in this example, the number of iterations per pass is
only one, the algorithm will terminate with the final schedule
being the schedule of Ant 2, which is optimal in this case.

We note that in the second pass, different ants may construct
schedules of different lengths (different numbers of stalls).
Some stalls are necessary to satisfy the latency constraints,
while other stalls are optionally added to minimize RP. In
the schedule of Ant 2 in Figure 1.c, the stall in Cycle 8
is a necessary stall to satisfy the latency constraint between
Instructions C and F. After scheduling Instruction C, the ready
list is empty and the only valid option at that point is scheduling
a stall in Cycle 8.

In contrast, the stall in Cycle 4 of the same schedule is an
optional stall that has been added to reduce the chances of
violating the RP constraint. After scheduling Instruction D, the
ready list contains Instruction C. So there are two options at
that point: scheduling Instruction C and increasing PRP to 4,
or scheduling a stall to wait until Instruction E becomes ready.
Taking the latter option reduced the PRP to 2 at Cycle 6.

It is not always clear whether scheduling an optional stall
is beneficial. Scheduling too many optional stalls may result
in an excessively long schedule. Our ACO algorithm includes
a heuristic for deciding whether scheduling an optional stall is
likely to be beneficial. The heuristic takes into account how

(a) DDG

Def r2 Def r4

Def 13

4
Use rl, 12 G G Use 13, 14
Def r5 1 1 Def 16
Use 15, 16
Def 17
(b) Pass 1

Ant 1 Ant 2
I: A 1: C
2:B 2:D
3:C 3:F
4:D 4: A
5:F 5:B
6: E 6: E
7: G 7: G
PRP =4 PRP =3

(c) Pass 2

ILP-pass initial Ant 1 Ant 2
1: C 1:D It A
2:D 2:C 2: B
3: stall 3: stall 3:D
4: stall 4: stall 4: stall
5: stall 5:F 5: stall
6: F 6: A 6: E
7 A 7B 7. C
8: B 8: stall 8: stall
9: stall 9: stall 9: F
10: stall 10: stall 10: G
11: stall 11: E PRP =3
12: E 12: G
13: G PRP =3
PRP =3

Fig. 1. Parallel ACO scheduling example

the PRP will be impacted by the ready instructions and the
instructions that will become ready after scheduling optional
stalls (semi-ready instructions). The heuristic also tracks the
number of optional stalls that have been added so far and
reduces the probability of scheduling an optional stall when
many optional stalls have been inserted already.

V. OPTIMIZING THE ACO ALGORITHM ON THE GPU

This section describes the techniques that we have de-
veloped to optimize the performance of our parallel ACO
algorithm on the GPU. As mentioned earlier, there is no
previous work on parallelizing an ACO algorithm for a multi-
objective optimization problem on the GPU. The two main
challenges involved in parallelizing an algorithm on the GPU
are memory optimizations, especially memory coalescing, and
thread divergence. Our approach to handling these challenges
is described in the next two subsections.

A. Memory Optimizations

Memory coalescing is a GPU-specific feature, which allows
for a better utilization of the GPU memory bandwidth. In
memory coalescing, multiple memory accesses are combined

439

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

into a single transaction. This is possible when multiple threads
within the same wavefront access consecutive locations in
memory. To maximize memory coalescing, we have changed
the memory layout of several data structures in the parallel code,
such that threads in a wavefront access consecutive locations
in the GPU memory during their execution. More specifically,
for the frequently accessed data members of C++ classes, we
replaced each data member with an array of members in which
each array element corresponds to a thread.

Dynamic memory allocation on the GPU is known to be
very slow [63]. Therefore, we avoided it by allocating and
initializing objects on the CPU and then copying them to the
GPU. In addition, we replaced linked lists with two-dimensional
arrays, in which each row corresponds to an element in the
list and each column corresponds to a thread.

This has multiple performance advantages. First, only one
dynamic allocation of a contiguous memory block is needed,
which significantly reduces the allocation time. Second, the
resulting access pattern tends to maximize memory coalescing,
because when multiple threads traverse their lists in parallel,
they are likely to access adjacent memory locations.

When the arrays are allocated on the CPU, they cannot be
resized dynamically on the GPU. Therefore, when a list is
replaced with an array, the size of that array must be an upper
bound (UB) on the expected list size. Clearly, a tighter UB

leads to more efficient memory usage and to faster allocation.

For example, a trivial but loose UB on the size of the ready
list is the total number of instructions.

A tighter UB on the ready-list size is the maximum number of
independent instructions in the DDG, because the instructions in
the ready list must be independent. We can compute an estimate
of the maximum number of independent instructions using
the transitive closure of the DDG, which must be computed
anyway for other purposes. The transitive closure indicates
for every pair of instructions = and y, whether = depends on
y, y depends on x or the two instructions are independent.
Given the transitive closure of the DDG, a tighter UB on the
ready list size is one plus the maximum number of independent
instructions that any instruction in the DDG has.

For example, in the DDG of Figure 1.a, the total number
of instructions, which is 7, is a loose UB on the ready list
size, as the ready list can never have all 7 instructions in it.
The transitive closure shows that the maximum number of
independent instructions that any instruction in the DDG has
is 4. For example, Instruction A is independent of Instructions
B, C, D and F. This leads to a tighter UB of 5 on the ready
list size.

To minimize memory allocation and transfer time, we batch
the allocation and the transfer by consolidating individual
variables into large arrays. With this consolidation, a single
memory allocation call and a single memory transfer call are
needed for each large array instead of making thousands of
calls to allocate and transfer individual variables.

B. Thread-Divergence Optimizations

Thread divergence is another important GPU-specific factor
that affects performance. Thread divergence occurs when
threads in the same wavefront follow different execution paths.
For example, in executing an if statement, some threads may
execute the if path while others execute the else path. Since
the threads in a wavefront are executed in lockstep, control
paths taken by the threads in a wavefront are traversed one at
a time. When one path is executed, threads that are not taking
that path stay idle but still occupy resources. Therefore, thread
divergence degrades performance and should be minimized.

As described in Section IV-B, the scheduling kernel consists
of three main stages: schedule construction, best schedule
selection, and the pheromone-table update. As explained below,
significant thread divergence is likely to happen only in the
schedule-construction stage.

Selecting the best schedule in each iteration is done using
parallel reduction, which may cause thread divergence, but
this divergence can be reduced by using an efficient reduction
kernel [64, Chapter 5.3]. Updating the pheromone table does
not cause much divergence, because each thread is assigned a
different column to update.

Schedule construction is the stage that is expected to have
significant thread divergence. As described in Section IV-A,
schedule construction of a single ant is performed by repeatedly
selecting the next instruction from the ant’s ready list.

An important cause of divergence in schedule construction is
that some ants select the next instruction based on exploitation,
while others select it based on exploration, and each of these
two selection schemes is implemented using a different formula.
To minimize the divergence caused by this, we perform the
randomized selection between exploration and exploitation at
the wavefront level rather than the thread level, that is, all the
threads within each wavefront select the next instruction based
on the same method. Of course, this does not mean that all
the threads within a wavefront will select the same instruction.
Experimentally, this technique gave a significant reduction in
divergence and consequently in scheduling time in the first
pass.

Another important cause of divergence in our ACO schedul-
ing algorithm is that the schedules explored in the second
pass generally have different numbers of stalls. For example,
the schedule constructed by Ant 1 in Figure 1.c has 5 stalls
and a total length of 12, while the schedule constructed by
Ant 2 has only 3 stalls with a total length of 10. In Cycle 3,
for example, Ant 1 schedules a stall, while Ant 2 schedules
Instruction D, and thus each ant performs different operations
in that cycle. More specifically, Ant 2, which schedules an
actual instruction must update the ready list by traversing the
successor list of Instruction D. This is a particularly challenging
cause of divergence that is specific to our latency-constrained
scheduling problem and is not an issue in other sequencing
problems, such as the TSP and the SOP.

The approach that we take to reducing the divergence caused
by the difference in schedule lengths among threads is unifying
the optional-stall insertion strategy within each wavefront. We

440

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

allow the insertion of optional stalls only in a fraction of
the wavefronts and disallow optional stalls in the rest of the
wavefronts. Experimentally, allowing only a quarter of the
wavefronts to insert optional stalls gave the best results.

Another optimization that we use to minimize the number
of cycles in which different threads perform different kinds
of operations is terminating all the threads within a wavefront
as soon as one thread completes constructing its schedule.
This technique takes advantage of the fact that in our ACO
algorithm, only the iteration winner updates the pheromone
table. If at least one thread completes constructing a schedule,
other threads won’t have a chance to produce the iteration
winner, because they will necessarily be using more cycles and
thus constructing longer schedules.

A third cause of divergence is that each ant has a different
ready list with a possibly different size. As a result, the threads
that have shorter ready lists to scan must wait for the threads
that have longer ready lists to scan. Furthermore, updating
the ready list after selecting the next instruction may also
cause divergence, as this update involves iterating through the
selected instruction’s list of successors to check if they have
become ready. Since different instructions may have different
numbers of successors, this is another cause of divergence.

Differences in ready-list and successor-list sizes make solving
a problem with precedence constraints on the GPU harder. In
the absence of precedence constraints, ready lists in all threads
will have exactly the same size, and no successor lists need to
be traversed.

Minimizing the differences in the ready list and the successor
list is particularly challenging, because the very purpose
of launching many ants in parallel is constructing different
schedules. When each ant makes different selections and
constructs a different schedule, more sub-spaces will be
explored, thus increasing the chances of finding a better final
solution. Naturally, these differences will cause the ready lists
and the successor lists to be different.

We have experimented with different techniques for minimiz-
ing the divergence that results from the differences in ready-list
sizes. We tried to unify the ready list sizes among the threads
within each wavefront by limiting the ready list size to the
minimum list size in any thread in that wavefront or to the
mid point between the minimum size and the maximum size,
but these attempts did not give better overall results. When
the ready list size in some threads is limited, the options to be
considered are limited. This won’t affect correctness, because
all options will eventually be considered by the end of the
schedule construction, but it may affect the quality of the
constructed schedule, because it may defer some good options
that must be considered early. Our experimentation was based
on the hope that although some good options may be considered
too late in some wavefronts, they will be considered early in
other wavefronts. However, the experimental results showed
that limiting the ready-list size does not give better overall
results.

Finally, in an attempt to minimize the differences in schedule
length among the threads within the same wavefront, we

experimented with using different guiding heuristics in different
groups of wavefronts. As explained earlier, the ACO search
is guided by common heuristics. Some heuristics minimize
the schedule length more aggressively than others [61]. More
aggressive ILP heuristics, such as the Critical-Path heuristic,
tend to produce shorter schedules. Using the same heuristic
within each wavefront and different heuristics in different
wavefronts results in a better exploration of the solution space
with smaller differences in behavior within the same wavefront.

VI. EXPERIMENTAL RESULTS
A. Experimental Setup

The sequential ACO algorithm and the proposed parallel
ACO algorithm were implemented in LLVM 15 and evaluated
using the rocPRIM benchmarks [28]. The tests were run on
a system with an AMD Ryzen Threadripper 1950X 16-Core
processor running at 3.4 GHz and an AMD Radeon VII GPU
running at 1.8 GHz. The ROCm version is 5.4.1, and the
operating system is Ubuntu 20.04.5 LTS.

In this evaluation, we use 180 blocks with 64 threads per
block, which gives a total of 11,520 threads. Each thread
simulates an ant. When the scheduling region is larger, more
iterations are needed to find a high-quality solution. Therefore,
we divided the scheduling regions into three categories based
on their sizes (the number of instructions in the region) and
used larger termination conditions for categories with larger
sizes. The categories used are [1-49], [50-99], and > 100, and
the termination conditions are 1, 2, and 3, respectively.

TABLE 1
BENCHMARK STATISTICS

Stat Value

Number of benchmarks 341

Number of kernels 269
Number of scheduling regions 181,883

Number of scheduling regions processed by ACO in pass 1 1,734
Number of scheduling regions processed by ACO in pass 2 12,192

Avg. processed region size in pass 1 68.3

Avg. processed region size in pass 2 40.2

Max. processed region size in pass 1 1,176

Max. processed region size in pass 2 2,223

The proposed algorithm is evaluated by comparing its per-
formance to that of the AMD production scheduling algorithm
[65], which is a greedy algorithm that is built on the LLVM
generic scheduling algorithm. It extends the LLVM scheduler
to specifically model the AMD GPU, and it is well tuned
for ROCm. Therefore, it is a state-of-the-art scheduler for the
AMD GPU.

The rocPRIM benchmarks [28] used in our experiments
utilize the reusable rocPRIM library kernels to test their
performance. The rocPRIM kernels are used in the implemen-
tation of many important higher-level libraries, frameworks
and applications. So, significantly improving the performance
of some rocPRIM benchmarks indicates that our algorithm
can significantly improve the performance of a wide range of
applications.

441

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

Table 1 shows some statistics about the rocPRIM benchmarks.
We included only the benchmarks that are sensitive to schedul-
ing. Sensitivity was determined by applying the base LLVM
scheduling algorithm, the proposed parallel ACO algorithm
and the CP heuristic to each benchmark. If the coefficient of
variation for the three execution times was within 3%, the
benchmark was considered insensitive to scheduling.

As shown in the table, 341 scheduling-sensitive benchmarks
are included. These benchmarks use 269 kernels. Some kernels
are invoked by multiple benchmarks, but different benchmarks
may invoke the same kernel with different parameters. A total
of 181,883 scheduling regions were scheduled. In LLVM, a
scheduling region is a basic block or part of a basic block.

Each scheduling region is first scheduled using AMD’s
heuristic scheduler. The cost of the heuristic schedule is then
compared with the lower bound (LB). If the cost is equal to the
LB, the heuristic schedule is optimal and ACO is not needed. If
the cost of the heuristic schedule is greater than the LB, ACO
is invoked to search for a better schedule. The table shows that
ACO scheduling was applied to 1,734 regions in the first pass
and 12,192 regions in the second pass. The average region
size processed by ACO is 68.3 in the first pass and 40.2 in the
second pass. The largest region size processed is of size 1,176
in pass 1 and 2,223 in pass 2.

Every test in this evaluation was run five times and the
median was taken for each scheduling region (Tables 2, 3.a,
3.b, 4.a, 4.b, 6 and Figures 2, 3) or benchmark (Tables 5, 7
and Figure 4). All the results reported below are based on the
medians.

B. Effect of ACO

In this subsection, we show the gain that is achieved by using
the ACO scheduling algorithm relative to AMD’s scheduling
algorithm (base LLVM). The two metrics used in the evaluation
are the occupancy and the schedule length. Occupancy is
evaluated at the kernel level, while the schedule length
is evaluated at the scheduling-region level. The percentage
improvements reported here are based on computing the sum
of occupancies across all kernels or the sum of scheduling
lengths across all regions.

Ideally, if the termination conditions are the same for the
sequential and the parallel algorithms, both algorithms should
find the same solutions. Practically, however, the solutions will
not be exactly the same due to the randomness of the ACO
algorithm. On a sufficiently large data set, the differences in the
overall occupancy and schedule length between the sequential
and the parallel algorithms should be negligible.

The results in Table 2 show that the ACO algorithm
improves the overall occupancy by 0.66% and the overall
schedule length by 5.52% relative to the AMD algorithm. The
maximum percentage improvement on any region is 300%
in occupancy and 78.5% in schedule length. Overall, these
numbers show that the ACO-based algorithm gives significantly
better schedules than AMD’s heuristic scheduler. Note that
although the aggregate improvements are not high, large

improvements on individual hot regions can have a high impact
on the execution time as shown in Section VI-E.

TABLE 2
IMPROVEMENT OF ACO RELATIVE TO AMD SCHEDULER

Stat Value

Regions processed by ACO in pass 1 1,734
Regions processed by ACO in pass 2 12,192
Overall occupancy increase 0.66%
Max. occupancy increase in any kernel ~ 300.00%
Overall schedule length reduction 5.52%
Max. schedule length reduction 78.52%

C. Effect of Parallelization

In this subsection, we show the speedup delivered by the
proposed parallel ACO algorithm relative to the sequential
ACO algorithm in the first pass (Table 3.a) and in the second
pass (Table 3.b). The speedup ratio is the ratio between the
scheduling time of the sequential algorithm run on the CPU and
the scheduling time of the parallel algorithm run on the GPU.
This ratio was computed only for comparable regions, which
are the regions that both algorithms took the same number of
iterations to schedule. Due to the randomness in ACO, each
algorithm may take a different number of iterations to solve
the same instance. The third row in each table shows the
geometric-mean speedup for each size range.

As expected, the parallel ACO algorithm runs significantly
faster than the sequential ACO algorithm. The speedup is
greater on larger regions. For example, in the first pass, the
geometric-mean speedup is 2.07 across the regions in the size
range [1-49], while it is 12.48 across the regions of size 100
or greater. This is also expected, because on smaller regions,
the benefit from parallelization may be over-weighed by the
overhead of launching a GPU kernel and copying data between
the CPU and the GPU.

TABLE 3.a
PARALLEL SPEEDUP IN THE FIRST PASS

Inst. count range 1-49 5099 > 100
Regions processed by ACO 728 643 363
Comparable regions 716 600 327
Geometric mean speedup 2.07 7.44 12.48
Max. Speedup 5.69 12,69 27.19
Min. Speedup 0.63 3.30 5.66
TABLE 3.b

PARALLEL SPEEDUP IN THE SECOND PASS

Inst. count range 1-49 50-99 > 100
Regions processed by ACO 9,808 1,574 810
Comparable regions 9,613 1,354 436
Geometric mean speedup 1.99 4.80 7.55
Max. Speedup 8.25 13.03 17.37
Min. Speedup 0.45 1.08 4.10

The last two rows in each table show the maximum and
the minimum speedup on any region in each size range. The

442

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

B Inst. Count 1-49
B Inst. Count 50-99
Inst. Count > 100

600 - y

400 - .

200 - y

Count of regions in range

1-3.9 4-69 799 10-129 =13

Fig. 2. Speedup distribution in the first pass

I Inst. Count 1-49
B Inst. Count 50-99
Inst. Count > 100

9,000

8,500 |
800
600

400

Count of regions in range

200

1-39 469 7-99 10-12.9 =13
Fig. 3. Speedup distribution in the second pass

maximum speedup on any region is 27.19. The minimum
speedup shows that for regions of size 50 or greater, every
region benefits from parallelization. The regions that do not
benefit from parallelization are the easier regions for which
the sequential algorithm finds quality solutions very quickly.

It is noted that the speedup ratios in the second pass are
significantly lower than the ratios in the first pass. This is
attributed to the fact that there is more thread divergence in the
second pass, due to the latency constraints that cause different
ants to construct schedules of different lengths as shown in
Figure 1.c. The techniques described in Section V-B reduce
the effect of thread divergence, but they don’t eliminate it.

Figures 2 and 3 show the distribution of the speedup ratios
for each region size range.

Next, we study the effect of the optimizations described
in Section V. Table 4.a shows the effect of the memory
optimizations described in Section V-A, and Table 4.b shows
the effect of the thread-divergence optimizations described in
Section V-B. The entries in these tables are the percentage
improvements in the parallel ACO scheduling time. Both the

overall improvements across all scheduling regions and the
maximum improvement on any region are shown for each pass.

The improvement from memory optimizations is very high
in both passes. The improvements from thread-divergence
optimizations are not as high as the improvements from
memory optimizations but are still quite significant, especially
on larger regions in the second pass. For the regions of size
100 instructions or greater, the overall improvement from
thread-divergence optimizations is 15.42%, and the maximum
improvement on any region is 101.40%. As explained in Section
V-B, there is more thread divergence in the second pass. The
improvement on larger regions is greater than the improvement
on smaller regions, because as the region size increases, a larger
percentage of the ACO scheduling time is actual computation
time on the GPU, as opposed to copying time.

TABLE 4.a
IMPROVEMENTS IN ACO TIME FROM MEMORY OPTIMIZATIONS

Inst. count range 1-49 50-99 > 100

Pass 1 overall improvement — 645% 1055% 897%

Pass 1 max. improvement 1163% 1592% 1929%

Pass 2 overall improvement 593% 994% 709%

Pass 2 max. improvement 2647% 1629% 3052%
TABLE 4.b

IMPROVEMENTS IN ACO TIME FROM DIVERGENCE OPTIMIZATIONS

Inst. count range 1-49 50-99 > 100
Pass 1 overall improvement 0.68% 3.81% 7.00%
Pass 1 max. improvement 17.14% 15.84% 65.96%
Pass 2 overall improvement 3.78% 12.06% 15.42%
Pass 2 max. improvement 55.56% 71.53% 101.40%

D. Compile Times

Table 5 shows the total compile times for the rocPRIM
benchmarks using the base AMD scheduler, the sequential
ACO scheduler, and the parallel ACO scheduler. In practice,
ACO is a computationally expensive algorithmic technique that
should be applied selectively only when a significant benefit

is expected.
TABLE 5
TOTAL COMPILE TIMES

Scheduler Total Compile Time (seconds)

Base AMD 840
Sequential ACO 1225 (45.8%)
Parallel ACO 967 (15.1%)

As described earlier, a heuristic is applied first in each pass,
and the ACO scheduler is invoked only if the heuristic RP
(in the first pass) or schedule length (in the second pass) is
not at the LB. In addition to this natural filtering, we found
experimentally that the benefit from ACO in the second pass is
likely to be significant only when the gap between the heuristic
schedule length and the LB is greater than a certain threshold.
A small improvement in schedule length is unlikely to translate
into an improvement in execution time. As detailed in Section
VI-F, a threshold of 21 cycles gave the best execution-time

443

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

results. This filter limits the compile-time cost and minimizes
execution-time regressions that may result from negative side
effects on un-modeled factors.

Additionally, we found that in some cases, the ACO
scheduler may find a schedule with a better occupancy in
the first pass, but due to the stronger occupancy constraint in
the second pass, it finds a significantly long schedule. In such
cases, which don’t occur very often, reverting to the heuristic
schedule gives better execution-time results. To handle such
cases, we added a post-scheduling filter that compares the
occupancy and the schedule length of the final ACO schedule
with the heuristic occupancy and schedule length and selects
the schedule that achieves a better balance between occupancy
and ILP. This filter is parameterized and can be tuned to
achieve the best performance. Experimentally, we found that
if the ACO algorithm increases occupancy by 3 but degrades
the schedule length by more than 63 cycles, reverting to the
heuristic schedule gives the best execution-time results.

Table 5 shows that the total compile time of the rocPRIM
benchmarks using the base LLVM compiler with the AMD
scheduler is 840 seconds. When the sequential ACO scheduler
is used, the compile time increases by 45.8%. With the parallel
ACO scheduler, the increase in compile time relative to the base
LLVM compiler is 15.1%. So, scheduling on the GPU using the
parallel ACO algorithm reduces the total compile time by 21%
relative to scheduling on the CPU using the sequential ACO
algorithm. This result shows that parallelization on the GPU
makes using a computationally expensive scheduling algorithm
much more practical. In future work, we plan to work on further
reducing the compile time by exploring additional techniques,
such as scheduling multiple regions in parallel.

E. Execution-Time Results

To evaluate the execution-time performance, the rocPRIM
benchmarks were compiled with the proposed algorithm used
for scheduling (the modified build). The filtering described in
Section VI-D was applied. Each benchmark was run five times
using the modified build and five times using the base LLVM
compiler with the AMD scheduler, and the median throughput
was taken for each benchmark.

Figure 4 shows the execution-time results for the benchmarks
on which a significant difference was measured between the
median throughput of the proposed algorithm and that of the
AMD algorithm. A difference is significant if it is 1% or greater.
All significant differences were improvements. The maximum
regression was 0.7%. Regressions are caused by negative side
effects on un-modeled factors. An instruction scheduler models
register pressure and schedule length, but it does not model
other factors that affect performance, such as caching. Since
some factors are impossible to model accurately at compile
time, regressions are unavoidable but can be minimized with a
reasonable cost-benefit analysis.

The x-axis represents the benchmarks and the y-axis rep-
resents the percentage improvement relative to the AMD
scheduler. The maximum improvement is 74%. The last bar
shows that the geometric-mean improvement is 13.2%. The

80% [~ T

60%

40%

20%

Fig. 4. Execution-time speedup of rocPRIM benchmarks

graph also shows that 20 benchmarks were improved by 5% or
greater and 11 benchmarks were improved by 10% or greater.

F. Experimenting with Design Parameters

The parameters used to generate the results reported in the
previous subsections were chosen based on experimentation. In
this subsection, we show the results of our experimentation with
two design parameters, namely the percentage of wavefronts
inserting optional stalls (Table 6) and the cycle threshold used
to filter out unpromising scheduling regions (Table 7).

Table 6 shows the percentage increase in ACO scheduling
time when the percentage of wavefronts inserting optional stalls
is increased for the regions of size 100 or greater. The baseline
is zero wavefronts inserting optional stalls. The table also shows
the improvement in schedule length that is achieved with each
percentage of wavefronts relative to 0%. When the percentage
of wavefronts inserting optional stalls is increased, a better
schedule length may be achieved, because considering optional
stalls increases the chance of meeting the target occupancy. If
the target occupancy is not met, the scheduler falls back to the
second pass’s input schedule, which can be quite long.

The table shows that the improvement in schedule length
comes at the cost of increasing the scheduling time. We
chose 25% because it gives the best balance between the
scheduling time and the quality of the schedule. Note that
when zero wavefronts consider inserting optional stalls, it will
be impossible to find an optimal schedule for some regions.

Table 7 shows the execution-time statistics using different
settings of the cycle threshold described in Section VI-D. Recall
that if the difference between the length of the input schedule
and the LB is less than the cycle threshold, the region is filtered

444

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

TABLE 6
EXPERIMENTATION WITH OPTIONAL STALLS
% Blocks inserting optional stalls 25% 50% 75%
% Increase in ACO Time 8.65% 12.30% 20.28%
% Improvement in schedule length 0.27% 0.30% 0.95%
Max. % improvement in schedule length 15.75% 15.75% 23.58%

out. The results in the table show that increasing the cycle
threshold eliminates significant regressions, and that a cycle
threshold of 21 gives the best results.

TABLE 7
EXPERIMENTATION WITH CYCLE-BASED FILTER

Cycles 5 10 15 20 21 25
Imps. > 3% 18 20 20 21 20 20
Imps. > 5% 17 20 20 24 24 24
Imps. > 10% 9 10 11 9 11 11
Regs. > 3% 4 3 1 1 0 0
Regs. > 5% 4 3 1 1 0 0
Regs. > 10% 3 3 1 1 0 0

Max. Reg. 145% 145% 105% 105% 0.7% 1.3%

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we show that the GPU can be used to
parallelize a compute-intensive compiler optimization, which is
ACO-based instruction scheduling. Efficient parallelization is
achieved using a number of techniques for improving memory
performance and reducing thread divergence. Our work is the
first successful attempt to parallelize a compiler optimization
on the GPU and achieve significant improvements in execution
speed with a reasonable increase in compile time.

Our experimental evaluation shows that ACO-based schedul-
ing can be performed up to 27 times faster on the GPU, and
this leads to reducing the total compile time of rocPRIM by
21% relative to sequential ACO scheduling on the CPU.

In future work, we will continue to work on optimizing the
performance of the proposed algorithm, and we will work on
maximizing the utilization of the GPU by scheduling multiple
regions in parallel.

ACKNOWLEDGEMENTS

This work was supported in part by the US National Science
Foundation (NSF) through Award 1911235. The first and
second authors were supported by a Progress-to-Promotion
award from the Provost office at California State University,
Sacramento. The authors thank the GPU-compute compiler
team at Advanced Micro Devices (AMD) for donating the
machine that was used to generate the experimental results. We
also thank Jeffrey Byrnes for the help he provided on setting up
the benchmarks and thank Patrick Brannan and Lynn Koropp
for the technical support that they provided. Finally, we thank
the anonymous reviewers for their constructive comments and
suggestions that led to improving the final paper.

APPENDIX
A. Abstract

The artifact contains the source code for an instruction
scheduling compiler pass built in the AMDGPU backend of
LLVM. It also contains a Docker image which has LLVM with
the instruction scheduling pass built on Ubuntu 20.04. Users
can replicate the compile-time and execution-time experiments
described in the paper with the Docker image. We tried to
make running the experiments as convenient as possible. New
benchmarks can be added and the settings can be adjusted if
the user wishes to perform further experiments.

B. Artifact Checklist (Meta-Information)

o Algorithm: Parallel Ant Colony Optimization

+ Run-time environment: ROCm kernel-mode drivers and
Docker.

+ Hardware: An AMD GPU supported by the ROCm software
stack.

o Output: Spreadsheets of run-time benchmark throughputs and
compile-time metrics.

« How much disk space required (approximately)?: 20 GB.

o How much time is needed to prepare workflow (approxi-
mately)?: 1 hour.

o How much time is needed to complete experiments (approx-
imately)?: 3 hours.

C. Description

1) How Delivered: The artifact, containing the source code, is
available on GitHub at
https://github.com/CSUS-LLVM/OptSched/tree/CGO24.

However, it is recommended to download the “docker” directory
separately from
https://github.com/CSUS-LLVM/OptSched/tree/CGO24/docker.

The Docker image will download and build the compiler pass from
the source automatically.

2) Hardware Dependencies: The results presented in this paper
were produced using an AMD Radeon VII GPU, which is a Vega 20
GPU. Since instruction scheduling is a hardware-dependent compiler
optimization, some experimental results may vary significantly when
the experiments are run on different hardware.

D. Installation

Building the included Docker image will collect all the required
user-space dependencies, compile LLVM with the Parallel ACO
compiler pass, and download the rocPRIM benchmarks used in the
paper.

To build the Docker image, download the “docker” directory from
the GitHub repository and use the “docker build” command. The
build command must be supplied with an argument indicating which
AMD GPU targets to build for. Assuming the “docker” directory is
in the current working directory, and the user wants to build for the
”efx906” architecture, the build command would be
docker build --build-arg="amdgpu_arch='"gfx906’
" docker

E. Experiment Workflow

A user wishing to conduct new experiments may wish to adjust the
configuration files located in ~/.optsched-cfg. In the included
Docker image, all the default settings match those used to generate
the results in Tables 1-3.b and Figures 2-4.

A user seeking to replicate the results presented in the paper will
also need to gather baseline results using AMD’s stock compiler. Set
”ACO_BEFORE_ENUM” in sched.ini to ”"NO” for these baseline
experiments. With this setting, the Parallel ACO scheduler will not

445

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

do any scheduling, but the compile-time metrics will still be reported
in a format that the provided scripts can parse.

1) Compile-Time Experiments: Compile-time experiments are
performed by building the rocPRIM library with the parallel ACO
instruction scheduling pass and collecting the printed output, which
contains data on various compile-time metrics.

The rocPRIM source is already downloaded in the included Docker
image. It can be found at
~/aco/benchmarks/rocPRIM.

To build rocPRIM with parallel ACO, make a new directory and run
the following commands from that directory

CXX=hipcc cmake -DBUILD_BENCHMARK=ON
-DAMDGPU_TARGETS="$AMDGPU_ARCH"
~“/aco/benchmarks/rocPRIM/

make |& tee build.log

This will build rocPRIM and place the parallel ACO logs in
build.log. The following command will convert the output compile-
time metrics into an Excel spreadsheet named “out.xIsx”.

extractOptSchedData.py build.log out

2) Execution-Time Experiments: Execution-time experiments
are performed by running the rocPRIM benchmarks produced from
building rocPRIM with the parallel ACO scheduler and measuring
their throughput. A script has been provided to run them automatically.
The following command will replicate the execution-time experiment
that produced the results in Figure 4:

runPrimTests.py —-—-benchpath
</path/to/benchmarks> --testpath
“/aco/util/testSets/primSensitiveTests.txt
—--repetitions 5 —--output results.csv

Each benchmark listed in “’primSensitiveTests.txt” will be run 5
times, and the median throughput in GB/s for each benchmark will
be reported in results.csv.

F. Evaluation and Expected Result

After collecting the compile-time and execution-time results for
both the baseline AMD and the parallel ACO builds, the results
spreadsheets can be used to compare their performance.

The parallel-ACO throughput is compared with the base-AMD
throughput for each benchmark. The performance improvements of
parallel ACO relative to base AMD should be as shown in Figure 4.

REFERENCES

[1] K. Cooper and L. Torczon, Engineering a compiler, 2nd ed. Morgan
Kaufmann, 2011.

[2] C. Kessler, “Scheduling expression DAGs for minimal register need,”
Computer Languages, vol. 24, no. 1, pp. 33-53, 1998.

[3] A. Malik, “Constraint programming techniques for optimal instruction
scheduling,” Ph.D. dissertation, University of Waterloo, 2008.

[4] G. Barany and A. Krall, “Optimal and heuristic global code motion for
minimal spilling,” in International Conference on Compiler Construction,
2013, pp. 21-40.

[5] L. Domagata, D. van Amstel, F. Rastello, and P. Sadayappan, “Register
allocation and promotion through combined instruction scheduling and
loop unrolling,” in International Conference on Compiler Construction,
2016, p. 143-151.

[6] R. Lozano, “Constraint-based register allocation and instruction schedul-
ing,” Ph.D. dissertation, KTH Royal Institute of Technology, 2018.

[71 R. C. Lozano, M. Carlsson, G. Blindell, and C. Schulte, “Combina-
torial register allocation and instruction scheduling,” ACM Trans. on
Programming Languages and Systems, vol. 41, no. 3, 2019.

[8] G. Shobaki, M. Shawabkeh, and N. Rmaileh, ‘“Preallocation instruction
scheduling with register pressure minimization using a combinatorial
optimization approach,” ACM Trans. Archit. Code Optim., vol. 10, no. 3,
2013.

[9]

(10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

(32]

[33]

446

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

G. Shobaki, A. Kerbow, C. Pulido, and W. Dobson, “Exploring an alter-
native cost function for combinatorial register-pressure-aware instruction
scheduling,” ACM Trans. Archit. Code Optim., vol. 16, no. 1, 2019.

G. Shobaki, A. Kerbow, and S. Mekhanoshin, “Optimizing occupancy
and ILP on the GPU using a combinatorial approach,” in ACM/IEEE
International Symposium on Code Generation and Optimization, 2020,
p. 133-144.

G. Shobaki, V. Gordon, P. McHugh, T. Dubois, and A. Kerbow, “Register-
pressure-aware instruction scheduling using Ant-Colony Optimization,”
ACM Trans. Archit. Code Optim., vol. 19, no. 2, 2022.

M. Dorigo and T. Stiitzle, Ant Colony Optimization. MIT Press, 2004.
P. S. Rawat, F. Rastello, A. Sukumaran-Rajam, L.-N. Pouchet, A. Rountev,
and P. Sadayappan, “Register optimizations for stencils on GPUs,” in
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2018, p. 168-182.

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by
a colony of cooperating agents,” I[EEE Trans. Syst., Man, and Cybern. -
Part B, vol. 26, no. 1, pp. 29-41, 1996.

L. Gambardella and M. Dorigo, “An Ant Colony System hybridized with
a new local search for the Sequential Ordering Problem,” INFORMS J.
Comput., vol. 12, no. 3, pp. 237-255, 2000.

L. Escudero, “An inexact algorithm for the Sequential Ordering Problem,”
European Journal of Operational Research, vol. 37, no. 2, pp. 236-249,
1988.

J. Ning, C. Zhang, P. Sun, and Y. Feng, “Comparative study of Ant
Colony Algorithms for multi-objective optimization,” Information, vol. 10,
no. 1, 2019.

L. Gambardella, E. Taillard, and G. Agazzi, “MACS-VRPTW: A multiple
Ant Colony System for vehicle routing problems with time windows,”
in New Ideas in Optimization, 1999, p. 63-76.

D. Skillicorn and D. Barnard, “Compiling in parallel,” Journal of Parallel
and Distributed Computing, vol. 17, no. 4, pp. 337-352, 1993.

M. Mendez-Lojo, M. Burtscher, and K. Pingali, “A GPU implementation
of inclusion-based points-to analysis,” in Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2012, p. 107-116.

Y. Su, D. Ye, and J. Xue, “Accelerating inclusion-based pointer analysis
on heterogeneous CPU-GPU systems,” in 20th Annual International
Conference on High Performance Computing, 2013, pp. 149-158.

R. Nasre, “Time- and space-efficient flow-sensitive points-to analysis,”
ACM Trans. Archit. Code Optim., vol. 10, no. 4, 2013.

T. BlaB3 and M. Philippsen, “GPU-accelerated fixpoint algorithms for
faster compiler analyses,” in Proceedings of the 28th International
Conference on Compiler Construction, 2019, p. 122-134.

T. Prabhu, S. Ramalingam, M. Might, and M. Hall, “EigenCFA:
Accelerating flow analysis with GPUs,” in Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), 2011, p. 511-522.

Z.Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang,
X. Li, C. Wang, and G. Xu, “Systemizing interprocedural static analysis
of large-scale systems code with Graspan,” ACM Trans. Comput. Syst.,
vol. 38, no. 1-2, 2021.

Z. Zheng, X. Shi, L. He, H. Jin, S. Wei, H. Dai, and X. Peng, “Feluca:
A two-stage graph coloring algorithm with color-centric paradigm on
GPU,” IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 1, pp. 160-173, 2021.

M. Osama, M. Truong, C. Yang, A. Bulug, and J. Owens, “Graph coloring
on the GPU,” in IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2019, pp. 231-240.

AMD, “rocPRIM documentation,” [Online]. Available:
/lrocmdocs.amd.com/projects/rocPRIM/en/latest/index.html
NVIDIA, “GPU-accelerated applications,” [Online].
https://www.nvidia.com/en-us/gpu-accelerated-applications
AMD, “HIP programming guide v5.4,” [Online]. Avail-
able: https://docs.amd.com/bundle/HIP-Programming-Guide-v5.4/page/
Introduction{_}to{_}HIP{_}Programming{_}Guide.html

M. Pedemonte, S. Nesmachnow, and H. Cancela, “A survey on parallel
Ant Colony Optimization,” Applied Soft Computing, vol. 11, no. 8, pp.
5181-5197, 2011.

M. Randall and A. Lewis, “A parallel implementation of Ant Colony
Optimization,” Journal of Parallel and Distributed Computing, vol. 62,
no. 9, pp. 1421-1432, 2002.

S. Janson, D. Merkle, and M. Middendorf, “Parallel Ant Colony
algorithms,” in Parallel Metaheuristics, 2019, pp. 171-201.

https:

Available:

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

R. Skinderowicz, “The GPU-based parallel Ant Colony System,” J.
Farallel Distributed Comput., vol. 98, pp. 48—60, 2016.

J. Peake, M. Amos, P. Yiapanis, and H. Lloyd, “Vectorized candidate
set selection for parallel Ant Colony Optimization,” in Genetic and
Evolutionary Computation Conference (GECCO), 2018, pp. 1300-1306.
J. Cecilia and J. Garcfa, “Re-engineering the Ant Colony Optimization
for CMP architectures,” J. Supercomput., vol. 76, p. 4581-4602, 2020.
J. Cecilia, J. Garcia, A. Nisbet, M. Amos, and M. Ujaldén, “Enhancing
data parallelism for Ant Colony Optimization on GPUs,” Journal of
Parallel and Distributed Computing, vol. 73, no. 1, pp. 42-51, 2013.
J. Cecilia, A. Llanes, J. Abelldn, J. Gémez-Luna, L. Chang, and W. Hwu,
“High-throughput Ant Colony Optimization on Graphics Processing Units,”
Journal of Parallel and Distributed Computing, vol. 113, pp. 261-274,
2018.

G. Guerrero, J. Cecilia, A. Llanes, J. Garcia, M. Amos, and M. Ujaldén,
“Comparative evaluation of platforms for parallel Ant Colony Optimiza-
tion,” J. Supercomput., vol. 69, p. 318-329, 2014.

L. Dawson and I. Stewart, “Improving Ant Colony Optimization perfor-
mance on the GPU using CUDA,” in IEEE Congress on Evolutionary
Computation, 2013, pp. 1901-1908.

A. Uchida, Y. Ito, and K. Nakano, “An efficient GPU implementation
of Ant Colony Optimization for the Traveling Salesman Problem,” in
International Conference on Networking and Computing (ICNC), 2012,
pp. 94-102.

R. Skinderowicz, “Implementing a GPU-based parallel MAX-MIN Ant
System,” Future Generation Computer Systems, vol. 106, pp. 277-295,
2020.

B. Menezes, H. Kuchen, H. A. Neto, and F. de Lima Neto, ‘“Parallelization
strategies for GPU-based Ant Colony Optimization solving the Traveling
Salesman Problem,” in /IEEE Congress on Evolutionary Computation
(CEC), 2019, pp. 3094-3101.

A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki, “Parallel Ant
Colony Optimization on Graphics Processing Units,” Journal of Parallel
and Distributed Computing, vol. 73, no. 1, pp. 52-61, 2013.

Y. Zhou, F. He, and Y. Qiu, “Dynamic strategy based parallel ant colony
optimization on GPUs for TSPs.” Science China Information Sciences,
vol. 60, no. 068102, 2017.

H. Zhi-bin, F. Guang-Tao, F. Tian-Hao, D. Dan-Yang, B. Peng, and
X. Chen, “High performance ant colony system based on GPU warp
specialization with a static—dynamic balanced candidate set strategy,”
Future Generation Computer Systems, vol. 125, pp. 136-150, 2021.

J. Fu, L. Lei, and G. Zhou, “A parallel Ant Colony Optimization algorithm
with GPU-acceleration based on All-In-Roulette selection,” in Third
International Workshop on Advanced Computational Intelligence, 2010,
pp. 260-264.

D. E. Baz, M. Hifi, L. Wu, and X. Shi, “A parallel Ant Colony
Optimization for the Maximum-weight Clique Problem,” in IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2016, pp. 796-800.

S. Tsutsui and N. Fujimoto, “A comparative study of synchronization of
parallel ACO on multi-core processor,” in Companion Publication of Ge-

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

447

Authorized licensed use limited to: California State University Sacramento. Downloaded on March 05,2024 at 05:37:49 UTC from IEEE Xplore. Restrictions apply.

netic and Evolutionary Computation Conference (GECCO Companion),
2015, pp. 777-778.

A. Borisenko and S. Gorlatch, “Optimizing a GPU-parallelized Ant
Colony Metaheuristic by parameter tuning,” in Parallel Computing
Technologies (PaCT), ser. Lecture Notes in Computer Science, 2019, vol.
11657, pp. 151-165.

D. Thiruvady, A. Ernst, and G. Singh, “Parallel Ant Colony Optimization
for resource constrained job scheduling,” Annals of Operations Research,
vol. 242, no. 2, pp. 355-372, 2016.

I. Dzalbs and T. Kalganova, “Accelerating supply chains with Ant Colony
Optimization across a range of hardware solutions,” Comput. Ind. Eng.,
vol. 147, 2020.

S. Mane, P. Lokare, and H. Gaikwad, “Overview and applications
of GPGPU based parallel ant colony optimization,” in International
Conference on Advances in Computing and Information Technology
(ICACIT), 2014.

C. Lintzmayer, M. Mulati, and A. da Silva, “Register allocation with
graph coloring by Ant Colony Optimization,” in International Conference
of the Chilean Computer Science Society, 2011, pp. 247-255.

J. Falcon-Cardona, G. Leguizamén, C. Coello, and M. Tapia, “Multi-
objective Ant Colony Optimization: An updated review of approaches
and applications,” in Intelligent Systems Reference Library (ISRL) book
series, 2022, vol. 218.

A. Mora, P. Garcia-Sanchez, J. Merelo, and P. Castillo, “Pareto-based
multi-colony multi-objective Ant Colony Optimization algorithms: an
island model proposal,” in Soft Comput, 2013, vol. 17, p. 1175-1207.
A. Cano, J. Olmo, and S. Ventura, “Parallel multi-objective Ant
Programming for classification using GPUs,” Parallel and Distributed
Computing, vol. 73, no. 6, pp. 713-728, 2013.

J. Olmo, J. Romero, and S. Ventura, “Classification rule mining using
Ant Programming guided by grammar with multiple Pareto fronts,” in
Soft Comput, 2012, vol. 16, pp. 2143-2163.

L. Gambardella, R. Montemanni, and D. Weyland, “An enhanced Ant
Colony System for the Sequential Ordering Problem,” in Operations
Research Proceedings 2011, 2012, pp. 355-360.

R. Skinderowicz, “An improved Ant Colony System for the Sequential
Ordering Problem,” Computers & Operations Research, vol. 86, pp. 1-17,
2017.

G. Shobaki, L. Sakka, N. A. Rmaileh, and H. Al-Hamash, “Experimental
evaluation of various register-pressure-reduction heuristics,” Softw. Pract.
Exper., vol. 45, no. 11, p. 1497-1517, 2015.

M. Harris, “Optimizing parallel reduction in CUDA,” . [Online]. Available:
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg, “ScatterAl-
loc: Massively parallel dynamic memory allocation for the GPU,” in
Innovative Parallel Computing (InPar), 2012, pp. 1-10.

D. Kirk and W. Hwu, Programming Massively Parallel Processors: A
Hands-on Approach, 3rd ed. Morgan Kaufmann, 2017.

AMD, “Amd. 2019. gen max occupancy sched-
uler,” [Online]. Available: http:/llvm.org/doxygen/classllvm_1_
1GCNMaxOccupancySchedStrategy.html

