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Random Linear Estimation With
Rotationally-Invariant Designs: Asymptotics
at High Temperature

Yufan Li™, Zhou Fan, Subhabrata Sen, and Yihong Wu

Abstract— We study estimation in the linear model
y = AB* + e in a Bayesian setting where (3* has an
entrywise i.i.d. prior and the design A is rotationally-invariant
in law. In the large system limit as dimension and sample
size increase proportionally, a set of related conjectures have
been postulated for the asymptotic mutual information, Bayes-
optimal mean squared error, and TAP mean-field equations
that characterize the Bayes posterior mean of (3*. In this
work, we prove these conjectures for a general class of signal
priors and for arbitrary rotationally-invariant designs A, under
a ‘“high-temperature” condition that restricts the range of
eigenvalues of AT A and encompasses regimes of sufficiently
low signal-to-noise ratio. Our proof uses a conditional second-
moment method argument, where we condition on the iterates
of a version of the Vector AMP algorithm for solving the TAP
mean-field equations.

Index Terms— Estimation, mutual information, multiaccess
communication, Bayes methods.

I. INTRODUCTION

ONSIDER observations y = AS* + ¢ € R™ from a
linear model with Gaussian noise, in a Bayesian setting
where the entries of §* € R™ are drawn i.i.d. from a “sig-
nal prior”. Fundamental questions of interest in applications
spanning CDMA communication systems [1] to sparse signal
recovery [2] to statistical genetics [3] pertain to the properties
of the Bayes posterior law and posterior mean estimate for 5*.
In the asymptotic limit as m,n — oo and A constitutes
an ii.d. measurement design, a rich and insightful body of
literature has obtained precise “single-letter” characterizations
of the asymptotic mutual information, minimum mean squared
error (MMSE), and low-dimensional marginals of the Bayes
posterior law. Based initially on work of Tanaka [1] and
Guo and Verdd [4] using the non-rigorous replica method
of statistical physics, these characterizations have since been
proven rigorously in increasingly general contexts [5], [6], [7],
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[8], [9], [10], [11], and are closely connected to Approximate
Message Passing (AMP) algorithms and mean-field variational
approaches for Bayesian inference.

The focus of our work, and the subject of significant recent
attention, is on extensions of these results beyond i.i.d. designs.
We study here the model where A is right-rotationally invariant
in law, and where analogous single-letter characterizations are
expected to depend on A only via the spectral distribution of
AT A. In this model, conjectures for the asymptotic mutual
information were derived via the replica method for binary
and Bernoulli-Gaussian signal priors by Takeda, Uda, and
Kabashima [12] and Tulino et al. [13], and a form for general
priors was stated by Barbier et al. in [14]. A number of itera-
tive Bayesian inference algorithms including Adaptive TAP
[15], [16], Expectation-Consistency [17], Vector/Orthogonal
AMP [18], [19], [20], [21], and long-memory forms of
AMP [22], [23] have been proposed for this model, whose
algorithmic fixed-points coincide with the replica predictions.
In [24], the forms of the TAP mean-field equations that char-
acterize the posterior mean were derived for this and related
models using a Plefka expansion approach, and it was argued
that the approximations underlying these AdaTAP, EC, and
VAMP/OAMP algorithms are all equivalent to the vanishing of
certain diagrammatic terms in the Plefka expansion. Recently,
extensions of the replica method calculations and analyses of
VAMP fixed points have been carried out in [25] for settings
with a possibly mismatched likelihood or Bayesian prior.

In this work, we provide a rigorous proof of the expressions
for asymptotic mutual information and MMSE and of the
validity of the TAP mean-field equations (in an L? sense) that
are predicted by this replica theory, in a setting of correctly
specified likelihood and prior, for general rotationally-invariant
designs A under a restriction for the range of eigenvalues of
AT A. The centered matrix AT A — d,I for a constant d, >
0 plays the role of a rotationally-invariant couplings matrix
in analogous models of mean-field spin glasses [26], [27],
and our restriction on the eigenvalue range is analogous to
an assumption of high temperature in such spin glass models.
In the current statistical context, this assumption encompasses
regimes of sufficiently low signal-to-noise ratio (SNR). Our
results are complementary to those of [14] that established
the asymptotic mutual information for specific designs of
the form A = BW where W has i.i.d. Gaussian entries,
without a high-temperature constraint. Related analyses of
convex empirical risk minimization for linear and generalized
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linear models with rotationally-invariant designs have also
been performed in [28] and [29], where replica predictions
for the minimum mean-squared error were rigorously
established.

Interest in the linear model with rotationally-invariant mea-
surement designs has been partially motivated by the belief
that asymptotic predictions derived for such designs may hold
universally across designs whose right singular vectors are
sufficiently “generic”. Universality statements of this form
have been shown recently for AMP and other first-order
iterative algorithms in [30], [31], and [32]. These results
suggest that the asymptotic mutual information and Bayes
optimal MMSE are also potentially universal—we leave this
as an open question for future work.

Proof Ideas: Our proofs build upon recent analyses of
orthogonally-invariant spin glasses [33], [34] via a conditional
second-moment argument [35], [36]. We analyze the first and
second moments of restrictions of the log-partition function
conditioned on iterates of a version of VAMP, to establish
the asymptotic mutual information. The intuition for this
proof strategy is common with [33] and [35], in that the
leading order contribution to the fluctuation of the log-partition
function (conjecturally) depends on the data (y, A) only via
the posterior mean E[5* | y, A], and thus tight bounds for the
log-partition function may be obtained via a second-moment
analysis conditional on E[5* | y,A]. To enable explicit
calculations, we condition instead on a sequence of VAMP
iterates that converge to E[5* | y, A]. At a technical level, this
extends analyses of [33] to encompass a general class of prior
distributions with possibly unbounded support, and to address
additional complexities of the Hamiltonian and of the VAMP
algorithm for the linear model. Related ideas of analyzing the
conditional moments of a truncated log-partition function in
an Ising perceptron model with unbounded log-activation were
developed recently in [37].

Let us clarify that existing state-evolution analyses of the
mean squared error achieved by VAMP imply only an upper
bound for the Bayes-optimal MMSE. Integrating the -MMSE
relation [38] from zero SNR to small positive SNR via an “area
argument” [5], [6] then implies a corresponding upper bound
for the asymptotic mutual information at high temperature.
The main contribution of our work is to prove that these upper
bounds are tight, and that VAMP indeed computes an approx-
imation of the posterior mean, by establishing corresponding
lower bounds for the mutual information and Bayes-optimal
MMSE, together with a TAP characterization of the posterior
mean.

We remark that concentration of the overlap between inde-
pendent samples from the posterior measure may be deduced
from the general results of [39] and [40], or alternatively
from our calculation of the conditional second moment of a
suitably restricted partition function (c.f. Proof of Theorem 1.9
to follow). However, existing arguments that derive the replica-
symmetric limit for the free energy from overlap concentration
rely on interpolation techniques [9], [41], [42], which seem
more difficult to apply in models without an i.i.d. component
of the disorder. In this sense, our approach is quite different
from the adaptive interpolation method of [14] that is specific
to factorized designs A = BW having an i.i.d. Gaussian
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matrix W. One advantage of our current approach is that
it relies less crucially on the Nishimori identities, and is
potentially easier to generalize to settings of a mismatched
likelihood or prior. Indeed, in sufficiently high-temperature
scenarios where a replica-symmetric approximation of the
free energy may remain exact even for mismatched models,
the results of [25] suggest that a conditional second-moment
analysis based on VAMP may still apply, and we leave this as
an interesting question to explore in future work.

A. Model and Assumptions

Let g € R"™ be a signal vector with coordinates

iid C . . . o .
(BF), ~ m distributed according to a known prior distri-
bution . We observe m noisy measurements

y=AB" +ecR™ (1)
where (€;)7; “d N(0,1) is Gaussian noise and A € R™*"
is the measurement matrix.

Our main results describe the asymptotic mutual infor-
mation, Bayes-optimal mean squared error, and Bayes
posterior-mean estimator for 5*, when n,m — oo and A is
right-rotationally invariant in law. We denote the (normalized)
mutual information between §* and y conditioned on A as

1 1 Pyl B A
i = —1(8%y| A) =—E (10g A
n! T TA =B s g T
We write expectation with respect to the posterior distribution
for 5* given (y, A) as (-), i.e.

oy @) esp( 3y — Aol T2, (o)
Mo = o e ( 1ly — Ao |?) [T, dr(a)

where we will use o as the variable for a sample from
this posterior. In particular, (o) is the posterior mean of 5*.
We denote its normalized mean squared error conditioned on
A as

2

1
mmse,, 1= #E[Hﬁ* —{(o)|I* | Al 3)

We fix a random variable D > 0 representing the limit
singular value distribution of A, and denote throughout

d* = E[D2]7
dy = max(z : = € supp(D?))

d_ :=min(x : z € supp(D?)),

where supp(D?) C [0, 00) is the support of D2

Assumption 1.1 (Singular Value Distribution): D?
strictly positive mean and variance and compact support.

Assumption 1.2 (Measurement Matrix): Let A = QT DO
be the singular value decomposition, where @ € R™*™ and
O € R™ ™ are orthogonal and D € R"™*" is diagonal. Then
@, D are deterministic, O, §*, € are mutually independent, and
O ~ Haar(SO(n)) is uniformly distributed on the special
orthogonal group. As n,m — oo,

has

D 1 %D, min (diag(D D)) — d_,
max (diag(D ' D)) — d.. )

w .
Here, D' 1,,5x1 — D denotes Wasserstein-p convergence of
the empirical distribution of coordinates of D'1,,,; € R"
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to D for all orders p > 1, and we review properties of this
convergence in Appendix G-A.

We may assume without loss of generality that 7 has
mean 0, by subtracting from y a multiple of Al, ;. Our
results are then proven under the following additional assump-
tions for 7 and “high-temperature” condition for D.

Assumption 1.3 (Prior distribution): Let X* ~ . Then 7
is a non-Gaussian distribution with

E[X*] =0,  p.:=E[X*?]>0.
There is a constant € > 0 for which, for any s > 0,
pe <€, P[X*| > s] < 2e/29), (5)

Furthermore, for any k € {1,2}, symmetric I' € RF*k
satisfying I' < (4¢)7'1, and z € R*, denote

J ( ) e:z:TFm+mTz H2€=1 d’iT(:Ul)
w(w) = — ;
f ex TataT 2 Hle dr(z;)

(f(@))u =/f(93)du(w), Vulf(@)] = (F(@)*) — (f(@))}

Then the distribution y satisfies, for any unit vector v € R
and a constant C' > 0 depending only on ¢,

V.v'zl <C, V(v z)?) <O+ (v 2)?),]. (6

Assumption 1.4 (High temperature): We have supp(D?) C
[di —¢,d. + ¢] for some ¢ > 0.

The condition (6) of Assumption 1.3 may be understood
as a Poincaré-type inequality for p, and holds (for example)
when 7 has a bounded support contained in [—v/€, /€]
or a log-concave density e~ 9(*) where ¢”(z) > 1/¢, cf.
Proposition 13.

In our main results, we will require the value ¢ in Assump-
tion 1.4 to be sufficiently small (depending on the constant € in
Assumption 1.3), and this is the main restriction of our current
work. Such a requirement will limit our results to a subset of
the regime where the state evolution of VAMP has a unique
fixed point, and there is no statistical-computational gap. Note
that in a model y = AB* 4+ oe with general noise variance
02 > 0, this high temperature assumption encompasses the
setting of sufficiently large o2 for any fixed singular value
distribution D and fixed prior 7. (This follows upon rescaling
y, A, and D all by 1/0.)

Remark 1.5: We restrict to non-Gaussian priors 7 to avoid
a rank degeneracy in our subsequent conditioning arguments.
If 7 is Gaussian, our proofs may be modified to condition on
only a single iteration of VAMP, rather than ¢ iterations for
t — oo. We will not discuss this modification because i,,,
mmse,,, and the posterior mean (o) all have explicit formulas
for Gaussian priors 7, and in this case the main results may
be shown at any temperature using more direct techniques of
asymptotic random matrix theory (see e.g. [13, Theorem 2]
and [43, Theorem 1]).

Remark 1.6: Our results extend directly to the more com-
monly studied setting where O ~ Haar(Q(n)) is uniform over
the full orthogonal group, and also where @), D are random
and independent of O, 5*, ¢ such that (4) holds almost surely
as n,m — oo. We discuss this further in Appendix G-E.
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B. Scalar Channel and Fixed Point Equation

The asymptotic characterization of the model (1) is
described by a “single-letter” scalar channel

Y=X"+Z/\/y @)

with signal X* ~ 7, independent Gaussian noise Z ~ N(0, 1),
and noise variance v~ > 0. We denote the Bayes posterior-
mean denoiser in this model as

f(y,7) =EX"|Y =y (8)

and the signal-observation mutual information and Bayes-
optimal mean squared error as

i(y) = I(X%Y),

Under Assumption 1.1,1et G : (—d_,00) — (0,00) and R :
(0,G(—d-)) — (—00,0) be the Cauchy- and R-transforms of
the law of —D?2, defined by

G(z) =E L+1D2

mmse(y) = E[V[X™ | Y]]. 9

1

} ’ R(z)=G7'(z)— =, (10
z

where G71(-) is the functional inverse of G(-), and we set

G(—d-) = lim,_,_4 G(z). Lemma 13 shows that these

functions are well-defined and reviews several additional prop-

erties under the high-temperature condition of Assumption 1.4.

The noise variance v~ that relates this scalar channel to the
model (1) is a solution of the fixed-point equations

Y

v=-R(n™).
1 _

The second equation can be written equivalently as =" =
G(n — ) by the definition of the R-transform.

The following ensures that this fixed-point system has a
unique solution when e in Assumption 1.4 is sufficiently small;
see Appendix B-A for its proof.

Proposition 1: Under Assumptions 1.1, 1.3, and 1.4, there
exists a constant eg = ¢g(€) > 0 such that if ¢ < ¢g, then (11)
has a unique solution (n;*,~.) in the domain (0, G(—d_)) x
R, . Furthermore 1, ! < p, and 7. — v, > p; 1 > 0 where p,
is the prior variance in Assumption 1.3.

n~' = mmse(y),

C. Main Results

Let us denote (1, %, 7.) as the unique fixed point of (11).
Our first result describes the asymptotic mutual information
in the model (1). We define the replica symmetric potential
following [14],

n
irs (n7",7) :i(v)//o R(z)dz — 177 (12)
where i(vy) is the above mutual information in the scalar
channel.

Theorem 1.7 (Mutual information): Under Assump-
tions 1.1-1.4, there exists a constant ey = eg(€) > 0 such
that if e < eg, then almost surely

lim i, = irs (0,7 (13)

n,m—oo

Remark 1.8: Without the high-temperature condition of
Assumption 1.4, the general conjecture [14] is that
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limy, ;m—oo i = infirs(n™',v) where the infimum ranges
over all (n~1,~) that solves (11).

Next, we characterize the limiting minimum mean squared
error.

Theorem 1.9 (MMSE): Under Assumptions 1.1-1.4, there
exists a constant ¢g = ¢o(€) > 0 such that if ¢ < ¢g, then
almost surely

(14)

lim mmse, = n; "
n,m— o0

Finally, we show that the posterior mean (o) for 8* in the
model (1) approximately satisfies a system of mean-field equa-
tions predicted by the Plefka expansion [24, Eqs. (128-129)].
These equations are an analogue of the Thouless-Anderson-
Palmer (TAP) equations for the Sherrington-Kirkpatrick
model [44], and of their generalization to orthogonally-
invariant spin glass models in [15] and [27].

Theorem 1.10 (TAP equations): Under Assumpt-
ions 1.1-1.4, there exists a constant eg = ¢o(€) > 0 such that
if ¢ < ¢g, then almost surely

lim (15)

im0 -
n,m—oo N,
where v = (o) + 77'AT (y — A(o)) and f(-,7) is the
posterior-mean denoiser applied entrywise to its first argument.

Remark 1.11: For the following two special subclasses of
priors satisfying Assumption 1.3: (i) 7 has a bounded support
contained in [—/€, /€] or (i) 7 admits a log-concave density
e~9@) with ¢"(x) > 1/€, an explicit choice of ¢o(€) in
Theorems 1.7, 1.9 and 1.10 is ¢g(€) = & for some absolute
constant a > 0. See Section B-B for a justification.

Notation: Denote by || - || the ¢y-norm for vectors and
{5 — {5 operator norm for matrices. For scalars z1,...,z; €
R, we write (x1,...,7;) € R¥ to denote a column vector
with these entries. For vectors z1,...,x; € R", we write
(x1,...,25) € R™F* as the matrix containing these columns.
1,xn € R™*™ denotes the all-1’s matrix, I,,, denotes the
identity matrix, > and > denote the positive-definite ordering
for matrices, [E and V denote the expectation and variance of
a random variable, and R, = (0, 00) is the positive real line.

Throughout, we treat € in Assumption 1.3 as constant,
and we write x = O(y) to mean |z| < Cy for a constant
C > 0 depending only on €. (In particular, this constant
does not depend on d. or on the small parameter e in
Assumption 1.4, and we will explicitly track the dependence
of various quantities on d,, ¢.)

‘ 2

(v, 74) A} =0

II. VECTOR AMP

We first review a version of the VAMP algorithm proposed
by [21]. Let r% € R™ be an initialization vector such that there
exist random variables (R3,X*) for which, almost surely as
n,m — oo,

(r, 59 & ot = E[(RE — X*)? > 0. (16)
Define from 7, ; a sequence of state evolution parameters for
t=1,2,3,...

M2t =1/G(y2t), Y16 = N2
M e = 1/mmse(71,),

(R, X*),

— 72t
Y2,t4+1 = M1,t+1 — V1t

a7
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where mmse(+) is the scalar channel MMSE from (9) and G(-)
is the Cauchy-transform of —D? from (10). Now consider the
sequence of iterates in R™, for t =1,2,3,...

1
= [112,40" — Y2,075)] (15
Vit
= {711,t+1f (risme) = 71"’57{] (15
Y2,t+1
where w = (ATA+’Y2,tI)_1 (4 y+72rh) and f(9) is

the posterior-mean denoiser from (8) applied entrywise. This
coincides with the VAMP algorithm in [21], specialized to the
setting with matched MMSE denoiser, and replacing empiri-
cally estimated versions of the parameters 1 ¢, 71,¢, V2,6, 7)2,¢
with their large system limits as defined by (17). The following
statement is implied by [21, Theorems 1 and 2]; we check the
conditions needed for these results in Appendix A.

Theorem 2.1 [21]: Suppose Assumptions 1.1-1.3 hold, and
r4 is independent of (A, ¢) and satisfies (16). Then each value
M2,t5 V1,6, M,e4+1, V2,641 for t > 1 is well-defined by (17)
and strictly positive. For any 2-pseudo-Lipschitz test function
g: R2 — R and each fixed ¢ > 1, almost surely

n};fﬂng

where R} = X*+Z/,/71¢ and Z ~ N(0,1) is independent
of X*. Furthermore, set

Di, ) = E[g(Rf, X*)] (19)

~ -1 ~
By = (ATA + ’Y2¢I) (AT?/ + ’72,:&7"5) ) 5{“ = f(ri, 1)
Then for each fixed ¢ > 1, almost surely
. 1,5 " _
dim S — 5 =g,
Jim LIB - B = ik (20)

Our proofs will use an extended state evolution for a version
of this algorithm in a reparametrized form. Letting (1, %, v.)
be a fixed point of (11), it is computationally convenient
to specialize to a “stationary” initialization of this algorithm
given by
(2D

=B+’ V1,0 = Vs

where (p{)7_, “ON (0,7;1) is independent of all other

randomness in the model. (The quantities r%, 72,1 in (16) are
then defined from this initialization by (17) and (18).) In the
following results, we reparametrize the algorithm initialized
by (21) and describe its state evolution; proofs are deferred to

Appendix A.

Set

T — Vx T o -1 nxn

A = — (D" D+ (ne —y)I)~ = I| € R™*",

£ = Qo a="(DTD+(n—7)D)7'DTE

e = Oley, (22)
and define from (18) the new variables in R"

zt =1l — g%, yt=rl —e— "
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From the posterior-mean function f(-,
R? - R as

F(p,B)=

~) in (8), define F :

M« Y us
f(p+8,7:)— p— B.

M — Vx Me =Y T~V

Proposition 2: If (n;t,7.) is a fixed point of (11) and
V1,0 = Y« then m1; = M2y = Nu, Y10 = Vs, and o =
N — ¥« for all t > 1. Furthermore, the VAMP algorithm (18)
initialized with (21) is equivalent to the initialization z' =
F(p°, %) and the iterations, for t = 1,2,3,...

(23)

st = Ox', yt =0T Ast, = F(yt +e,8%). 24)
We define the important scalar parameters
1

0y = , Uf = Oy kox,

M — 7

e =%\ 2

K = *x E - -1],

( s ) { (D2 4 — 7.)? }

1 *
b, = — - (25)

Let us collect
= (8", D Lnx1, DTE, ding(A), 1, e,p°) € R™7. (26)

The following results describe the limit empirical distribution
of these quantities constituting H, as well as the state evolution
of the iterates x?, st, y' defined by (24).

Proposition 3: Suppose Assumptions 1.1-1.3 hold. Define
random variables

E~N(0,1),
E ~ N(0,b,)

X*Nﬂ-7 PONN(O7’>/;1)7

independent of each other and of D, and set

T — Vx s
L= -1,
Y (D2+77*_'7* >

E _ T D=
b Vx D2+77* _'7*7
H = (X*v Da DE) La Eba E7P0)~

Then £, = EL? and b, = EEZ. Furthermore, H W H almost
surely as n, m — oo.

Theorem 2.2: Suppose Assumptions 1.1-1.3 hold. Let H =
(X*,D,DE, L, Ey, E,Pp) be as defined in Proposition 3. Set
X1 = F(Pg,X*) for the function F(-) from (23), set A; =
E[X2] € R'¥!, and define iteratively S;, Yy, X¢y1,Apyq for
t=1,2,3,... such that

(S1,...,S:) ~ N(0,Ay),
are Gaussian vectors independent of each other and of H, and
=F(Y:+EX),

[(xl, e X)) Xas e

Then for each ¢t > 1, A; = 0 strictly, , = EX?, and 02 =

EY2.
Furthermore, let X, = (z',...,2") € R™ S, =
;) e R and Y, = (y',....y") € R™

(s,

collect the iterates of (24), starting from the initialization

(Yl, cee ,Yt) ~ N(O, H*At)

xt+1

A =E Xt+1)T] € RUHDx(t+1)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 3, MARCH 2024

2t = F(p° B*). Then for any fixed ¢ > 1, almost surely
as m,m — 0o,
(HthStv}/t) K (Haxla"'7Xt7sl7"'7

St7Y17"'aYt)'

Corollary 1: In the setting of Theorem 2.2, for any fixed
t > 1, almost surely

b 0 0
lim n e, X, YVy) (e, X, Y)=10 A, 0O
e 0 0 kA

Theorem 2.2 implies that the joint limit (Sq,...,S;) for the
iterates S; = (s!,...,s?) is independent of D. We highlight
here the following implication, which is an analogue of
[33, Proposition 2.4].

Corollary 2: In the setting of Theorem 2.2, fix any
t>1,1let f: R — R be any function which is continuous
and bounded in a neighborhood of supp(D?), and define
f(DTD) € R™" by the functional calculus. Then almost
surely

lim n~'S]f(DT

n,Mm—00

D)S; = A; - Ef(D?).

Noting that each matrix A; is the upper-left submatrix of
Ay¢i1, let us denote the entries of these matrices as A; =
(0rs)f. s—1- Theorem 2.2 ensures that d;; = 0. for all ¢ >
1. The following result then guarantees that for sufficiently
small e in Assumption 1.4, the state evolution of this stationary
VAMP algorithm is convergent in the sense

-|)

(633 + 5tt - 25st) =0

vI)

R (585 + 5tt - 265t) =0

lim lim — HJC
min(s,t)—oo \n,M—00 N

= lim
min(s, t)—»oo
min(lsl,rtr)l—wo <n 717}Lr£c>o n ||y
= lim
min(s,t)—o0
Proposition 4: Under Assumptions 1.1-1.4, there exists
some constant ¢y = ¢g(€) > 0 such that if e < eg, then
hmmin(s,t)—wo 6st = ds.
We verify in Appendix B-D that, outside the high-temperature
regime of Assumption 1.4, this statement of Proposition 4
continues to hold for the stationary initialization of VAMP
defined by any fixed point (17 %,~.) to (11) that is a local
minimizer of the replica-symmetric potential (12).

III. ANALYSIS OF THE RESTRICTED PARTITION FUNCTION

For any subset & C [0,00), define a restricted partition
function for the model (1) as

ZU)

:/H<i||a—ﬁ*|2eu) -exp( ly= AU” )Hdw o).

27

We will ultimately analyze the unrestricted partition function
Z = Z([0,00)), although it is technically convenient to first
analyze Z(U) for bounded subsets U.
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For any ¢t > 1, define the sigma-field (in the probability

space of O, B*, and ¢€)
Qt:g(H,xl,sl,yl,...,xt,st,yt) 28)

where H consists of the quantities in (26), and z?!, st, 1
are the VAMP iterates of (24). In this section, we provide
asymptotic variational characterizations of the conditional first
and second moments E[Z(U) | G| and E[Z(U)? | G
Together with a concentration inequality for log Z(U) and
a second-moment argument, these establish an unconditional
first-order limit for log Z(U/). Proofs of these results are
provided in Appendices C, D, and E.

For a,b € R and M > 0, define

cq(a,b) = /exp (az® 4 bz) dr(z) € (0, 00],
’ M
M(a,b) = /,M exp (az® + bz) dr(z) € (0,00). (29)

When 7 has unbounded support, ¢, (a,b) may be infinite for
large positive values of a, and we discuss its behavior in
Lemma 9. Under Assumption 1.4, recall the unique fixed point
(ny1,7%) of (11) and the prior variance p, from Assump-
tion 1.3, and define the replica-symmetric free energy

-1
L ovpse v 1 [T

Ups = —=— -

RS 2 2 To. T3

+Elogc, (—%,V*X* + ﬁZ)

R(z)dz
(30)

where the expectation is over independent variables X* ~ 7
and Z ~ N(0,1). In addition to d.,p. and the variance
parameters O, K, a , b, from (25), we introduce the auxiliary
scalar parameters

d.
ax = (m—%)(l—),
Y
" 2
G = —(m—%)er( *7 > (dv — 7)),
* [k 1
ex = 1+ Ky, af:n ik

A. Conditional First Moment

Fix an iteration ¢t > 1 for VAMP, and define tuples of primal
and dual variables

P = (u,7,0,0), = (U, R, V.W,x* X", x%)

where u > 0 and ¢ > —d_ and r,U, R, x4, x%,x® € R and
v,w,V,W € Rt Define

AB)=u — 12 = |Jol* = w]?,

V={P: AB) > 0}.
(32)
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Define also the functions
H(¢, A) = CA—Eflog(¢ 4+ D?)] —
B(v,w) = [jv — af'w|]?
_ 1) 7
— .

Ax) =
() Y (
+ a8 —d,.

(1+1logA),

T+ N«
04*377*
TN =
Let A; and the random variables (E,X* Xq,...,

X¢,Y1,...,Ys) be as described in Proposition 3 and
Theorem 2.2, and define

O(z) =z — (33)

RE
N
wTA; Y2 (Yl, )

(v+mA 1tx1)Tv
w

(& izr) (v =)

) LG ACR)

1
BB D) = 5 + Eloger (U,

+VIATY2 (KXo, X)) +

u —

[
g

p«)U—1R— w' W
enr? 2 T
b
U?

o=

T
+ Tr
Vbs

)

w
AV
2
b

e (- o)
438 | s (009 - 2@ < x) | Blow) 6o

Let 17, (9, Q) have the same definition with ¢, replaced by
cM . Finally, define

Ve (P) = A
U (PB) = a

inf @
:Clil—df l,t(gl Q)v

. M
nf B (p.9) G9)
where these may take extended real values in [—o0, 00).

Lemma I: Fix any K > 0. Under Assumptions 1.1-1.4,
there exists a constant eg = ¢g(€, K) > 0 such that if e < ¢,
then for any fixed ¢ > 1 and non-empty open subset U C
(0, K), almost surely

1
liminf ~logE[Z(U) |G| > sup sup W% (),
n,m—oo N PeV:ueld M>0
lim sup — logE[ u | gt] < sup Uy 4(B)
n,m—00 PeV:ueld

where U is the closure of U.

Lemma 2: Fix any K > 0. Under Assumptions 1.1-1.4,
there exists a constant ¢y = ¢o(€, K) > 0 such that if ¢ <
¢op and U C (0, K) is any fixed open subset containing 27, !,
then

liminf sup sup ¥y t(‘p) > WUgs,
=00 Bey:ueld M>0

limsup sup Up,(P) < Tgs.
t—oo PeV:ueld

(36)

Furthermore, there exists a universal constant ¢ > 0 such that
for any ¢ > 0,

limsup sup ¥y (P) < Yrs — coe'/%¢2. (37
t—oo  PeV:ueld
lu—2n5t >
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B. Conditional Second Moment

Again fixing an iteration ¢ > 1 for VAMP, define tuples of
primal and dual variables

P=(u,rv,wp), Q=(3URV,WPx*x?x

where u € R2, », U, R € R?, v,w,V,W € R**? p P € R,
3 € R?*2 is symmetric, and x*,xZ,x¢ € R2 We write
v = (vy,v2) where vy, vy € R? are its columns, and similarly
for w, V, W. Set the domain for 3 as

Dy ={3eR¥?:3=37, 3> —d_ D2}, (38)
and denote the eigen-decomposition of 3 by
G 0) (ZJI)
= 39
3=(n y2)<0 &) ol (39)

where yi,y2 € R? are unit-norm eigenvectors of 3 and
(1,(o are the corresponding eigenvalues. (The expressions
below do not depend on the signs of y;,ys or the choice of
Y1,Y2 when Cl = Cz) Set

A(B) = (u1 p> —rr’ —v v —wTwe R?*?,

P w2

V={F: AP - 0}. (40)
Let 6(z), A(z) be as in (33), and define for a,b € R? and
ceR

cr (a,b,¢) = /exp (alx% + bixy
+ apx3 + bywy + cxlxg)dﬂ'(xl)dﬂ(aﬁg)

(41)

(42)
H(3, A) = Tr(3A) — E[log det(3 + D2 - IM)}
— (2 + logdet A)
B(v,w) = (v — oaw)" (v — alw) 43)

Here c.(p,a,b), H(3,A) € R and B(v,w) € R?*2. Finally,
define from the above (44), shown at the bottom of the next
page, and denote

Uy +(P) = Q:éféfD+ 024 (B, Q). 45)

The following results are analogous to the upper bounds of
Lemmas 1 and 2. (Lower bounds may also be shown, but we
omit these statements as we require only the upper bounds in
the subsequent proofs.)

Lemma 3: Fix any K > 0. Under Assumptions 1.1-1.4,
there exists a constant eg = ¢g(€, K) > 0 such that if ¢ < ¢,
then for any fixed ¢ > 1 and non-empty open subset & C
(0, K'), almost surely

sup
PEV: up,u2 €U

lim LlogE [Z@)? ]G] < Wa(P) (46)

n,m—oo N
where U is the closure of U.
Lemma 4: Fix any K > 0. Under Assumptions 1.1-1.4,
there exists a constant ey = eo(€, K') > 0 such that if e < eg
and U C (0, K) is any fixed open set containing 27, !, then

lim sup sup Uy (P) < 2Tgs.

t—oo PEV:ug,us €U
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C. Limiting Free Energy

Combining the preceding results with the following expo-
nential concentration inequality for n~! log Z (i), we deduce
as a corollary an unconditional first-order limit for the
restricted free energy.

Lemma 5: Fix any K, L > 0 and subset /f C [0, K]. Let £
denote the event where

1 * |12 - 2
_ _ . < .
/]I (n|o 8% € U) J I1 dr(c;) >0, ||D'¢| Ln

(Note that £ depends on the random quantities (O, 8*,¢)
only via (3*,DT¢) and is hence G;-measurable for any ¢ >
1.) Under Assumptions 1.1 and 1.2, there exists a constant
C(K,L,dy) > 0 such that for any ¢ > 1, any ¢ > 0, and all
sufficiently large n,

P (’i log Z(U) — E [i log Z(U) ‘ gt]

<9 i
= o C(KvLad"r) .

Corollary 3: Fix any K > 0. Under Assumptions 1.1-1.4,
there exists a constant ¢y = ¢o(€, K) > 0 such that if ¢ <
¢o and 21! € (0, K), then almost surely

> 6 ’ gt> I1{€}

(47)

lim llogZ([O,K]) = Ugs.

n,m—oo N

IV. PROOFS OF THE MAIN RESULTS

We use the preceding lemmas to prove Theorems 1.7, 1.9,
and 1.10. For expositional clarity, we consider in this section
the simpler setting where 7 has compact support contained
in [—V/€,V/¢]. We extend these proofs to the more general
condition of Assumption 1.3 in Appendix F.

A. Mutual Information

Proof: [Proof of Theorem 1.7, bounded support] Letting
p(y | 5*, A) and p(y | A) be the conditional density functions
of y € R™, direct calculation yields

E [log (2m)"2p(y | 8, 4)) | 4]

_ ly — AB* |12 _n
YU LU

log ((277)”/ p(y | A)) =logZ

where Z = Z([0,00)) is the unrestricted partition function
defined by (27). So the normalized mutual information in the
model (1) is

S _! ply| 6. 4)
1 1
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Similarly, the mutual information i(v.) = I(X*;Y) in the
scalar channel (7) is

i(7.) =E <log W)
= —% —Elog/exp (_ (V7= (X" - 2) +2)?

1 Z » *\2
NGz

_Elog/exp (—;fy*xQ + (’Y*X* + ﬁZ) {E) dﬂ'(x)

) dr(z)

(48)

= %’V*p* — Elogcr <;’V*a X"+ \/Pﬁz) (49)
where ¢, is defined in (29).

Suppose 7 has bounded support contained in [—+/€, /]
Setting K = 4€ and U = (0, K), we have n™t|lo—*||> < K
with probability 1. Then Z(U) = Z, and also 2n;! <
2p, < K where the first inequality is by Proposition 1.
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and the forms of WRrg and irg in (30) and (12), we obtain as
desired

lim 4, =—-Urs—1/2= irs(ny ', vs).

n,m— o0

B. Bayes Risk
Lemma 6: Denoting by (f(o)) the posterior expectation

in (2),
mmse,, = %E [<H0’ - ﬂ*||2> ’ A} .

Proof: Let o, T denote two replicas sampled independently
from the posterior distribution defining (2). Conditional on y
and A, since o, 7, 3* are independent and equal in law, we have
the Nishimori identity for any integrable function f (see also
[14, Appendix A])

Thus Corollary 3 shows n~!log Z — Wgg almost surely. E[{f(o,7)) | A] = E[E[ (0,7) [y, Al | A]
By Jensen’s inequality, EE[f(o,87) |y, A] | A]
_ E[(f(o,6%)) | Al
0< — lo Z< — /HA U)+6” Hd 7(0;)
2 el Thus
<l [V o+ Lz, oy mommsen = BT - @] 4
o n , n _ *T o T T o T ox
i=1 = E[F" p 4o m)— (o B — (7 ") | A]
Then by the given assumption |[AT Allop = [|[DTD|op — @ E[B*T3* — (a7 5*) | A]
dy, the bound n~![|3* — o||> < K, uniform integrability = E[{(oc— 8T (=8 | 4]
of {|l€|[?/n}n>1, and the dominated convergence theorem, (7)
almost surely n~'E[log Z | A] — Wrs. Applying this, (48), = E[(c—p8%)T0o) | 4] (51
By (P, 0) = —1+El (U v x4 RE
) = - 0g Cr [
2,t g \/E
T A—1/2
+VTA? (xl,...,xt)+W A (Yl""’Yt)—Px*le, P
Vs
— (u—puloy) U =7 R — (v) + m A, 1/2 Lix1) Vi
— (v2 +7T*At_1/21tx1)TV2 —w{ Wy —wy Wa — (p — ps) P
e 2r T 1951 Ty s
2 b. Vb, Ay Cx
T T
< | v 2L v L) 4 (. 2 Vo, —22
1, \/a 1, \/a 25 \/a 2 \/a
1
—|—1E £12 - T DQ_XA T<E2(3+D2'12 2)—1)
2 n* X \/E b X
. r
(G- Tl -)]
1 [ (0(D%) — A(D)xF — xF)”
+ 2 |VODZ2ONE D) | e g,
1 [(600%) — MD°)xF —x§)”
2" [( 2ONEZE) |y (e, @)
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where (a) applies the Nishimori identity, and (b) follows from
the exchangeability of the replicas and the Nishimori identity
as follows:

E[((o = 5% (=8") | A] =E[{(o =) " (-7)) | 4]
=E[((r —0)"(~0)) | 4]
=E[{(8" —0)"(~0)) | A].
Summing the last two expressions in (51) gives 2n-mmse,, =
E[(|lo — B8*]|?) | 4] as required. ]

Proof: [Proof of Theorem 1.9, bounded support] Suppose
again that 7 has support contained in [—/€, v/€], and set K =
4¢. Then again n~!||o — 3*||> < K with probability 1, the
unrestricted partition function is Z = Z([0, K]), and 2n; ! <
2p. < K. Fix any small constant ¢ > 0 and set & = (0, K) \

(20! =<, 207" 4<). Then
1 * (|2 —1 _Z(U)
@[5 1 - o112 - 20| > <)y = 220,

Applying Lemmas 1, 2, and Jensen’s inequality, for a
sufficiently large iteration ¢ > 1, almost surely for all large
n,

*E log 2() | G:] <

Taking the expectation of (47) from Lemma 5 yields the
unconditional tail bound
> 5)

(52)

1 _
P <5 holds and llogZ(Z/{) —-E [ log Z(U ’ Qt}
n

—52

C(Kv LvdJr)) .
Applying |[DTD|op — d4 as n — oo and a standard chi-
squared tail bound, for a sufficiently large constant L >
0, the second condition |[DT¢||2 < Ln defining £ holds
almost surely for all large n. The first condition defining
£ is equivalent to Z(U) # 0. Hence by (52) applied with
§ = (co/2)e'/%c? and by the Borel-Cantelli lemma, almost
surely for all large n, either Z(U) = 0 or

< 2exp<

1
ElogZ(U)< E[logZ( ) 1G]+ —e?c <WUgrs— 5

Then combining with n='log Z — Wgrg by Corollary 3,
almost surely for all large n,
1 S ZU)
Il |=1le—=B*"" =2 > =—
@[3 - 012 - 20| > <)y = 25

< exp<—%oel/2§2 n)

Since [n!||o — B*||* — 2n7 1| < 2K, this tail bound implies
1 /) .
TN

* * 2
—Allo—8 1) =21 —llo— 57|
<¢+2K- exp(—%oelmg2 n) < 2
almost surely for all large n. Since ¢ > 0 is arbitrary, this
shows (2n)~1{|lc — 8*||?) — n;! almost surely. Then by
Lemma 6 and dominated convergence theorem, also mmse,, =
(2n)*E[(||e — B8*]|?) | A] — n; ! almost surely. ]

logIE [Z(U) | Gt] < Yrs — coet/%¢2.

Co
QL1722
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C. The TAP Equations

We note that the stationary initialization for VAMP in (21)
requires knowledge of (3*, and hence the resulting iterates
do not define estimators of (§* given only (y, A). Here,
we consider VAMP from the non-informative initialization
rd = 0 and 2,1 = p;'. We first use Theorem 1.9 already
proven to show convergence of the VAMP state evolution; a
different argument for this convergence has also been given
recently in [45].

Proposition 5: Consider the VAMP algorithm (18) with
initialization rJ = 0 and 21 = p;'. Under Assumptions
1.1-1.4, there exists a constant ¢y = eg(€) > 0 such that
if e < eg, then (N1,4)e>1, (Vi,e)e>1, (M2,6)e>1, and (Ya2,)e>1
are monotone increasing and CONVETZe O M, Vi, My e — Y
respectively. Consequently, for ﬂ; as defined in Theorem 2.1,

lm  Tim  SE[|3¢ - 5 | A] = 07t
t—oon,m—oon
where the inner limit exists almost surely.

Proof of Proposition 5: From Theorem 2.1, for both j =

1,2 and each fixed ¢, we have almost surely

1, 4 . _
—1135 = B0 =i

To apply the dominated convergence theorem, note that under
Assumption 1.2, the largest and smallest eigenvalues of AT A
converge to di,d_— > 0. Then applying v2; > 0 by Theo-
rem 2.1 and that r — f(r,~1,) is Lipschitz by Proposition 14,
from the forms of the iterations (18), there are constants
C; > 0 (depending on the state evolution parameters (17)
and the value of f(0,~;+)) for which, for all large n,

il < Celllyll + lI7sll), [zl < Ce(vn + |7l

Iterating these bounds and applying the definitions of ﬁ;, there
are constants Cy > 0 for which, for both j = 1,2 and all large
n,

lim

n,m—oo

1620/v/m < & (1+ (lyll/vm)') -

Then, applying |ly|| < || Al ||6*|| + |l€||, for some constants

Ccy >0,
1551

%112\ 2t 2\ 2t
i SCt,,<1+(|ﬁ ||> +(en) )
n n n
1" 1 ¢ * 4t 4t
<! <1+”Z<ﬂi +ei) .

For each fixed ¢, this uPper bound has finite expectation
independent of n, so {||ﬂt|\ /n}n>1 is bounded in L? and
hence uniformly 1ntegrable Then the dominated convergence
theorem implies

(53)

. ]- At

=B Al =055
Combining this with Theorem 1.9, we must have 7, t >N,
for every t, because each ﬁ; is a (y, A)-measurable estimator
of #* and hence n~'E[[|3¢ — 8*[|? | A] > mmse,.

It remains to show the monotonicity and convergence
of (nj¢)e>1 and (7,)¢>1. Applying the definition of the
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R-transform to write 1y = 7o — Yo, =
iterations (17) yield

—R(7727t), the

Mot =G (mmse (<R ()" + R(m1)). (54
We claim that for any z; € [, G(—d_)),
z9: =G (mmse (—R(z1)) ' +R (x1)> <z (55)

To see this, note that R(x) is negative and increasing by
Lemma 13, and mmse(7y) is decreasing over v > 0 (by the law
of total variance). Then x — mmse(—R(x)) is increasing over
x € (0,G(—d_)). Proposition 1 implies that this function has
a unique fixed point z = 1! € (0, G(—d_)). Furthermore
lim,_,o mmse(—R(z)) = mmse(1l) > 0 strictly, because
the prior distribution 7 has strictly positive variance. Then
mmse(—R(z)) > z for z < ;! and mmse(—R(z)) < x for
x > n; L, so in particular

mmse (—R (1)) <

when 27 > ;' Then mmse(—R(21))™" + R(z1) > 27 +

R(z1) = G7Yz1) > —d_. So xy is well-defined in (55),
and also zo < G(G~ (xl)) = 1z as desired because G is
decreasing.

Finally, since 7, g > np7t for all t > 1, (55)
implies that (75 tl)tzl is a monotonically decreasing sequence,
which must then converge to a fixed point of z
G(mmse(—R(x))~! + R(z)). Such a fixed point satisfies
G 1(z) = mmse(—R(z)) "1+ R(z), i.e. ¢ = mmse(—R(z)),
s0 it must be the unique fixed point n;'. Thus (92.4)i>1
monotonically increases to 7,. It is then straightforward to
verify from their definitions in (17) that (y2,1)¢>1, (71,641)e>1,
and (71,¢411)¢>1 also monotonically increase to 7y — Vi, Vs,
and 7). |

Proof of Theorem 1.10, Bounded Support: First note the
following “Pythagorean relation”: For j = 1,2 and any ¢ > 1,

E[[I6*—551% | AJ=E[|8* —(o)II* | AJ+E[I 55— ()| | A]

because B; is a (y, A)-measurable estimator of 8* and (o) =
E[5* | y, A]. Then by Theorem 1.9 and Proposition 5, for both
J=12,

lim lim  —E[|3! - (56)

t—oon,m—oon

(@) [A]=0

where the inner limit exists almost surely. It follows from
this, uniform boundedness of (v2.)¢>1 and (11.4)¢>1, the
convergence 71 — Y2, = Yi,t—1 — 7« from Proposition 5,
and the triangle inequality that

Y R
2

— ((ATA‘F'YZ,tI)/Bé — 0 —ATZ/) A] =0.

(57)

From the definitions of (3! and (18b), 7.5 =

(AT A+ 9, 0) B — ATy = 1B —y1,,—17, ", Substituting
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this identity into (57),

lim lim E[H (AT A(0) — 7 (o) — ATy)

t—oon,m—oo n

+71t 17’1 ’A:|—O

Then dividing by '7%,%1’ applying 7v1,+—1 — y«, and applying
that r — f(r,~.) is Lipschitz by Proposition 14

lim lim E{Hf t ATA< ) — Yelo) — ATy) ) 7*)

t—oon,m—oon
2
)’ ’A] —0.

Finally, applying again that » — f(r,~) is Lipschitz, (19)
implies that for each fixed ¢ we have almost surely

— fri N (58)

hrn " Hf ) - f(”i_lv’h,t—l)”z

- E[(f(R’i‘lm*) — R 0m0)

Here, assuming that 7 has bounded support, f(r,v) is
bounded, so the dominated convergence theorem yields
n,m—oo N

d
= E{(f(Ri_la’Y*) - f(Rtfla’Yl,t—l))Q}-

Representing RTl = X*+Z/,/71+—1 and applying v1 ;-1 —
v«, an application of the dominated convergence theorem
shows that the right side converges to 0 as ¢ — oo. Then,
recalling f(ri ' v 1) = 5]1 and applying also the state-
ment (56) for Bl. and the triangle inequality, this shows

lim —E [Hf ) - f(Tiila’Yl,tfl)HQ

(59)

lim lim —E[Hf

2
t—oon,m—oo n ,’Y*) B <U> ‘ A} =0

Combining this with (58) concludes the proof. |

APPENDIX A
STATE EVOLUTION OF VAMP

We prove Theorems 2.1, 2.2 and Propositions 2, 3 on Vector
AMP. These results do not require the high temperature con-
dition of Assumption 1.4, and the stationary initialization (21)
of VAMP and associated scalar parameters may be defined
with respect to any fixed point (771, 74) € (0,G(—d_)) xR
of (11).

Proof of Theorem 2.1: This follows from [21, Theorems
1 and 2]. The state evolution (17) corresponds to the setting
of matched MMSE denoising described in [21, Theorem 2],
where &(v1:) = mmse(y1) and Ex2(y2,:) = G(v24) as
shown in [21, Eq. (41)]. (Our quantities 7;,7;,; defined
by (17) are the asymptotic quantities ﬁ]t,yft in [21].) We
note that under (17), v1, = 12 — G (772t) = R(Tizt)
which is positive for 12 ; > 0 by Lemma 13(b). Furthermore
setting A(y) = ~ - mmse(y), we have v2,11 = (1 —
A(v,4))/mmse(y1,¢). The argument of [21, Section IV.F]
shows A(vy) € (0,1) for any v > 0, hence 3,41 > 0 when
1,6 > 0. Thus the parameters of (17) are all positive and
well-defined.
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The proof of [21, Theorem 1] is easily adapted to start
from an initialization (r},72,1) instead of (r?,71,0), and to
use the deterministic state evolution parameters (17) and
the associated quantities «;; = <;./n; instead of their
empirical estimates. (We initialize with (r3,72,1) so that 7, !
is correctly matched with the variance of r% — (*, without
requiring r{ to have a limit R that is a Gaussian pertur-
bation of X*.) The empirical convergence of DT71,,«1 and
of (r3,3*) on Pseudo-Lipschitz test functions of order 2 (as
required in [21]) are implied by our assumptions of empirical
Wasserstein convergence at all orders. The first condition of
[21, Theorem 1] follows from A(~) € (0, 1) discussed above,
the second condition from the continuity of mmse(-) and
G(-), and the final uniform Lipschitz condition for f(-,~)
from Assumption 1.3. The convergence (19) is then shown in
[21, Theorem 1, Eq. (45)], and (20) is shown in [21, Theo-
rem 2, Eq. (56¢)]. |

A. Identities for Stationary VAMP

Proposition 6: Suppose Assumptions 1.1 and 1.3 hold, and
let (n; Y, v4) € (0,G(—d_)) xR, be any fixed point of (11).
Then n; ! < p, and 7, — 7, > p;t > 0.

Proof: Let (X*,Y) be as defined in the scalar channel (7).
The law of total variance implies 7, L mmse(y,) <
V(X*) = ps. The second claim 7, — v, > p; ' follows from
comparing the MMSE with the error of the linear estimator

aY with ¢ = —2—:
PrxtYs
1 2
-1 * * 2 * *
L =E X —E[X*|Y]) g]E(x —a(X +z>)
VT
a? 1
=(1-a)’p+—=——. (60)
Yo Pt 4.
Rearranging yields 7, — v, > p; . [
Proof of Proposition 2: Writing (11) as 77t = mmse(7,)
and 77! = G(n. — ), it is clear that the initialization v, o =

Ve yields m1e = 12,6 = N, V1,6 = Voo @0 Y21 = 1 — s for
all t.

Then substituting y = AB*+eand A = Q" DO, the update
rule (18a) for 7 can be rearranged as

rt=0TAOr+O" | (DT D+ (1, — 7*)I)1DTD} OpB* +e.

Applying the identity (DT D + (9. — v.)I)"'D"D = I —

(e =) (DT D+ (e = 7)) ™" = (/1) (I — A) we obtain

yi=rl —e— [ =0TAO(z' + ") + O (I — N)OB* — 3*
= 0" AOz!

which may be written as s* = Ox? and y* = O T As?. Setting
r{ = p' + *, we have from (18b)

Pt . T;ﬂ_ﬁ*

77* t * Vx 1 * *
R fo'+6 ) — ———@" +8) -8
= F(p', 6%).

For t = 0, this gives the initialization z! = F(p°, 3*),
and for t > 1, we have p' = y* + e so this gives the update
for ¥+t [ ]
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Proposition 7: Suppose Assumptions 1.1 and 1.3 hold, and
let (n;1,7«) be any fixed point of (11). Let Y denote an
observation from the scalar channel (7) with variance 7, !.
Then the functions y — f(y,~v.) and (p,3) — F(p, () are
continuously differentiable and Lipschitz. We have

P ) = a%ﬂy,m — 2 V(XY =),

F/p,ﬁ ::7Fpaﬁ = f/p+ﬁ77* - i

v, 5) dp ®5) e = ( ) M = Vs
(61)

and these are non-constant in y and p. For P ~ N (0,7, 1)

and X* ~ 7 independent, we also have

EF (P,X) =0, EF (P,X)=0, E(F(P,X")’) =06,
(62)

Proof:  Proposition 14 shows that y —  f(y,7v«)
is continuously-differentiable and Lipschitz, with derivative
given by (61). Since 7 is also non-Gaussian by Assump-
tion 1.3, y — f(y,~v«) is non-linear, and hence y — f’(y, 7«)
is non-constant. Then the same properties hold for ' and F”,
and the form (61) for I’ follows from definition of F.

The first two identities in (62) follow from EP = EX* =
Ef(P+X*,v.) =0and Ef (P4 X*,v,) = v« - mmse(v,) =
~«/Mx. For the last identity in (62), denote for simplicity
f(y) = f(y,7s). Note that

E(f (P+X*) — X*)? = mmse(y,) = ;"

Ve
2

and thus

(mm%y (E (f (P +X*) —X*)?

2
() G-
Nx — Y Ne N2

1
- -5, (63)
T — Vs
It follows that
E (F (P, x*)Q)
2

E
= (m’f%f <]E(f(P+X*) — X2 <Z:)2EP2

- BER (P x) - x)P))

U
2
(@) U N oye2
a <17*%) (E(f(P+X) X T
- Zs(r e ax))

2
(_b) U *\ *Q_E —
2 (5ts) Blueeo-xr-5) -

*

where we used Gaussian integration by parts in (a) and
Ef'(P +X*,74) = 7«/n. and (63) in (b). n
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Lemma 7: Recall b,, k, from (25) and a,, ¢, e, from (31).
We have the following identities

1 1

A ——
d =By e (642)
D2 .
dc':E—l :1< T >2H -i—i
. (D24 n — 7)) M\ — s n?
(64c)
D2 2 . 5
d*D:IEQ’y;< n >+72 (64d)
D4 2
E._ =L (14 k) (64e)

(D247, —7)° 7

Also, for the quantities L, E; from Proposition 3, we have

EL=0, EL?=k,., EE} =0,
ED?L = a., ED?L®=c,, ED?E} =e.. (65)
Proof:  (64a) is the identity ;' = G(1. — v.), which

is a rewriting of the second equation of (11). This then
implies EL = 0, as well as EL? = x,. (64b) follows from
the identity dZ 4+ (9. —v.)d2 = 1, and this then implies
ED?L = a,. (64c) follows from rearranging the identity
ke = EL? = w";#(nfdf —1). (64d) then follows from
the identity d° + (1. —~.)dC = d*, and this then implies
EE? = b, as well as ED2L? = c,. Finally, (64¢) follows from
the identity dZ + (9, — 7,)* d€ 42 (. — 7.) dP = 1, and this
then implies ED2 E% = €. [ |

Remark 1.1: This shows b, k., > 0 strictly, because D has
strictly positive variance by Theorem 1.1, and hence so do L
and E;. Also by Proposition 6, we have 7, — . > 0, hence
8,02 > 0.

B. State Evolution of Stationary VAMP

Proof of Proposition 3: Note that £ = Qe ~ N (0, I;,xm)-
Then DT¢ € R™ may be written as the entrywise product of
DT1,,%; € R™ and a vector £ ~ N(0,I,xy,), both when

m > n and when m < n. The almost-sure convergence H w
H is then a straightforward consequence of Propositions 9, 10,
and 12, where all random variables of H have finite moments
of all orders under Assumptions 1.2 and 1.3. The identities
k« = EL? and b, = EE} were shown in (65). [ |
Proof of Theorem 2.2: We have §;; = EX? = §, by
the last identity of (62). Supposing that §;; = EX? = 4.,
we have by definition EY? = k., = 02 = §.k.. Since Y,
is independent of E, we have Y; + E ~ N(0,02 + b,.) where
this variance is 02 + b, = v, ! by the definition of b,. Then
EX?,, = &, by the last identity of (62), so EX? =, and
EY? = o2 for all t > 1.
Noting that A, is the upper-left submatrix of A1, let us

denote
JAVERN)
At+1 = < 5f 5i)
We now show by induction on ¢ the following three statements:
1) A; > 0O strictly.
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2) We have
t—1
Y, = ZYk (At_,llcst—l)k + U,
k=1
t—1
S; = Z Sk (A7 46:-1), + U] (66)
k=1

where U, U} are Gaussian variables with strictly pos-

itive variance, independent of H, (Yy,...,Y;_1), and
(Sla AR St—l)'
3) We have
(H7 Xt+17st7yvt)
B(H, X1, .-, Xes1,S1, -5 S6 Y1, YY)

We take as base case t = 0, where the first two statements
are vacuous, and the third statement requires (H,z?') LA
(H, X1) almost surely as n — oo. Recall that z* = F(p®, 3*),
and that F(p, 3) is Lipschitz by Proposition 7. Then this third
statement follows from Propositions 3 and 10.

Supposing that these statements hold for some ¢ > 0, we
now show that they hold for ¢ 4 1. To show the first statement
Ati1 > 0, note that for ¢ = 0 this follows from A; = §, >
0 by Remark 1.1. For ¢ > 1, given that A; > 0, Ayyq is
singular if and only if there exist constants aq,...,a € R
such that

t
Xigr = F (Ye +EX) =)o X,
r=1

with probability 1. From the induction hypothesis, Y, =

2;11 Y (A;ldr)k + U; where U, is independent of
H,Y1,...,Y;_1 and hence also of E, X*, Xq,...,X;. We now
show that for any realized values (eg, zg, wo) of

t—1 t
<E+ZYk (A7), X, Zarxr>,
k=1 r=1

we have that P (F' (U; + eg, z9) # wp) > 0. This would imply
that A,y > 0. From Proposition 7, f’(y, ) is non-constant,
so there exists y € R such that f’(y, v«) # ~«/7«. This implies
that there exists some ug € R such that

T
77* - ’Y*

Va
e — Vx

F' (ug + e, 20) = [ (uo+-eo + 20, 7+) — # 0.
Then by the inverse function theorem, F'(u+eg, xg) = wp has
at most one solution for u in an open neighborhood of wu.
Since U, is Gaussian with strictly positive variance, this shows
P (F (U + eg, z0) # wp) > 0 as desired. We thus have proved
the first inductive statement that A4 > 0.

To study the empirical limit of s;11, let U = (e, St, ASy)
and V = (e, Xy,Y;). (For t = 0, this is simply U = ¢, and
V' = e.) By the induction hypothesis, the independence of

(S1,...,St) with (Ep, L), and the identities EE? = b, and
EL = 0 and EL? = k,, almost surely as n — oo,

1 b. O 0

= (€0, S5, AS)) T (e, S, AS;) — | 0 A, 0 =0
" 0 0 KA
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So almost surely for sufficiently large m, conditional on
(H,X¢41,S5:,Y;), the law of s*! is given by its law con-
ditioned on U = OV, which is (see [34, Lemma B.2])
t+1 N,
s oy = Ox

Lu@wTu)

t+1|
U=0ov
YT LI, 0N e (67)
where O ~ Haar(SO(n — (2t + 1))) and My, Iy €
R (n=(2t+1)) are matrices with orthonormal columns span-
ning the orthogonal complements of the column spans of U, V'
respectively. We may replace s'*! by the right side of (67)
without affecting the joint law of (H, Xy41, S, Yy, s').
For t = 0, we have EX;E = 0 since X; is independent
of E. For t > 1, by the definition of X;;1, the condition
EF'(P,X*) = 0 from (62), and Stein’s lemma, we have
EX;41E = 0 and EXy41Y, = 0 for each r = 1,...,¢. Then
by the induction hypothesis, almost surely as n — oo,

-1

» be 0 0
(n'UtU) = 0 A 0 :
0 0 I{*At
0

’I’L_lle‘t_H — 5t

o

Then by (67) and Propositions 11 and 12, it follows that

(H7Xt+17st7y;fast+1) E (Hax17"'7xt+1aslv'"asta

Yt,ZS

15t + U7/5+1)

where Uj; , is the Gaussian limit of the second
term on the right side of (67) and is independent of
H, X1, .., X¢41,51,--+,5,, Y1,... Y. We can thus set
St+1 = Zf‘:l S, (At_lét)r + U:&+1' Then (Sl,...,5t+1)

is multivariate Gaussian and remains independent of H and
(Y1,...,Ys). Since n=1||stH1||2 = n~ |2t +1 |2 — 4, almost
surely as n — oo by the induction hypothesis, we have
ES?,, = §.. From the form of S;;, we may check also
ES;4+1(S1,...,S¢) = 0, so (Si1,...,S¢+1) has covariance
A¢y1  as desired. Furthermore Zf»=1 S, (At_l(;t)r ~
N (O, 5; Ay 16t). From A;;1 > 0 and the Schur complement
formula, §, — 5; Ay 15, >0 strictly. Then U} 41 has strictly
positive variance, since the variance of >, 'S, (A;'d;)
is less than the variance of S;i ;. This proves the second
equation in (66) for ¢ + 1.

Now, we study the empirical limit of y*™!'. Let U =
(e, Xt41,Y:), V = (ew, Sty1, ASt). Similarly by the induction
hypothesis and the empirical convergence of (H, S 1) already
shown, almost surely as n — oo,

1
E (6()7 St-‘rla ASt)T (6[;7 St+17 ASt)

b. 0 0
— 0 At+1 0 > 0.
0 0 Ry At
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Then the law of y'*! conditional on (H, X;11,Si11,Y:) is
given by its law conditioned on U = O TV, which is

=O0TAs" vy

Ty T st + e OH‘T,L Astt

y ‘U:OTV

LuwTy) (68)

where O ~ Haar(SO(n — (2t + 2))). From the convergence
of (H,S;y1) already shown, almost surely as n — oo,

-1

. by 0 0
(nVTV) = 0 Ay 0 ,
0 0 VAW
0
n 1VTASt+1 — 0
Ii*(st

Then by (68) and Propositions 11 and 12,

w
<H7 Xt+1; St+17Y:fayt+1) - <H7X17 s aXt+17

Yt,ZY

is the limit of the second term on the
right side of (68), which is Gaussian and inde-
pendent of H,Sy,...,S¢41,Y1,...Ye Setting Yy =
Zr 1 (A (5t) + Ugyq, it follows that (Y1,...,Y¢41)
remains 1ndependent of H and (Si,...,Sir1). We may
check that EY;11(Y1,...,Y:) = k.0, and we have also
n~Hy 2 = T AsTT|? — k.. so EYZ, = K.
From At+1 > 0 and the Schur complement formula, note that
>r_y Yr (A7 16,), has variance £.6, A; 16, which is strictly
smaller than K04, 80 U 11 has strictly positive variance. This
proves the first equation in (66) for ¢ + 1, and completes the
proof of this second inductive statement.

Finally, recall z'+? = F (y'™! + ¢, 3*) where F is Lips-
chitz. Then by Proposition 10, almost surely

Sty 5 St41, Y1, 7 16) +Ut+1>

where U;yq

w
(H, X¢12,St41, Yer) = H, X1, ..., Xey2, S1,...,Se41, Y1, .00, Yega)

where X¢12 = F' (Y41 + E, X*), showing the third inductive
statement and completing the induction. ]

Proof of Corollary 1: This follows from the empirical
Wasserstein convergence of (e, X;,Y;) guaranteed by Theo-
rem 2.2. The statements n~!XTe — 0 and n 'XTY —
0 follow from the identity EF’(P,X*) = 0 in (62) and Stein’s
lemma, and the remaining statements follow directly from the
independence of (Y1,...,Y;) with E and from their specified
Gaussian laws. |

Proof of Corollary 2: This follows directly from The-
orem 2.2, the independence of (S1,...,S:) and D, and our
definition of empirical Wasserstein convergence. ]

APPENDIX B
PROPERTIES IN HIGH TEMPERATURE

We show uniqueness of the fixed point to (11) and conver-
gence of the stationary VAMP state evolution, assuming the
high temperature condition of Assumption 1.4.
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A. Fixed-Point Equation

Proof: [Proof of Proposition 1] Provided that the fixed
point (1,1, 7,) is unique, the statements 7, ! < p, and 7, —
v« > p> ' were shown in Proposition 6.

To show uniqueness of this fixed point, by the law of total
variance, mmse(y) < p, < € for any v > 0. Then for all
e < 1/(2¢), we have p, < G(—d_) from Lemma 13(a),
and —R(n~1) > 0 for all n=% € (0, p,] from Lemma 13(b).
Extending —R by continuity to —R(0) = —E[-D?] = d. >
0 via (219), this shows that

h(n~") := mmse(—R(n™")) (69)

is a well-defined continuous map from [0, p.] to itself. Apply-
ing Stein’s lemma, the derivative of v — mmse(y) may be
computed to be

mmse’ (y) = —E[V[X* | Y]], (70)

see e.g. [46, Theorem 2] whose scalar specialization (m =
1 and G = ,/7) yields #mmse('.y) = —27E[V[X* | Y]?],
and (70) then follows from the chain rule. Then the map (69)

has derivative

(™) =E[VX* | YP]-R' (™) (71

where E,V are with respect to the scalar channel (7) with
inverse-variance 7 = —R(n~!). By the condition (6) of
Assumption 1.3, for any such channel, E[V[X* | Y]?] <
C where C' > 0 depends only on €. By Lemma 13(b-
¢, Rin7') > 0 and R'(n7!) < O(?) for all
n~! € (0,ps). Then for ¢ < eg small enough, we have
SUp,—1¢(0,p.) M'(17") € (0,1) strictly. Then h(-) defines a
contractive map on [0, p,], so it has a unique fixed point
Nyt € [0,p«] by the Banach fixed-point theorem. We have
h(0) = mmse(d,) > 0 strictly, because 7 has strictly positive
variance. Thus there is a unique fixed point (7,1, .) to (11)
where 7t € (0, p.] C (0,G(—d_)) and v, = —R(n; 1) > 0.

|

B. Explicit High Temperature Condition

Proof of Theorem 1.11: Suppose Assumptions 1.1-1.4
hold for the linear model in (1). Consider the rescaled problem:
y = Arescaledﬁ:escaled + € where Aicscaled = \/EA and
\%ﬂ*‘ Note that Arescaled = QTDrescaledO

with Diescaled 1= \/ED and D;frsscaledlmX1 LA Drescaled With
Drescaled = \/ED

We then have that (i) Assumptions 1.1 and 1.2 hold for
the rescaled problem with Diescaled and Diescaled in place
of D and D; (ii) Assumption 1.4 holds for the rescaled
PrOblem: Supp(Dfescaled) - [d*,rescaled_erescaledy d*,rescaled+
erescaled] with d*,rescaled = Cd, and erescaled = Ce; (111)
Assumption 1.3 holds for the rescaled problem with parameter
Crescaled = 1 in place of €. This follows from Proposition 13
and that the rescaled prior X* %X* either has

rescaled T
bounded support contained in [—1,1] or admits a density

function \f@exp{—g(\@x)} with %g(\f(’:x) > 1.

Apply Theorem 1.7-Theorem 1.10 to the rescaled problem.
Along with (ii), (iii) above, we obtain that there exists an
absolute constant a := ¢p(€rescaled = 1) > 0 such that if

* .—
rescaled 7
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€rescaled := ¢ < a, (13), (14) and (15) hold for the rescaled
problem. It is straightforward to show that (13), (14) and (15)
hold for the original problem if and only if they hold for the
rescaled problem. The proof is now finished. |

C. Scalar Parameters

Let us record here the leading-order behaviors of several
quantities related to the scalar parameters of (25) and (31) in
the small parameter ¢ of Assumption 1.4.

Proposition 8: Suppose Assumptions 1.1, 1.3, and 1.4 hold.
Let ro = V(D?) and let R(z) be the R-transform of —D?. For
some constant eg = ¢o(€) > 0, if ¢ < ¢, then for any constant
c¢>0andall z € (0,c),

R(2) = —di + kaz(1+ 2 - O(e)),
R'(z) = O(¢*).

Furthermore

R'(2) = ky + O(e%),
(72)

ko < min(dye, e?), v =ds — kot (L4070 0(e)),

2
m<77* 7*) (0.

M
A U —1 B
af = ——=(14+n,-0(e)), ay =-n.+0(e),
N (1+n"-0(e)) 1 +O(e)
1 _ K2
be=—(1 Lo(=)),
(1o ()
[ Qe Cx
— =d, , = , — =d, . (73
b + O(e) N O(e) py + O(e). (73)
Proof:  (72) and the bounds for o follow from Lemma

13(c) and E[-D?] = —d,. We will use implicitly the bound
ny 1 < p. < € from Proposition 1, and hence n;! = O(1),
throughout the proof.

Applying (72) to the fixed point equation v, = —R(n; ')
in (11), we have

Yo = d = .t (140, O(0)) (74)
For the remaining bounds, let us first show
2
T =1+ R 2(1 4071 0().  (75)

]E—
(D2 + Ny — 7*)2

Note that |D? — d,| < e, ko < ¢, and (74) together imply
|ID% — ~,| = O(e). Then for all ¢ < eq(€) sufficiently small,

n; 1 i
(D2 + N — 7*)2 B 1-— 2:=D?

s
oo *7D2 k
=1+ (k+1) <7 )
k=1 Tl

which is an absolutely convergent series. Let 1, = E[(d, —
D?2)7] be the j™ central moment of —D? (where o = 1 and
p1 = 0), which has the bound |p;| < e/ ~2k for all j > 2 by
Lemma 13(c). Applying this bound and |y, — d.| = O(k2) =
O(e), for all k> 3 and a constant C' = C'(€) > 0 we have

D2\ Eey B
E(”) = Z()n* k(V*_d*)k jlf“j

i=o M

(76)

< 2’“77;’“(02)’“—2@.
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Then the summation of the terms of (76) for k > 3 is bounded
by kan; 3 - O(e) for all e < eo(€) sufficiently small. For k =
1 and k£ = 2, we have

e UE
*_D2 2 *_d* 2+K? _
E (’Y ) _ (v 2) 2 _ Hzﬁ*2
77* 77*

Applying these to (76) gives (75) as claimed.
Now applying (75) to the definition of k. in (25),

2
Ky = (77* 7*) % (1_’_77*—1.0(2))

*

(o) 2 o).

the second equality applying v. = d.(1+O(e)) as implied by
(74) and Ky = O(d ¢). Applying the first equality of (77) to
the definition of a2 1n (31), and then applying this and (74)
to the definition 0f aB,

= —kan; 2+ kany - O(e)

+ kot O(e)

(77)

A S -1
ol = 14+n."-0(e)),
\/?2( n (¢))
2
of = % (1. = d) - (1497 0(e) = =1 + O(e).
Inverting (74) and applying x2 = d.e, we have v, 1 = d 1 (1+
7' O(k2/d.)). Then applying (77) and (1. —7.)/n. € (0,1)

where this lower bound of O follows from Proposition 1,
we obtain from the definition of b, in (25) that
]. _ %) ]. K2
=1 Loz o022
a < s (d)) T (d)
1 _ K2
=—(1 L.ol==)).
(o))
Applying ko/d. = O(e), we have from (77) that k., =
d;1O(e). Then
ex 1+kK. _
be b,
Applying d.v; ' = 1+n;10(ka/d,) and (77), we have from
the definition of a, in (31) that
@ (e =) (1=
NP N
_0 <(m - %)/(d*m) : ffz)
= O(Vr2) = (e)
Applying d.y; ' = 1+19,'0(k2/d.) = 1+ 0(e), du — 7. =

kany 1(1+1;10(e)), and (77), we have from the deﬁnition
of ¢, in (31) that

L

de(1+ O(k2/d,))(1 4+ d;*O(e)) = di + O(e).

d*’)’;l)

o L(n=n\
&+ (B2 @)
2

d*f * —
7(77*77*)4,77"(&727)(14»77*1.0(2))

—(Me = %) F (L4171 O(e)) = du + OCe).
||
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D. Convergence of Stationary VAMP

Lemma 8: Recall the  replica-symmetric  potential
irs(n~", ) from (12), and let (n; ", 7.) € (0, G(—d-)) xRy
be any fixed point of (11) for which +, is a local minimizer
of

v - sup irs(n™",7)

n=1€(0,G(~d-))
Then the conclusion limyyiy(s,¢)—oc 0s¢ = 0« of Proposition 4
holds for the stationary initialization (21).
Proof: Recall that §;; = J, for all ¢ > 1 from Theorem 2.2.

Then 65 = E [XX;] < VE[XZ|E[X?] = 4, for all s,t > 1.
For s =1 and any t > 2, observe also that

810 = EX1X; = E[F (Po, X*) F (Yo_1 + E, X*)]
—E[E[F (Po,X*) F (Y;_1 + E,X*) | X*]]

=E[E[F (Po,X*) | X*]’] > 0 (78)

where the last equality holds because Py, Y;—; + E, and X*
are independent with Po and Y;_; + E equal in law (by the
identity o2 + b, = 7, ).

Consider now the map ds; — Js4+1¢41. Recalling that
]EY? = Uf and EY,Y; = k.ds, we may represent

(Yo +E Y, +E) (W»* st + 0.6+ /02 — £,0,G,

VEsOst + 0,G + /02 — m*éstG")

where G,G’,G” are jointly independent standard Gaussian
variables. Denote

P = v/ksd + b - G+ /02 — ki - G,
P = \/Kib + by G+ /02— K6 G’
and define g 0,6,] — R by g(§) =
B [F (P}, X*) F (PY,X*)]. Then 81,41 = g(0s).
We claim that for any § € [0, d..], we have g(§) > 0, ¢'(9)
0, and ¢”(6) > 0. The first bound g(d) > 0 follows from

v

9(0) = E[E[F (P, X") F (P§.X") | X", G]]
—E [ﬂ«: [F (P}, X*) | X*, Gﬂ >0,

because P, Py are independent and equal in law conditional
on G, X*. Differentiating in ¢ and applying Gaussian integra-

tion by parts,
J(6) = 25| (PhX") F (LX)
G)]

Ko Ko
X . G _
<2\/ﬂ*5+b* 24/02 — K40

K
= _R[F'(P},X*) F (P}, X*)G
\/m [ ( 5 ) ( § ) ]
— —=—E[F (P}, X") F (P}, X") G

02 — Ko
= k4E [F” (Pi;, X F (Pg, X*)—l—F/ (Pi;, X*) o (Pg, X*)]

— kE[F"(
— E[F (P5,X) F(

5, X*) F (P, X")]
5 X))
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Then ¢'(6) = x.E [E[F' (P}, X*) | G,X*]?] > 0, and a similar
argument shows ¢”(§) > 0.

Observe that at 0 = 4., we have Py = P{ = /0% +b, -
G = G/\/7» which is equal in law to P ~ N(0,7,"). Then
9(6.) = E[F(P,X*)?] = 4. by (62). So g : [0,8.] — [0,4.] is
a nonnegative, increasing, convex function with a fixed point
at .. We claim that

g'(0.) <1

This then implies that J, is the unique fixed point of
g(-) over [0,6,], and lim; .., g®(5) = d, for any § €
[0,d.]. Observe from (78) that 01, = d1o for all ¢ > 2,
50 Ot.41s = gT D (01.144) = gV (812) for any s > 1. Then
lim pmin (s,¢)—o0 st = 0s follows.

It remains to show (79). For this, applying (61) and
E[F'(P,X*)] = 0 by (62), we have

g'(8.) = rE[F'(P5,, X*)?]
S < 773 E[f/(P-‘rX* v )2]_ 73 )
N\ (e — )2 o (e — )2 )"
(80)

Recall the replica-symmetric potential igs from (12), whose
gradient and Hessian in (y,7~!) are given by

Virs(n™",7y) = %(mmse(v) -n " =R - v)

. 1 (mmse’(7) -1
2 —
Vs = 2 ( _1 _R/(n_l)

(79)

where we have used the I-'MMSE relation i'(v) = $mmse(7)
[38]. The condition that (n;!,7.) is a fixed point of (11)
implies Virs(n;1,7«) = 0. Here, n7% +— irs(n™1,7.) is
concave because —R'(n~1) > 0 by Lemma 13(b), so n; ! is
the global maximizer of this function. Then, the given assump-
tion that -y, is a local minimizer of  — sup, -1 irs(n~",7)
implies the Schur-complement condition for V2igg

1
R'(n~1)
Differentiating R(z) = G~'(z) — z~" where G(z) = E[(z +
D?)~!], and applying r. from (25),

1
R/ —1 —
(77* ) G,(Gil(n*_l
1

mmse’ (y) + > 0. (81)

Then

]- ]- *x *2
,_12<1+<7727>>.

Recalling also mmse’(y) = —E[V[X* | Y]?] = —y2E[f/(P+
X*,74)?] from (70) and Proposition 14, the condition (81)
may be rearranged as

2 2
/ x 2] < D (mx — )
Bl X7 < 22 (14 0l

*

2133

Substituting into (80) gives ¢'(d.) < 72/n? < 1 where the
second inequality applies 7. — v« > 0 from Proposition 1.
This shows the desired claim (79), concluding the proof. W

Proof of Proposition 4: For ¢ < ¢y sufficiently small,
we have shown in the proof of Proposition 1 that h/(n; 1) <
1 strictly where 1/(n~!) = —mmse’(v)- R'(n~?) is as defined
in (71). Rearranging this gives mmse’(v,) +1/R'(n;1) > 0,
i.e. 7, is a (strict) local minimizer of v — sup, -1 irs(7™",7),
so the result follows from Lemma 8. |

APPENDIX C
ANALYSIS OF THE CONDITIONAL FIRST MOMENT

In this appendix we prove Lemmas 1 and 2. The arguments
are extensions of those of [33, Lemmas 3.1 and 3.2], and we
will refer to [33] for some of the technical details.

Lemma 9: Let w be any probability distribution over R. Let
cr(a,b) be as defined in (29), and let

a = sup {a ER: /e”Qdﬂ(x) < oo} € [0, 0]

Then for all ¢ > a and b € R, we have ¢, (a,b) = oo. For
each fixed a < a, the function b — log ¢, (a,b) is continuous
and satisfies, for some (a,7)-dependent constant C' > 0 and
for all b € R,

log ¢ (a,b) < C(b* +1).

Proof: For the first statement, suppose a < oo, and
consider a > a. Taking € > 0 such that a — ¢ > a, we have

cq(a,b) > / e‘“‘2+bwd7r(x)
lz|>[b] /e

> / e(“_a)ﬁdw(x) = 00.
|z|>]bl/e

For the second statement, consider any @ € [0,00] and fix
a < a. Taking € > 0 such that a + ¢ < a, we have

cq(a,b) :/ eawz“ndw(x) —l—/ e“m2+bwd7r(x)
|z|<b/e |¢|>b/e

é elﬂ/e/eadeﬂ_(x) +/€(a+5);p2dﬂ_(x)
< C(e/F +1) <20/

for a constant C = C(a,e,m) > 0. Then logcr(a,b) <
C'(b? + 1) for a constant C’ = C’'(a,e, ) > 0. In particular,
log ¢ (a,b) < oo, and continuity in b follows from a standard
application of the dominated convergence theorem. [ ]
Proof: [Proof of Lemma 1] Recall the n x ¢t matrices X; =
(z',...,2"), Y = (y',....y"), and S, = (s',...,s") which
collect the AMP iterates. We fix ¢ and write G, X, Y, S, A for
G, X, Ye, St, Ay
From the definition of Z(U{) in (27), applying y = AS* +
e = QTDOB* 4+ ¢ and ¢ = Qe, and writing as shorthand
¢ :=0(c) =0 — *, we have

E[ZU) | G] (82a)
= [1(31017 eu) - (”2 51l TLanto
= (s2m)
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with

fn(o

~—

5"0"DTDO&
2

S

logE {exp (— + &TOTDT§> ‘ Q} .

Conditional on G, the only random quantity in the
expectation in (C) is the matrix O. By definition of
G in (28) and the AMP iterations in (24), its condi-
tional law is that of a Haar(SQ(n)) matrix O conditioned
on the event (ep, S,AS) = O(e,X,Y). Then by [34,
Lemma B.2], we may represent this conditional law of
O as

-1

ele e'X €'Y
Olg L (e, SAS) [XTe XTX XTY (e, X,Y)"
YTe YTX Y'Y
+ H(eb,S,AS)LOHEL,X,Y)L (83)

R7x(n—=2t—1) have

where H(eﬁxyy)L,H(eb_’S,AS)L €
orthonormal columns orthogonal to the column spans
of (e,X,Y), (e, 5,AS) € R™ZHD respectively, and
O ~ Haar(SO(n — 2t — 1)) is independent of G. We remark
that the matrix inverse in (83) is well-defined almost surely
for all large n, by Corollary 1 and the statements A > 0 in
Theorem 2.2 and b,, k., > 0 strictly in Remark 1.1. Writing

as shorthand II =11, o \gy+ and

g1 =TI, xyy. 6 € R"271
eTe eTX €Y\ !

o=, SA) | XTe XX XY | (e,X,Y) 6eR",
YTe YTX YTY

(84)

this yields the equality in conditional law Og |, L 105 1t+0).
So fn(¢) in (C) is given by

(IO&, +6)) ' DT D(LIOG | + &)
2

fn(o)= % log E exp (—

(85)
~ T
+ (HO&L + 5|> DT5> (86)
- 735[DTD&“ + g&JDTf (87)
n n

50" DT DIOG |
2

2
+ —logEexp <—
n

+ (gTDH - &[DTDH) O&l> (88)

where this expectation is over only O ~ Haar(SO(n—2t—1)).

Uniform Approximation of f,(6): We proceed to
approximate f,(¢) by low-dimensional functions of &
for large n. Define P(5) = (u(5),7(5),v(d),w(5))

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 3, MARCH 2024

where

1

u(o) = EIIUHQ,

r(5) 1 eTe eTX Y\

@) | == XTe XTX XTY

w(5) "\yTe YTX YTY
X l(e,X, Y)'6. (89)
n

Here, u(d),7(6) € R and v(6),w(6) € R’. Note that Og
is the orthogonal projection of & onto the column span of
(e, X,Y), so

26 0@+ @) =1 ) - P

Let K > 0 be the bound given in the lemma for which &/ C
(0, K), and define the open domain

K={ceR":u(5) € (0,K), A(PB(5)) > 0} o1
where A(P) = u — r? — ||v]|> — ||w||* as defined in (32).
Restricting first to ¢ € K, we apply [33, Proposition 2.7] to
approximate the expectation over O. (This is stated in [33]
for Haar(O(n)), but the result and proof hold verbatim
for SO(n).) The needed conditions of [33, Proposition 2.7]
are verified by the Cauchy interlacing of eigenvalues of
II"DTDII with those of DT D, the convergence assump-
tions (4), the bounds || ||%, |5}[|* < [|6]|* < nK for 6 € K,
the bound ||DE||? < 2dyn almost surely for all large n,
and the observation that by Lemma 13(c), for ¢ < ¢o(€, K)
sufficiently small and for some sufficiently small constant
0>0,

G(—d_+0)—0> K. (92)

(We allow ? > 0 to depend on ¢ and the law of D2, and we
will eventually take @ — 0.) For scalars or vectors a,,(¢) and
b, (6) whose dimensions are independent of n, let us write
an(6) = b, (5) to mean, almost surely,

lim sup |a,(6) — b,(6)] =0,
n,m—oQ "EK:
lim sup |a,(6) — b,(d)| = 0.

n,m—00 5 cjC

Then [33, Proposition 2.7] applied to the expectation over O
yields

fn(5) = —L}[DTD&H + %ﬁDTg + E,(5) (93)

n

where

~ 2
Fa@) = g {oloel
¢>—d_+d n

+n~'(¢' DIl -5/ D" DII)
x ((I+0"'D'DI)'M'DT¢-1"D" D)

1
~ ~logdet (¢ +TI7 DT D) — (1 +log 171
n
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For the first term of (93), applying Corollary 1 and the
preceding definitions of &) and r,v, w,

) =epbx " Pr(E)HSATV20(6) +AS (5.8 Pw(5) 470 (5)
(95)

where n~1{|r,,(5)||> — O uniformly over ¢ € K. It follows
from Theorem 2.2, Corollaries 1 and 2, ED? = d,, and (65)
that almost surely,

€y 0 0

lim l(eb,S,AS)TDTD(e,,,S,AS): 0 d.A a.A

Hm—ee i 0 a.A c.A
(96)

Combining this with (95), we obtain for the first term of (93)
that

e r2(5)
b

LT (j: CC”) (U(&)’%)T (v(&),‘f/(;ij). ©7)

Similarly, for the second term of (93), applying the form of
E; in Proposition 3 and (64b), we have

1
—& (D' D&y =
n

2r(4)
Vb

where the contributions from the other terms of &) vanish
because = in Proposition 3 has mean O and is independent of
(S1,...,S¢) and (D, L).

For the final term F,, (&) of (93), note that (4) and Cauchy
eigenvalue interlacing imply that the empirical eigenvalue
distribution of TIT DT DII converges weakly to D2. Then,
recalling n=Y|5 || = u(&) — 12(3) — [v(8)]1% — w(3)]|? =
A(B(¢)) from (90) and the definition of H in (33),

-2
¢lloll
n

257 De= 2] De (5:20(5)) = 98)

~ 2
1 logdet (¢ + 11" D" DII) — (1 +log M)
n n
=H (¢, A(PB(5))) - (99)

The error of this approximation converges to 0 uniformly over
¢ > —d_ 40, by the same Arzela-Ascoli argument as leading
to [33, Eq. (3.25)].

To analyze the remaining second term of E,, (&) in (94), let
us define

—~1/2
e;'—eb e;—S /

STe, STS STAS
STAe, STAS STA2S
eTe eTX v\ V2
Xe XX XY

YTe YTX Y'Y

B e;—AS
IT = (ep, 5, AS)

= (ep, S, AS) (100)

whose columns are an orthogonalization of (e, .S, AS). Then
the columns of (II,II) form a full orthonormal basis for
R™. Applying the Schur-complement formula for block matrix
inversion, we obtain analogously to [33, Eq. (3.29)] that the
second term of (94) is given by

nN(¢ DI -6 DT DI+ 11T DT DIT) ™!
x(M'D'¢-NI"D'D5)) =1-11

2135
where
I=n"'(¢"D-&DTD)I-UT ((I+DTD) 'II
(101)
x 7 (DTf — D' Dg|) (102)
H=n"'¢"D-5/ D' D) (103)

X TT(CI+DTD)™ M (7 (¢I+DTD)” 1)

xI"(¢(I+D"D)"'II- I (D'¢ - D" Déy)
(104)

We derive almost-sure asymptotic limits for I and II.
Recalling A(-) and 6(-) from (33), let us define

fe(Cﬂ") = 262(C77") - f1e2(C,7")]:161(<)71f162(<»7")
F(¢) = Foz(€) — Fi2(¢) " F11(Q) 1 Fi2(¢) (105)

where we set

wi(a) :b*l/z(_ﬁzss)’ (106)

f(a,r) = v @) 7+ 0P (@),

Fo(O) =E (g +1D2 E2> (108)
e D2

2(Cr) =B (WEQ 7 e
e (D2 2

(Cr) =B (Mﬁ) » o
1 1 AD?)

Fu(Q) = CJF D2 ()\(D2) )\(D2)2>
1 2

Fi2(C) = EW ()\(52(%()[)29 ’ .

Fal0) = B 00 4

Since D? has strictly positive variance and z +— \(z) is one-to-
one on the support of D2, we have Fi1(¢) = 0 strictly for ¢ >
—d_, so F(C) is well-defined. Also F¢ (¢) > O strictly since
EE? = b, > 0 from Theorem 1.1, so F¢(,r) is well-defined.
We note that these functions are expressed equivalently as

(7°(D%, ) —XA)2]

E2
Fe = inf E|—2>
(C?T) XIAHER |:< + D2

—mfE| B ([ o] g4 i
x4 €ER ¢+ D2 M * X
1 2
F()= inf E|—— (§(D?) =AD" —x°
O = int B | s (0007 - A0 ~x°)

(113)

where these coincide with the above definitions upon explicitly
evaluating the infima over x*,x%,x¢ € R, and the two
expressions for F¢ in (113) are identical upon absorbing all
terms of §¢(D?,r) not depending on D? into an additive shift
of the variable 4.
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We first approximate the common term IIIIT(DT¢ —
DTD&”) in (102-104): Applying Corollary 1 together with
(95) and (96), we obtain
-1

ele e'X €'Y
XTe X™X XY | (e,S,AS)" D' Dg
YTe YTX YTY
b, 0 0\ 'fe. O O b2 (5)
=0 A 0 0 dA a,A A~Y2y(5)
0 0 r.A 0 a.A c.A (H*A)il/Qw(&)
Then applying
M’ =7 —T0" =1
eTe eTX €Tv\ "
—5, SA8) [ XTe XTX XTY | (5 A9" (114)
YTe YTX Y'Y
yields

I DT D&y = b, /*r(5) (D7D — e.b ') ey
+ (DD —d.I — a.k;'A) SATu(5)
+ 2 (DTDA — a,I — .k ' A) SATYV2w(5) 4+ rn(5)
(115)
where nt||r,,(5)||> — 0 uniformly over 6 € K. From the
definitions of a., ¢, in (31) and of A in (22), a straightforward
computation yields the identity

_ T <DTDA —ad - C*A)
77* - 'Y* *

=D D—d1-%A=D
Rx
(116)

where we define D € R™ " as this common quantity. Then,
recalling a2 from (31), we can rewrite (115) as

DT D6y = b, ?r(5) - (DTD — e.b; ') ey
+DSATY2 (0(5) — afw(5)) + ra(5).  (117)

96), (114) and DTE =
—7:) I| ey, we also have similarly to (98)

Applying Corollary 1,
L [DTD+ (.

-1

b 0 0
OII'D ¢ =DT¢— (e, S,AS) [ 0 A 0
0 0 kA

1
X E (ebaSa AS)T DT{ +Tn(&)

=2 [DTD+ (n.

» —v) 1] ey — by ey 4+ 1 (6).

(118)

Then combining (117) and (118), and applying ¢ from (110)
to DT D by functional calculus,

NI (D'¢ -~ D' Dé&y)

= fe(DTDm(&))eb — DSA™1/2 (v(&) - afw(&)) +7,(5)

(119)

for a remainder r, () satisfying n=!(|r,,(5)|?
over ¢ € K.
We now apply (119) and Corollary 2 to approximate the

two terms (102) and (104): Recalling af from (31), observe

— 0 uniformly
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that the second definition for D in (116) has the equivalent
form

D=D"D-aPn (D"D+ (. —v)1) " + (B —dJ)I.

Then, recalling the definitions of Fao,
by Theorem 2.2 and Corollary 2 we have

S, from  (110),

n"'STD (CI+DTD)”" DS = Fap(C) - A,
nle) ¢ (DTD,r(5)) (CI+D'D)" § (DT D,r(5)) e
= ]:262(4-77“(5.))7
ntel (D7D, () (CI+DTD) "' DS =0,
Combining with (119), this shows for (102) that
L= F5,(C,7(8)) + Faa(€) - |[0(8) — aw(3)];
= F55(C,1(0)) + F22(C) - B(v(d), w(5)).
For (104), by Theorem 2.2 and Corollary 2, we have
n=1(8, AS)T(CI + D D) Y8, AS)=Fi1(O)@AeR?*2 ¢
ey (CI+D'D) tey = Fy(0),
nt T(u +D"D)71(S,AS) = 0.
Then, recalling the form of II from (100),

(120)

_ o/ —1-\—1_

M7 (¢r+DpTp) 1) [T =n"
x (e F1(Q) " ey +(S,AS)(F1i(Q) © A)~
where n~!|jr,|| — 0 in operator norm. Combining this

with (119), and applying Theorem 2.2, Corollary 2, and the
definitions of Fi2, Fi, in (110), we obtain for (104)

I =F55(C,r(6)) F1 () Fia(C,7(5))

+ F12(¢) T F11(Q) ' Fr2(C) - B(w(5), w(5)).
Combining (120) and (121), the second term of E,,(5) in (94)
satisfies

~H¢T DI -5 DT DII)
x ((I+T'D'DI) Y II'DT¢ -TI"D' D&y)
= F(¢,r(0) + F(¢) - B(v(d), w(5)). (122)
The error of this approximation again converges to 0 uniformly
over ( > —d_ + 0, by an argument that is the same as that
leading to [33, Eq. (3.31)].

Combining (97), (98), (99), and (122) and applying this
to (93), we obtain

LS, AS)T +71,)

(121)

lim sup | f.(6) — f(P())| =0,

n,Mm—00 zcic
where we define on the domain V = {P : u —r% — |jv||? —

|w||? > 0} the function

e,r? 2r

f(B) Zilclf—ﬁ‘f'ﬁ

[ ) (o) ()]

+H(GAMB)) + FCr) + F(Q) - Blv,w),
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and the infimum is over ( > —d_ + 0. The functions F¢, F
are decreasing over ( > —d_ by definition in (113). For any
fixed B with u < K, applying B%H(C,A(m)) = A(B) —
G(¢) < K — G(¢) < 0 by (92), the function H(¢, A(*P))
is also decreasing over ¢ € (—d_,—d_ + 0]. Then the above
infimum defining f(J3) may be extended to { > —d_. Finally,
this uniform approximation for f,, may be extended from KC
to its closure K: Here frn as defined in (C) is continuous on K,
and the map P : K — {P € V : v € [0, K]} is continuous,
relatively open, and maps the dense subset X C KC to the
interior {P € V : u € (0,K)} for each fixed n. Then [33,
Proposition C.1] shows that f has a continuous extension to
{P €V :uel0, K]} and (denoting also by f this extension)

lim sup |fu(0) — f(PB(5))] = 0.

n,m—oo .

ger

Applying this to (82), and denoting by () the expectation
over (o), % 7, we obtain almost surely
1 1
—logE[Z =—=
LlogE[20) | 6] =~
1
+ lim —log <]I{u(5) €U} exp (gf(‘ﬁ(&)))>

n,m—oco N

lim

n,m—oo

s

(123)

The same statement also holds with the closure ¢/ in place of
U on both sides.

Large Deviations Analysis: We conclude the proof by estab-
lishing large deviations upper and lower bounds for 9B(5) and
applying Varadhan’s lemma. Recall that 6 = o — 8*, and
introduce dual variables 8 = (U, R,V, W) where U,R € R
and V,W € R!. For the large deviations upper bound, define
the cumulant generating function

An(R) = % log < exp (n - ‘J3(&)T9{)>

s

1 n
- Z log/exp (Uorf + Ajo; + Bi)dw(cri)
i=1

1 n
= =3 [Bitlogen (U, 4] (124)
n
i=1
where, denoting by (e;,x;,y;) € R T the i™ row of

(e, X,Y), we have set

A; = A;(R) = =208} + (R, V,W) T

_1 eTe ¢TX Ty\] V2
X | — XTe XTX XTY (ei7xi7yi)a
"\YTe YTX YTY/]
B; = Bi(R) = U(5;)> — (R, V,W)T
i ele e'X €'Y 172
x|=[XTe XTX XY (€is i, yi) - B
"\YTe YTX YY)/

By Theorem 2.2, Corollary 1, and Propositions 10 and 11,
almost surely as n,m — oo, the empirical distributions of
(A;)™, and (B;)?_, converge (in Wasserstein-p for every
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fixed order p > 1) respectively to
AR) = —2UX* + b, PRE+ VTATV2(Xy, . X,)
+ Ii*_l/QWTA_l/2(Y1, oY),
B(R) = UX*2 — b, 2 REX* = VTATY2(Xy, ... X)X*
— R PWTATY2(Y,, Y XE

In the remainder of the proof, we restrict to the event of
probability 1 where this empirical convergence holds. These
limiting random variables satisfy EX*? = p,, EEX* = 0,
EY,.X* = 0, and EX,. X* = E[F(P,X*)X*] = m,, where
P ~ N(0,7; ') is independent of X*, and 7, is defined in (31).
Define the limit cumulant generating function

A(R) =Elogc, (U, A(R)) + p« U
—m VIA™Y21,, € (=00, 9].

Then Lemma 9 and the above empirical Wasserstein conver-
gence ensure

lim A\, (R) = A(R) < oo forall U < a,

An(R) = A(R) = oo for all U > a. (125)
Denote the Fenchel-Legendre transform of A by
M (B) = sup PLTR-AR) €[0,00]. (126)

ReR26+2

Observe that the concentration bound (5) implies that
i e’ dr(z) < oo for some sufficiently small a > 0. Then
a > 0 strictly, so A is finite in an open neighborhood of
R = 0, and hence \* is a good convex rate function (i.e. lower
semi-continuous and having compact level sets) [47, Lemma
2.3.9(a)]. Let us show the large-deviations upper bound

limsup ~ log <]1{q3(&) € F}>ﬂ

n,m—oo 1

< q%relg«“ A*(B) for all closed F C V.
For this, set A(R) = limsup,, ,, .., An(R). Here A(R) =
A(R) whenever U # @, by (125). The upper bound in
the Girtner-Ellis Theorem shows that (127) holds with A*
replaced by the Fenchel-Legendre transform A\* of \ (see
e.g. [47, Exercise 2.3.25]). Note that both A\ and \ are
convex, so the restrictions of A and \ to any line segment are
upper-semicontinuous by the Gale-Klee-Rockafellar Theorem
[48, Theorem 10.2]. Then the supremum in (126) and the
analogous supremum defining A* may be restricted to {9 :
U # a}, implying that \* = \*. This proves (127).

For the large deviations lower bound, set

)‘M(g{) =Elog Ci\f(Ua AR)) + p U — s VTA_l/Qltxla

127)

and let (AM)* be its Fenchel-Legendre transform defined
analogously to (126). We aim to show

lim inf %log <11{q3(5) € G}>7r

n,m— o0

> sup (— inf (/\M)*(‘B)) for all open G C V. (128)
M>0 Bed

For this, consider any M > 0 where (—M, M) intersects the
support of m, and denote by 7, the conditional distribution
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~n be the expectation over

of m over (—M,M). Let ()
(o3)14 Y 7pr. Then analogously to (124), we have

M(R) = %1og < exp (n - ‘J3(&)Tf)‘{)>

™M

= %Z {Bi +logex! (U, Ai)] —logm((—M, M)).

By the above empirical Wasserstein convergence, A\M (9R)
converges pointwise over all R € R2*2 to A\M(R) —
log w((—M, M)), which is now finite. Then the Girtner-Ellis
lower bound [47, Theorem 2.3.6] may be applied for the law
of PB(¢) under 7y, giving for all open G C V

" log(1((5) € GY)

> logm((—M, M)) + %log <]I{‘~I3(5f) € G>w

Zlogm((—M, M))— inf, (WM —log m((—M, M)))" (B)

— — inf (AM)* (),

PeG

This lower bound is increasing in M, and taking the supremum
over M > 0 yields (128).

The function P — f(P) is continuous and thus bounded
over the compact set {f € V : u € [0, K]}. Then for any
M > 0, applying (128) and Varadhan’s lemma in the form of
Lemma 14(a),

rlllgzlinofo% log <]I{‘B(&) eV, u(g) € L{} exp (gf(&]ﬁ%(&)))>
SIOB) — (M) ().

s

> sup
PeV: ueld

Recalling the definitions of ®1% and W1 in (34-35), note
that U (P) = —3 + 3/(P) — (AM)*(P). Then taking
the supremum of the above over M > 0 and applying this
to (123) yields the desired lower bound for E[Z(U) | G,].
Similarly, recalling that A\* is a good convex rate function
and applying (127) and Varadhan’s lemma in the form of
Lemma 14(b),

lim sup% log <H{‘J3(5) €V, u(v) € Zj{} exp <ff(‘q3(&)))>
< swp LFOR) - X(R).
PeV:ueld
Note that the condition B(5) € V on the left side holds
always, by definition of 3. Since \* is lower-semicontinuous,
by the Gale-Klee-Rockafellar Theorem, its restriction to any
line segment is continuous. Since f is also continuous, the
supremum on the right side may be restricted to the interior
{B €V :u €U}, and this yields the desired upper bound for
E[Z(U) | Gi]. [ |
We now prove Lemma 2. Let e; = (0,...,0,1) be the ™
standard basis vector in R?. Denote B = (us, s, v, w,) and
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D* = (C*) U*aR*a V*aW*7Xf5X*Baxg)’ Where

2 * E R
reo= 020y, = A2 (129)

Uy = —, * — B *
T« T« T«
Wy = kﬂlmAg/geta G = M — Vs
1
X =xd =xE =0, Ue= =5, (130)
R, =vbY2 Vi=0, W.=rY2A%,. 131

We will show that (B.,Q.) is an approximate stationary
point of ®;,, which is an approximate global optimizer of
supg info @1 ¢ for sufficiently small ¢ > 0.
Denote by 9,%1; € R, 9,81, € R! etc. the partial
derivative or gradient of ®; ; in the variables u, v, etc.
Lemma 10: In the setting of Lemma 2, for all ¢ > 1 and
each ¢ € {u, ru,w, CxA x B, xC, U, R,W},

D1 (P, Qs) = Urs, 90,21, (B, Q.) =0,
A {9y @1 (P, Q)| = 0.

Proof: For the first term of ®; ;, denote

(132)

A, = —2UX* + b, PRE+ VA2 (Xy, ... Xy)
(133)

R PWIATYR (Y,
— (X" +E+Y,). (134)

As E~ N(0,b,) and Y; ~ N(0,02) are independent of each
other and of X*, and b, + 02 = !, we have

7Yt)

2

for Z ~ N(0,1) independent of X*. For the next terms of
®; 4, we have

1
Elogcy (Us,Ay) =Elog ey (—w,wX* + \/fﬂZ) (135)

— (e A1) TV —w] W
Yo [ 2 V2 v2 1
= Q= | — — P« _7b*_ _7*5*:_***
] G R 1
(136)

where we used etT Aie; = 6 = 6, from Theorem 2.2 and
the identity b, + k.6, = b, + 02 = ~ ! For the next
terms of ®; ., applying e Aje; = 0, = (9« — 7.)~ ! and
the definitions of a.,cs, e, in (31), direct calculation gives,
after some simplification,

z—:rf - 26:1/27"*
+ Tr [(d* i*) (vs, ﬁ;1/2w*)—r(v*, mlmw*)}

2 N 2
<7) 2%”*5*(77*%)
7] U T
2
“1‘0*6*(7*) +2a*l;:_&

* U T

Finally, applying again e Ae; = 0, = (7. —v.) "' and b, +
K0, = v ', we have

2 2 -
A = w =12 = [lve]l” = [ws |7 =05

(137)

(138)
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We have also ¢, = 7. + R(n;') = G=Y(n;?t) from (11).
Then by [33, Proposition 2.9],

-1

H(Co AB.)) = / " R()-. (139)

The last two terms of @1 ,(P., Q.) are 0 because v.n; ! —
b, *r, = 0 and B(ve,w,) = ||vx — aw,|? = 0. Then
combining (135), (136), (137), (139) shows &1 (P, Q) =
\IIRS in (132)

To check the stationarity conditions, first by the form of H
in (33), we have O H((, A) = A— G(¢) and 04 H(¢, A) =
¢ —1/A. Recalling ¢, = 0y — v« = G~ 1(n;1) and A(P.) =
n; 1, we have

IcH (G, A(B4)) =0,

aozH (C*a A(‘B*)) = —x- (140)

2 _ A 0
)

In addition, note that since [y,n7! — by /?r,]D? — x4 =

2

Oy, 0¢, 0, 4T [Eb

¢+ D?
(-
Ns

2
o

Using this and B(vy, wy), Ou BV, wy ), OuwB(vs, wy) = 0, we
obtain

r=r.,x*=x2,(=(x

(141)

8uq)1,t(s’13*7g*) = _U* - ’Y*/Q = O
8, P14 (P Qi) = — R — (b e — 027%) 4 7ur,
(@) 172 %+ (M — 7s)

= —’I"*(’I]* _'Y*) +b/ ——= =0
U

avq)l,t(qg*ag*) = _V* - (d*U* + a*l‘f:l/Qw*) + YV Ux
= (_d* - (1= d*'Y*_l)'V* +'7*)U* =0
8wq)1,t(q3*,ﬂ*) =W, — (C*Kglw* + a*l‘i;l/zv*) + YWk

Q

= (_77* - "ﬁ:l (C* + 77*; ik a*> + ’Y*)w*

@

8{) aXA 5 aXB ;axcq)l,t(m*,g*) =0

where we used in (a) R, = 7.7, and (by the definition of
by, e, in (25) and (31))

—e b tr, + b;l/z = b;l/Q (1 — %(1 + /{*)>

B2 Vo (15 — Y2
us ’

(142)

and in (b) (by the definitions of a,,c. in (31)) cx + ax(n. —
V) /e = = (M — Yo ) K.
Now note that
9, log e (a.b) = J % exp (az? + bx) dr(x)
¢ A [ exp (az? + bx) dr(z) '
[ wexp (az? + bz) dn(z
log ¢y (a,b) = .
9 log cx(a,b) [ exp (az? + bx) dr(z)

(143)
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Recall (134), where E+Y; ~ N(0,~; ') is independent of X*.
Then from the expressions for f, f' in (8) and (61), we have
that

dalogen (U, AL) =7 f/(XF +E4Yy) + fF(XF+E+Y)?
O logcer (Us, Ax) = fF(X* +E4Yy). (144)

Also recall from Theorem 2.2 that X;y; = F(Y; + E, X*),
so by the definition (23),

FXFHE+Y) = 2%+ Y, £ E) + X, (145)

* M)«

JAVERN}
At+1 = (55 5i>

and applying Corollary 1 and EX,X* = 7, from (31), we have

Then, denoting

7]* - ’Y*

*

E(X1, ., X)) fXT+E+Yy) = Op + T lixt.

It follows from this, Stein’s lemma, and Ef'(X* + E+Y;) =
VE[VIX* | X* + E + Yi]] = 7./ that
Or®14(Ps Qu) = by PEES(X* +E+Y,) — 1,
=0PEf/ (X" +E+Y,) — 1.
= b (y/m) — =0
Oy 14 (Pu, Q) = A7 PEX, . Xe) fX+E+Yy)
— (vs + - At_l/21t><1)

= 7"7* — A;l/z(st — Ux

T)x
SATYPE(Y, YY)
X f(X*+E4Yy) — w.

=k 2A e, Ef (X +E+Y,) — w, =0.

Ow P (P, Qi) =

From (145) and the identities EX;41X* = 7, and EX?,, =
8« = (N« — 7%) L, we have also

EX*f(X* +E+Y) =TT 4 p, (146)
7 *—’Y ! %\ 1
s e (52 5 )
(147)
2 * T fx
g 2 =)
1 2 E S 5
L 2T )

Then
Ou®1+(P+, Q) =E fy;lf’(x* +E+Yy)
+ f(X* +E+Y,)?
—2EX*f(X* +E+Yy)
- (u* - P*) = 0.

This shows 9,P1 (P, Qs) = 0 in (132) for all © # V, and
it remains to verify the bound for 8y ®, ;. For this, note that
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from the above and 04 = 0¢y1,441 = Ox,

2
M V*A—l/Eét —u,

2
e 7*) HA 125, At”zetH
U

T —Vx
M

"*n ) 6TA L

[0y @1 (P QL) = \

) (6] A7 6, + 6, — 26/ ey)

-(
-(
-(
+ 26, — 25”“).

By Proposition 4, lim¢ o 6¢+y1 = ds. By the condition
Ay > 0 and the Schur-complement formula,

0<5t+1,t+1*5;At_15t:;gﬂgtE [(Xt+1 —a’ Xi,..., X

)]

<E (%1 = X)) =28 — 28,041,
So, we also have that lim;_, o0 0¢41,¢41 — 5tTAt_15t = 0. Thus
limy . [0y D1 4 (e, Q)| = 0. "

Proof of Lemma 2:

We begin with the lower bound in (36). Denote by o;(1)
any scalar quantity that converges to 0 as ¢ — oo.

Let us specialize \IJ{Wt to P = (U, 7x, Vs, ws) where

UA;UQ& = Vs + 8Vq)1,t(q3*7g*)'

%

b, = (149)
Then Lemma 10 shows |0, — v.|| = 0:(1). Observing that
llwel|?> = (V«/m4)?k4+0, is constant in ¢, and applying (137),

we then have

- 1 5 _
OB =5 5 b+ b XV R VW)
1
+5 V(¢ x* x%,x%) (150)
2 ¢, xA,xB ,x¢
where

M(U,R,V,W) = Elog cM (U,
— 2UX* + b, '/*RE
FVTATY? (Xe, . %)
+/<;;1/2WTA;1/2(Yl,...,Yt)>
— (us — p)U = TR
= (0 + 7 AP 1a) TV —w] W,
€)= MG AB + B [ Lo
+E{ﬁ<9 (D?)
- Xc)g]B(ﬁ*,w*).
Let X(U,R,V,W) have the same definition as
XMU,R,V,W) with c¢M replaced by c,. We note

that by Lemma 10, (149) is defined exactly so that
(Ui, Ry, Vi, W,) is a critical point of X (-). Since X (-) is

V(¢ x™ 7,

Y (D2) XB
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convex, (U, R, Vi, W,) is then a global minimizer of X.
We claim that

sup _inf XM(U,R,V,W):X(U*,R*,V*,W*). (151)
M>0UR VW

This is trivial if 7 has bounded support, because
XM(U,R,V,W) is increasing in M and equals

X(U,R,V,W) whenever [—M,M] contains the support
of m. To show (151) when 7 has unbounded support, let
us check the strict convexity of X(-): Fix any unit vector
(U, R, V', W') € R?**2 and s > 0, and denote

(U(s),R(s),V(s),W(s)) =(Us, R, Vi, Wy)

s-(U,R,V,W.
Set
=
ATV (XX
W ATAY Y
Recalling U, = —v,/2 and A, from (134), denote
Yo 2

[ f(@)exp(—La?+ A.z)dn(z)
Jexp(—=%a?+ Az)dn(z)

(f(2)*) —
Xt, Yl, . ,Yt). Then,

c ]R2t+1

F= (152)

(f())s =
with the corresponding variance V.[f(z)] =
(f(x))? (conditional on X* E, Xy, ...,
applying (143) and the chain rule,

X (U(s), R(s),V(s), W(s))],_,
=E [V, [U(z—X)?+ (R, V' ,W)TF-2]].

Since 7 has unbounded support, there are at least three distinct
points in its support, and hence also three distinct points in
the support of the posterior measure defining (-).. Then the
conditional variance V., [U'(z —X*)? + (R,V/,W’)TF - 2]
is 0 only if the quadratic function z +— U’(z — X*)2
(R',V',W')TF - x takes constant value at these three points,
which occurs only when both U’ = 0 and (R', V', W')TF =
0. When U’ = 0, we have ||(R',V',W')|| = 1. By The-
orem 2.2, Corollary 1, and Proposition 7, F has zero mean
and identity covariance, so (R',V',W')TF has variance 1.
Then in particular, (R',V’,W')TF # 0 with positive prob-
ability. Then V. [U'(z —X*)*+ (R, V/,W)TF-2] > 0
with positive probability, and hence (153) is strictly positive.
This shows the strict convexity V2X (U,, Ry, Vi, W) =
0 as desired. Then by continuity, also V2X (U, R,V,W) >~
0 and X(U,R,V,W) < oo in a bounded neighborhood
O of (Ui, R, Vi, W,). By the monotone convergence the-
orem, limy; ..o XM (U, R, V,W) X(U,R,V, W), and
this convergence is uniform over O because X and
X are convex [48, Theorem 10.8]. Then the infimum of
XM(U,R,V,W) is attained also in O for all large M, and
limMHoo infU’R’V,W XM(U, R, V, W) == X(U*, R*, V*, W*)
Hence (151) holds, as claimed.

For the second term Y (¢, x4, x5, Xc) recall
A(B.) = nt from (138), and 9:H(Ce,nit) 0.
Then, since [|v.[|? — [|[0.]|> = o:(1), we have A(P.) =
nyt + o0i(1) and O¢H(Ce, A(Px)) = o0:(1). Furthermore

2H(C, A(P.)) ~G'(¢) > 0 in a neighborhood

of C*’ SO infC>d7 H(CaA(i}*)) H(C*777*_1) + Ot(l)

(153)
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(see e.g. [33, Proposition C.2]). Applying that the
infimum of Y(¢, x4, x%,x%) occurs at x4 = 0, and
that B(0., ws) = ||vs — v*||2 = 0;(1), we obtain
inf V(¢ xh X" x) = MG ) + (1), (154
CxAox B xe

Applying (151) and (154) to (150), we obtain

lim sup ¥ ~* = — =
t_’°°M>p0 1t(;$) 2" o,

1
+ M) =

which implies the lower bound in (36).

For the upper bounds in (36) and (37), we now fix h € R
and specialize the dual variables Q = Q() as functions of
B = (u,r,v,w), given by

Uu) = Us + bu — uy),
V(v) = V. +b(v - v.),
C(P) = GTHAP))

XA(T) — _ (,Y*(TI’;]_ ’Y*) _ b— + b 3/2 ) ,

YP=xF=0 x“=x{=0.

Here, for any P € V with u € (0, K), we have A(P) < K
so ((P) is well-defined for all e sufficiently small. Note that
under the above choices of x4, xZ, x¢, we have

o ([ ]or- v

Funl) =B 5 (00%) = A (0217 x|

where F5,, Fao are the functions previously defined in (110).
Then

V1 (B)

(U.,R,, V., W,)

\IIRSa

R(r) =
W(w) =

R* + b(r - r*)7
W, + h(’U) - w*)a

Fsp(C,r) =E

= igf P14(B, Q) < P1,¢(B, Q(R)) =: ¥1.4(P)
1 1

14114 —(IH+IV+V+VI) (155)
2 2

where, recalling F from (152), we define

I =Elog ¢ (U(u), —2U (u)X* + (R(r), V (v), W(w))TF)
l1=~(u=p.)-U00) =7 K0

(v+7T*A 10) TV () — w W (w)

6*7“ w T w
m--S e e (o ) (gm) (oR)
IV = H (¢(P), A(‘B . V=F5(C(B),r),

VI = F22(¢(R)) - B(v, w) (156)

At P = ‘P., using A(‘B*) = 77* , G = GT ( )’
and (142) to verify x“(r.) = 0, we observe that these
specializations give Q(P.) = Q.. Then ¥y, (P.) =
@4 (P, Q.) = Yrg by Lemma 10. Furthermore, noting that
the only coordinates of Q(J3) depending on v are V' (v) and
C(B), the derivative of Wy ; in v is

Du V1t (PBu) =0y P14 (P, Q) + O P11 (P,
+ 0y D11 (P, Qi) - OV (0s).

2141

The first term has norm o0;(1), and the remaining two
terms are 0, by Lemma 10. Similarly 9,¥;,(B.) = 0,
D1 (B.) = 0, and D, U o(B) = 0. so [V (P.)] =
Ot(l).

We now show, using the small-e approximations of Propo-
sition 8, that the upper bound ¥, ;(*B) in (155) is concave in
B over the domain {P € V : u € (0, K)}. Let us write O(1),
O(e) etc. for scalar quantities bounded in magnitude by C, C,
etc. where the constant C' > 0 depends only on €, K (and not
on d., e, b or the dimension t). Fix any P = (u,r,v,w) € V
with u € (0, K), fix any unit vector (u/,r’,v',w’) € R?!*2
and define for s > 0

P(s)=(u(s),r(s),v(s), w(s)) = (u,r,v,w)+s-(u', 7", 0", w).
(157)

We compute the second derivative of W1 ;(P(s)) at s = 0.
For the first term I, denote

() =5

A: /f exp

R(r),V(v),W(w))F - x)dw(m)
B: /exp

+ (R(r), V(v), W(w))TF . x) dm(x)

where

(u) - 2% = 2U (u)X* -

) -2 = U (u)X* -z

and let Vg [f ()] = (f(2)?)q — (f(2))3 be the corresponding
variance. Then

21| _,=b"E [V p'a® — 2u/X* -z + (0, w') TF - a |
<2h’E|(u)? - Viy[z?] (158)
+ (20X + (7,0, W) TF) Vo] | (159)

Let us apply Assumption 1.3 and Proposition 16 in dimension

k=1, with ' = Ypax = Ymin = U(u) and z =
—2U (u)X* + (R(r), V(v), W(w)) "F. We observe that, since
u, us € (0, K), we have

Uu) = Us +b(u — ua) = =(74/2) + b(u — us)

= —(d/2)(1 4+ O(e)) + O(b),
(160)

the last equality applying Proposition 8. In particular, since
d. > 0, for all h € (0,hy) where ho is a small constant
depending only on (K, €), we have I' < (4¢)~!. Then the
condition (6) from Assumption 1.3 implies Viz[z] = O(1).
Since also 7% + ||v||* + ||w||?* < u < K and r2 + |Jv.|]® +
lwi]|> < ue < K and by + k.0, = v, ! and vy, = di(1 +
O(e)), we have

[(R(r), V(v), W(w))|| < [(R, Vi, Wa) || + O(b)
= (72b, 4+ 26.6,) 2 + 0(h) = dY/?(1 + O(e)) + O(H).

Then, for all § € (0,ho), we have |z]|?> < (X*? + (¢ F)?) -
O(1 + d.) for some unit vector ¢ € R From (160),
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we have €71 — vy . > (1 +d,) and —ymin < C(1 + dy)
for constants C, ¢ > 0 depending only on (K, €). So Proposi-
tion 16 shows Vip[2?] < C(1+X*?4(¢"F)?). Applying these
to (159), and applying also E[X*?] < ¢ and E[(q' F)?] = 1 for
any unit vector g, we obtain

oIl _, = 0(*). (161)
For II, we have

211 |y—o= —2h(u” + " + |[v/||> + w'||*) = —2h. (162)

For III, applying Proposition 8§,

2 d* a*ﬁ;1/2 roNT )
5’SIII|5:0 = —2Tr Z1)2 . (', w) " (v, W)

Qs Ko CkK,
2e.
—=2r = —2d (7, )P + O(e).

(163)

For IV, we have IV = fOA(m(S))R(z)dz by [33, Proposi-

tion 2.9(a)]. It is easily checked that |[A(P(s))] = O(1),

0 A(PB(s))] = O(1), and D2A(P(s)) = —2[| (', 0", w")[|? at

s = 0. Then by Proposition 8,

R'(A(B(s))) - 0sA(B(s))?
+R(A(B(s))) - 02 A(P(5))?

s=0
= 2d.)|(7, v, 0")|* + O(e?). (164)

RWV| _, =

For V, we may apply the series expansion for R(z) from
(219) with k1 = —E[D?] = —d., to write for any z € (0, K),
x € [dy — ¢,d. + ¢], and sufficiently small e,

(G 2) +a) = (R(2) +2 " +a2) (165)
-1
=z 1+(xfd*)z+z,%kzk
E>2
J
:Z~Z *(l’*d*)Z*ZIikzk
j=0 k>2
(166)
=24 Y cp(a) (167)
E>1

Here, |cx(x)] < (O(e))*, and these series are absolutely
convergent for sufficiently small e. Then the derivatives in
z may be computed term-by-term. Recalling ((P(s)) =
G Y(A(B(s))) where A(P(0)) € (0,K), we obtain by the
chain rule

|02 (C(P(s)) + )7

sup O(1) for k=0,1,2.

z€supp(D?) 5=0

(168)

Recalling v4(x) from (110) and applying Proposition 8,
we have for any x € [d, — ¢, d. +¢],

vi(z) = b, /2 <3§ + Z*) :O(bll/Qe).
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By Proposition 8, we have 7, = d.+O(k2/n,) and also b, 1 =
d«(1 + 07t - O(k2/dy)) = di + O(k2/n.). Then recalling
vB(x) from (110), we have

e () (2522

= %(l‘—%HO (m)

3 s
=0 (7*2 + @) )
Ul T
Here, ko = O(dye) = O(74e¢), the second equality holding

because 7, = d.(1 + O(e)). Then, applying also 7, * = O(1)
and 0 < v, < n, by Proposition 1, this gives

=0(Vd. - ¢)

=00 o).

Now applying these bounds for v#, v to §¢(z,7) from (110)
and differentiating by the chain rule,

EANERIO)] =0 ? ) for k=0,1,2.

s=0

sup
z€supp(D?)

(169)

Combining (168) and (169) and differentiating F5, from (110)

by the chain rule,

02V _y = B2 F5:(C(B(5)).7(s))

s=0
<O(b ' - ¢?) - E[E]]
= O(b;1 . e2) - by
— 0(e2). (170)

For VI, for any x € [d. — ¢,d. + ¢], we may write 6(z)
from (33) as

k
zx—d*—a*BZ(w)

k>1 Tl

=(@—7) (1+n"al) +
k
d,—aP (M)

Then, using |z — ¥.|/n. = O(e), we have

E [0(0%)?] §3<(1 P B (D% - 1] + (0 — do)?

(%)
i

By Proposition 8 and Lemma 13(c), we have (v, — d)? =

O(r3n; %) = O(k2e? /17), E[(D? = 7.)?] = ko + (du —7:)* =

+ (o) E

(1+ O(e))>
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O(k2), E[(D* — 7.)*] = O(pa + (di — 71:)*) = O(kae?),
1 +ntaB = O(e/n.), and n72(aB)? = O(1). This gives

E[0(D?)?] = O(kze®/n?)

Then, applying again (168) and differentiating Fo2 from (110),
we have at s = 0 that 0*Fo(((P(s))) = O(k2e?/n?)

(171)

for k = 0,1,2. Using af = \;’—%2(1 + O(n;te))
and [[of|, lw], [lo"[|, [w = O(1), we have also
O%B(v(s),w(s)) = O(max(1,m%/k)) for k = 0,1,2.
Combining these bounds, we conclude that

O2VI 0:0(e2). (172)

Now, combining (161), (162), (163), (164), (170), (172), and
setting f) = el/ 2, we conclude that

21 4 (P(s))]smo = =22 + O(e) < —e'/?

for all e < (€, K). This holds for (s) as defined in (157)
for any (u,r,v,w) € V with v € (0,K) and for any unit
vector (u',r’',v’,w’), implying the concavity

VQ\T/M(‘B) =<

Finally, since u, = 2n;! € U C (0, K) by assumption,
we have that P, = (ux, T4, Vs, w,) is an interior point of
the open domain {f € V : u € U}. Recalling ¥y ,(P.) =
Urs and ||[V¥,(P.)|] = oi(1), we then have (see
e.g. [33, Proposition C.2])

—e2Tover {PeV:ue (0,K)}. (173)

sup Uy, (P) < sup Uy 4(P)
PeViueld PBeViuel
=Wy (Pu) +o0i(1)
= WUgs + Ot(l).

This shows the upper bound of (36). Furthermore, by (173)
and a Taylor expansion, for any B € V with u € (0, K) and
|u — uy| > <, we have

U1 (P) < U a(B) + VIL(BL) T (B — B
1y
- eI -
- IB =Bl —

Applying the bound || — P.|| < C for a constant C' =
C(K) > 0 independent of ¢, and taking the limit ¢ — oo,
we obtain (37). |

< Urs + of( 1/22

APPENDIX D
ANALYSIS OF THE CONDITIONAL SECOND MOMENT

In this appendix we prove Lemmas 3 and 4. We will
abbreviate parts of the arguments that are similar to the
preceding analysis of the conditional first moment, and also
refer to [33, Lemmas 4.1 and 4.2] for some of the technical
details.

Lemma 11: Let m be any probability distribution over R.
For a,b € R? and ¢ € R, let ¢, (a,b,c) be as defined in (42),
and let

(’):{(a,c)e R? : /ew?ﬂw%mlwzdw(xl)dw(m) < oo}.

2143

Then O is a non-empty convex subset of R, For any (a, c)
in the interior of the complement of O and any b € R?, we
have ¢, (a,b,c) = oo. For any (a,c) in the interior of O, the
function b +— logecr(a,b,c) is continuous and satisfies, for
some (a, ¢, 7)-dependent constant C' > 0 and for all b € R?,

log ¢ (a,b,c) < C(||b]|* + 1).

Proof: The set O is convex by convexity of the func-
tion (a,c) — c¢x(a,0,c¢), and non-empty because (a,c) =
0 belongs to O. The proofs of the remaining statements are
similar to the proof of Lemma 9 and omitted for brevity. M

Proof of Lemma 3: Fix t and write G, XY, S, A for
gt, Xta Yta St7 At- Then

Mamﬂquwﬂﬂ%ﬁﬁWWew

x exp(—[lell* + 5 - fa(@ )Ildﬂozdﬂhn
with 6 :=6(0) =0 -, 7:=7(1)=7— (%, a
(6.7 = 2 togie exp - %

FTOTDTDO7
- % + (0 + %)TOTDT§> ‘ g}.
Uniform Approximation of f,(&,7): Define PB(5,7) =
(u(6,7),r(6,7),v(6,7),w(d,7),p(5,7)) by
NS AT, 2 RSN e
u(@7) = —(I7I% 1517) B2, p(6,7) = —5TF R,
r(e,7)7 ele e'X 'Y 1/2
v(6,7) | = XTe XTX XY
w(G,7) Y'e YTX Y'Y

1
x—(e,X,Y)"(5,7) € R+ *2
n

where r(5,7) € R? and v(G,7),w(5,7) € R*2, Define the
open domain

K={5,7 € R" : u(5,7)€(0, K)?

, A(PB(5,7)) = 0}

(174)

and write again a,(6,7) = b,(6,7) to mean a,(6,7) —
bn(6,7) — 0 uniformly over (6,7) € K, almost surely as
n, m — o0.

Recall 51,6 from (84), Il =TI, ¢ gt € R7 ¥ (n—2t=1)
and denote similarly

~ _ 1Tl ~ n—2t—1
Tr=, yyy TER ,
-1

ele e'X €'Y
A= SA9) [ XTe XTX XTY| (e,X,Y) 7eR™
YTe YTX Y'Y
Observe that, similarly to (90), we have
~ o _ L (lleLl® a7
A(‘B(Uﬁ)) - n <&I7-l H%LH2 .

The condition A(PB(5,7)) > 0 defining K then requires
that o, and 7, are non-zero and linearly independent. Then
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for a sufficiently small constant © > 0, an application of

[34, Lemma B.2] and [33, Proposition 2.8] yields

. 1 /. ~ ~ )
fn(U) = _E (U[DTDO'” + TerTDTH)
2 ~ jod ~ ~
+=(@)+ 7)) DTE+ Ea(6,7)
where
1 ~ 2 ~Ta
En(a',T) = inf 7TI‘ |:3 . (||~0-rl~|| U}TJQ>:|
3=(—d+0)I Gl7L ||TJ_||

L1 II'DT¢-1"D' D5

n\II"DT¢ -~ DT D7
HTDTg II'D"Da
HTDTg II" D' D7

— ﬁ logdet (3@ 11" D' DII)

~T~
(2 + log det - (H:TLT” le— Tl2> >
17L 7L

and we define

30O DD =3 I ot 1)(n—2t-1)
+ Iryo @I DT DI

Similarly to (97), (98), and (99) from Lemma 1, we have

e*n o, T 2

2
1
(6] DTD) + 7 DTDF) =3 ===

+ Tr (d* Z:)( (5,7

(o™
‘ (vi(é, ),

%<5||+%\|)TD€ '

and

ﬂﬁﬂ
[
- %log det (3@ 11" D' DII)
(2—|—logdet<”0-|—L 6~I712)>
n\G 7L [I7L]l
=H(3, A(B(7,7)))-
uniformly

last approximation (183) holds

) ~
L[5 (171

ULTL

This

3 > (—d- 4+ )I, by the same argument as in the proof of

[33, Lemma 4.2].
For the remaining second term of F,, (&,
decompositions

_ G 0 > (%T)
3= v2) <0 o)\l )
n'p'pu=u'p

=TT diag (d},...,d)_o_1) I

> (391" D" D)

7), write the eigen-
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where (1,(s and df,...,d,_o,_; are the eigenvalues of 3
and IIT DT DII respectively, and 1, 7> € R? and the rows of
I’ € R(—=2t=1)x(n=2t—1) are the eigenvectors. Then

¢y
) (0 1)

and we may compute the inverse on the right side by inverting
separately the 2 x 2 blocks,

-1
31 +d 312 R T S T
( 312 322 +d,/L - Cl +d;y1y1 + 4.2 +d;y2y2 .

Then for each j, k € {1,2}, the (j,k) block of (3 @
I DT DIt

TNnT -1 _
75 (300’ DTDO)! =

3121

31-1+D
392- 14+ D

3121

-1

_ —1
3@ HTDTDH)]»;C1 = y1yik (GI + 11T DT DII)

Fyajyan (GI+TTTDTDIN) ™' (184)

52(C) —

(D) "
(DQ)) 9
E2
C+D2

(176)

Recall v#,v® from (ITIO), and define X¢(¢)
X$5(0) X5, () 71x45(¢) ' € R?*2 where

-2 ()7
oS () e

Note in particular that F¢ defined in (105) is given by
Fe(¢,r) = (r 1)X(¢)(r 1)". Then, applying the argument
leading to (122) separately for each of the four blocks j, k €
{1,2} of (184), we have

12(0) =
(177)

(178)

179)
-1

1/TITDTe — 11" DT D&
(HD§ ' DT D5 185)

.
THT
HTDTg—HTDTDﬂ) (3e0"D"DI)
(180) D¢~ DT D3,
HTDTf HTDTDTH

= . o (115, 7)
ash) = Z yljy1k|:(rj(0'a7-) 1) X°(¢1) ( i 1 > (186)

7,k=1
(182) F(G) - Bu(,7),w(z, %)»4
+ Y25Y2k { (Tj((},%) 1) xX4(G) (Tk((i'ﬂ:)
(187)
(183)
over <<‘2) ( (0’ T)’w(&vT))ch:|
2 J - o\ T
=Tf[2 (37 ) w@ (188)
(m(ti 7) m(ﬁ,%))yzyl] 150
+ T | F(3) - B(u(, 7), w(5, 7))] (190)

uniformly over 3 = (—d_ + 0)I, where F is applied in the
second term spectrally to 3 via functional calculus.
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From the form of F in (113), the second term of (190) may
be expressed as

Tr[F(3) - B(v,w)]
. : 1 )
= XB,;(aneRQ ;E |:Cz + D2 (0 (D )

X)) |o B

For the first term, for r = (r1,72) € R?, set

ren=(pn) = (¢ 1) (o) e

where f¢(x,r;) is the function defined in (110). Then define

l* V2, T
X}}gW]E{ % 2, D? — x* (192)

(191)

Fe(3,r) =

x (E;(3+D*-1)7") (193)
Ve _b;1/2
(b))

T
ey o
< (803402 17 (1(0%1) - x*) |

(195)

where these expressions are equivalent by an additive shift
of x“. Evaluating explicitly the infimum over x*, we get
Fe(3,1) = F55(3,7) = Ffa(3,7)  F1(3) " Fia(3,7) where

f2€2(37r):Efe(D2> ) ( (3+D2 )_l)fe(Dgar)

Smy (09) (7 ) e
(1) (e)

2 T
—Tr [Z <r11 Tf) Zz(@)(? ?)yiy?} :
=1

Fia(3,7) = -1)7He(D%,7)

Fhn(3) =EE;(3+D*-1)~"

(196)

2
= iy X5,(¢)
=1

Then it follows that the first term of (190) has the form

T lz (7 7) =@ (7 Tf)yiyﬂ:ma,r).

i=1
(197)
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Combining (175), (176), (179), (180), (183), (190), and (197),
we obtain the uniform approximation

lim — sup |fu(6,7) — f(P(6,7))| =0
M= (5 7) ek

where we define on the domain V = { : A(B) > 0} the
function

. el7]|? 2rT1layy
= f —
f(B) in < b N

(e ) [() ()

“(mz) (m22)]

+H(3, A(B)) + F(3,r) + Tr[F(3) - B(v, w)]>

and the infimum is over 3 = (—d_+40)I. It is immediate from
the forms (191) and (195) that F¢(3,r) and Tr[F(3)-B(v, w)]
are decreasing in the eigenvalues (;,(> of 3. The same
argument as in the proof of [33, Lemma 4.2] shows that
H(3, A(R)) is also decreasing in each eigenvalue (i, (2 over
the range (—d_,—d_ + 0], and hence this infimum may be
extended to the domain 3 > —d_ - I. Finally, since f,
is continuous on K and the map P : K — {P € V :
ui,ug € [0, K]} is continuous, relatively open, and maps K
to the interior { € V : uy,uz € (0, K)} for each fixed n,
[33, Proposition C.1] shows that f extends continuously to
{PBeV:u,uz €[0,K]}, and

lim fu(6,7) — =0.

n,m—oo

sup
(5,7)eK

f(B(o,7))

Then, writing (-), for the expectation over (o)™, (73)%, i

7, we obtain

lim ~ logE[Z(U)* | G] =

n,m—oo N

-1+ lim 1log<]l{u(&,%) eUxU}

exp (5 106, 7))) )

Large Deviations Analysis: Introduce dual variables R =
(U,R,V,W, P) where U,R € R%, VIV € R*2, and P € R.
Define
1
— log (exp (n-P(a, %)TER)>
Elogcﬂ(U A(R),P) +p, U 12X1
—-m. V] A_l i1 — T V2 At

An(R) =
AR) =
]-t><1 + Px P

where ¢, is the function from (42), and where

RE —1/2
A(R) = —2U X* + +VIA (X, Xy)
Vb.
WA 2 (Y1, .Y
+ ¢ 2 P PX* gy € R2.
V Ex

Then, applying Lemma 11 and the same argument as leading
to (125), we have almost surely
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. hmn,m—»oo An (SR) =
interior of O
o limy ;oo An(R) = AR) = oo if (U,P) is in the
interior of the complement of O

where O is the convex set defined in Lemma 11. Under
the sub-Gaussian condition (5), (U, P) = 0 belongs to the
interior of O, so the Fenchel-Legendre dual A* of X is a
good convex rate function [47, Lemma 2.3.9(a)]. Defining
A(R) = limsup,, ,, .o An(R), this coincides with A(R)
whenever (U, P) ¢ 00, the boundary of O. For (U, P) € 00,
since O is convex and 0 belongs to the interior of O, the open
line segment {s-(U, P) : s € [0, 1)} also belongs to the interior
of O [48, Theorem 6.1]. The Gale-Klee-Rockafellar Theorem
shows that A, \ are upper-semicontinuous on {s - (U, P) :
s € ]0,1]}, so the supremum defining the Fenchel-Legendre
dual \*(P) = supyr PR — A(R) may then be restricted
to R where (U,P) ¢ 00, and similarly for A\. Then \*
coincides with the Fenchel-Legendre dual of A, and the proof
is concluded as in Lemma 1 by an application of the upper
bound in the Girtner-Ellis Theorem and Varadhan’s lemma. l

We now prove Lemma 4. Let ¢; = (0,...,0,1) € R, and
consider B, Q, with the components

AR) < oo if (U,P) is in the

2 ¥
Ue = —lox1, 7= lbimlth

T T)x
Uy = e Ai/g(et,et),

M

Wy = E/<oa1k/2Ai/2(et,et), Dy = —

7] T)x
3= — %) axa, X2 =x2 =x{ =0,
Ur=—Floaa, Re=76 1ax1, Vo =0,

W* = 7*%1/2Ai/2(6ta et)7 P* = O

Here, each of the two coordinates/columns of
Usey Ty Vs, Wy, Uy Ry, Vi, W, coincides with our previous
specialization (130) in the analysis of the conditional first
moment.
Lemma 12: In the setting of Lemma 4, for all ¢ > 1 and
eaCh L 6 {u)r)v7w7p75)XA7XB7XC7U’ R?WP}?
(1)2715(‘,13*, D*) = 2lIIRSv 5L<I’2,t(‘43*7 Q*) = O,
Jim [0y @2 (., 2.) = 0.
Proof: At P, = 0, we have logc,(a,ar,b1,b2,0) =
log ¢ (a1,b1) + logcr(az,ba) where ¢, on the right side is
defined by (33). At ., we have also A(B.) = 7.t - Laxo
by the same calculation as (138), and B(v., w,.) = 0 because
vy = o2w,. Since both A(*B.) and 3, are diagonal, it is then
easily checked that

(I)Q,t(m*, Q*) - 2(I)l,t (m*’ D*)
where .., Q. on the right side are the specializations of (130)
from our previous analysis of the conditional first moment.
Then @5 (P, Q.) = 2¥Rs follows from Lemma 10.
To check the stationarity conditions, define
A, = —2UX* + b, PRE+ VAT (X, ... Xy)
T PWIATY2 (Y1, YY) = PX Loy
=Y (X" +E+VYy)lox.

(198)
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Then we obtain, similarly to (140), (141), and (144),
63H(3*5A(q3*)) =0, aAH(B*,A(m*)) = —V - Laxa,

.
amabaXAEKD:% _ ﬁ] o1 x::‘)
X <El2)(3* + D2'12><2)71) <|::II:12><1 — \;;;:] D2 — Xf>:| = O’

and

aal logcﬂ'(U*a A*a P*) = 8&2 log CTI'(U*7 A*a P*)
=7 (X +E+ YY)
+ X+ E+ Y)Y,
Op, log ¢z (U, Ay, Py) = O, log ¢ (Us, A, Py)
= .f(x*+ E+Yt)a
dclog e (U, A, P.) = f(X* + E4 Y%
Using these, B(v., wy), 0yB(vi, wy), OuyB(vs, w,) = 0, and
the identities (146) and (148), we have
33‘52,25(‘13*79*) == 07 ap(PZ,t(‘B*,Q*) == 7P* - 03
0pPa (P, Q)
=Ef(X* + E+Yy)? = 2EX" f(X* + E+ Y1) = (ps — ps)
= O,
and the analyses of the remaining derivatives are the same as
in Lemma 10. [ ]
Proof of Lemma 4: The proof is analogous to the upper
bound of Lemma 2. We fix h € R, and specialize the dual
variables Q = Q(3) as functions of P = (u, r, v, w, p), given
by
) , R(r)=R.+b(r—r.),
V(v) =b(v—ws), W(w)=W.+bw—w),
P(p) = h(p 7p*)7 3 = Gil(A(SB))a

(199)

where G~1(A) is defined spectrally by functional calculus.
Then

\IIQ,t((B) = lgf (I)Q,t(gnvg) S ®2,t(q37a(q3))

1
= Uy (P) = —1+1+11+ 5(III+IV+V+VI)
(200)

where

I=Eloger (U(u), —2X*U(u) — X*P(p) lax1

+(R(r) V()T W(w))"F, P(p))
IT=—(u—paloxy) Uu) —r" R(r)
— (o1 + 1A 1) TV (v)
— (2 + 1A P 100) T Va(v)
—w| Wi(w) — wy Wa(w) — (p — p.) P(p)
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2 T
I = _B*H’I’” 2r 12><1 —Tr d* (2™
b Vb Gy Cx

o 2) (o) + () ()]
IV =H(3(B), AB)), V=F53(P),r),
VI = Tr[Fa2(3(R)) - B(v, w)].

Here F in I is the tuple of random variables defined in
(152), the function F5,(3,7) = E[f¢(D?r)"(E}(3 + D? -
I)"1)§¢(D?,r)] in V is as previously defined in (196), and the
function Fa2(¢) = E[0(D?)2/(¢ +D?)] in VI is as previously
defined in (110) and applied to 3 by functional calculus.
We observe that Q(P.) = Q., so Vo (P.) = 2¥gs.
An analysis similar to that of Lemma 2 shows also that
198,01 = or(1):

We now show that for sufficiently small eg = eo(C, K) >
0 and ¢ < e, this function W5 ,(P) is concave over {P €
V :up,ug € (0,K)}, by analyzing the Hessian of each term
I-VIL. Fix B = (u,r,v,w,p) € V with uy,us € (0, K), fix a
unit vector P’ = (v, r',v’,w’,p’), and define for s > 0

PB(s) = (u(s), r(s),v(s),w(s),p(s))

= (u’ T? IU? w7p) + S (u/7’r/7vl7w/’p/)'

(201)

For I, recalling the random vector F & R2+! from (152),
define

Qf% — 2.I‘1X*
33% - 2.I‘2X*
Q(z1,22) = | 172 — 21X —22X* | € R*+5,
xlF
$2F
Vectorize 0(P) in the corresponding order

(Uy,Us, P,Ry, Vi, W1, Ry, Vo, Wo) € R**5 and vectorize

similarly ', and denote

[ (@1, @2) exp (Q(P) " Qa1 2)) dr(z1)dr (22)
Jexp (QF)T Qar, 22))dn(an)dn(zs)

Write Vig[-] for the corresponding variance. Then we have,
analogous to (159),

821 = B2E[Vy [P’ Q(z1, z2)]).

Note that the distribution defining (-)q corresponds to p in
Assumption 1.3 with k£ = 2 and

_ (Ui(u) 3P(p)
F‘QP@ @wﬂ’
T

2==2X"U(u)—X*"P(p) lax1+(R(r) V(v)" W(w)") F.

(f(z1,22))p

By Proposition 8, we have Uy, = Uz, = —7/2 =
—(d«/2)(1 + O(e)). We have also P. = 0 and
U1, Uz, Py Ut 4, Uz« P« € (0, K) under the conditions 2n; ! €
(0, K) and B € V. Thus, choosing h < by for a sufficiently
small constant o depending only on (K, €), we have T' <
(4€)71, and also €71 — v > (1 + dy) and —ypmin <
C(1 + d,) for its largest and smallest eigenvalues. The same
arguments as leading to (161) show ||z[|? < (X** 4 (¢ F)?)-
O(1 +d.), and hence by Assumption 1.3 and Proposition 16,

o21|,_, = O(h?).

2147

The same arguments as in (162-163) show
2
M| _,=—2b, 0| _, =—2d.[|(+',v",w")||” + O(e)

where (r',v',w’) € R**+2 is its vectorization and | - || is its
Euclidean norm. For IV, we have by [33, Proposition 2.9(b)]
that IV = Trf(A(%B(s))) where f(a) = [, R(z)dz. For all
sufficiently small e, we may integrate the series representation
(219) for R(z) term-by-term to write f(A(P(s))) as the
convergent matrix series

FIABB(s)) = —AB(s) + D “EAB(s)*

k>2

where |k < K2(16¢)*2 and ke = O(e?). It is easily
checked that at s = 0, we have [0 A(B(s))|| = O(1) for
k = 0,1,2, and in particular 92A(P(s)) = —2(r'r" " +
o' T 4w Tw') € R2¥2, with trace —2]|(+/, v, w')||2. Then,
differentiating f(A(B(s))) term-by-term and taking the trace,

it follows that
0PIV _, = 2d. |70, w')||* + O(e2).

For V, applying the series expansion (167) now to the matrix

argument z = A(PB(s)) and differentiating term-by-term,
we have
sup  [|OF(3(B(s)) + =) 7| =0(1) for k=0,1,2.

z€supp(D?) s=0

(202)

Combining with the bound (169), we have as in the proof
of Lemma 2 that 92V| _ = O(e?). For VI, recalling the
bound (171) and combining this with (202), we obtain at
s = 0 that |0%Fa2(3(s))|| = O(k2e?/n?) for k = 0,1,2.
As in the proof of Lemma 2, we have ||0¥B(v(s),w(s))|| =
O(max(1,n2/kz)) for k = 0,1,2. Then 852\/1‘5:0 = 0(e?).

Combining the above and setting h = ¢/, we conclude
that for e < ¢o(¢, K),

V20, () < —e'/2 - T for all P € V with up,uy € (0, K).

Since u, € U C (0, K) by assumption, the same argument as
in Lemma 2 shows supgcy.y, wyerr V2,6 (F) < Vot (Pu) +
0t(1) = 2¥Rs + 04(1), and taking the limit ¢ — oo concludes
the proof. |

APPENDIX E
CONCENTRATION OF THE LOG-PARTITION FUNCTION

Proof: [Proof of Lemma 5] Recall the representation (82)
and (86) of the conditional law of Z(U) given G;,

L1 s 1, o
. = nlog/ﬂdw(m)]l(ﬂ lle|l” € U)

( l€)? (OG5, + &))" DTD(OG . + &)
xexp | =5 - 5

1
ZlogZ
~log (0)

N T
+ (105, + ) DTg) (203)
where ¢ = o — % and [|5) |, [|6L[]* < [|5]]>. We denote
the right side of (203) as F(O), where O ~ Haar(SO(n —
(2t+1))) is independent of G;, and all other quantities defining
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F(O) are Gi-measurable. On the event &, this integral in (203)
is non-zero, so for any O € SO(n — (2t + 1)) the Euclidean
gradient of F' is bounded as

o . 1
_F(O)|| <= sup ||—-6.6/0"1"D"DII
1
20 P as2 ey
—6.6( D DII+5,¢" DI
F
1 N
<5 s (107D, I
g:lel2 ey

+ 107Dl s o+ o1 107l
<2K||D"D||op + VKL

where we applied [O]lop, [H|lop < 1, [|[DTE? < Ln,
||uvTAH < HA|| HUUTHF [ All,, [lul[l|v]l, and the bounds
||a|| < VnK when U C [0,K]. Then,
applylng the assumptlon HD DH — d, this bound is less

than 2K (ds + 1) + VKL for all large n. Then

P Qi log Z(U) — E [:L log Z(U) ‘ gt]

(n— (2t + 1) — 2)52
= Zexp <8(2K(d+ +1)+ \/ﬁ)2)

by Gromov’s inequality, see e.g. [49, Theorem 4.4.27]. Choos-
ing C(K,L,dy) > 8(2K(dy + 1) + VKL)? strictly, the
statement (47) thus holds for all sufficiently large n. ]

Proof of Corollary 3: SetU = [0, K|. Fix any 6’ > 0, and
fix L > 0 such that the condition ||DT¢||?> < Ln in Lemma 5
holds almost surely for all large n. By Lemma 5, for a constant
co =co(8', K, L,e) >0, any ¢ > 1, and all large n,

>0 ’ Qt) I{&}

P (‘ilog ZU)-E le log Z(U) ‘ Qt]

> ¢ ‘ Qt) I(&)
g e—CoTl.
(204)

Now fix any § € (0,¢p/6). By Lemmas 1, 2, 3, and 4, for a
large enough iteration ¢ = ¢(4) > 1 and large enough M =
M(5) > 0, almost surely

logE [Z(U) | Gi] < sup ¥y 4(u) < Yrg+0
ucl
(205)

lim sup —

n,m-—0oo

1
lim inf ﬁlogE[ U) G = 5up‘1/1t( ) > Urg — 4
n,m— o0 weld
(206)

1 _
lim - logE [Z(U)? | G¢] < sup Ua(u) < 2Ugs + 0.
n,m—0oo ueu
(207)

Letting £ be the (G;-measurable) event in Lemma 5, if the
first condition of £ does not hold, then we have P[Z(U) = 0 |
Gi] = 1 and hence log E[Z(U) | G;] = —oo. Thus the finite
lower bound in (206) and the above choice of L > 0 imply
that £ holds almost surely for all large n. Then taking the
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expectation of (204) and applying the Borel-Cantelli lemma,
this implies almost surely for all large n,

llogZ(a) <E [1 log Z(U) ‘ Qt] + 4.
n n

Then applying Jensen’s inequality and (205), almost surely
for all large n,

1 — 1 _
~log Z(U) < - log E[Z(U) | Gi]+6' < Urs+6+0". (208)

For the complementary lower bound, let & be the

(G;-measurable) event where
1 E[ZU)|G]
-~ log ————=

1 _
—logE [Z(U)? | Gi] < 2Ups + 4.

> WRs — 0,

[\)

Then (206) and (207) show that £ holds almost surely for
all large n. On ENE’,

P {711 log ZU) > Urs — 6 ‘ Qt} IENE

E[Z{U) | G]
2

(@)

1 _
>Pl—logZ2(U) >
n

Z(u)z“'gt’gt

1
—log
n

‘ gt] I(ENE)

=P (ENE

® E[2@)| 6]

(@
= W-H(8ﬂ5)>

6—3716 . H(é‘ N 8')

where (a) and (c) apply the definition of the event £’, and
(b) applies the Paley-Zygmund inequality. By our choice § <
¢p/6 where ¢g is the constant in (204), on the event £ N &’
this last quantity is bounded below by e ~“™/2, This and (204)
together imply that on the event £ENE’,

1 _
E [ IOgZ(U) ‘ Qt] > WRrg — 0 — 8.
n
Then multiplying (204) by I(£’), taking the expectation on
both sides, and applying the Borel-Cantelli lemma and the

statement that £ N &’ holds almost surely for all large n, we
get

%logZ(U) >E Lll log Z(U) ‘ Qt} — & > WUrg — 6 — 28

(209)
almost surely for all large n. The result follows upon taking
5,6/ — 0in (208) and (209). |

APPENDIX F

PROOFS FOR UNBOUNDED SUPPORT

In this appendix, we complete the proofs of Theorems 1.7,
1.9, and 1.10 in the more general setting of Assumption 1.3
where m may have unbounded support.
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Proof of Theorem 1.7, Unbounded Support: We apply a
truncation argument. First note from (30) that

(a) ]. k Uk * d*
Upg > —o — 2Py T
2 2 20« 21
1
+ Elog cx (—2%, Y X" + \/%Z)
® 1 Vs d.
> —= = * [k -
S T e,
where in (a) we used that R(z) is increasing by Lemma 13,
so R(z) > lim, oR(z) = E[-D? = —d., and in

(b) we used Jensen’s inequality and the condition that 7
has mean 0 to bound Elogcr (=57, %X + VL) >
f(*%%)ﬁ dr(z) = 27*/7* Then applying ;' < p. <€
by Proposition 1, and v, € [d./2, 2d.] for all ¢ < ¢o(C)
sufficiently small by Proposition 8,

1 5d
URrg > > (210)
Fix a constant K > 6€, let i = (0, K), and consider
Z—-ZU) = Z((K,o0))

- [1(51e- 51> )
y exp( ||A5*+€—AUH )Hd” o).

Define the event A where

n~HIBY? < 2¢, nTH|Qe|? < 2,
min(diag(D " D)) > d, — 2e.

Observe that under the conditions min(diag(D " D)) — d_ >
dy — e by (4) and Assumption 1.4, p, < € by (5), and the
concentration bound of Proposition 15, this event A holds
almost surely for all large n. On the event A and for o
satisfying n=1||o — 3*||? > K, let us first bound

_||Ag* +e—ao]?

lpoB*—o)+qe|?
e 2 EE 2

IDOB* —)|I% | IQcl?
e 1 Z + 2E

< (- R

Note that this quantity is also bounded above trivially by e® =
1. Let us then apply ||o — 8*]|? < 2||o||* + 2||3*||* to bound

I(A) - Z((K,0)) < exp (min (0, _G ; 2K+ 1) n)

(211)
1 2 K —4¢\ 1+
I(— dr(o;
x/ (n|a| )Hm
) d, — 2¢
< 2exp| min ( 0, — 1

2
— co min <<K2_€6€> , <K;€6€>>n> (213)

where the second inequality applies Proposition 15 and that
the mean of n=!||o||? is p» < € under 7. If d, < 1, then

K+1>n 212)
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U > —(1/2)(1 + 5¢). Choosing K > 6¢ + 2€ -
max(1, (2¢o) ™! - (1 + 5€)) and bounding the first term in the
exponent of (213) by 0, we obtain almost surely
1

— IOgZ((K,OO)) < VUpp < Ugs.

lim sup (214)

If d, > 1, then assuming ¢ < ¢g < 1/4, the first term in the
exponent of (213) is at most [—(d, /8) K +1]|n. Then choosing
K > 20€ + 12 and bounding the second term in the exponent
of (213) by 0 again ensures (214). In either case, the choice of
K depends only on €. Combining with n~! log Z(U) — Wgg
from Corollary 3, which holds for e < eg(kK, €) sufficiently
small, this shows n~! log Z — Wgg almost surely.

To apply the dominated convergence theorem, observe that
the right side of (50) may be bounded using [n~'||3* —
o|*I1; dr(o3) < (2/n)[|6*]1* + 2p... and that {[|3*]|*/n}n>
is uniformly integrable by the tail bound of Proposition 15.
Then the dominated convergence theorem yields n~'E[log Z |
A] — WUgrg almost surely, and the remainder of the proof is
the same as in the setting where 7 has bounded support. W

Proof of Theorem 1.9, Unbounded Support: Recall Urp
from (210), and consider again Z((K,o0)) for K > 6€.
Recall the bound (214), and note that this bound holds
simultaneously for every K > 6€ on the event A which
holds almost surely for all large n. Applying this bound with
K(t) = 6€ + 2€ - min(1, —(2co) ™" - (1 + 5€)) + t when
d. < 1 and with K(t) = 20€+12+4¢yt/€ when d, > 1 and
e < eg < 1/4 gives

I(A) - Z((K(t),00)) < 2exp (\I/Rs n— % n) .

Write as shorthand X (o, 3*) = n~!jc — B*||?. Applying

EX - I(X > ¢)] = [ P[X > max(s,t)ds for any
nonnegative random variable X, we then have

HA)(X (0,8 - 1(X (0,57 > K(1)) )
:/OO]I(A) < ( (0,87) > max(s, K(1))) ) ds

2]

?exp (\I/RS n— 267@ n)

max(s K(1)), oo)) ds

| /\

for a constant C' > 0 depending only on (K (1),&,cp). The
event A holds almost surely for all large n, and the preceding
proof of Theorem 1.7 verifies n~'logZ — Wgg almost
surely. Writing as shorthand K = K (1), this shows that almost
surely

lim <X(a, 5*) -H(X(a, 5 > K)> —0. (15
Fixing any small constant ¢ > 0 and defining ¢/ = (0, K') \

(2n;t — 6,207t + <), the proof in the setting of bounded

support shows

Jim (X7 el)) =

lim

(216)
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where U is the closure of /. Then, applying 2n ! < 2p, <
2¢,

(|X(o.5%) = 2071))
<s+ (x5 21| 1(X(0, ) € 1) )
+(|x(@ 87 - 2| 1(X (0,89 > K))
<+ (K +2¢) - <]I<X(a, 5) e H)>
+{(X(0,57) +2¢) 1(X(0,67) > K)).
This last bound is at most 2¢ almost surely for all large n by
(215) and (216). Thus, almost surely

X(Ua/B*) —1

lim =7, .

1 * 12\ __
Solle =817 =t S

To apply the dominated convergence theorem, note
that (2n)"([lo — B*[?) < (llol]*/n) + [B*]]*/n. Here
{IB*I?/n}n>1 is uniformly integrable by the tail bound of
Proposition 15, and {(||o||?/n)}n>1 is uniformly integrable

as it is uniformly bounded in L?:

R

= {”‘;'2'4} < i;ﬂi[oﬁ

= Exr[X!] < 0.

Thus the dominated convergence theorem yields
E[(2n) (|l — B*||*)] — n;! almost surely, and Lemma 6
concludes the proof. |

Proof of Theorem 1.10, Unbounded Support: Having
established Theorem 1.9 under Assumption 1.3, the proofs of
Proposition 5 and Theorem 1.10 are the same as in the setting
where 7 has bounded support. We note that the expectation
of the right side of (53) remains finite and independent of
n, by the sub-Gaussian condition (5) for 7, justifying the
application of the dominated convergence theorem. The same
bound (53) holds for ||rt||*/n? and each ¢ > 1, so that the
application of the dominated convergence theorem for (59)
is justified by the Lipschitz condition for f and the same
argument. |

APPENDIX G
AUXILIARY LEMMAS

A. Empirical Wasserstein Convergence

Definition 7.1: For ~a  matrix  (vq,..
(Vig,-- -5 Vik)j—; € R™* and a random vector (V1,...
we write

. avk) =
aVk:)’

Uk) LV> (Vl,...,Vk)

(Ulv"'7

for the convergence of the empirical distribution of rows of
(v1,...,vk) to (V1,...,Vy) in Wasserstein-p for every order
p > 1. This means that (V1, ..., V) has finite mixed moments
of all orders, and for any continuous function f : RF - R
satisfying

|f (v1,. o) < C (1 + ||(v1, .-

;o) |[P) (217)
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for some C > 0 and p > 1, we have
limn_,oo % Z:’L:l f (’(22'717 e 7Ui,k) =E [f (Vl, ce 7Vk)].

The following results are direct consequences of [50, Propo-
sitions E.1, E.2, E.4, F.2].

Proposition 9: Suppose V € R™ ! has i.i.d. rows equal in
law to V € RY, which has finite mixed moments of all orders.
Then V 2% V almost surely as n — oo. Furthermore, if £ €
R™*k is deterministic with E 5 E, then (V,E) % (V,E)
almost surely where V is independent of E.

Proposition 10: Suppose V € R™** satisfies V WV as
n — oo, and g : R¥ — R is continuous with ||g(v)| <
C(1+|v||)P for some C' > 0 and p > 1. Then g(V) UA g(V)
where ¢(-) is applied row-wise to V.

Proposition 11: Suppose V. € R™* W ¢ R"*! and
My, M € R satisty V% v, W X% 0, and M,, — M
entrywise as n — oo. Then VM, + W LIGVARS VS

Proposition 12: Fix | > 0, let O ~ Haar(SO(n — 1)), and
let v € R" ! and IT € R™"*(™=D be deterministic, where IT has
orthonormal columns and n~!||v||? — o2 as n — oo. Then
mov %z ~ N (0,02) almost surely. Furthermore, if E €
R™*k is deterministic with E 2% E, then (110w, E) LA (Z,E)
almost surely where Z is independent of E.

We note that Proposition 12 is stated in [S0, Proposition F.2(a)]
for O ~ Haar(Q(n — 1)), but the proof is identical also for
O ~ Haar(SO(n —1)).

B. Properties of Cauchy- and R-Transform

Let {{t }x>2 and {ki},~, be the central moments and free

cumulants of —D? respectively (see e.g. [51, Lecture 11]).

In particular, k1 = —ED? = —d, and Ky = ps = V (D?).

The following shows that the Cauchy- and R-transforms of

—D? are well-defined by (10), and reviews their properties.

Lemma 13: Let G(-) and R(-) be the Cauchy- and

R-transforms of —D? under Assumption 1.1.

(a) The function G (=d_,0) — R is posi-
tive and strictly decreasing. Setting G (—d_) =
lim,,_4_ G(2) € (0,00], G admits a functional inverse
G 1:(0,G(—d_)) — (—d_,00).

(b) The function R : (0,G (—d-)) — R is negative and
strictly increasing.

(c) Suppose that Theorem 1.4 holds. Then G(—d_) €
[(2¢)~1, oc]. Furthermore, ko < min{e?, d.e}, and for
k>2,

le] < eF2hy < eF, |rr| < 16FeF 2y < (160)F.

218)

For all z € (0,(16¢)~!), the R-transform admits the
convergent series expansion

R(z) = Z k2L

k>1

(219)

Proof:

(a) The positivity and monotonicity of G follow directly
from the definition. Since lim,, 4 G(z) = G(—d_)
and lim,_,,, G(z) = 0, G has an inverse on the stated
domain.
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(b) For any z € (0,G (—d-)),
1 1
E
D>+ R(z) + L~ R(z) + 1

z

2= GG () =

where the inequality is strict because D? has strictly
positive mean and variance. Then R(z) < 0. Fur-

thermore, by 2Jensen’s inequality Em >
(EWM) = 22 which also holds strictly since
D? has strictly positive variance,

1 1

R = ey

@) 2

1 B

Thus R(z) is strictly increasing.

(¢) Under Theorem 1.4, we have both d_ € [d. — ¢, d, + ¢]
and D? € [d, — ¢,d, + ¢] almost surely, so G (—d_) €
[(2¢)7!, 00]. Furthermore ko = V(D?) < ¢2, and also

ko < ED?(d, + ¢) — (ED?)? = d,e. For any k > 2,

k| = |E[(—D? + d.)¥]| < ¥ 2E (-D* + d.)”

The free cumulants x; for kK > 2 are the same as those
of the centered variable —D2 + d,.. Then, setting p1 = 0,
the non-crossing moment-cumulant relations applied to
—D? + d, yield

|Hk| = Z MObl 71' 1k H His|
weNC(k Sen
<1
<16 max, 11 lusi
<1672k, < (16e)

where NC(k) is the lattice of all non-crossing partitions
of {1,...,k}, Mobi(-, -) are the Mgbius functions on the
non-crossing partition lattice, 1; is the trivial partition
consisting of the single set {1,...,k}, and the first
inequality applies [Mobi (m, 1;)| < 4% and | NC(k)| < 4*
[51, Proposition 13.15]. The statement on the R-transform
follows from [51, Notation 12.6, Proposition 13.15]).

C. Prior Distribution

We verify that Assumption 1.3 holds for priors having
bounded support or log-concave density.
Proposition 13: Suppose 7 has mean 0 and variance p, >
0. Then Assumption 1.3 holds if
(a) m has support contained in [—/€, v/¢], or
(b) 7 admits a Lebesgue density function e~9(*) for all z €
R, where ¢ (z) > 1/¢.

Proof: Under (a), both statements of (6) and the first
statement of (5) are evident, and the second statement
of (5) follows from Hoeffding’s inequality. Under (b), the first
statement of (5) follows from the Brascamp-Lieb inequality
V[f(X*)] < € E[f'(X*)?], see e.g. [52, Theorem 13.13],
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and the second from the Bakry-Emery theorem, see e.g.
[52, Theorem 13.6, Proposition 13.8]. We observe that for
any I’ < (4¢)~'1, the measure 1 has a density e~9+(%) where
V2g,(z) = 3/(4€). Hence the Brascamp-Lieb inequality
applies also to , and both statements of (6) follow. |

In the proofs of the main results, we use the following
implications of Assumption 1.3.

Proposition 14: Under Assumption 1.3, the posterior mean
denoiser f(y,~) defined by (8) is continuously-differentiable
and L1psch1tz in y, with derivative - 9 f(y,y) =7 V,[z]. In

particular, |- i f(y,7)| < C for a constant C' > 0 depending
only on €.

Proof: 1In the notation of Assumption 1.3, setting k = 1,
I'=—17, and z = vy, we have f(y,7) = (z),. A straightfor-
ward application of the dominated convergence theorem shows

that y — f(y,~) is continuously differentiable, with derivative

2f(y,y) = v - V,[a]. The inequality |£f(y,7)| < Cv
then follows from (6), and this implies that f(y,v) is (Cv)-
Lipschitz in y. n

Proposition 15: Under  Assumption 1.3, suppose
O1,...,0n (S 7. Then for a universal constant ¢y > 0 and
any s > 0,

P (’iD”? )

> < 2 i 2
S eXp|\—comin | —, =< |Nn
= I 0 0:27 ¢

Proof: Under the sub-Gaussian condition (5), the ran-
dom variables o2 are sub-exponential with mean p,, so
the result follows from Bernstein’s inequality, see e.g.
[53, Theorem 2.8.2]. ]

Proposition 16: Fix k € {1,2} and let ', z and (), V,[]
be as defined in Assumption 1.3. Let Yy ax, Ymin b€ the largest
and smallest eigenvalues of I". Then for any unit vector v € R*

and for a constant C' > 0 depending only on ¢,

[Els max(—Ymin, 0)
6_1 _’Ymax) ¢ 1 .

wlTeP <0 (14

— Ymax

Proof: Applying both conditions of (6),

V(v z)?| <CA+V,[vT 2]+ (vTx>Z) <C(1+C +<va>i)

(220)

so it suffices to bound (vTxﬁL. We apply an idea similar to
[54, Proposition 2]: Set a = 3/(4¢€) and denote Q2 = al — 2T,
w=Q1z |z —w|} = (z —w) " Qaz — w), and dr(x) =
[[;_; dm(z;). Let wmin = a—2¥max be the smallest eigenvalue
of Q, and note that wp;, > 0 because Ymax < (4€)71 in
Assumption 1.3. We have

[0z e8Iel = dle—wl? g (o)

f 6%HQZHQG—%Hx—wH?ZdT((I)

Denote cq(w) = logfe%|\w\|2e*%\|I*w”édw(x). On the event
lz — w||3 > —2cq(w), we have

(v z), =

o bllz—wl3

<1.
fe%”x”2 _7HT wHQdﬂ—(x)
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On the complementary event ||z — w||3 < —2cq(w), we have
co(w) < 0 and

o7 z] < Jwl| + [l& — wl|

—1/2
< Jwl| + wit! 2z — wlle
_ —1/2
< wbllzll + wh! (—2cq(w) /2.

Thus, combining these bounds,
(@bl < [ o7l BT Ldn(o)

+ (k2] + wntl? (~2en(w) /2) - Len(w) < 0},
Applying § = % and the sub-Gaussian tail bound
(5), it is easily checked that the first term satisfies
[|vTz] e%“I“zdﬂ(x) < C for a constant C' > 0 depending
only on €. For the second term, by Jensen’s inequality and
the condition that 7 has mean O,

~en(w) < [ (<5 hal? + 5l - wl) dnta)

1
<~y [ lle? dn(o) + 3wl

< O max(—ymin, 0) + wik 12112,
Applying this above yields |(vTz),| < C(1 + w_ i |lz| +
w2 max(—Ymin, 0)1/2). Then, applying this to (220) and
using Wmin > C(Q:_l — Ymax) for a universal constant ¢ >
0 concludes the proof. ]

D. Varadhan’s Lemma

We apply the following version of Varadhan’s lemma; the
proof is a straightforward extension of [47, Lemmas 4.3.4 and
4.3.6] and omitted for brevity.

Lemma 14: Let (X,,),>1 be a sequence of random vari-
ables taking values in a regular topological space X', and let
f X — R be a bounded continuous function.

(@ If X* : X — [0,00] is such that

liminf, .oon 'logP[X,, € G] > —infeeq A\ ()
for all open G C X, then

1 ,
liminf — log E[I(X,, € G)enf(xn)]
n

n—o0

> sup f(z) — A\*(z) for all open G C X.
zeG

(b) If A\* : X — [0,00] is lower-semicontinuous, the level
sets {z € X : X\(x) < K} are compact for all
K € [0,00), and limsup,, . n tlogP[X, € F] <
—inf,ep A*(z) for all closed F' C X, then

1
lim sup — log E[I(X,, € F)enf(Xn)]
n

n—oo

< sup f(z) — A*(z) for all closed F C X.

zeF

E. Extension of Results to O ~ Haar (QO(n))

We explain the claim of Remark 1.6. Observe first that
if D,Q are random and independent of O, *,¢, where (4)
holds almost surely as n,m — oo, then the results of
Theorems 1.7, 1.9, and 1.10 all hold almost surely as
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n,m — oo conditional on D, (), and hence also uncondi-
tionally. If A = QT DO where O ~ Haar(Q(n)), then we

have the equality in law O L PO’ where O’ ~ Haar(SO(n))
and P = diag(l,...,1,b) € R™"™ with b € {+1,—1}
having equal probability. If n > m, then DP = D,
so A = Q"DO’ and the model is identical to the setting
of O ~ Haar(SO(n)). If n < m, then DP = P'D where
P’ = diag(1,...,1,b,1,...,1) € R™*™ has b in the n®
entry. Setting Q' = P’Q, this implies A = (Q")" DO’. The
asymptotic statements of Theorems 1.7, 1.9, and 1.10 thus hold
almost surely conditional on b, and hence also unconditionally.
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