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Random Linear Estimation With
Rotationally-Invariant Designs: Asymptotics

at High Temperature
Yufan Li , Zhou Fan, Subhabrata Sen, and Yihong Wu

Abstract— We study estimation in the linear model
y = Aβ⋆ + ϵ, in a Bayesian setting where β⋆ has an
entrywise i.i.d. prior and the design A is rotationally-invariant
in law. In the large system limit as dimension and sample
size increase proportionally, a set of related conjectures have
been postulated for the asymptotic mutual information, Bayes-
optimal mean squared error, and TAP mean-field equations
that characterize the Bayes posterior mean of β⋆. In this
work, we prove these conjectures for a general class of signal
priors and for arbitrary rotationally-invariant designs A, under
a “high-temperature” condition that restricts the range of
eigenvalues of A⊤A and encompasses regimes of sufficiently
low signal-to-noise ratio. Our proof uses a conditional second-
moment method argument, where we condition on the iterates
of a version of the Vector AMP algorithm for solving the TAP
mean-field equations.

Index Terms— Estimation, mutual information, multiaccess
communication, Bayes methods.

I. INTRODUCTION

CONSIDER observations y = Aβ⋆ + ϵ ∈ Rm from a
linear model with Gaussian noise, in a Bayesian setting

where the entries of β⋆ ∈ Rn are drawn i.i.d. from a “sig-
nal prior”. Fundamental questions of interest in applications
spanning CDMA communication systems [1] to sparse signal
recovery [2] to statistical genetics [3] pertain to the properties
of the Bayes posterior law and posterior mean estimate for β⋆.

In the asymptotic limit as m, n → ∞ and A constitutes
an i.i.d. measurement design, a rich and insightful body of
literature has obtained precise “single-letter” characterizations
of the asymptotic mutual information, minimum mean squared
error (MMSE), and low-dimensional marginals of the Bayes
posterior law. Based initially on work of Tanaka [1] and
Guo and Verdú [4] using the non-rigorous replica method
of statistical physics, these characterizations have since been
proven rigorously in increasingly general contexts [5], [6], [7],
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[8], [9], [10], [11], and are closely connected to Approximate
Message Passing (AMP) algorithms and mean-field variational
approaches for Bayesian inference.

The focus of our work, and the subject of significant recent
attention, is on extensions of these results beyond i.i.d. designs.
We study here the model where A is right-rotationally invariant
in law, and where analogous single-letter characterizations are
expected to depend on A only via the spectral distribution of
A⊤A. In this model, conjectures for the asymptotic mutual
information were derived via the replica method for binary
and Bernoulli-Gaussian signal priors by Takeda, Uda, and
Kabashima [12] and Tulino et al. [13], and a form for general
priors was stated by Barbier et al. in [14]. A number of itera-
tive Bayesian inference algorithms including Adaptive TAP
[15], [16], Expectation-Consistency [17], Vector/Orthogonal
AMP [18], [19], [20], [21], and long-memory forms of
AMP [22], [23] have been proposed for this model, whose
algorithmic fixed-points coincide with the replica predictions.
In [24], the forms of the TAP mean-field equations that char-
acterize the posterior mean were derived for this and related
models using a Plefka expansion approach, and it was argued
that the approximations underlying these AdaTAP, EC, and
VAMP/OAMP algorithms are all equivalent to the vanishing of
certain diagrammatic terms in the Plefka expansion. Recently,
extensions of the replica method calculations and analyses of
VAMP fixed points have been carried out in [25] for settings
with a possibly mismatched likelihood or Bayesian prior.

In this work, we provide a rigorous proof of the expressions
for asymptotic mutual information and MMSE and of the
validity of the TAP mean-field equations (in an L2 sense) that
are predicted by this replica theory, in a setting of correctly
specified likelihood and prior, for general rotationally-invariant
designs A under a restriction for the range of eigenvalues of
A⊤A. The centered matrix A⊤A − d∗I for a constant d∗ >
0 plays the role of a rotationally-invariant couplings matrix
in analogous models of mean-field spin glasses [26], [27],
and our restriction on the eigenvalue range is analogous to
an assumption of high temperature in such spin glass models.
In the current statistical context, this assumption encompasses
regimes of sufficiently low signal-to-noise ratio (SNR). Our
results are complementary to those of [14] that established
the asymptotic mutual information for specific designs of
the form A = BW where W has i.i.d. Gaussian entries,
without a high-temperature constraint. Related analyses of
convex empirical risk minimization for linear and generalized
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linear models with rotationally-invariant designs have also
been performed in [28] and [29], where replica predictions
for the minimum mean-squared error were rigorously
established.

Interest in the linear model with rotationally-invariant mea-
surement designs has been partially motivated by the belief
that asymptotic predictions derived for such designs may hold
universally across designs whose right singular vectors are
sufficiently “generic”. Universality statements of this form
have been shown recently for AMP and other first-order
iterative algorithms in [30], [31], and [32]. These results
suggest that the asymptotic mutual information and Bayes
optimal MMSE are also potentially universal—we leave this
as an open question for future work.

Proof Ideas: Our proofs build upon recent analyses of
orthogonally-invariant spin glasses [33], [34] via a conditional
second-moment argument [35], [36]. We analyze the first and
second moments of restrictions of the log-partition function
conditioned on iterates of a version of VAMP, to establish
the asymptotic mutual information. The intuition for this
proof strategy is common with [33] and [35], in that the
leading order contribution to the fluctuation of the log-partition
function (conjecturally) depends on the data (y, A) only via
the posterior mean E[β⋆ | y,A], and thus tight bounds for the
log-partition function may be obtained via a second-moment
analysis conditional on E[β⋆ | y,A]. To enable explicit
calculations, we condition instead on a sequence of VAMP
iterates that converge to E[β⋆ | y, A]. At a technical level, this
extends analyses of [33] to encompass a general class of prior
distributions with possibly unbounded support, and to address
additional complexities of the Hamiltonian and of the VAMP
algorithm for the linear model. Related ideas of analyzing the
conditional moments of a truncated log-partition function in
an Ising perceptron model with unbounded log-activation were
developed recently in [37].

Let us clarify that existing state-evolution analyses of the
mean squared error achieved by VAMP imply only an upper
bound for the Bayes-optimal MMSE. Integrating the I-MMSE
relation [38] from zero SNR to small positive SNR via an “area
argument” [5], [6] then implies a corresponding upper bound
for the asymptotic mutual information at high temperature.
The main contribution of our work is to prove that these upper
bounds are tight, and that VAMP indeed computes an approx-
imation of the posterior mean, by establishing corresponding
lower bounds for the mutual information and Bayes-optimal
MMSE, together with a TAP characterization of the posterior
mean.

We remark that concentration of the overlap between inde-
pendent samples from the posterior measure may be deduced
from the general results of [39] and [40], or alternatively
from our calculation of the conditional second moment of a
suitably restricted partition function (c.f. Proof of Theorem 1.9
to follow). However, existing arguments that derive the replica-
symmetric limit for the free energy from overlap concentration
rely on interpolation techniques [9], [41], [42], which seem
more difficult to apply in models without an i.i.d. component
of the disorder. In this sense, our approach is quite different
from the adaptive interpolation method of [14] that is specific
to factorized designs A = BW having an i.i.d. Gaussian

matrix W . One advantage of our current approach is that
it relies less crucially on the Nishimori identities, and is
potentially easier to generalize to settings of a mismatched
likelihood or prior. Indeed, in sufficiently high-temperature
scenarios where a replica-symmetric approximation of the
free energy may remain exact even for mismatched models,
the results of [25] suggest that a conditional second-moment
analysis based on VAMP may still apply, and we leave this as
an interesting question to explore in future work.

A. Model and Assumptions

Let β⋆ ∈ Rn be a signal vector with coordinates
(β⋆

i )n
i=1

iid∼ π distributed according to a known prior distri-
bution π. We observe m noisy measurements

y = Aβ⋆ + ϵ ∈ Rm (1)

where (ϵj)m
j=1

iid∼ N(0, 1) is Gaussian noise and A ∈ Rm×n

is the measurement matrix.
Our main results describe the asymptotic mutual infor-

mation, Bayes-optimal mean squared error, and Bayes
posterior-mean estimator for β⋆, when n, m → ∞ and A is
right-rotationally invariant in law. We denote the (normalized)
mutual information between β⋆ and y conditioned on A as

in :=
1
n

I (β⋆; y | A) =
1
n

E
(

log
p (y | β⋆, A)

p(y | A)

∣∣∣∣ A)
We write expectation with respect to the posterior distribution
for β⋆ given (y, A) as ⟨·⟩, i.e.

⟨f(σ)⟩ :=

∫
f(σ) exp

(
− 1

2∥y −Aσ∥2
)∏n

i=1 dπ(σi)∫
exp
(
− 1

2∥y −Aσ∥2
)∏n

i=1 dπ(σi)
(2)

where we will use σ as the variable for a sample from
this posterior. In particular, ⟨σ⟩ is the posterior mean of β∗.
We denote its normalized mean squared error conditioned on
A as

mmsen :=
1
n

E[∥β⋆ − ⟨σ⟩∥2 | A]. (3)

We fix a random variable D ≥ 0 representing the limit
singular value distribution of A, and denote throughout

d∗ := E[D2], d− := min(x : x ∈ supp(D2)),
d+ := max(x : x ∈ supp(D2))

where supp(D2) ⊆ [0,∞) is the support of D2.
Assumption 1.1 (Singular Value Distribution): D2 has

strictly positive mean and variance and compact support.
Assumption 1.2 (Measurement Matrix): Let A = Q⊤DO

be the singular value decomposition, where Q ∈ Rm×m and
O ∈ Rn×n are orthogonal and D ∈ Rm×n is diagonal. Then
Q, D are deterministic, O, β⋆, ϵ are mutually independent, and
O ∼ Haar(SO(n)) is uniformly distributed on the special
orthogonal group. As n, m →∞,

D⊤1m×1
W→ D, min

(
diag(D⊤D)

)
→ d−,

max
(
diag(D⊤D)

)
→ d+. (4)

Here, D⊤1m×1
W→ D denotes Wasserstein-p convergence of

the empirical distribution of coordinates of D⊤1m×1 ∈ Rn
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to D for all orders p ≥ 1, and we review properties of this
convergence in Appendix G-A.

We may assume without loss of generality that π has
mean 0, by subtracting from y a multiple of A1n×1. Our
results are then proven under the following additional assump-
tions for π and “high-temperature” condition for D.

Assumption 1.3 (Prior distribution): Let X⋆ ∼ π. Then π
is a non-Gaussian distribution with

E[X⋆] = 0, ρ∗ := E[X⋆2] > 0.

There is a constant C > 0 for which, for any s > 0,

ρ∗ ≤ C, P[|X⋆| > s] ≤ 2e−s2/(2C). (5)

Furthermore, for any k ∈ {1, 2}, symmetric Γ ∈ Rk×k

satisfying Γ ≺ (4C)−1I , and z ∈ Rk, denote

dµ(x) =
ex⊤Γx+x⊤z

∏k
i=1 dπ(xi)∫

ex⊤Γx+x⊤z
∏k

i=1 dπ(xi)
,

⟨f(x)⟩µ =
∫

f(x)dµ(x), Vµ[f(x)] = ⟨f(x)2⟩µ − ⟨f(x)⟩2µ.

Then the distribution µ satisfies, for any unit vector v ∈ Rk

and a constant C > 0 depending only on C,

Vµ[v⊤x] ≤ C, Vµ[(v⊤x)2] ≤ C[1 + ⟨(v⊤x)2⟩µ]. (6)

Assumption 1.4 (High temperature): We have supp(D2) ⊆
[d∗ − e, d∗ + e] for some e > 0.

The condition (6) of Assumption 1.3 may be understood
as a Poincaré-type inequality for µ, and holds (for example)
when π has a bounded support contained in [−

√
C,
√

C]
or a log-concave density e−g(x) where g′′(x) ≥ 1/C, c.f.
Proposition 13.

In our main results, we will require the value e in Assump-
tion 1.4 to be sufficiently small (depending on the constant C in
Assumption 1.3), and this is the main restriction of our current
work. Such a requirement will limit our results to a subset of
the regime where the state evolution of VAMP has a unique
fixed point, and there is no statistical-computational gap. Note
that in a model y = Aβ⋆ + σϵ with general noise variance
σ2 > 0, this high temperature assumption encompasses the
setting of sufficiently large σ2 for any fixed singular value
distribution D and fixed prior π. (This follows upon rescaling
y, A, and D all by 1/σ.)

Remark 1.5: We restrict to non-Gaussian priors π to avoid
a rank degeneracy in our subsequent conditioning arguments.
If π is Gaussian, our proofs may be modified to condition on
only a single iteration of VAMP, rather than t iterations for
t → ∞. We will not discuss this modification because in,
mmsen, and the posterior mean ⟨σ⟩ all have explicit formulas
for Gaussian priors π, and in this case the main results may
be shown at any temperature using more direct techniques of
asymptotic random matrix theory (see e.g. [13, Theorem 2]
and [43, Theorem 1]).

Remark 1.6: Our results extend directly to the more com-
monly studied setting where O ∼ Haar(O(n)) is uniform over
the full orthogonal group, and also where Q, D are random
and independent of O, β⋆, ϵ such that (4) holds almost surely
as n, m →∞. We discuss this further in Appendix G-E.

B. Scalar Channel and Fixed Point Equation

The asymptotic characterization of the model (1) is
described by a “single-letter” scalar channel

Y = X⋆ + Z/
√

γ (7)

with signal X⋆ ∼ π, independent Gaussian noise Z ∼ N(0, 1),
and noise variance γ−1 > 0. We denote the Bayes posterior-
mean denoiser in this model as

f(y, γ) = E[X⋆ | Y = y] (8)

and the signal-observation mutual information and Bayes-
optimal mean squared error as

i(γ) = I(X⋆; Y), mmse(γ) = E[V[X⋆ | Y]]. (9)

Under Assumption 1.1, let G : (−d−,∞) → (0,∞) and R :
(0, G(−d−)) → (−∞, 0) be the Cauchy- and R-transforms of
the law of −D2, defined by

G(z) = E
[

1
z + D2

]
, R(z) = G−1(z)− 1

z
, (10)

where G−1(·) is the functional inverse of G(·), and we set
G(−d−) = limz→−d− G(z). Lemma 13 shows that these
functions are well-defined and reviews several additional prop-
erties under the high-temperature condition of Assumption 1.4.
The noise variance γ−1 that relates this scalar channel to the
model (1) is a solution of the fixed-point equations

η−1 = mmse(γ), γ = −R(η−1). (11)

The second equation can be written equivalently as η−1 =
G(η − γ) by the definition of the R-transform.

The following ensures that this fixed-point system has a
unique solution when e in Assumption 1.4 is sufficiently small;
see Appendix B-A for its proof.

Proposition 1: Under Assumptions 1.1, 1.3, and 1.4, there
exists a constant e0 = e0(C) > 0 such that if e < e0, then (11)
has a unique solution

(
η−1
∗ , γ∗

)
in the domain (0, G(−d−))×

R+. Furthermore η−1
∗ ≤ ρ∗ and η∗− γ∗ ≥ ρ−1

∗ > 0 where ρ∗
is the prior variance in Assumption 1.3.

C. Main Results

Let us denote (η−1
∗ , γ∗) as the unique fixed point of (11).

Our first result describes the asymptotic mutual information
in the model (1). We define the replica symmetric potential
following [14],

iRS

(
η−1, γ

)
= i(γ)− 1

2

∫ η−1

0

R(z)dz − γ

2η
(12)

where i(γ) is the above mutual information in the scalar
channel.

Theorem 1.7 (Mutual information): Under Assump-
tions 1.1–1.4, there exists a constant e0 = e0(C) > 0 such
that if e < e0, then almost surely

lim
n,m→∞

in = iRS

(
η−1
∗ , γ∗

)
(13)

Remark 1.8: Without the high-temperature condition of
Assumption 1.4, the general conjecture [14] is that
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limn,m→∞ in = inf iRS(η−1, γ) where the infimum ranges
over all (η−1, γ) that solves (11).

Next, we characterize the limiting minimum mean squared
error.

Theorem 1.9 (MMSE): Under Assumptions 1.1–1.4, there
exists a constant e0 = e0(C) > 0 such that if e < e0, then
almost surely

lim
n,m→∞

mmsen = η−1
∗ (14)

Finally, we show that the posterior mean ⟨σ⟩ for β⋆ in the
model (1) approximately satisfies a system of mean-field equa-
tions predicted by the Plefka expansion [24, Eqs. (128-129)].
These equations are an analogue of the Thouless-Anderson-
Palmer (TAP) equations for the Sherrington-Kirkpatrick
model [44], and of their generalization to orthogonally-
invariant spin glass models in [15] and [27].

Theorem 1.10 (TAP equations): Under Assumpt-
ions 1.1–1.4, there exists a constant e0 = e0(C) > 0 such that
if e < e0, then almost surely

lim
n,m→∞

1
n

E
[∥∥∥⟨σ⟩ − f (v, γ∗)

∥∥∥2
∣∣∣∣ A] = 0 (15)

where v = ⟨σ⟩ + γ−1
∗ A⊤ (y −A⟨σ⟩) and f(·, γ) is the

posterior-mean denoiser applied entrywise to its first argument.
Remark 1.11: For the following two special subclasses of

priors satisfying Assumption 1.3: (i) π has a bounded support
contained in [−

√
C,
√

C] or (ii) π admits a log-concave density
e−g(x) with g′′(x) ≥ 1/C, an explicit choice of e0(C) in
Theorems 1.7, 1.9 and 1.10 is e0(C) = a

C for some absolute
constant a > 0. See Section B-B for a justification.

Notation: Denote by ∥ · ∥ the ℓ2-norm for vectors and
ℓ2 → ℓ2 operator norm for matrices. For scalars x1, . . . , xk ∈
R, we write (x1, . . . , xk) ∈ Rk to denote a column vector
with these entries. For vectors x1, . . . , xk ∈ Rn, we write
(x1, . . . , xk) ∈ Rn×k as the matrix containing these columns.
1m×n ∈ Rm×n denotes the all-1’s matrix, In×n denotes the
identity matrix, ≻ and ⪰ denote the positive-definite ordering
for matrices, E and V denote the expectation and variance of
a random variable, and R+ = (0,∞) is the positive real line.

Throughout, we treat C in Assumption 1.3 as constant,
and we write x = O(y) to mean |x| ≤ Cy for a constant
C > 0 depending only on C. (In particular, this constant
does not depend on d∗ or on the small parameter e in
Assumption 1.4, and we will explicitly track the dependence
of various quantities on d∗, e.)

II. VECTOR AMP
We first review a version of the VAMP algorithm proposed

by [21]. Let r1
2 ∈ Rn be an initialization vector such that there

exist random variables (R1
2, X

⋆) for which, almost surely as
n, m →∞,

(r1
2, β

⋆) W→ (R1
2, X

⋆), γ−1
2,1 := E[(R1

2 − X⋆)2] > 0. (16)

Define from γ2,1 a sequence of state evolution parameters for
t = 1, 2, 3, . . .

η2,t = 1/G(γ2,t), γ1,t = η2,t − γ2,t,

η1,t+1 = 1/mmse(γ1,t), γ2,t+1 = η1,t+1 − γ1,t

(17)

where mmse(·) is the scalar channel MMSE from (9) and G(·)
is the Cauchy-transform of −D2 from (10). Now consider the
sequence of iterates in Rn, for t = 1, 2, 3, . . .

rt
1 =

1
γ1,t

[
η2,tw

t − γ2,tr
t
2

]
(18a)

rt+1
2 =

1
γ2,t+1

[
η1,t+1f

(
rt
1, γ1,t

)
− γ1,tr

t
1

]
(18b)

where wt =
(
A⊤A + γ2,tI

)−1 (
A⊤y + γ2,tr

t
2

)
and f(·, γ) is

the posterior-mean denoiser from (8) applied entrywise. This
coincides with the VAMP algorithm in [21], specialized to the
setting with matched MMSE denoiser, and replacing empiri-
cally estimated versions of the parameters γ1,t, η1,t, γ2,t, η2,t

with their large system limits as defined by (17). The following
statement is implied by [21, Theorems 1 and 2]; we check the
conditions needed for these results in Appendix A.

Theorem 2.1 [21]: Suppose Assumptions 1.1–1.3 hold, and
r1
2 is independent of (A, ϵ) and satisfies (16). Then each value

η2,t, γ1,t, η1,t+1, γ2,t+1 for t ≥ 1 is well-defined by (17)
and strictly positive. For any 2-pseudo-Lipschitz test function
g : R2 → R and each fixed t ≥ 1, almost surely

lim
n,m→∞

1
n

n∑
i=1

g((rt
1)i, β

⋆
i ) = E[g(Rt

1, X
⋆)] (19)

where Rt
1 = X⋆ + Z/

√
γ1,t and Z ∼ N(0, 1) is independent

of X⋆. Furthermore, set

β̂t
2 =

(
A⊤A + γ2,tI

)−1 (
A⊤y + γ2,tr

t
2

)
, β̂t+1

1 = f(rt
1, γ1,t).

Then for each fixed t ≥ 1, almost surely

lim
n,m→∞

1
n
∥β̂t

2 − β⋆∥2 = η−1
2,t ,

lim
n,m→∞

1
n
∥β̂t+1

1 − β⋆∥2 = η−1
1,t+1. (20)

Our proofs will use an extended state evolution for a version
of this algorithm in a reparametrized form. Letting (η−1

∗ , γ∗)
be a fixed point of (11), it is computationally convenient
to specialize to a “stationary” initialization of this algorithm
given by

r0
1 = β⋆ + p0, γ1,0 = γ∗ (21)

where (p0
i )

n
i=1

iid∼ N(0, γ−1
∗ ) is independent of all other

randomness in the model. (The quantities r1
2, γ2,1 in (16) are

then defined from this initialization by (17) and (18).) In the
following results, we reparametrize the algorithm initialized
by (21) and describe its state evolution; proofs are deferred to
Appendix A.

Set

Λ =
η∗ − γ∗

γ∗

[
η∗(D⊤D + (η∗ − γ∗)I)−1 − I

]
∈ Rn×n,

ξ = Qϵ, eb =
η∗
γ∗

(D⊤D + (η∗ − γ∗)I)−1D⊤ξ,

e = O⊤eb, (22)

and define from (18) the new variables in Rn

xt = rt
2 − β⋆, yt = rt

1 − e− β⋆.
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From the posterior-mean function f(·, γ) in (8), define F :
R2 → R as

F (p, β)=
η∗

η∗ − γ∗
f(p+β, γ∗)−

γ∗
η∗−γ∗

p− η∗
η∗−γ∗

β. (23)

Proposition 2: If (η−1
∗ , γ∗) is a fixed point of (11) and

γ1,0 = γ∗, then η1,t = η2,t = η∗, γ1,t = γ∗, and γ2,t =
η∗ − γ∗ for all t ≥ 1. Furthermore, the VAMP algorithm (18)
initialized with (21) is equivalent to the initialization x1 =
F (p0, β⋆) and the iterations, for t = 1, 2, 3, . . .

st = Oxt, yt = O⊤Λst, xt+1 = F (yt + e, β⋆). (24)

We define the important scalar parameters

δ∗ =
1

η∗ − γ∗
, σ2

∗ = δ∗κ∗,

κ∗ =
(

η∗ − γ∗
η∗

)2 [
E

η2
∗

(D2 + η∗ − γ∗)2
− 1
]

,

b∗ =
1
γ∗
− κ∗

η∗ − γ∗
. (25)

Let us collect

H =
(
β⋆, D⊤1m×1, D

⊤ξ, diag(Λ), eb, e, p
0
)
∈ Rn×7. (26)

The following results describe the limit empirical distribution
of these quantities constituting H , as well as the state evolution
of the iterates xt, st, yt defined by (24).

Proposition 3: Suppose Assumptions 1.1–1.3 hold. Define
random variables

Ξ ∼ N(0, 1), X⋆ ∼ π, P0 ∼ N(0, γ−1
∗ ),

E ∼ N(0, b∗)

independent of each other and of D, and set

L =
η∗ − γ∗

γ∗

(
η∗

D2 + η∗ − γ∗
− 1
)

,

Eb =
η∗
γ∗

DΞ
D2 + η∗ − γ∗

,

H = (X⋆, D, DΞ, L, Eb, E, P0).

Then κ∗ = EL2 and b∗ = EE2
b . Furthermore, H

W→ H almost
surely as n, m →∞.

Theorem 2.2: Suppose Assumptions 1.1–1.3 hold. Let H =
(X⋆, D, DΞ, L, Eb, E, P0) be as defined in Proposition 3. Set
X1 = F (P0, X

⋆) for the function F (·) from (23), set ∆1 =
E[X2

1] ∈ R1×1, and define iteratively St, Yt, Xt+1, ∆t+1 for
t = 1, 2, 3, . . . such that

(S1, . . . ,St) ∼ N(0, ∆t), (Y1, . . . ,Yt) ∼ N(0, κ∗∆t)

are Gaussian vectors independent of each other and of H, and

Xt+1 = F (Yt + E, X⋆),

∆t+1 = E
[
(X1, . . . ,Xt+1) (X1, . . . ,Xt+1)

⊤
]
∈ R(t+1)×(t+1).

Then for each t ≥ 1, ∆t ≻ 0 strictly, δ∗ = EX2
t , and σ2

∗ =
EY2

t .
Furthermore, let Xt =

(
x1, . . . , xt

)
∈ Rn×t, St =(

s1, . . . , st
)
∈ Rn×t, and Yt =

(
y1, . . . , yt

)
∈ Rn×t

collect the iterates of (24), starting from the initialization

x1 = F (p0, β⋆). Then for any fixed t ≥ 1, almost surely
as n, m →∞,

(H,Xt, St, Yt)
W→ (H, X1, . . . ,Xt, S1, . . . ,St, Y1, . . . ,Yt) .

Corollary 1: In the setting of Theorem 2.2, for any fixed
t ≥ 1, almost surely

lim
n,m→∞

n−1(e, Xt, Yt)⊤(e, Xt, Yt) =

b∗ 0 0
0 ∆t 0
0 0 κ∗∆t


Theorem 2.2 implies that the joint limit (S1, . . . ,St) for the

iterates St = (s1, . . . , st) is independent of D. We highlight
here the following implication, which is an analogue of
[33, Proposition 2.4].

Corollary 2: In the setting of Theorem 2.2, fix any
t ≥ 1, let f : R → R be any function which is continuous
and bounded in a neighborhood of supp(D2), and define
f(D⊤D) ∈ Rn×n by the functional calculus. Then almost
surely

lim
n,m→∞

n−1S⊤t f(D⊤D)St = ∆t · Ef(D2).

Noting that each matrix ∆t is the upper-left submatrix of
∆t+1, let us denote the entries of these matrices as ∆t =
(δrs)t

r,s=1. Theorem 2.2 ensures that δtt = δ∗ for all t ≥
1. The following result then guarantees that for sufficiently
small e in Assumption 1.4, the state evolution of this stationary
VAMP algorithm is convergent in the sense

lim
min(s,t)→∞

(
lim

n,m→∞

1
n

∥∥xt − xs
∥∥2
)

= lim
min(s,t)→∞

(δss + δtt − 2δst) = 0

lim
min(s,t)→∞

(
lim

n,m→∞

1
n

∥∥yt − ys
∥∥2
)

= lim
min(s,t)→∞

κ∗ (δss + δtt − 2δst) = 0.

Proposition 4: Under Assumptions 1.1–1.4, there exists
some constant e0 = e0(C) > 0 such that if e < e0, then
limmin(s,t)→∞ δst = δ∗.
We verify in Appendix B-D that, outside the high-temperature
regime of Assumption 1.4, this statement of Proposition 4
continues to hold for the stationary initialization of VAMP
defined by any fixed point (η−1

∗ , γ∗) to (11) that is a local
minimizer of the replica-symmetric potential (12).

III. ANALYSIS OF THE RESTRICTED PARTITION FUNCTION

For any subset U ⊆ [0,∞), define a restricted partition
function for the model (1) as

Z(U)

=
∫

I
(

1
n
∥σ−β⋆∥2 ∈ U

)
· exp

(
−∥y−Aσ∥2

2

) n∏
i=1

dπ (σi) .

(27)

We will ultimately analyze the unrestricted partition function
Z = Z([0,∞)), although it is technically convenient to first
analyze Z(U) for bounded subsets U .
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For any t ≥ 1, define the sigma-field (in the probability
space of O, β⋆, and ϵ)

Gt = G
(
H,x1, s1, y1, . . . , xt, st, yt

)
(28)

where H consists of the quantities in (26), and xt, st, yt

are the VAMP iterates of (24). In this section, we provide
asymptotic variational characterizations of the conditional first
and second moments E[Z(U) | Gt] and E[Z(U)2 | Gt].
Together with a concentration inequality for logZ(U) and
a second-moment argument, these establish an unconditional
first-order limit for logZ(U). Proofs of these results are
provided in Appendices C, D, and E.

For a, b ∈ R and M > 0, define

cπ(a, b) =
∫

exp
(
ax2 + bx

)
dπ(x) ∈ (0,∞],

cM
π (a, b) =

∫ M

−M

exp
(
ax2 + bx

)
dπ(x) ∈ (0,∞). (29)

When π has unbounded support, cπ(a, b) may be infinite for
large positive values of a, and we discuss its behavior in
Lemma 9. Under Assumption 1.4, recall the unique fixed point
(η−1
∗ , γ∗) of (11) and the prior variance ρ∗ from Assump-

tion 1.3, and define the replica-symmetric free energy

ΨRS = −1
2
− γ∗ρ∗

2
+

γ∗
2η∗

+
1
2

∫ η−1
∗

0

R(z)dz

+E log cπ

(
−γ∗

2
, γ∗X

⋆ +
√

γ∗Z
)

(30)

where the expectation is over independent variables X⋆ ∼ π
and Z ∼ N(0, 1). In addition to d∗, ρ∗ and the variance
parameters δ∗, κ∗, σ

2
∗, b∗ from (25), we introduce the auxiliary

scalar parameters

a∗ = (η∗ − γ∗)
(

1− d∗
γ∗

)
,

c∗ = − (η∗ − γ∗) κ∗ +
(

η∗ − γ∗
γ∗

)2

(d∗ − γ∗) ,

e∗ = 1 + κ∗, αA
∗ =

η∗ − γ∗
γ∗

1
√

κ∗
,

αB
∗ =

(
αA
∗
)2

(γ∗ − d∗) , π∗ = EX⋆F

(
Z
√

γ∗
, X⋆

)
. (31)

A. Conditional First Moment

Fix an iteration t ≥ 1 for VAMP, and define tuples of primal
and dual variables

P = (u, r, v, w), Q = (ζ, U, R, V, W, χA, χB , χC)

where u > 0 and ζ > −d− and r, U,R, χA, χB , χC ∈ R and
v, w, V,W ∈ Rt. Define

A(P)=u− r2 − ∥v∥2 − ∥w∥2, V=
{
P : A(P) > 0

}
.

(32)

Define also the functions

H(ζ,A) = ζA− E[log
(
ζ + D2

)
]− (1 + logA),

B(v, w) = ∥v − αA
∗ w∥2

λ(x) =
η∗ − γ∗

γ∗

(
η∗

x + η∗ − γ∗
− 1
)

,

θ(x) = x− αB
∗ η∗

x + η∗ − γ∗
+ αB

∗ − d∗. (33)

Let ∆t and the random variables (E, X⋆, X1, . . . ,
Xt, Y1, . . . ,Yt) be as described in Proposition 3 and
Theorem 2.2, and define

Φ1,t(P, Q) = −1

2
+ E log cπ

(
U,−2U X⋆ +

R E√
b∗

+ V ⊤∆
−1/2
t (X1, . . . , Xt) +

W⊤∆
−1/2
t (Y1, . . . , Yt)√

κ∗

)
− (u− ρ∗)U − r R− (v + π∗∆

−1/2
t 1t×1)

⊤V − w⊤W

− 1

2

(
e∗r

2

b∗
− 2r√

b∗
+ Tr

[(
d∗ a∗
a∗ c∗

)(
v,

w√
κ∗

)⊤
×
(

v,
w√
κ∗

)])
+

1

2
H(ζ,A(P))

+
1

2
E

[
E2

b

ζ + D2

([
γ∗
η∗
− r√

b∗

]
D2 − χA

)2
]

+
1

2
E
[

1

ζ + D2

(
θ(D2)− λ(D2)χB − χC

)2
]
B(v, w) (34)

Let ΦM
1,t(P, Q) have the same definition with cπ replaced by

cM
π . Finally, define

Ψ1,t(P) = inf
Q:ζ>−d−

Φ1,t(P, Q),

ΨM
1,t(P) = inf

Q:ζ>−d−
ΦM

1,t(P, Q) (35)

where these may take extended real values in [−∞,∞).
Lemma 1: Fix any K > 0. Under Assumptions 1.1–1.4,

there exists a constant e0 = e0(C, K) > 0 such that if e < e0,
then for any fixed t ≥ 1 and non-empty open subset U ⊆
(0, K), almost surely

lim inf
n,m→∞

1
n

log E [Z(U) | Gt] ≥ sup
P∈V: u∈U

sup
M>0

ΨM
1,t(P),

lim sup
n,m→∞

1
n

log E
[
Z(U) | Gt

]
≤ sup

P∈V: u∈U
Ψ1,t(P)

where U is the closure of U .
Lemma 2: Fix any K > 0. Under Assumptions 1.1–1.4,

there exists a constant e0 = e0(C, K) > 0 such that if e <
e0 and U ⊆ (0, K) is any fixed open subset containing 2η−1

∗ ,
then

lim inf
t→∞

sup
P∈V: u∈U

sup
M>0

ΨM
1,t(P) ≥ ΨRS,

lim sup
t→∞

sup
P∈V: u∈U

Ψ1,t(P) ≤ ΨRS. (36)

Furthermore, there exists a universal constant c0 > 0 such that
for any ς > 0,

lim sup
t→∞

sup
P∈V: u∈U
|u−2η−1

∗ |>ς

Ψ1,t(P) < ΨRS − c0e
1/2ς2. (37)
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B. Conditional Second Moment

Again fixing an iteration t ≥ 1 for VAMP, define tuples of
primal and dual variables

P = (u, r, v, w, p), Q = (Z, U,R, V, W, P, χA, χB , χC)

where u ∈ R2
+, r, U,R ∈ R2, v, w, V,W ∈ Rt×2, p, P ∈ R,

Z ∈ R2×2 is symmetric, and χA, χB , χC ∈ R2. We write
v = (v1, v2) where v1, v2 ∈ Rt are its columns, and similarly
for w, V, W . Set the domain for Z as

D+ = {Z ∈ R2×2 : Z = Z⊤, Z ≻ −d− · I2×2}, (38)

and denote the eigen-decomposition of Z by

Z =
(
y1 y2

)(ζ1 0
0 ζ2

)(
y⊤1
y⊤2

)
(39)

where y1, y2 ∈ R2 are unit-norm eigenvectors of Z and
ζ1, ζ2 are the corresponding eigenvalues. (The expressions
below do not depend on the signs of y1, y2 or the choice of
y1, y2 when ζ1 = ζ2.) Set

A(P) =
(

u1 p
p u2

)
− rr⊤ − v⊤v − w⊤w ∈ R2×2,

V = {P : A(P) ≻ 0}. (40)

Let θ(x), λ(x) be as in (33), and define for a, b ∈ R2 and
c ∈ R

cπ (a, b, c) =
∫

exp
(
a1x

2
1 + b1x1 (41)

+ a2x
2
2 + b2x2 + cx1x2

)
dπ(x1)dπ(x2)

(42)

H
(
Z,A

)
= Tr(ZA)− E

[
log det

(
Z + D2 · I2×2

)]
− (2 + log detA)

B(v, w) = (v − αA
∗ w)⊤(v − αA

∗ w) (43)

Here cπ(p, a, b),H(Z,A) ∈ R and B(v, w) ∈ R2×2. Finally,
define from the above (44), shown at the bottom of the next
page, and denote

Ψ2,t(P) = inf
Q:Z∈D+

Φ2,t(P, Q). (45)

The following results are analogous to the upper bounds of
Lemmas 1 and 2. (Lower bounds may also be shown, but we
omit these statements as we require only the upper bounds in
the subsequent proofs.)

Lemma 3: Fix any K > 0. Under Assumptions 1.1–1.4,
there exists a constant e0 = e0(C, K) > 0 such that if e < e0,
then for any fixed t ≥ 1 and non-empty open subset U ⊆
(0, K), almost surely

lim
n,m→∞

1
n

log E
[
Z(U)2 | Gt

]
≤ sup

P∈V: u1,u2∈U
Ψ2,t(P) (46)

where U is the closure of U .
Lemma 4: Fix any K > 0. Under Assumptions 1.1–1.4,

there exists a constant e0 = e0(C, K) > 0 such that if e < e0
and U ⊆ (0, K) is any fixed open set containing 2η−1

∗ , then

lim sup
t→∞

sup
P∈V: u1,u2∈U

Ψ2,t(P) ≤ 2ΨRS.

C. Limiting Free Energy

Combining the preceding results with the following expo-
nential concentration inequality for n−1 logZ(U), we deduce
as a corollary an unconditional first-order limit for the
restricted free energy.

Lemma 5: Fix any K, L > 0 and subset U ⊆ [0, K]. Let E
denote the event where∫

I
(

1
n
∥σ − β⋆∥2 ∈ U

) n∏
i=1

dπ(σi) > 0, ∥D⊤ξ∥2 ≤ Ln.

(Note that E depends on the random quantities (O, β⋆, ϵ)
only via (β⋆, D⊤ξ) and is hence Gt-measurable for any t ≥
1.) Under Assumptions 1.1 and 1.2, there exists a constant
C(K, L, d+) > 0 such that for any t ≥ 1, any δ > 0, and all
sufficiently large n,

P
(∣∣∣∣ 1n logZ(U)− E

[
1
n

logZ(U)
∣∣∣∣ Gt

]∣∣∣∣ ≥ δ

∣∣∣∣ Gt

)
I{E}

≤ 2 exp
(

−δ2n

C(K, L, d+)

)
. (47)

Corollary 3: Fix any K > 0. Under Assumptions 1.1–1.4,
there exists a constant e0 = e0(C, K) > 0 such that if e <
e0 and 2η−1

∗ ∈ (0, K), then almost surely

lim
n,m→∞

1
n

logZ([0, K]) = ΨRS.

IV. PROOFS OF THE MAIN RESULTS

We use the preceding lemmas to prove Theorems 1.7, 1.9,
and 1.10. For expositional clarity, we consider in this section
the simpler setting where π has compact support contained
in [−

√
C,
√

C]. We extend these proofs to the more general
condition of Assumption 1.3 in Appendix F.

A. Mutual Information

Proof: [Proof of Theorem 1.7, bounded support] Letting
p(y | β⋆, A) and p(y | A) be the conditional density functions
of y ∈ Rm, direct calculation yields

E
[
log
(
(2π)n/2p (y | β⋆, A)

) ∣∣∣ A]
= E

[
−∥y −Aβ⋆∥2

2

∣∣∣∣ A] = −n

2
,

log
(
(2π)n/2p (y | A)

)
= logZ

where Z = Z([0,∞)) is the unrestricted partition function
defined by (27). So the normalized mutual information in the
model (1) is

in =
1
n

I (β⋆; y | A) =
1
n

E
(

log
p (y | β⋆, A)

p(y | A)

∣∣∣∣ A)
= − 1

n
E[logZ | A]− 1

2
.
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Similarly, the mutual information i(γ∗) = I(X⋆; Y) in the
scalar channel (7) is

i(γ∗) = E
(

log
p (Y | X⋆)

p(Y)

)
= −1

2
− E log

∫
exp

(
−

(
√

γ∗(X⋆ − x) + Z)2

2

)
dπ(x)

= −1
2

+ E
(Z +

√
γ∗X

⋆)2

2
(48)

−E log
∫

exp
(
−1

2
γ∗x

2 + (γ∗X⋆ +
√

γ∗Z) x

)
dπ(x)

=
1
2
γ∗ρ∗ − E log cπ

(
−1

2
γ∗, γ∗X

⋆ +
√

γ∗Z

)
(49)

where cπ is defined in (29).
Suppose π has bounded support contained in [−

√
C,
√

C].
Setting K = 4C and U = (0, K), we have n−1∥σ−β⋆∥2 ≤ K
with probability 1. Then Z(U) = Z , and also 2η−1

∗ ≤
2ρ∗ < K where the first inequality is by Proposition 1.
Thus Corollary 3 shows n−1 logZ → ΨRS almost surely.
By Jensen’s inequality,

0 ≤ − 1
n

logZ ≤ 1
n

∫
∥A(β⋆ − σ) + ϵ∥2

2

n∏
i=1

dπ(σi)

≤
∥∥A⊤A

∥∥
op
·
∫
∥β⋆ − σ∥2

n

n∏
i=1

dπ(σi) +
1
n
∥ϵ∥2. (50)

Then by the given assumption ∥A⊤A∥op = ∥D⊤D∥op →
d+, the bound n−1∥β⋆ − σ∥2 ≤ K, uniform integrability
of {∥ϵ∥2/n}n≥1, and the dominated convergence theorem,
almost surely n−1E[logZ | A] → ΨRS. Applying this, (48),

and the forms of ΨRS and iRS in (30) and (12), we obtain as
desired

lim
n,m→∞

in = −ΨRS − 1/2 = iRS(η−1
∗ , γ∗).

B. Bayes Risk

Lemma 6: Denoting by ⟨f(σ)⟩ the posterior expectation
in (2),

mmsen =
1
2n

E
[〈
∥σ − β⋆∥2

〉 ∣∣∣ A] .

Proof: Let σ, τ denote two replicas sampled independently
from the posterior distribution defining (2). Conditional on y
and A, since σ, τ, β⋆ are independent and equal in law, we have
the Nishimori identity for any integrable function f (see also
[14, Appendix A])

E[⟨f(σ, τ)⟩ | A] = E[E[f(σ, τ) | y,A] | A]
= E[E[f(σ, β⋆) | y,A] | A]
= E[⟨f(σ, β⋆)⟩ | A].

Thus

n ·mmsen = E[∥β⋆ − ⟨σ⟩∥2 | A]

= E[β⋆⊤β⋆ + ⟨σ⊤τ⟩ − ⟨σ⊤β⋆⟩ − ⟨τ⊤β⋆⟩ | A]
(a)
= E[β⋆⊤β⋆ − ⟨σ⊤β⋆⟩ | A]
= E[⟨(σ − β⋆)⊤(−β⋆)⟩ | A]
(b)
= E[⟨(σ − β⋆)⊤σ⟩ | A] (51)

Φ2,t(P, Q) = −1 + E log cπ

(
U, −2U X⋆ +

R E√
b∗

+ V ⊤∆−1/2
t (X1, . . . ,Xt)+

W⊤∆−1/2
t (Y1, . . . ,Yt)√

κ∗
−P X⋆12×1, P

)
− (u− ρ∗12×1)⊤U − r⊤R− (v1 + π∗∆

−1/2
t 1t×1)⊤V15

− (v2 + π∗∆
−1/2
t 1t×1)⊤V2 − w⊤1 W1 − w⊤2 W2 − (p− ρ∗)P

− 1
2

(
e∗∥r∥2

b∗
− 2r⊤12×1√

b∗
+ Tr

(
d∗ a∗
a∗ c∗

)
×

[(
v1,

w1√
κ∗

)⊤(
v1,

w1√
κ∗

)
+
(

v2,
w2√
κ∗

)⊤(
v2,

w2√
κ∗

)])
+

1
2
H
(
Z,A(P)

)
+

1
2

E
[([

γ∗
η∗

12×1 −
r√
b∗

]
D2 − χA

)⊤(
E2

b(Z + D2 · I2×2)−1
)

×
([

γ∗
η∗

12×1 −
r√
b∗

]
D2 − χA

)]
+

1
2

E

[(
θ(D2)− λ(D2)χB

1 − χC
1

)2
ζ1 + D2

]
y⊤1 B(v, w)y1

+
1
2

E

[(
θ(D2)− λ(D2)χB

2 − χC
2

)2
ζ2 + D2

]
y⊤2 B(v, w)y2 (44)
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where (a) applies the Nishimori identity, and (b) follows from
the exchangeability of the replicas and the Nishimori identity
as follows:

E[⟨(σ − β⋆)⊤(−β⋆)⟩ | A] = E[⟨(σ − τ)⊤(−τ)⟩ | A]

= E[⟨(τ − σ)⊤(−σ)⟩ | A]

= E[⟨(β⋆ − σ)⊤(−σ)⟩ | A].

Summing the last two expressions in (51) gives 2n ·mmsen =
E[⟨∥σ − β⋆∥2⟩ | A] as required.

Proof: [Proof of Theorem 1.9, bounded support] Suppose
again that π has support contained in [−

√
C,
√

C], and set K =
4C. Then again n−1∥σ − β⋆∥2 ≤ K with probability 1, the
unrestricted partition function is Z = Z([0, K]), and 2η−1

∗ ≤
2ρ∗ < K. Fix any small constant ς > 0 and set U = (0, K) \
(2η−1

∗ − ς, 2η−1
∗ + ς). Then

⟨I
(∣∣∣∣ 1n ∥σ − β⋆∥2 − 2η−1

∗

∣∣∣∣ > ς

)
⟩ =

Z(U)
Z

.

Applying Lemmas 1, 2, and Jensen’s inequality, for a
sufficiently large iteration t ≥ 1, almost surely for all large
n,

1
n

E
[
logZ(U) | Gt

]
≤ 1

n
log E

[
Z(U) | Gt

]
< ΨRS − c0e

1/2ς2.

Taking the expectation of (47) from Lemma 5 yields the
unconditional tail bound

P
(
E holds and

∣∣∣∣ 1n logZ(U)− E
[

1
n

logZ(U)
∣∣∣∣ Gt

]∣∣∣∣ ≥ δ

)
≤ 2 exp

(
−δ2n

C(K, L, d+)

)
. (52)

Applying ∥D⊤D∥op → d+ as n → ∞ and a standard chi-
squared tail bound, for a sufficiently large constant L >
0, the second condition ∥D⊤ξ∥2 ≤ Ln defining E holds
almost surely for all large n. The first condition defining
E is equivalent to Z(U) ̸= 0. Hence by (52) applied with
δ = (c0/2)e1/2ς2 and by the Borel-Cantelli lemma, almost
surely for all large n, either Z(U) = 0 or

1
n

logZ(U)<
1
n

E
[
logZ(U) | Gt

]
+

c0

2
e

1
2 ς2 <ΨRS−

c0

2
e1/2ς2.

Then combining with n−1 logZ → ΨRS by Corollary 3,
almost surely for all large n,

⟨I
(∣∣∣∣ 1n ∥σ − β⋆∥2 − 2η−1

∗

∣∣∣∣ > ς

)
⟩ =

Z(U)
Z

< exp
(
−c0

2
e1/2ς2 · n

)
.

Since |n−1 ∥σ − β⋆∥2 − 2η−1
∗ | ≤ 2K, this tail bound implies∣∣∣∣ 1n ⟨∥σ − β⋆∥2⟩ − 2η−1

∗

∣∣∣∣ ≤ 〈∣∣∣∣ 1n ∥σ − β⋆∥2 − 2η−1
∗

∣∣∣∣〉
≤ ς + 2K · exp

(
−c0

2
e1/2ς2 · n

)
< 2ς

almost surely for all large n. Since ς > 0 is arbitrary, this
shows (2n)−1⟨∥σ − β⋆∥2⟩ → η−1

∗ almost surely. Then by
Lemma 6 and dominated convergence theorem, also mmsen =
(2n)−1E[⟨∥σ − β⋆∥2⟩ | A] → η−1

∗ almost surely.

C. The TAP Equations

We note that the stationary initialization for VAMP in (21)
requires knowledge of β⋆, and hence the resulting iterates
do not define estimators of β⋆ given only (y, A). Here,
we consider VAMP from the non-informative initialization
r1
2 = 0 and γ2,1 = ρ−1

∗ . We first use Theorem 1.9 already
proven to show convergence of the VAMP state evolution; a
different argument for this convergence has also been given
recently in [45].

Proposition 5: Consider the VAMP algorithm (18) with
initialization r1

2 = 0 and γ2,1 = ρ−1
∗ . Under Assumptions

1.1–1.4, there exists a constant e0 = e0(C) > 0 such that
if e < e0, then (η1,t)t≥1, (γ1,t)t≥1, (η2,t)t≥1, and (γ2,t)t≥1

are monotone increasing and converge to η∗, γ∗, η∗, η∗ − γ∗
respectively. Consequently, for β̂t

j as defined in Theorem 2.1,

lim
t→∞

lim
n,m→∞

1
n

E[∥β̂t
j − β⋆∥2 | A] = η−1

∗

where the inner limit exists almost surely.
Proof of Proposition 5: From Theorem 2.1, for both j =

1, 2 and each fixed t, we have almost surely

lim
n,m→∞

1
n
∥β̂t

j − β⋆∥2 = η−1
j,t .

To apply the dominated convergence theorem, note that under
Assumption 1.2, the largest and smallest eigenvalues of A⊤A
converge to d+, d− ≥ 0. Then applying γ2,t > 0 by Theo-
rem 2.1 and that r 7→ f(r, γ1,t) is Lipschitz by Proposition 14,
from the forms of the iterations (18), there are constants
Ct > 0 (depending on the state evolution parameters (17)
and the value of f(0, γ1,t)) for which, for all large n,

∥rt
1∥ ≤ Ct(∥y∥+ ∥rt

2∥), ∥rt+1
2 ∥ ≤ Ct(

√
n + ∥rt

1∥).

Iterating these bounds and applying the definitions of β̂t
j , there

are constants C ′t > 0 for which, for both j = 1, 2 and all large
n,

∥β̂t
j∥/

√
n ≤ C ′t

(
1 +

(
∥y∥/

√
n
)t)

.

Then, applying ∥y∥ ≤ ∥A∥ ∥β⋆∥ + ∥ϵ∥, for some constants
C ′′t > 0,

∥β̂t
j∥4

n2
≤ C ′′t

(
1 +

(
∥β⋆∥2

n

)2t

+
(
∥ϵ∥2

n

)2t
)

≤ C ′′t

(
1 +

1
n

n∑
i=1

(
β⋆

i
4t + ϵ4t

i

))
. (53)

For each fixed t, this upper bound has finite expectation
independent of n, so {∥β̂t

j∥2/n}n≥1 is bounded in L2 and
hence uniformly integrable. Then the dominated convergence
theorem implies

lim
n,m→∞

1
n

E[∥β̂t
j − β⋆∥2 | A] = η−1

j,t .

Combining this with Theorem 1.9, we must have η−1
j,t ≥ η−1

∗
for every t, because each β̂t

j is a (y,A)-measurable estimator
of β⋆ and hence n−1E[∥β̂t

j − β⋆∥2 | A] ≥ mmsen.
It remains to show the monotonicity and convergence

of (ηj,t)t≥1 and (γj,t)t≥1. Applying the definition of the
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R-transform to write γ1,t = η2,t − γ2,t = −R(η2,t), the
iterations (17) yield

η−1
2,t+1 = G

(
mmse

(
−R

(
η−1
2,t

))−1
+ R

(
η−1
2,t

))
. (54)

We claim that for any x1 ∈ [η−1
∗ , G(−d−)),

x2 := G
(
mmse (−R (x1))

−1 + R (x1)
)
≤ x1 (55)

To see this, note that R(x) is negative and increasing by
Lemma 13, and mmse(γ) is decreasing over γ > 0 (by the law
of total variance). Then x 7→ mmse(−R(x)) is increasing over
x ∈ (0, G(−d−)). Proposition 1 implies that this function has
a unique fixed point x = η−1

∗ ∈ (0, G(−d−)). Furthermore
limx→0 mmse(−R(x)) = mmse(1) > 0 strictly, because
the prior distribution π has strictly positive variance. Then
mmse(−R(x)) > x for x < η−1

∗ and mmse(−R(x)) < x for
x > η−1

∗ , so in particular

mmse (−R (x1)) ≤ x1

when x1 ≥ η−1
∗ . Then mmse(−R(x1))−1 + R(x1) ≥ x−1

1 +
R(x1) = G−1(x1) > −d−. So x2 is well-defined in (55),
and also x2 ≤ G(G−1(x1)) = x1 as desired because G is
decreasing.

Finally, since η−1
2,t ≥ η−1

∗ for all t ≥ 1, (55)
implies that (η−1

2,t )t≥1 is a monotonically decreasing sequence,
which must then converge to a fixed point of x 7→
G(mmse(−R(x))−1 + R(x)). Such a fixed point satisfies
G−1(x) = mmse(−R(x))−1+R(x), i.e. x = mmse(−R(x)),
so it must be the unique fixed point η−1

∗ . Thus (η2,t)t≥1

monotonically increases to η∗. It is then straightforward to
verify from their definitions in (17) that (γ2,t)t≥1, (γ1,t+1)t≥1,
and (η1,t+1)t≥1 also monotonically increase to η∗ − γ∗, γ∗,
and η∗. ■

Proof of Theorem 1.10, Bounded Support: First note the
following “Pythagorean relation”: For j = 1, 2 and any t ≥ 1,

E[∥β⋆−β̂t
j∥2 | A]=E[∥β⋆−⟨σ⟩∥2 | A]+E[∥β̂t

j−⟨σ⟩∥2 | A]

because β̂t
j is a (y, A)-measurable estimator of β⋆ and ⟨σ⟩ =

E[β⋆ | y, A]. Then by Theorem 1.9 and Proposition 5, for both
j = 1, 2,

lim
t→∞

lim
n,m→∞

1
n

E[∥β̂t
j − ⟨σ⟩∥2 | A] = 0 (56)

where the inner limit exists almost surely. It follows from
this, uniform boundedness of (γ2,t)t≥1 and (η1,t)t≥1, the
convergence η1,t − γ2,t = γ1,t−1 → γ∗ from Proposition 5,
and the triangle inequality that

lim
t→∞

lim
n,m→∞

1
n

E
[∥∥∥∥ (A⊤A⟨σ⟩ − γ∗⟨σ⟩ −A⊤y

)
−
(
(A⊤A + γ2,tI)β̂t

2 − η1,tβ̂
t
1 −A⊤y

)∥∥∥∥2 ∣∣∣∣ A] = 0.

(57)

From the definitions of β̂t
j and (18b), γ2,tr

t
2 =(

A⊤A + γ2,tI
)
β̂t

2−A⊤y = η1,tβ̂
t
1−γ1,t−1r

t−1
1 . Substituting

this identity into (57),

lim
t→∞

lim
n,m→∞

1
n

E
[∥∥∥∥ (A⊤A⟨σ⟩ − γ∗⟨σ⟩ −A⊤y

)
+ γ1,t−1r

t−1
1

∥∥∥∥2 ∣∣∣ A] = 0.

Then dividing by γ2
1,t−1, applying γ1,t−1 → γ∗, and applying

that r 7→ f(r, γ∗) is Lipschitz by Proposition 14

lim
t→∞

lim
n,m→∞

1
n

E
[∥∥∥f (−γ−1

∗
(
A⊤A⟨σ⟩ − γ∗⟨σ⟩ −A⊤y

)
, γ∗

)
− f(rt−1

1 , γ∗)
∥∥∥2 ∣∣∣ A] = 0. (58)

Finally, applying again that r 7→ f(r, γ) is Lipschitz, (19)
implies that for each fixed t we have almost surely

lim
n,m→∞

1
n

∥∥f(rt−1
1 , γ∗)− f(rt−1

1 , γ1,t−1)
∥∥2

= E
[(

f(Rt−1
1 , γ∗)− f(Rt−1

1 , γ1,t−1)
)2]

Here, assuming that π has bounded support, f(r, γ) is
bounded, so the dominated convergence theorem yields

lim
n,m→∞

1
n

E
[∥∥f(rt−1

1 , γ∗)− f(rt−1
1 , γ1,t−1)

∥∥2
∣∣∣∣ A]

= E
[(

f(Rt−1
1 , γ∗)− f(Rt−1

1 , γ1,t−1)
)2]

. (59)

Representing Rt−1
1 = X⋆ +Z/

√
γ1,t−1 and applying γ1,t−1 →

γ∗, an application of the dominated convergence theorem
shows that the right side converges to 0 as t → ∞. Then,
recalling f(rt−1

1 , γ1,t−1) = β̂1
j and applying also the state-

ment (56) for β̂1
j and the triangle inequality, this shows

lim
t→∞

lim
n,m→∞

1
n

E
[∥∥f(rt−1

1 , γ∗)− ⟨σ⟩
∥∥2
∣∣∣ A] = 0.

Combining this with (58) concludes the proof. ■

APPENDIX A
STATE EVOLUTION OF VAMP

We prove Theorems 2.1, 2.2 and Propositions 2, 3 on Vector
AMP. These results do not require the high temperature con-
dition of Assumption 1.4, and the stationary initialization (21)
of VAMP and associated scalar parameters may be defined
with respect to any fixed point (η−1

∗ , γ∗) ∈ (0, G(−d−))×R+

of (11).
Proof of Theorem 2.1: This follows from [21, Theorems

1 and 2]. The state evolution (17) corresponds to the setting
of matched MMSE denoising described in [21, Theorem 2],
where E1(γ1,t) = mmse(γ1,t) and E2(γ2,t) = G(γ2,t) as
shown in [21, Eq. (41)]. (Our quantities ηj,t, γj,t defined
by (17) are the asymptotic quantities ηjt, γjt in [21].) We
note that under (17), γ1,t = η2,t − G−1(η−1

2,t ) = −R(η−1
2,t ),

which is positive for η2,t > 0 by Lemma 13(b). Furthermore,
setting A(γ) = γ · mmse(γ), we have γ2,t+1 = (1 −
A(γ1,t))/mmse(γ1,t). The argument of [21, Section IV.F]
shows A(γ) ∈ (0, 1) for any γ > 0, hence γ2,t+1 > 0 when
γ1,t > 0. Thus the parameters of (17) are all positive and
well-defined.
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The proof of [21, Theorem 1] is easily adapted to start
from an initialization (r1

2, γ2,1) instead of (r0
1, γ1,0), and to

use the deterministic state evolution parameters (17) and
the associated quantities αj,t = γj,t/ηj,t instead of their
empirical estimates. (We initialize with (r1

2, γ2,1) so that γ−1
2,1

is correctly matched with the variance of r1
2 − β⋆, without

requiring r0
1 to have a limit R0

1 that is a Gaussian pertur-
bation of X⋆.) The empirical convergence of D⊤1m×1 and
of (r1

2, β
⋆) on Pseudo-Lipschitz test functions of order 2 (as

required in [21]) are implied by our assumptions of empirical
Wasserstein convergence at all orders. The first condition of
[21, Theorem 1] follows from A(γ) ∈ (0, 1) discussed above,
the second condition from the continuity of mmse(·) and
G(·), and the final uniform Lipschitz condition for f(·, γ)
from Assumption 1.3. The convergence (19) is then shown in
[21, Theorem 1, Eq. (45)], and (20) is shown in [21, Theo-
rem 2, Eq. (56c)]. ■

A. Identities for Stationary VAMP

Proposition 6: Suppose Assumptions 1.1 and 1.3 hold, and
let (η−1

∗ , γ∗) ∈ (0, G(−d−))×R+ be any fixed point of (11).
Then η−1

∗ ≤ ρ∗ and η∗ − γ∗ ≥ ρ−1
∗ > 0.

Proof: Let (X⋆, Y) be as defined in the scalar channel (7).
The law of total variance implies η−1

∗ = mmse(γ∗) ≤
V(X⋆) = ρ∗. The second claim η∗ − γ∗ ≥ ρ−1

∗ follows from
comparing the MMSE with the error of the linear estimator
aY with a = ρ∗

ρ∗+γ−1
⋆

:

η−1
∗ = E (X⋆ − E [X⋆ | Y])2 ≤ E

(
X⋆ − a

(
X⋆ +

1
√

γ∗
Z

))2

= (1− a)2ρ∗ +
a2

γ∗
=

1
ρ−1
∗ + γ∗

. (60)

Rearranging yields η∗ − γ∗ ≥ ρ−1
∗ .

Proof of Proposition 2: Writing (11) as η−1
∗ = mmse(γ∗)

and η−1
∗ = G(η∗−γ∗), it is clear that the initialization γ1,0 =

γ∗ yields η1,t = η2,t = η∗, γ1,t = γ∗, and γ2,t = η∗ − γ∗ for
all t.

Then substituting y = Aβ⋆+ϵ and A = Q⊤DO, the update
rule (18a) for rt

1 can be rearranged as

rt
1 =O⊤ΛOrt

2+O⊤
[
η∗
γ∗

(D⊤D+(η∗ − γ∗)I)−1D⊤D

]
Oβ⋆+e.

Applying the identity (D⊤D + (η∗ − γ∗)I)−1D⊤D = I −
(η∗−γ∗)(D⊤D+(η∗−γ∗)I)−1 = (γ∗/η∗)(I−Λ) we obtain

yt := rt
1 − e− β⋆ = O⊤ΛO(xt + β⋆) + O⊤(I − Λ)Oβ⋆ − β⋆

= O⊤ΛOxt

which may be written as st = Oxt and yt = O⊤Λst. Setting
rt
1 = pt + β⋆, we have from (18b)

xt+1 := rt+1
2 − β⋆

=
η∗

η∗ − γ∗
f(pt + β⋆, γ1,t)−

γ∗
η∗ − γ∗

(pt + β⋆)− β⋆

= F (pt, β⋆).

For t = 0, this gives the initialization x1 = F (p0, β⋆),
and for t ≥ 1, we have pt = yt + e so this gives the update
for xt+1. ■

Proposition 7: Suppose Assumptions 1.1 and 1.3 hold, and
let (η−1

∗ , γ∗) be any fixed point of (11). Let Y denote an
observation from the scalar channel (7) with variance γ−1

∗ .
Then the functions y 7→ f(y, γ∗) and (p, β) 7→ F (p, β) are
continuously differentiable and Lipschitz. We have

f ′(y, γ∗) :=
∂

∂y
f(y, γ∗) = γ∗ V(X⋆ | Y = y),

F ′(p, β) :=
∂

∂p
F (p, β) =

η∗
η∗ − γ∗

f ′(p + β, γ∗)−
γ∗

η∗ − γ∗
,

(61)

and these are non-constant in y and p. For P ∼ N(0, γ−1
∗ )

and X⋆ ∼ π independent, we also have

EF (P, X⋆) = 0, EF ′ (P, X⋆) = 0, E
(
F (P, X⋆)2

)
= δ∗

(62)

Proof: Proposition 14 shows that y 7→ f(y, γ∗)
is continuously-differentiable and Lipschitz, with derivative
given by (61). Since π is also non-Gaussian by Assump-
tion 1.3, y 7→ f(y, γ∗) is non-linear, and hence y 7→ f ′(y, γ∗)
is non-constant. Then the same properties hold for F and F ′,
and the form (61) for F ′ follows from definition of F .

The first two identities in (62) follow from EP = EX⋆ =
Ef(P + X⋆, γ∗) = 0 and Ef ′(P + X⋆, γ∗) = γ∗ ·mmse(γ∗) =
γ∗/η∗. For the last identity in (62), denote for simplicity
f(y) = f(y, γ∗). Note that

E (f (P + X⋆)− X⋆)2 = mmse(γ∗) = η−1
∗

and thus(
η∗

η∗ − γ∗

)2(
E (f (P + X⋆)− X⋆)2 − γ∗

η2
∗

)
=
(

η∗
η∗ − γ∗

)2( 1
η∗
− γ∗

η2
∗

)
=

1
η∗ − γ∗

= δ∗. (63)

It follows that

E
(
F (P, X⋆)2

)
= E

(
η∗

η∗ − γ∗
f (P + X⋆)− γ∗

η∗ − γ∗
P− η∗

η∗ − γ∗
X⋆

)2

=
(

η∗
η∗ − γ∗

)2(
E (f (P + X⋆)− X⋆)2 +

(
γ∗
η∗

)2

EP2

− 2γ∗
η∗

E ((f (P + X⋆)− X⋆) P)
)

(a)
=
(

η∗
η∗ − γ∗

)2(
E (f (P + X⋆)− X⋆)2 +

γ∗
η2
∗

− 2
η∗

E (f ′ (P + X⋆))
)

(b)
=
(

η∗
η∗ − γ∗

)2

E
(

(f (P + X⋆)− X⋆)2 − γ∗
η2
∗

)
= δ∗

where we used Gaussian integration by parts in (a) and
Ef ′(P + X⋆, γ∗) = γ∗/η∗ and (63) in (b).
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Lemma 7: Recall b∗, κ∗ from (25) and a∗, c∗, e∗ from (31).
We have the following identities

dA
∗ := E

1
D2 + η∗ − γ∗

=
1
η∗

(64a)

dB
∗ := E

D2

D2 + η∗ − γ∗
=

γ∗
η∗

(64b)

dC
∗ := E

1
(D2 + η∗ − γ∗)

2 =
1
η2
∗

(
γ∗

η∗ − γ∗

)2

κ∗ +
1
η2
∗

(64c)

dD
∗ := E

D2

(D2 + η∗ − γ∗)
2 = −γ2

∗
η2
∗

(
κ∗

η∗ − γ∗

)
+

γ∗
η2
∗

(64d)

dE
∗ := E

D4

(D2 + η∗ − γ∗)
2 =

γ2
∗

η2
∗

(1 + κ∗) (64e)

Also, for the quantities L, Eb from Proposition 3, we have

EL = 0, EL2 = κ∗, EE2
b = b∗,

ED2L = a∗, ED2L2 = c∗, ED2E2
b = e∗. (65)

Proof: (64a) is the identity η−1
∗ = G(η∗ − γ∗), which

is a rewriting of the second equation of (11). This then
implies EL = 0, as well as EL2 = κ∗. (64b) follows from
the identity dB

∗ + (η∗ − γ∗) dA
∗ = 1, and this then implies

ED2L = a∗. (64c) follows from rearranging the identity
κ∗ = EL2 = (η∗−γ∗)

2

γ2
∗

(η2
∗d

C
∗ − 1). (64d) then follows from

the identity dD
∗ + (η∗ − γ∗) dC

∗ = dA
∗ , and this then implies

EE2
b = b∗ as well as ED2L2 = c∗. Finally, (64e) follows from

the identity dE
∗ +(η∗ − γ∗)

2
dC
∗ +2 (η∗ − γ∗) dD

∗ = 1, and this
then implies ED2E2

b = e∗.
Remark 1.1: This shows b∗, κ∗ > 0 strictly, because D has

strictly positive variance by Theorem 1.1, and hence so do L
and Eb. Also by Proposition 6, we have η∗ − γ∗ > 0, hence
δ∗, σ

2
∗ > 0.

B. State Evolution of Stationary VAMP

Proof of Proposition 3: Note that ξ = Qϵ ∼ N(0, Im×m).
Then D⊤ξ ∈ Rn may be written as the entrywise product of
D⊤1m×1 ∈ Rn and a vector ξ̄ ∼ N(0, In×n), both when
m ≥ n and when m ≤ n. The almost-sure convergence H

W→
H is then a straightforward consequence of Propositions 9, 10,
and 12, where all random variables of H have finite moments
of all orders under Assumptions 1.2 and 1.3. The identities
κ∗ = EL2 and b∗ = EE2

b were shown in (65). ■
Proof of Theorem 2.2: We have δ11 = EX2

1 = δ∗ by
the last identity of (62). Supposing that δtt = EX2

t = δ∗,
we have by definition EY2

t = κ∗δtt = σ2
∗ = δ∗κ∗. Since Yt

is independent of E, we have Yt + E ∼ N(0, σ2
∗ + b∗) where

this variance is σ2
∗ + b∗ = γ−1

∗ by the definition of b∗. Then
EX2

t+1 = δ∗ by the last identity of (62), so EX2
t = δ∗ and

EY2
t = σ2

∗ for all t ≥ 1.
Noting that ∆t is the upper-left submatrix of ∆t+1, let us

denote

∆t+1 =
(

∆t δt

δ⊤t δ∗

)
We now show by induction on t the following three statements:

1) ∆t ≻ 0 strictly.

2) We have

Yt =
t−1∑
k=1

Yk

(
∆−1

t−1δt−1

)
k

+ Ut,

St =
t−1∑
k=1

Sk

(
∆−1

t−1δt−1

)
k

+ U′t (66)

where Ut, U
′
t are Gaussian variables with strictly pos-

itive variance, independent of H, (Y1, . . . ,Yt−1), and
(S1, . . . ,St−1).

3) We have

(H,Xt+1, St, Yt)
W→ (H, X1, . . . ,Xt+1, S1, . . . ,St, Y1, . . . ,Yt) .

We take as base case t = 0, where the first two statements
are vacuous, and the third statement requires (H,x1) W→
(H, X1) almost surely as n →∞. Recall that x1 = F (p0, β⋆),
and that F (p, β) is Lipschitz by Proposition 7. Then this third
statement follows from Propositions 3 and 10.

Supposing that these statements hold for some t ≥ 0, we
now show that they hold for t+1. To show the first statement
∆t+1 ≻ 0, note that for t = 0 this follows from ∆1 = δ∗ >
0 by Remark 1.1. For t ≥ 1, given that ∆t ≻ 0, ∆t+1 is
singular if and only if there exist constants α1, . . . , αt ∈ R
such that

Xt+1 = F (Yt + E, X⋆) =
t∑

r=1

αrXr

with probability 1. From the induction hypothesis, Yt =∑t−1
k=1 Yk

(
∆−1

r δr

)
k

+ Ut where Ut is independent of
H, Y1, . . . ,Yt−1 and hence also of E, X⋆, X1, . . . ,Xt. We now
show that for any realized values (e0, x0, w0) of(

E +
t−1∑
k=1

Yk

(
∆−1

r δr

)
k
, X⋆,

t∑
r=1

αrXr

)
,

we have that P (F (Ut + e0, x0) ̸= w0) > 0. This would imply
that ∆t+1 ≻ 0. From Proposition 7, f ′(y, γ∗) is non-constant,
so there exists y ∈ R such that f ′(y, γ∗) ̸= γ∗/η∗. This implies
that there exists some u0 ∈ R such that

F ′ (u0 + e0, x0)=
η∗

η∗−γ∗
f ′ (u0+e0 + x0, γ∗)−

γ∗
η∗ − γ∗

̸= 0.

Then by the inverse function theorem, F (u+e0, x0) = w0 has
at most one solution for u in an open neighborhood of u0.
Since Ut is Gaussian with strictly positive variance, this shows
P (F (Ut + e0, x0) ̸= w0) > 0 as desired. We thus have proved
the first inductive statement that ∆t+1 ≻ 0.

To study the empirical limit of st+1, let U = (eb, St, ΛSt)
and V = (e, Xt, Yt). (For t = 0, this is simply U = eb and
V = e.) By the induction hypothesis, the independence of
(S1, . . . ,St) with (Eb, L), and the identities EE2

b = b∗ and
EL = 0 and EL2 = κ∗, almost surely as n →∞,

1
n

(eb, St, ΛSt)
⊤ (eb, St, ΛSt) →

 b∗ 0 0
0 ∆t 0
0 0 κ∗∆t

 ≻ 0

Authorized licensed use limited to: Yale University. Downloaded on May 03,2024 at 03:53:16 UTC from IEEE Xplore.  Restrictions apply. 



2130 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 3, MARCH 2024

So almost surely for sufficiently large n, conditional on
(H,Xt+1, St, Yt), the law of st+1 is given by its law con-
ditioned on U = OV , which is (see [34, Lemma B.2])

st+1
∣∣
U=OV

= Oxt+1
∣∣
U=OV

L= U
(
U⊤U

)−1
V ⊤xt+1 + ΠU⊥ÕΠ⊤V ⊥xt+1 (67)

where Õ ∼ Haar(SO(n − (2t + 1))) and ΠU⊥ , ΠV ⊥ ∈
Rn×(n−(2t+1)) are matrices with orthonormal columns span-
ning the orthogonal complements of the column spans of U, V
respectively. We may replace st+1 by the right side of (67)
without affecting the joint law of

(
H,Xt+1, St, Yt, s

t+1
)
.

For t = 0, we have EX1E = 0 since X1 is independent
of E. For t ≥ 1, by the definition of Xt+1, the condition
EF ′(P, X⋆) = 0 from (62), and Stein’s lemma, we have
EXt+1E = 0 and EXt+1Yr = 0 for each r = 1, . . . , t. Then
by the induction hypothesis, almost surely as n →∞,

(
n−1U⊤U

)−1 →

 b∗ 0 0
0 ∆t 0
0 0 κ∗∆t

−1

,

n−1V ⊤xt+1 →

 0
δt

0

 .

Then by (67) and Propositions 11 and 12, it follows that

(
H,Xt+1, St, Yt, s

t+1
) W→

(
H, X1, . . . ,Xt+1, S1, . . . ,St,

Y1, . . . Yt,

t∑
r=1

Sr

(
∆−1

t δt

)
r
+ U′t+1

)
where U′t+1 is the Gaussian limit of the second
term on the right side of (67) and is independent of
H, X1, . . . ,Xt+1, S1, . . . ,St, Y1, . . . Yt. We can thus set
St+1 :=

∑t
r=1 Sr

(
∆−1

t δt

)
r

+ U′t+1. Then (S1, . . . ,St+1)
is multivariate Gaussian and remains independent of H and
(Y1, . . . ,Yt). Since n−1∥st+1∥2 = n−1∥xt+1∥2 → δ∗ almost
surely as n → ∞ by the induction hypothesis, we have
ES2

t+1 = δ∗. From the form of St+1, we may check also
ESt+1(S1, . . . ,St) = δt, so (S1, . . . ,St+1) has covariance
∆t+1 as desired. Furthermore

∑t
r=1 Sr

(
∆−1

t δt

)
r

∼
N
(
0, δ⊤t ∆−1

t δt

)
. From ∆t+1 ≻ 0 and the Schur complement

formula, δ∗ − δ⊤t ∆−1
t δt > 0 strictly. Then U′t+1 has strictly

positive variance, since the variance of
∑t

r=1 Sr

(
∆−1

t δt

)
r

is less than the variance of St+1. This proves the second
equation in (66) for t + 1.

Now, we study the empirical limit of yt+1. Let U =
(e, Xt+1, Yt), V = (eb, St+1, ΛSt). Similarly by the induction
hypothesis and the empirical convergence of (H,St+1) already
shown, almost surely as n →∞,

1
n

(eb, St+1, ΛSt)
⊤ (eb, St+1, ΛSt)

→

 b∗ 0 0
0 ∆t+1 0
0 0 κ∗∆t

 ≻ 0.

Then the law of yt+1 conditional on (H,Xt+1, St+1, Yt) is
given by its law conditioned on U = O⊤V , which is

yt+1
∣∣
U=O⊤V

= O⊤Λst+1
∣∣
U=O⊤V

L= U
(
V ⊤V

)−1
V ⊤Λst+1 + ΠU⊥ÕΠ⊤V ⊥Λst+1 (68)

where Õ ∼ Haar(SO(n − (2t + 2))). From the convergence
of (H,St+1) already shown, almost surely as n →∞,

(
n−1V ⊤V

)−1 →

 b∗ 0 0
0 ∆t+1 0
0 0 κ∗∆t

−1

,

n−1V ⊤Λst+1 →

 0
0

κ∗δt

 .

Then by (68) and Propositions 11 and 12,(
H,Xt+1, St+1, Yt, y

t+1
) W→

(
H, X1, . . . ,Xt+1,

S1, . . . ,St+1, Y1, . . . Yt,

t∑
r=1

Yr

(
∆−1

t δt

)
r
+ Ut+1

)
where Ut+1 is the limit of the second term on the
right side of (68), which is Gaussian and inde-
pendent of H, S1, . . . ,St+1, Y1, . . . Yt. Setting Yt+1 :=∑t

r=1 Yr

(
∆−1

t δt

)
r

+ Ut+1, it follows that (Y1, . . . ,Yt+1)
remains independent of H and (S1, . . . ,St+1). We may
check that EYt+1(Y1, . . . ,Yt) = κ∗δt, and we have also
n−1∥yt+1∥2 = n−1∥Λst+1∥2 → κ∗δ∗ so EY2

t+1 = κ∗δ∗.
From ∆t+1 ≻ 0 and the Schur complement formula, note that∑t

r=1 Yr

(
∆−1

t δt

)
r

has variance κ∗δ
⊤
t ∆−1

t δt which is strictly
smaller than κ∗δ∗, so Ut+1 has strictly positive variance. This
proves the first equation in (66) for t + 1, and completes the
proof of this second inductive statement.

Finally, recall xt+2 = F
(
yt+1 + e, β⋆

)
where F is Lips-

chitz. Then by Proposition 10, almost surely

(H, Xt+2, St+1, Yt+1)
W→(H, X1, . . . , Xt+2, S1, . . . , St+1, Y1, . . . , Yt+1)

where Xt+2 = F (Yt+1 + E, X⋆), showing the third inductive
statement and completing the induction. ■

Proof of Corollary 1: This follows from the empirical
Wasserstein convergence of (e, Xt, Yt) guaranteed by Theo-
rem 2.2. The statements n−1X⊤e → 0 and n−1X⊤Y →
0 follow from the identity EF ′(P, X⋆) = 0 in (62) and Stein’s
lemma, and the remaining statements follow directly from the
independence of (Y1, . . . ,Yt) with E and from their specified
Gaussian laws. ■

Proof of Corollary 2: This follows directly from The-
orem 2.2, the independence of (S1, . . . ,St) and D, and our
definition of empirical Wasserstein convergence. ■

APPENDIX B
PROPERTIES IN HIGH TEMPERATURE

We show uniqueness of the fixed point to (11) and conver-
gence of the stationary VAMP state evolution, assuming the
high temperature condition of Assumption 1.4.
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A. Fixed-Point Equation

Proof: [Proof of Proposition 1] Provided that the fixed
point (η−1

∗ , γ∗) is unique, the statements η−1
∗ ≤ ρ∗ and η∗ −

γ∗ ≥ ρ−1
∗ were shown in Proposition 6.

To show uniqueness of this fixed point, by the law of total
variance, mmse(γ) ≤ ρ∗ ≤ C for any γ > 0. Then for all
e < 1/(2C), we have ρ∗ < G(−d−) from Lemma 13(a),
and −R(η−1) > 0 for all η−1 ∈ (0, ρ∗] from Lemma 13(b).
Extending −R by continuity to −R(0) = −E[−D2] = d∗ >
0 via (219), this shows that

h(η−1) := mmse(−R(η−1)) (69)

is a well-defined continuous map from [0, ρ∗] to itself. Apply-
ing Stein’s lemma, the derivative of γ 7→ mmse(γ) may be
computed to be

mmse′(γ) = −E[V[X⋆ | Y]2], (70)

see e.g. [46, Theorem 2] whose scalar specialization (m =
1 and G =

√
γ) yields d

d
√

γ mmse(γ) = −2
√

γ E[V[X⋆ | Y]2],
and (70) then follows from the chain rule. Then the map (69)
has derivative

h′(η−1) = E[V[X⋆ | Y]2] ·R′(η−1) (71)

where E, V are with respect to the scalar channel (7) with
inverse-variance γ = −R(η−1). By the condition (6) of
Assumption 1.3, for any such channel, E[V[X⋆ | Y]2] ≤
C where C > 0 depends only on C. By Lemma 13(b–
c), R′(η−1) > 0 and R′(η−1) < O(e2) for all
η−1 ∈ (0, ρ∗). Then for e < e0 small enough, we have
supη−1∈(0,ρ∗) h′(η−1) ∈ (0, 1) strictly. Then h(·) defines a
contractive map on [0, ρ∗], so it has a unique fixed point
η−1
∗ ∈ [0, ρ∗] by the Banach fixed-point theorem. We have

h(0) = mmse(d∗) > 0 strictly, because π has strictly positive
variance. Thus there is a unique fixed point (η−1

∗ , γ∗) to (11)
where η−1

∗ ∈ (0, ρ∗] ⊂ (0, G(−d−)) and γ∗ = −R(η−1
∗ ) > 0.

B. Explicit High Temperature Condition

Proof of Theorem 1.11: Suppose Assumptions 1.1–1.4
hold for the linear model in (1). Consider the rescaled problem:
y = Arescaledβ⋆

rescaled + ϵ where Arescaled :=
√

CA and
β⋆

rescaled := 1√
C
β⋆. Note that Arescaled = Q⊤DrescaledO

with Drescaled :=
√

CD and D⊤
rescaled1m×1

W→ Drescaled with
Drescaled :=

√
CD.

We then have that (i) Assumptions 1.1 and 1.2 hold for
the rescaled problem with Drescaled and Drescaled in place
of D and D; (ii) Assumption 1.4 holds for the rescaled
problem: supp(D2

rescaled) ⊆ [d∗,rescaled−erescaled, d∗,rescaled+
erescaled] with d∗,rescaled := Cd∗ and erescaled := Ce; (iii)
Assumption 1.3 holds for the rescaled problem with parameter
Crescaled = 1 in place of C. This follows from Proposition 13
and that the rescaled prior X⋆

rescaled := 1√
C
X⋆ either has

bounded support contained in [−1, 1] or admits a density
function

√
C exp

{
−g(

√
Cx)
}

with d2

dx2 g(
√

Cx) ≥ 1.
Apply Theorem 1.7–Theorem 1.10 to the rescaled problem.

Along with (ii), (iii) above, we obtain that there exists an
absolute constant a := e0(Crescaled = 1) > 0 such that if

erescaled := Ce ≤ a, (13), (14) and (15) hold for the rescaled
problem. It is straightforward to show that (13), (14) and (15)
hold for the original problem if and only if they hold for the
rescaled problem. The proof is now finished. ■

C. Scalar Parameters

Let us record here the leading-order behaviors of several
quantities related to the scalar parameters of (25) and (31) in
the small parameter e of Assumption 1.4.

Proposition 8: Suppose Assumptions 1.1, 1.3, and 1.4 hold.
Let κ2 = V(D2) and let R(z) be the R-transform of −D2. For
some constant e0 = e0(C) > 0, if e < e0, then for any constant
c > 0 and all z ∈ (0, c),

R(z) = −d∗ + κ2z(1 + z ·O(e)), R′(z) = κ2 + O(e3),
R′′(z) = O(e3). (72)

Furthermore

κ2 ≤ min(d∗e, e2), γ∗ = d∗ − κ2η
−1
∗
(
1 + η−1

∗ ·O(e)
)
,

κ∗ =
(

η∗ − γ∗
η∗

)2
κ2

d2
∗

(
1 + η−1

∗ ·O(e)
)
,

αA
∗ =

η∗√
κ2

(
1 + η−1

∗ ·O(e)
)
, αB

∗ = −η∗ + O(e),

b∗ =
1
d∗

(
1 + η−1

∗ ·O
(

κ2

d∗

))
,

e∗
b∗

= d∗ + O(e),
a∗√
κ∗

= O(e),
c∗
κ∗

= d∗ + O(e). (73)

Proof: (72) and the bounds for κ2 follow from Lemma
13(c) and E[−D2] = −d∗. We will use implicitly the bound
η−1
∗ ≤ ρ∗ ≤ C from Proposition 1, and hence η−1

∗ = O(1),
throughout the proof.

Applying (72) to the fixed point equation γ∗ = −R(η−1
∗ )

in (11), we have

γ∗ = d∗ − κ2η
−1
∗
(
1 + η−1

∗ ·O(e)
)
. (74)

For the remaining bounds, let us first show

E
η2
∗

(D2 + η∗ − γ∗)2
= 1 + κ2η

−2
∗ (1 + η−1

∗ ·O(e)). (75)

Note that |D2 − d∗| ≤ e, κ2 ≤ e, and (74) together imply
|D2 − γ∗| = O(e). Then for all e ≤ e0(C) sufficiently small,

η2
∗

(D2 + η∗ − γ∗)2
=

(
1

1− γ∗−D2

η∗

)2

= 1 +
∞∑

k=1

(k + 1)
(

γ∗ − D2

η∗

)k

(76)

which is an absolutely convergent series. Let µj = E[(d∗ −
D2)j ] be the jth central moment of −D2 (where µ0 = 1 and
µ1 = 0), which has the bound |µj | ≤ ej−2κ2 for all j ≥ 2 by
Lemma 13(c). Applying this bound and |γ∗ − d∗| = O(κ2) =
O(e), for all k ≥ 3 and a constant C = C(C) > 0 we have∣∣∣∣∣E

(
γ∗ − D2

η∗

)k
∣∣∣∣∣ =

∣∣∣∣∣∣
k∑

j=0

(
k

j

)
η−k
∗ (γ∗ − d∗)k−jµj

∣∣∣∣∣∣
≤ 2kη−k

∗ (Ce)k−2κ2.
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Then the summation of the terms of (76) for k ≥ 3 is bounded
by κ2η

−3
∗ ·O(e) for all e ≤ e0(C) sufficiently small. For k =

1 and k = 2, we have

E
(

γ∗ − D2

η∗

)
=

γ∗ − d∗
η∗

= −κ2η
−2
∗ + κ2η

−3
∗ ·O(e)

E
(

γ∗ − D2

η∗

)2

=
(γ∗ − d∗)2 + κ2

η2
∗

= κ2η
−2
∗ + κ2η

−4
∗ ·O(e)

Applying these to (76) gives (75) as claimed.
Now applying (75) to the definition of κ∗ in (25),

κ∗ =
(

η∗ − γ∗
γ∗

)2
κ2

η2
∗

(
1 + η−1

∗ ·O(e)
)

=
(

η∗ − γ∗
η∗

)2
κ2

d2
∗

(
1 + η−1

∗ ·O(e)
)
, (77)

the second equality applying γ∗ = d∗(1+O(e)) as implied by
(74) and κ2 = O(d∗e). Applying the first equality of (77) to
the definition of αA

∗ in (31), and then applying this and (74)
to the definition of αB

∗ ,

αA
∗ =

η∗√
κ2

(1 + η−1
∗ ·O(e)),

αB
∗ =

η2
∗

κ2
· (γ∗ − d∗) · (1 + η−1

∗ O(e)) = −η∗ + O(e).

Inverting (74) and applying κ2 = d∗e, we have γ−1
∗ = d−1

∗ (1+
η−1
∗ O(κ2/d∗)). Then applying (77) and (η∗−γ∗)/η∗ ∈ (0, 1)

where this lower bound of 0 follows from Proposition 1,
we obtain from the definition of b∗ in (25) that

b∗ =
1
γ∗
− κ∗

η∗ − γ∗

=
1
d∗

(
1 + η−1

∗ ·O
(

κ2

d∗

))
+

1
d∗η∗

·O
(

κ2

d∗

)
=

1
d∗

(
1 + η−1

∗ ·O
(

κ2

d∗

))
.

Applying κ2/d∗ = O(e), we have from (77) that κ∗ =
d−1
∗ O(e). Then

e∗
b∗

=
1+κ∗

b∗
=d∗(1 + O(κ2/d∗))(1 + d−1

∗ O(e)) = d∗ + O(e).

Applying d∗γ
−1
∗ = 1+ η−1

∗ O(κ2/d∗) and (77), we have from
the definition of a∗ in (31) that

a∗√
κ∗

=
(η∗ − γ∗)(1− d∗γ

−1
∗ )

√
κ∗

= O

(
(η∗ − γ∗)/(d∗η∗) · κ2√

κ∗

)
= O(

√
κ2) = O(e).

Applying d∗γ
−1
∗ = 1 + η−1

∗ O(κ2/d∗) = 1 + O(e), d∗ − γ∗ =
κ2η

−1
∗ (1 + η−1

∗ O(e)), and (77), we have from the definition
of c∗ in (31) that

c∗
κ∗

= − (η∗ − γ∗) +
1
κ∗

(
η∗ − γ∗

γ∗

)2

(d∗ − γ∗)

= −(η∗ − γ∗) +
η2
∗(d∗ − γ∗)

κ2
(1 + η−1

∗ ·O(e))

= −(η∗ − γ∗) + η∗(1 + η−1
∗ ·O(e)) = d∗ + O(e).

D. Convergence of Stationary VAMP

Lemma 8: Recall the replica-symmetric potential
iRS(η−1, γ) from (12), and let (η−1

∗ , γ∗) ∈ (0, G(−d−))×R+

be any fixed point of (11) for which γ∗ is a local minimizer
of

γ 7→ sup
η−1∈(0,G(−d−))

iRS(η−1, γ)

Then the conclusion limmin(s,t)→∞ δst = δ∗ of Proposition 4
holds for the stationary initialization (21).

Proof: Recall that δtt = δ∗ for all t ≥ 1 from Theorem 2.2.
Then δst = E [XsXt] ≤

√
E [X2

s] E [X2
t ] = δ∗ for all s, t ≥ 1.

For s = 1 and any t ≥ 2, observe also that

δ1t = EX1Xt = E [F (P0, X
⋆) F (Yt−1 + E, X⋆)]

= E [E [F (P0, X
⋆) F (Yt−1 + E, X⋆) | X⋆]]

= E[E [F (P0, X
⋆) | X⋆]2] ≥ 0 (78)

where the last equality holds because P0, Yt−1 + E, and X⋆

are independent, with P0 and Yt−1 + E equal in law (by the
identity σ2

∗ + b∗ = γ−1
∗ ).

Consider now the map δst 7→ δs+1,t+1. Recalling that
EY2

t = σ2
∗ and EYsYt = κ∗δst, we may represent

(Ys + E, Yt + E) L=
(√

κ∗δst + b∗G +
√

σ2
∗ − κ∗δstG

′,√
κ∗δst + b∗G +

√
σ2
∗ − κ∗δstG

′′
)

where G, G′, G′′ are jointly independent standard Gaussian
variables. Denote

P′δ :=
√

κ∗δ + b∗ · G +
√

σ2
∗ − κ∗δ · G′,

P′′δ :=
√

κ∗δ + b∗ · G +
√

σ2
∗ − κ∗δ · G′′

and define g : [0, δ∗] → R by g(δ) :=
E [F (P ′δ, X

⋆) F (P ′′δ , X⋆)]. Then δs+1,t+1 = g(δst).
We claim that for any δ ∈ [0, δ∗], we have g(δ) ≥ 0, g′(δ) ≥

0, and g′′(δ) ≥ 0. The first bound g(δ) ≥ 0 follows from

g(δ) = E
[
E[F (P′δ, X

⋆) F (P′′δ , X⋆) | X⋆, G]
]

= E
[
E [F (P′δ, X

⋆) | X⋆, G]2
]
≥ 0,

because P′δ, P
′′
δ are independent and equal in law conditional

on G, X⋆. Differentiating in δ and applying Gaussian integra-
tion by parts,

g′(δ) = 2E
[
F ′ (P′δ, X

⋆) F (P′′δ , X⋆)

×

(
κ∗

2
√

κ∗δ + b∗
· G− κ∗

2
√

σ2
∗ − κ∗δ

· G′
)]

=
κ∗√

κ∗δ + b∗
E [F ′ (P′δ, X

⋆) F (P′′δ , X⋆) G]

− κ∗√
σ2
∗ − κ∗δ

E [F ′ (P′δ, X
⋆) F (P′′δ , X⋆) G′]

= κ∗E
[
F ′′ (P′δ, X

⋆) F (P′′δ , X⋆)+F ′ (P′δ, X
⋆) F ′ (P′′δ , X⋆)

]
− κ∗E [F ′′ (P′δ, X

⋆) F (P′′δ , X⋆)]
= κ∗E [F ′ (P′δ, X

⋆) F ′ (P′′δ , X⋆)] .

Authorized licensed use limited to: Yale University. Downloaded on May 03,2024 at 03:53:16 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: RANDOM LINEAR ESTIMATION WITH ROTATIONALLY-INVARIANT DESIGNS 2133

Then g′(δ) = κ∗E
[
E[F ′(P′δ, X

⋆) | G, X⋆]2
]
≥ 0, and a similar

argument shows g′′(δ) ≥ 0.
Observe that at δ = δ∗, we have P′δ∗ = P′′δ∗ =

√
σ2
∗ + b∗ ·

G = G/
√

γ∗ which is equal in law to P ∼ N(0, γ−1
∗ ). Then

g(δ∗) = E[F (P, X⋆)2] = δ∗ by (62). So g : [0, δ∗] → [0, δ∗] is
a nonnegative, increasing, convex function with a fixed point
at δ∗. We claim that

g′(δ∗) < 1 (79)

This then implies that δ∗ is the unique fixed point of
g(·) over [0, δ∗], and limt→∞ g(t)(δ) = δ∗ for any δ ∈
[0, δ∗]. Observe from (78) that δ1t = δ12 for all t ≥ 2,
so δt,t+s = g(t−1)(δ1,1+s) = g(t−1)(δ12) for any s ≥ 1. Then
limmin(s,t)→∞ δst = δ∗ follows.

It remains to show (79). For this, applying (61) and
E[F ′(P, X⋆)] = 0 by (62), we have

g′(δ∗) = κ∗E[F ′(P′δ∗ , X
⋆)2]

= κ∗

(
η2
∗

(η∗ − γ∗)2
E[f ′(P + X⋆, γ∗)2]−

γ2
∗

(η∗ − γ∗)2

)
.

(80)

Recall the replica-symmetric potential iRS from (12), whose
gradient and Hessian in (γ, η−1) are given by

∇iRS(η−1, γ) =
1
2

(
mmse(γ)− η−1 −R(η−1)− γ

)
∇2iRS =

1
2

(
mmse′(γ) −1

−1 −R′(η−1)

)
where we have used the I-MMSE relation i′(γ) = 1

2mmse(γ)
[38]. The condition that (η−1

∗ , γ∗) is a fixed point of (11)
implies ∇iRS(η−1

∗ , γ∗) = 0. Here, η−1 7→ iRS(η−1, γ∗) is
concave because −R′(η−1) > 0 by Lemma 13(b), so η−1

∗ is
the global maximizer of this function. Then, the given assump-
tion that γ∗ is a local minimizer of γ 7→ supη−1 iRS(η−1, γ)
implies the Schur-complement condition for ∇2iRS

mmse′(γ) +
1

R′(η−1)
≥ 0. (81)

Differentiating R(z) = G−1(z) − z−1 where G(z) = E[(z +
D2)−1], and applying κ∗ from (25),

R′(η−1
∗ ) =

1
G′(G−1(η−1

∗ ))
+ η2

∗

=
1

G′(η∗ − γ∗)
+ η2

∗

= η2
∗ −

1
E[(D2 + η∗ − γ∗)−2]

= η2
∗ −

η2
∗

( η∗
η∗−γ∗

)2κ∗ + 1
.

Then
1

R′(η−1
∗ )

=
1
η2
∗

(
1 +

(η∗ − γ∗)2

η2
∗κ∗

)
.

Recalling also mmse′(γ) = −E[V[X⋆ | Y]2] = −γ−2
∗ E[f ′(P+

X⋆, γ∗)2] from (70) and Proposition 14, the condition (81)
may be rearranged as

E[f ′(P + X⋆, γ∗)2] ≤
γ2
∗

η2
∗

(
1 +

(η∗ − γ∗)2

η2
∗κ∗

)
.

Substituting into (80) gives g′(δ∗) ≤ γ2
∗/η2

∗ < 1 where the
second inequality applies η∗ − γ∗ > 0 from Proposition 1.
This shows the desired claim (79), concluding the proof.

Proof of Proposition 4: For e < e0 sufficiently small,
we have shown in the proof of Proposition 1 that h′(η−1

∗ ) <
1 strictly where h′(η−1) = −mmse′(γ) ·R′(η−1) is as defined
in (71). Rearranging this gives mmse′(γ∗)+1/R′(η−1

∗ ) > 0,
i.e. γ∗ is a (strict) local minimizer of γ 7→ supη−1 iRS(η−1, γ),
so the result follows from Lemma 8. ■

APPENDIX C
ANALYSIS OF THE CONDITIONAL FIRST MOMENT

In this appendix we prove Lemmas 1 and 2. The arguments
are extensions of those of [33, Lemmas 3.1 and 3.2], and we
will refer to [33] for some of the technical details.

Lemma 9: Let π be any probability distribution over R. Let
cπ(a, b) be as defined in (29), and let

ā = sup
{

a ∈ R :
∫

eax2
dπ(x) < ∞

}
∈ [0,∞].

Then for all a > ā and b ∈ R, we have cπ(a, b) = ∞. For
each fixed a < ā, the function b 7→ log cπ(a, b) is continuous
and satisfies, for some (a, π)-dependent constant C > 0 and
for all b ∈ R,

log cπ(a, b) ≤ C(b2 + 1).

Proof: For the first statement, suppose ā < ∞, and
consider a > ā. Taking ε > 0 such that a− ε > ā, we have

cπ(a, b) ≥
∫
|x|≥|b|/ε

eax2+bxdπ(x)

≥
∫
|x|≥|b|/ε

e(a−ε)x2
dπ(x) = ∞.

For the second statement, consider any ā ∈ [0,∞] and fix
a < ā. Taking ε > 0 such that a + ε < ā, we have

cπ(a, b) =
∫
|x|<b/ε

eax2+bxdπ(x) +
∫
|x|≥b/ε

eax2+bxdπ(x)

≤ eb2/ε

∫
eax2

dπ(x) +
∫

e(a+ε)x2
dπ(x)

≤ C(eb2/ε + 1) ≤ 2Ceb2/ε

for a constant C = C(a, ε, π) > 0. Then log cπ(a, b) ≤
C ′(b2 + 1) for a constant C ′ = C ′(a, ε, π) > 0. In particular,
log cπ(a, b) < ∞, and continuity in b follows from a standard
application of the dominated convergence theorem.

Proof: [Proof of Lemma 1] Recall the n×t matrices Xt =(
x1, . . . , xt

)
, Yt =

(
y1, . . . , yt

)
, and St =

(
s1, . . . , st

)
which

collect the AMP iterates. We fix t and write G, X, Y, S, ∆ for
Gt, Xt, Yt, St, ∆t.

From the definition of Z(U) in (27), applying y = Aβ⋆ +
ϵ = Q⊤DOβ⋆ + ϵ and ξ = Qϵ, and writing as shorthand
σ̃ := σ̃(σ) = σ − β⋆, we have

E[Z(U) | G] (82a)

=
∫

I
( 1

n
∥σ̃∥2 ∈ U

)
· exp

(
−∥ϵ∥

2

2
+

n

2
· fn(σ̃)

) n∏
i=1

dπ(σi)

(82b)
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with

fn(σ̃)

:=
2
n

log E
[
exp

(
− σ̃⊤O⊤D⊤DOσ̃

2
+ σ̃⊤O⊤D⊤ξ

) ∣∣∣∣ G] .

Conditional on G, the only random quantity in the
expectation in (C) is the matrix O. By definition of
G in (28) and the AMP iterations in (24), its condi-
tional law is that of a Haar(SO(n)) matrix O conditioned
on the event (eb, S,ΛS) = O(e, X, Y ). Then by [34,
Lemma B.2], we may represent this conditional law of
O as

O|G
L= (eb, S,ΛS)

 e⊤e e⊤X e⊤Y
X⊤e X⊤X X⊤Y
Y ⊤e Y ⊤X Y ⊤Y

−1

(e, X, Y )⊤

+ Π(eb,S,ΛS)⊥ÕΠ⊤(e,X,Y )⊥ (83)

where Π(e,X,Y )⊥ , Π(eb,S,ΛS)⊥ ∈ Rn×(n−2t−1) have
orthonormal columns orthogonal to the column spans
of (e, X, Y ), (eb, S,ΛS) ∈ Rn×(2t+1) respectively, and
Õ ∼ Haar(SO(n− 2t− 1)) is independent of G. We remark
that the matrix inverse in (83) is well-defined almost surely
for all large n, by Corollary 1 and the statements ∆ ≻ 0 in
Theorem 2.2 and b∗, κ∗ > 0 strictly in Remark 1.1. Writing
as shorthand Π = Π(eb,S,ΛS)⊥ and

σ̃⊥ = Π⊤(e,X,Y )⊥ σ̃ ∈ Rn−2t−1,

σ̃∥=(eb, S,ΛS)

 e⊤e e⊤X e⊤Y
X⊤e X⊤X X⊤Y
Y ⊤e Y ⊤X Y ⊤Y

−1

(e, X, Y )⊤σ̃∈Rn,

(84)

this yields the equality in conditional law Oσ̃|G
L= ΠÕσ̃⊥+σ̃∥.

So fn(σ̃) in (C) is given by

fn(σ̃)=
2
n

log E exp
(
−

(ΠÕσ̃⊥+σ̃∥)⊤D⊤D(ΠÕσ̃⊥ + σ̃∥)
2

(85)

+

(
ΠÕσ̃⊥ + σ̃∥

)⊤
D⊤ξ

)
(86)

= − 1
n

σ̃⊤∥ D⊤Dσ̃∥ +
2
n

σ̃⊤∥ D⊤ξ (87)

+
2
n

log E exp
(
− σ̃⊤⊥Õ⊤Π⊤D⊤DΠÕσ̃⊥

2

+
(
ξ⊤DΠ− σ̃⊤∥ D⊤DΠ

)
Õσ̃⊥

)
(88)

where this expectation is over only Õ ∼ Haar(SO(n−2t−1)).
Uniform Approximation of fn(σ̃): We proceed to

approximate fn(σ̃) by low-dimensional functions of σ̃
for large n. Define P(σ̃) = (u(σ̃), r(σ̃), v(σ̃), w(σ̃))

where

u(σ̃) =
1
n
∥σ̃∥2,r(σ̃)

v(σ̃)
w(σ̃)

 =

 1
n

 e⊤e e⊤X e⊤Y
X⊤e X⊤X X⊤Y
Y ⊤e Y ⊤X Y ⊤Y

−1/2

× 1
n

(e, X, Y )⊤σ̃. (89)

Here, u(σ̃), r(σ̃) ∈ R and v(σ̃), w(σ̃) ∈ Rt. Note that Oσ̃∥
is the orthogonal projection of σ̃ onto the column span of
(e, X, Y ), so

r2(σ̃)+∥v(σ̃)∥2+∥w(σ̃)∥2 =
∥σ̃∥∥2

n
=u(σ̃)− ∥̃σ⊥∥2

n
. (90)

Let K > 0 be the bound given in the lemma for which U ⊆
(0, K), and define the open domain

K = {σ̃ ∈ Rn : u(σ̃) ∈ (0, K), A(P(σ̃)) > 0} (91)

where A(P) = u − r2 − ∥v∥2 − ∥w∥2 as defined in (32).
Restricting first to σ̃ ∈ K, we apply [33, Proposition 2.7] to
approximate the expectation over Õ. (This is stated in [33]
for Haar(O(n)), but the result and proof hold verbatim
for SO(n).) The needed conditions of [33, Proposition 2.7]
are verified by the Cauchy interlacing of eigenvalues of
Π⊤D⊤DΠ with those of D⊤D, the convergence assump-
tions (4), the bounds ∥σ̃⊥∥2, ∥σ̃∥∥2 ≤ ∥σ̃∥2 < nK for σ̃ ∈ K,
the bound ∥Dξ∥2 < 2d+n almost surely for all large n,
and the observation that by Lemma 13(c), for e < e0(C, K)
sufficiently small and for some sufficiently small constant
d > 0,

G(−d− + d)− d > K. (92)

(We allow d > 0 to depend on e and the law of D2, and we
will eventually take d → 0.) For scalars or vectors an(σ̃) and
bn(σ̃) whose dimensions are independent of n, let us write
an(σ̃) .= bn(σ̃) to mean, almost surely,

lim
n,m→∞

sup
σ̃∈K

|an(σ̃)− bn(σ̃)| = 0,

lim
n,m→∞

sup
σ̃∈K

∥an(σ̃)− bn(σ̃)∥ = 0.

Then [33, Proposition 2.7] applied to the expectation over Õ
yields

fn(σ̃) .= − 1
n

σ̃⊤∥ D⊤Dσ̃∥ +
2
n

σ̃⊤∥ D⊤ξ + En(σ̃) (93)

where

En(σ̃) = inf
ζ≥−d−+d

{
ζ ∥σ̃⊥∥2

n

+ n−1(ξ⊤DΠ− σ̃⊤∥ D⊤DΠ)

× (ζI + Π⊤D⊤DΠ)−1(Π⊤D⊤ξ −Π⊤D⊤Dσ̃∥)

− 1
n

log det
(
ζI + Π⊤D⊤DΠ

)
−
(
1 + log

∥σ̃⊥∥2

n

)}
.

(94)
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For the first term of (93), applying Corollary 1 and the
preceding definitions of σ̃∥ and r, v, w,

σ̃∥=eb

(
b
−1/2
∗ r(σ̃)

)
+S∆−1/2v(σ̃)+ΛS (κ∗∆)−1/2

w(σ̃)+rn(σ̃)
(95)

where n−1∥rn(σ̃)∥2 → 0 uniformly over σ̃ ∈ K. It follows
from Theorem 2.2, Corollaries 1 and 2, ED2 = d∗, and (65)
that almost surely,

lim
n,m→∞

1
n

(eb, S,ΛS)⊤D⊤D(eb, S,ΛS)=

e∗ 0 0
0 d∗∆ a∗∆
0 a∗∆ c∗∆

.

(96)

Combining this with (95), we obtain for the first term of (93)
that

1
n

σ̃⊤∥ D⊤Dσ̃∥
.=

e∗r
2(σ̃)
b∗

+ Tr
(

d∗ a∗
a∗ c∗

)(
v(σ̃),

w(σ̃)
√

κ∗

)⊤(
v(σ̃),

w(σ̃)
√

κ∗

)
. (97)

Similarly, for the second term of (93), applying the form of
Eb in Proposition 3 and (64b), we have

2
n

σ̃⊤∥ Dξ
.=

2
n

e⊤b Dξ
(
b
−1/2
∗ r(σ̃)

)
.=

2r(σ̃)√
b∗

(98)

where the contributions from the other terms of σ̃∥ vanish
because Ξ in Proposition 3 has mean 0 and is independent of
(S1, . . . ,St) and (D, L).

For the final term En(σ̃) of (93), note that (4) and Cauchy
eigenvalue interlacing imply that the empirical eigenvalue
distribution of Π⊤D⊤DΠ converges weakly to D2. Then,
recalling n−1∥σ̃⊥∥2 = u(σ̃)− r2(σ̃)−∥v(σ̃)∥2−∥w(σ̃)∥2 =
A(P(σ̃)) from (90) and the definition of H in (33),

ζ ∥σ̃⊥∥2

n
− 1

n
log det

(
ζI + Π⊤D⊤DΠ

)
−
(
1 + log

∥σ̃⊥∥2

n

)
.= H (ζ,A(P(σ̃))) . (99)

The error of this approximation converges to 0 uniformly over
ζ ≥ −d−+d, by the same Arzelà-Ascoli argument as leading
to [33, Eq. (3.25)].

To analyze the remaining second term of En(σ̃) in (94), let
us define

Π̄ = (eb, S,ΛS)

 e⊤b eb e⊤b S e⊤b ΛS
S⊤eb S⊤S S⊤ΛS

S⊤Λeb S⊤ΛS S⊤Λ2S

−1/2

= (eb, S,ΛS)

 e⊤e e⊤X e⊤Y
X⊤e X⊤X X⊤Y
Y ⊤e Y ⊤X Y ⊤Y

−1/2

(100)

whose columns are an orthogonalization of (eb, S,ΛS). Then
the columns of (Π, Π̄) form a full orthonormal basis for
Rn. Applying the Schur-complement formula for block matrix
inversion, we obtain analogously to [33, Eq. (3.29)] that the
second term of (94) is given by

n−1(ξ⊤DΠ− σ̃⊤∥ D⊤DΠ)(ζI + Π⊤D⊤DΠ)−1

× (Π⊤D⊤ξ −Π⊤D⊤Dσ̃∥) = I− II

where

I = n−1(ξ⊤D − σ̃⊤∥ D⊤D)Π ·Π⊤
(
ζI + D⊤D

)−1
Π

(101)

×Π⊤
(
D⊤ξ −D⊤Dσ̃∥

)
(102)

II = n−1(ξ⊤D − σ̃⊤∥ D⊤D)Π (103)

×Π⊤(ζI + D⊤D)−1Π̄
(
Π̄⊤

(
ζI + D⊤D

)−1
Π̄
)−1

× Π̄⊤(ζI + D⊤D)−1Π ·Π⊤(D⊤ξ −D⊤Dσ̃∥)
(104)

We derive almost-sure asymptotic limits for I and II.
Recalling λ(·) and θ(·) from (33), let us define

Fe(ζ, r) = Fe
22(ζ, r)−Fe

12(ζ, r)Fe
11(ζ)−1Fe

12(ζ, r)

F(ζ) = F22(ζ)−F12(ζ)⊤F11(ζ)−1F12(ζ) (105)

where we set

υA(x) = b
−1/2
∗

(
−x +

e∗
b∗

)
, (106)

υB(x) =
(

γ∗
η∗

)
x +

γ∗ (η∗ − γ∗)
η∗

− 1
b∗

, (107)

fe(x, r) = υA(x) · r + υB(x),

Fe
11(ζ) = E

(
1

ζ + D2
E2

b

)
, (108)

Fe
12(ζ, r) = E

(
fe
(
D2, r

)
ζ + D2

E2
b

)
, (109)

Fe
22(ζ, r) = E

(
fe
(
D2, r

)2
ζ + D2

E2
b

)
, (110)

F11(ζ) = E
1

ζ + D2

(
1 λ(D2)

λ(D2) λ(D2)2

)
,

F12(ζ) = E
1

ζ + D2

(
θ(D2)

λ(D2)θ(D2)

)
, (111)

F22(ζ) = E
1

ζ + D2
θ(D2)2. (112)

Since D2 has strictly positive variance and x 7→ λ(x) is one-to-
one on the support of D2, we have F11(ζ) ≻ 0 strictly for ζ >
−d−, so F(ζ) is well-defined. Also Fe

11(ζ) > 0 strictly since
EE2

b = b∗ > 0 from Theorem 1.1, so Fe(ζ, r) is well-defined.
We note that these functions are expressed equivalently as

Fe(ζ, r) = inf
χA∈R

E
[

E2
b

ζ + D2

(
fe(D2, r)− χA

)2]
= inf

χA∈R
E

[
E2

b

ζ + D2

([
γ∗
η∗
− b

−1/2
∗ r

]
D2 − χA

)2
]

F(ζ) = inf
χB ,χC∈R

E
[

1
ζ + D2

(
θ(D2)− λ(D2)χB − χC

)2]
(113)

where these coincide with the above definitions upon explicitly
evaluating the infima over χA, χB , χC ∈ R, and the two
expressions for Fe in (113) are identical upon absorbing all
terms of fe(D2, r) not depending on D2 into an additive shift
of the variable χA.
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We first approximate the common term ΠΠ⊤(D⊤ξ −
D⊤Dσ̃∥) in (102–104): Applying Corollary 1 together with
(95) and (96), we obtain e⊤e e⊤X e⊤Y

X⊤e X⊤X X⊤Y
Y ⊤e Y ⊤X Y ⊤Y

−1

(eb, S,ΛS)⊤D⊤Dσ̃∥

.=

b∗ 0 0
0 ∆ 0
0 0 κ∗∆

−1e∗ 0 0
0 d∗∆ a∗∆
0 a∗∆ c∗∆


 b

−1/2
∗ r(σ̃)

∆−1/2v(σ̃)
(κ∗∆)−1/2

w(σ̃)

.

Then applying

ΠΠ⊤ = I − Π̄Π̄⊤ = I

−(eb, S,ΛS)

 e⊤e e⊤X e⊤Y
X⊤e X⊤X X⊤Y
Y ⊤e Y ⊤X Y ⊤Y

−1

(eb, S,ΛS)⊤ (114)

yields

ΠΠ⊤D⊤Dσ̃∥ = b
−1/2
∗ r(σ̃)

(
D⊤D − e∗b

−1
∗ I

)
eb

+
(
D⊤D − d∗I − a∗κ

−1
∗ Λ

)
S∆−1/2v(σ̃)

+ κ
−1/2
∗

(
D⊤DΛ− a∗I − c∗κ

−1
∗ Λ

)
S∆−1/2w(σ̃) + rn(σ̃)

(115)

where n−1∥rn(σ̃)∥2 → 0 uniformly over σ̃ ∈ K. From the
definitions of a∗, c∗ in (31) and of Λ in (22), a straightforward
computation yields the identity

− γ∗
η∗ − γ∗

(
D⊤DΛ− a∗I −

c∗
κ∗

Λ
)

=D⊤D − d∗I−
a∗
κ∗

Λ=:D̃

(116)

where we define D̃ ∈ Rn×n as this common quantity. Then,
recalling αA

∗ from (31), we can rewrite (115) as

ΠΠ⊤D⊤Dσ̃∥ = b
−1/2
∗ r(σ̃) ·

(
D⊤D − e∗b

−1
∗ I

)
eb

+D̃S∆−1/2
(
v(σ̃)− αA

∗ w(σ̃)
)

+ rn(σ̃). (117)

Applying Corollary 1, (96), (114) and D⊤ξ =
γ∗
η∗

[
D⊤D + (η∗ − γ∗) I

]
eb, we also have similarly to (98)

ΠΠ⊤D⊤ξ = D⊤ξ − (eb, S,ΛS)

b∗ 0 0
0 ∆ 0
0 0 κ∗∆

−1

× 1
n

(eb, S,ΛS)⊤D⊤ξ + rn(σ̃)

=
γ∗
η∗

[
D⊤D + (η∗ − γ∗) I

]
eb − b−1

∗ eb + rn(σ̃).

(118)

Then combining (117) and (118), and applying fe from (110)
to D⊤D by functional calculus,

ΠΠ⊤(D⊤ξ −D⊤Dσ̃∥)

= fe(D⊤D, r(σ̃))eb − D̃S∆−1/2
(
v(σ̃)− αA

∗ w(σ̃)
)

+ rn(σ̃)
(119)

for a remainder rn(σ̃) satisfying n−1∥rn(σ̃)∥2 → 0 uniformly
over σ̃ ∈ K.

We now apply (119) and Corollary 2 to approximate the
two terms (102) and (104): Recalling αB

∗ from (31), observe

that the second definition for D̃ in (116) has the equivalent
form

D̃ = D⊤D − αB
∗ η∗

(
D⊤D + (η∗ − γ∗) I

)−1
+ (αB

∗ − d∗)I.

Then, recalling the definitions of F22,Fe
22 from (110),

by Theorem 2.2 and Corollary 2 we have

n−1S⊤D̃
(
ζI + D⊤D

)−1
D̃S

.= F22(ζ) ·∆,

n−1e⊤b fe
(
D⊤D, r(σ̃)

) (
ζI + D⊤D

)−1
fe
(
D⊤D, r(σ̃)

)
eb

.= Fe
22(ζ, r(σ̃)),

n−1e⊤b fe(
(
D⊤D, r(σ̃)

) (
ζI + D⊤D

)−1
D̃S

.= 0.

Combining with (119), this shows for (102) that

I .= Fe
22(ζ, r(σ̃)) + F22(ζ) ·

∥∥v(σ̃)− αA
∗ w(σ̃)

∥∥2

2

= Fe
22(ζ, r(σ̃)) + F22(ζ) · B(v(σ̃), w(σ̃)). (120)

For (104), by Theorem 2.2 and Corollary 2, we have

n−1(S, ΛS)⊤(ζI + D⊤D)−1(S, ΛS) .=F11(ζ)⊗∆∈R2t×2 t,

n−1e⊤b (ζI + D⊤D)−1eb
.= Fe

11(ζ),

n−1e⊤b (ζI + D⊤D)−1(S, ΛS) .= 0.

Then, recalling the form of Π̄ from (100),

Π̄
(
Π̄⊤

(
ζI + D⊤D

)−1
Π̄
)−1

Π̄⊤ = n−1

×
(
ebFe

11(ζ)−1e⊤b +(S, ΛS)(F11(ζ)⊗∆)−1(S, ΛS)⊤ + rn

)
where n−1∥rn∥ → 0 in operator norm. Combining this
with (119), and applying Theorem 2.2, Corollary 2, and the
definitions of F12,Fe

12 in (110), we obtain for (104)

II .=Fe
12(ζ, r(σ̃))Fe

11(ζ)−1Fe
12(ζ, r(σ̃))

+ F12(ζ)⊤F11(ζ)−1F12(ζ) · B(v(σ̃), w(σ̃)). (121)

Combining (120) and (121), the second term of En(σ̃) in (94)
satisfies

n−1(ξ⊤DΠ− σ̃⊤∥ D⊤DΠ)

× (ζI + Π⊤D⊤DΠ)−1(Π⊤D⊤ξ −Π⊤D⊤Dσ̃∥)
.= Fe(ζ, r(σ̃)) + F(ζ) · B(v(σ̃), w(σ̃)). (122)

The error of this approximation again converges to 0 uniformly
over ζ ≥ −d− + d, by an argument that is the same as that
leading to [33, Eq. (3.31)].

Combining (97), (98), (99), and (122) and applying this
to (93), we obtain

lim
n,m→∞

sup
σ̃∈K

∣∣∣fn(σ̃)− f(P(σ̃))
∣∣∣ = 0,

where we define on the domain V = {P : u − r2 − ∥v∥2 −
∥w∥2 > 0} the function

f(P) = inf
ζ
−e∗r

2

b∗
+

2r√
b∗

− Tr

[(
d∗ a∗
a∗ c∗

)(
v,

w
√

κ∗

)⊤(
v,

w
√

κ∗

)]
+H(ζ,A(P)) + Fe(ζ, r) + F(ζ) · B(v, w),
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and the infimum is over ζ ≥ −d− + d. The functions Fe,F
are decreasing over ζ > −d− by definition in (113). For any
fixed P with u < K, applying ∂

∂ζH(ζ,A(P)) = A(P) −
G(ζ) < K − G(ζ) < 0 by (92), the function H(ζ,A(P))
is also decreasing over ζ ∈ (−d−,−d− + d]. Then the above
infimum defining f(P) may be extended to ζ > −d−. Finally,
this uniform approximation for fn may be extended from K
to its closure K: Here fn as defined in (C) is continuous on K,
and the map P : K → {P ∈ V̄ : u ∈ [0, K]} is continuous,
relatively open, and maps the dense subset K ⊂ K to the
interior {P ∈ V : u ∈ (0, K)} for each fixed n. Then [33,
Proposition C.1] shows that f has a continuous extension to
{P ∈ V̄ : u ∈ [0, K]}, and (denoting also by f this extension)

lim
n,m→∞

sup
σ̃∈K

|fn(σ̃)− f(P(σ̃))| = 0.

Applying this to (82), and denoting by ⟨·⟩π the expectation
over (σi)n

i=1
iid∼ π, we obtain almost surely

lim
n,m→∞

1
n

log E[Z(U) | G] = −1
2

+ lim
n,m→∞

1
n

log
〈

I
{
u(σ̃) ∈ U

}
exp

(n

2
f(P(σ̃))

)〉
π

.

(123)

The same statement also holds with the closure U in place of
U on both sides.

Large Deviations Analysis: We conclude the proof by estab-
lishing large deviations upper and lower bounds for P(σ̃) and
applying Varadhan’s lemma. Recall that σ̃ = σ − β⋆, and
introduce dual variables R = (U, R, V,W ) where U, R ∈ R
and V,W ∈ Rt. For the large deviations upper bound, define
the cumulant generating function

λn(R) =
1
n

log
〈

exp
(
n ·P(σ̃)⊤R

)〉
π

=
1
n

n∑
i=1

log
∫

exp
(
Uσ2

i + Aiσi + Bi

)
dπ(σi)

=
1
n

n∑
i=1

[
Bi + log cπ(U, Ai)

]
(124)

where, denoting by (ei, xi, yi) ∈ R2t+1 the ith row of
(e, X, Y ), we have set

Ai = Ai(R) = −2Uβ⋆
i + (R, V, W )⊤

×

 1
n

 e⊤e e⊤X e⊤Y
X⊤e X⊤X X⊤Y
Y ⊤e Y ⊤X Y ⊤Y

−1/2

(ei, xi, yi),

Bi = Bi(R) = U(β⋆
i )2 − (R, V, W )⊤

×

 1
n

 e⊤e e⊤X e⊤Y
X⊤e X⊤X X⊤Y
Y ⊤e Y ⊤X Y ⊤Y

−1/2

(ei, xi, yi) · β⋆
i .

By Theorem 2.2, Corollary 1, and Propositions 10 and 11,
almost surely as n, m → ∞, the empirical distributions of
(Ai)n

i=1 and (Bi)n
i=1 converge (in Wasserstein-p for every

fixed order p ≥ 1) respectively to

A(R) = −2UX⋆ + b
−1/2
∗ RE + V ⊤∆−1/2(X1, . . . ,Xt)

+ κ
−1/2
∗ W⊤∆−1/2(Y1, . . . ,Yt),

B(R) = UX⋆2 − b
−1/2
∗ REX⋆ − V ⊤∆−1/2(X1, . . . ,Xt)X⋆

− κ
−1/2
∗ W⊤∆−1/2(Y1, . . . ,Yt)X⋆.

In the remainder of the proof, we restrict to the event of
probability 1 where this empirical convergence holds. These
limiting random variables satisfy EX⋆2 = ρ∗, EEX⋆ = 0,
EYrX

⋆ = 0, and EXrX
⋆ = E[F (P, X⋆)X⋆] = π∗, where

P ∼ N(0, γ−1
∗ ) is independent of X⋆, and π∗ is defined in (31).

Define the limit cumulant generating function

λ(R) =E log cπ(U, A(R)) + ρ∗ U

− π∗ V ⊤∆−1/21t×1 ∈ (−∞,∞].

Then Lemma 9 and the above empirical Wasserstein conver-
gence ensure

lim
n,m→∞

λn(R) = λ(R) < ∞ for all U < ā,

λn(R) = λ(R) = ∞ for all U > ā. (125)

Denote the Fenchel-Legendre transform of λ by

λ∗(P) = sup
R∈R2t+2

P⊤R− λ(R) ∈ [0,∞]. (126)

Observe that the concentration bound (5) implies that∫
eax2

dπ(x) < ∞ for some sufficiently small a > 0. Then
ā > 0 strictly, so λ is finite in an open neighborhood of
R = 0, and hence λ∗ is a good convex rate function (i.e. lower
semi-continuous and having compact level sets) [47, Lemma
2.3.9(a)]. Let us show the large-deviations upper bound

lim sup
n,m→∞

1
n

log
〈

I{P(σ̃) ∈ F}
〉

π

≤ − inf
P∈F

λ∗(P) for all closed F ⊆ V̄. (127)

For this, set λ̄(R) = lim supn,m→∞ λn(R). Here λ̄(R) =
λ(R) whenever U ̸= ā, by (125). The upper bound in
the Gärtner-Ellis Theorem shows that (127) holds with λ∗

replaced by the Fenchel-Legendre transform λ̄∗ of λ̄ (see
e.g. [47, Exercise 2.3.25]). Note that both λ and λ̄ are
convex, so the restrictions of λ and λ̄ to any line segment are
upper-semicontinuous by the Gale-Klee-Rockafellar Theorem
[48, Theorem 10.2]. Then the supremum in (126) and the
analogous supremum defining λ̄∗ may be restricted to {R :
U ̸= ā}, implying that λ∗ = λ̄∗. This proves (127).

For the large deviations lower bound, set

λM (R) = E log cM
π (U, A(R)) + ρ∗ U − π∗ V ⊤∆−1/21t×1,

and let (λM )∗ be its Fenchel-Legendre transform defined
analogously to (126). We aim to show

lim inf
n,m→∞

1
n

log
〈

I{P(σ̃) ∈ G}
〉

π

≥ sup
M>0

(
− inf

P∈G
(λM )∗(P)

)
for all open G ⊆ V. (128)

For this, consider any M > 0 where (−M,M) intersects the
support of π, and denote by πM the conditional distribution
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of π over (−M, M). Let ⟨·⟩πM
be the expectation over

(σi)n
i=1

iid∼ πM . Then analogously to (124), we have

λM
n (R) :=

1
n

log
〈

exp
(
n ·P(σ̃)⊤R

)〉
πM

=
1
n

n∑
i=1

[
Bi + log cM

π (U, Ai)
]
− log π((−M,M)).

By the above empirical Wasserstein convergence, λM
n (R)

converges pointwise over all R ∈ R2t+2 to λM (R) −
log π((−M,M)), which is now finite. Then the Gärtner-Ellis
lower bound [47, Theorem 2.3.6] may be applied for the law
of P(σ̃) under πM , giving for all open G ⊆ V

1
n

log
〈

I{P(σ̃) ∈ G}
〉

π

≥ log π((−M,M)) +
1
n

log
〈

I{P(σ̃) ∈ G
〉

πM

≥ log π((−M,M))− inf
P∈G

(
λM−log π((−M,M))

)∗(P)

= − inf
P∈G

(λM )∗(P).

This lower bound is increasing in M , and taking the supremum
over M > 0 yields (128).

The function P 7→ f(P) is continuous and thus bounded
over the compact set {P ∈ V̄ : u ∈ [0, K]}. Then for any
M > 0, applying (128) and Varadhan’s lemma in the form of
Lemma 14(a),

lim inf
n,m→∞

1
n

log
〈

I
{

P(σ̃) ∈ V, u(σ̃) ∈ U
}

exp
(n

2
f(P(σ̃))

)〉
π

≥ sup
P∈V: u∈U

1
2
f(P)− (λM )∗(P).

Recalling the definitions of ΦM
1,t and ΨM

1,t in (34–35), note
that ΨM

1,t(P) = − 1
2 + 1

2f(P) − (λM )∗(P). Then taking
the supremum of the above over M > 0 and applying this
to (123) yields the desired lower bound for E[Z(U) | Gt].
Similarly, recalling that λ∗ is a good convex rate function
and applying (127) and Varadhan’s lemma in the form of
Lemma 14(b),

lim sup
n,m→∞

1
n

log
〈

I
{

P(σ̃) ∈ V̄, u(σ̃) ∈ Ū
}

exp
(n

2
f(P(σ̃))

)〉
π

≤ sup
P∈V̄: u∈Ū

1
2
f(P)− λ∗(P).

Note that the condition P(σ̃) ∈ V̄ on the left side holds
always, by definition of P. Since λ∗ is lower-semicontinuous,
by the Gale-Klee-Rockafellar Theorem, its restriction to any
line segment is continuous. Since f is also continuous, the
supremum on the right side may be restricted to the interior
{P ∈ V : u ∈ U}, and this yields the desired upper bound for
E[Z(U) | Gt].

We now prove Lemma 2. Let et = (0, . . . , 0, 1) be the tth

standard basis vector in Rt. Denote P∗ = (u∗, r∗, v∗, w∗) and

Q∗ = (ζ∗, U∗, R∗, V∗, W∗, χ
A
∗ , χB

∗ , χC
∗ ), where

u∗ =
2
η∗

, r∗ =
γ∗
η∗

b
1/2
∗ , v∗ =

η∗ − γ∗
η∗

∆1/2
t et, (129)

w∗ =
γ∗
η∗

κ
1/2
∗ ∆1/2

t et, ζ∗ = η∗ − γ∗,

χA
∗ = χB

∗ = χC
∗ = 0, U∗ = −1

2
γ∗, (130)

R∗ = γ∗b
1/2
∗ , V∗ = 0, W∗ = γ∗κ

1/2
∗ ∆1/2

t et. (131)

We will show that (P∗, Q∗) is an approximate stationary
point of Φ1,t, which is an approximate global optimizer of
supP infQ Φ1,t for sufficiently small e > 0.

Denote by ∂uΦ1,t ∈ R, ∂vΦ1,t ∈ Rt etc. the partial
derivative or gradient of Φ1,t in the variables u, v, etc.

Lemma 10: In the setting of Lemma 2, for all t ≥ 1 and
each ι ∈

{
u, r, v, w, ζ, χA, χB , χC , U,R, W

}
,

Φ1,t(P∗, Q∗) = ΨRS, ∂ιΦ1,t(P∗, Q∗) = 0,

lim
t→∞

∥∂V Φ1,t(P∗, Q∗)∥ = 0. (132)

Proof: For the first term of Φ1,t, denote

A∗ = −2U∗X
⋆ + b

−1/2
∗ R∗E + V ⊤

∗ ∆−1/2
t (X1, . . . ,Xt)

(133)

+ κ
−1/2
∗ W⊤

∗ ∆−1/2
t (Y1, . . . ,Yt)

= γ∗(X⋆ + E + Yt). (134)

As E ∼ N(0, b∗) and Yt ∼ N(0, σ2
∗) are independent of each

other and of X⋆, and b∗ + σ2
∗ = γ−1

∗ , we have

E log cπ (U∗, A∗) = E log cπ

(
−1

2
γ∗, γ∗X

⋆ +
√

γ∗Z

)
(135)

for Z ∼ N(0, 1) independent of X⋆. For the next terms of
Φ1,t, we have

− (u∗ − ρ∗) · U∗ − r∗ ·R∗
− (v∗ + π∗ ·∆−1/2

t 1t×1)⊤V∗ − w⊤∗ W∗

=
γ∗
2

(
2
η∗
− ρ∗

)
− γ2

∗
η∗

b∗ − 0− γ2
∗

η∗
κ∗δ∗ = −1

2
γ∗ρ∗

(136)

where we used e⊤t ∆tet = δtt = δ∗ from Theorem 2.2 and
the identity b∗ + κ∗δ∗ = b∗ + σ2

∗ = γ−1
∗ . For the next

terms of Φ1,t, applying e⊤t ∆tet = δ∗ = (η∗ − γ∗)−1 and
the definitions of a∗, c∗, e∗ in (31), direct calculation gives,
after some simplification,

e∗
b∗

r2
∗ − 2b

−1/2
∗ r∗

+ Tr
[(

d∗ a∗
a∗ c∗

)
(v∗, κ

−1/2
∗ w∗)⊤(v∗, κ

−1/2
∗ w∗)

]
= e∗

(
γ∗
η∗

)2

− 2
γ∗
η∗

+ d∗δ∗

(
η∗ − γ∗

η∗

)2

+ c∗δ∗

(
γ∗
η∗

)2

+ 2a∗
γ∗
η2
∗

= −γ∗
η∗

. (137)

Finally, applying again e⊤t ∆tet = δ∗ = (η∗− γ∗)−1 and b∗+
κ∗δ∗ = γ−1

∗ , we have

A(P∗) = u∗ − r2
∗ − ∥v∗∥

2 − ∥w∗∥2 = η−1
∗ . (138)
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We have also ζ∗ = η∗ + R(η−1
∗ ) = G−1(η−1

∗ ) from (11).
Then by [33, Proposition 2.9],

H(ζ∗,A(P∗)) =
∫ η−1

∗

0

R(z)dz. (139)

The last two terms of Φ1,t(P∗, Q∗) are 0 because γ∗η
−1
∗ −

b
−1/2
∗ r∗ = 0 and B(v∗, w∗) = ∥v∗ − αA

∗ w∗∥2 = 0. Then
combining (135), (136), (137), (139) shows Φ1,t(P∗, Q∗) =
ΨRS in (132).

To check the stationarity conditions, first by the form of H
in (33), we have ∂ζH(ζ,A) = A−G(ζ) and ∂AH(ζ,A) =
ζ − 1/A. Recalling ζ∗ = η∗ − γ∗ = G−1(η−1

∗ ) and A(P∗) =
η−1
∗ , we have

∂ζH (ζ∗,A(P∗)) = 0, ∂αH (ζ∗,A(P∗)) = −γ∗. (140)

In addition, note that since [γ∗η−1
∗ − b

−1/2
∗ r∗]D2 − χA

∗ = 0,

∂r, ∂ζ , ∂χAE
[

E2
b

ζ + D2

×
([

γ∗
η∗
− b

−1/2
∗ r

]
D2 − χA

)2 ]∣∣∣∣∣
r=r∗,χA=χA

∗ ,ζ=ζ∗

= 0

(141)

Using this and B(v∗, w∗), ∂vB(v∗, w∗), ∂wB(v∗, w∗) = 0, we
obtain

∂uΦ1,t(P∗, Q∗) = −U∗ − γ∗/2 = 0

∂rΦ1,t(P∗, Q∗) = −R∗ − (e∗b−1
∗ r∗ − b

−1/2
∗ ) + γ∗r∗

(a)
= −r∗(η∗ − γ∗) + b

1/2
∗

γ∗(η∗ − γ∗)
η∗

= 0

∂vΦ1,t(P∗, Q∗) = −V∗ − (d∗v∗ + a∗κ
−1/2
∗ w∗) + γ∗v∗

=
(
−d∗ − (1− d∗γ

−1
∗ )γ∗ + γ∗

)
v∗ = 0

∂wΦ1,t(P∗, Q∗) = −W∗ − (c∗κ−1
∗ w∗ + a∗κ

−1/2
∗ v∗) + γ∗w∗

=
(
−η∗ − κ−1

∗

(
c∗ +

η∗ − γ∗
γ∗

a∗

)
+ γ∗

)
w∗

(b)
= 0

∂ζ , ∂χA , ∂χB ,∂χC Φ1,t(P∗, Q∗) = 0

where we used in (a) R∗ = η∗r∗ and (by the definition of
b∗, e∗ in (25) and (31))

−e∗b
−1
∗ r∗ + b

−1/2
∗ = b

−1/2
∗

(
1− γ∗

η∗
(1 + κ∗)

)
= b

1/2
∗

γ∗(η∗ − γ∗)
η∗

, (142)

and in (b) (by the definitions of a∗, c∗ in (31)) c∗ + a∗(η∗ −
γ∗)/γ∗ = −(η∗ − γ∗)κ∗.

Now note that

∂a log cπ(a, b) =

∫
x2 exp

(
ax2 + bx

)
dπ(x)∫

exp (ax2 + bx) dπ(x)
,

∂b log cπ(a, b) =

∫
x exp

(
ax2 + bx

)
dπ(x)∫

exp (ax2 + bx) dπ(x)
. (143)

Recall (134), where E+Yt ∼ N(0, γ−1
∗ ) is independent of X⋆.

Then from the expressions for f, f ′ in (8) and (61), we have
that

∂a log cπ (U∗, A∗) = γ−1
∗ f ′(X⋆ + E + Yt) + f(X⋆ + E + Yt)2

∂b log cπ (U∗, A∗) = f(X⋆ + E + Yt). (144)

Also recall from Theorem 2.2 that Xt+1 = F (Yt + E, X⋆),
so by the definition (23),

f(X⋆ + E + Yt) =
η∗ − γ∗

η∗
Xt+1 +

γ∗
η∗

(Yt + E) + X⋆. (145)

Then, denoting

∆t+1 =
(

∆t δt

δ⊤t δ∗

)
and applying Corollary 1 and EXsX

⋆ = π∗ from (31), we have

E(X1, . . . ,Xt)f(X⋆ + E + Yt) =
η∗ − γ∗

η∗
δt + π∗1t×1.

It follows from this, Stein’s lemma, and Ef ′(X⋆ + E + Yt) =
γ∗E[V[X⋆ | X⋆ + E + Yt]] = γ∗/η∗ that

∂RΦ1,t(P∗, Q∗) = b
−1/2
∗ EEf(X⋆ + E + Yt)− r∗

= b
1/2
∗ Ef ′(X⋆ + E + Yt)− r∗

= b
1/2
∗ (γ∗/η∗)− r∗ = 0

∂V Φ1,t(P∗, Q∗) = ∆−1/2
t E(X1, . . . ,Xt)f(X⋆ + E + Yt)

− (v∗ + π∗ ·∆−1/2
t 1t×1)

=
η∗ − γ∗

η∗
∆−1/2

t δt − v∗

∂W Φ1,t(P∗, Q∗) = κ
−1/2
∗ ∆−1/2

t E(Y1, . . . ,Yt)
× f(X⋆ + E + Yt)− w∗

=κ
1/2
∗ ∆1/2

t et · Ef ′(X⋆ + E + Yt)− w∗=0.

From (145) and the identities EXt+1X
⋆ = π∗ and EX2

t+1 =
δ∗ = (η∗ − γ∗)−1, we have also

EX⋆f(X⋆ + E + Yt) =
η∗ − γ∗

η∗
π∗ + ρ∗ (146)

Ef(X⋆ + E + Yt)2 =
(

η∗ − γ∗
η∗

)2 1
η∗ − γ∗

+
(

γ∗
η∗

)2 1
γ∗

(147)

+ ρ∗ +
2(η∗ − γ∗)

η∗
π∗

=
1
η∗

+ ρ∗ +
2(η∗ − γ∗)

η∗
π∗. (148)

Then

∂UΦ1,t(P∗, Q∗) = E
[
γ−1
∗ f ′(X⋆ + E + Yt)

+ f(X⋆ + E + Yt)2
]

− 2EX⋆f(X⋆ + E + Yt)
− (u∗ − ρ∗) = 0.

This shows ∂ιΦ1,t(P∗, Q∗) = 0 in (132) for all ι ̸= V , and
it remains to verify the bound for ∂V Φ1,t. For this, note that
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from the above and δtt = δt+1,t+1 = δ∗,

∥∂V Φ1,t(P∗, Q∗)∥2 =
∥∥∥∥η∗ − γ∗

η∗
∆−1/2

t δt − v∗

∥∥∥∥2

=
(

η∗ − γ∗
η∗

)2 ∥∥∥∆−1/2
t δt −∆1/2

t et

∥∥∥2

=
(

η∗−γ∗
η∗

)2(
δ⊤t ∆−1

t δt + δ∗ − 2δ⊤t et

)
=
(

η∗ − γ∗
η∗

)2(
δ⊤t ∆−1

t δt − δt+1,t+1

+ 2δ∗ − 2δt,t+1

)
.

By Proposition 4, limt→∞ δt,t+1 = δ∗. By the condition
∆t+1 ≻ 0 and the Schur-complement formula,

0<δt+1,t+1−δ⊤t ∆−1
t δt = inf

α∈Rt
E
[(
Xt+1 − α⊤ (X1, . . . ,Xt)

)2]
≤E

[
(Xt+1 − Xt)

2
]
=2δ∗ − 2δt,t+1.

So, we also have that limt→∞ δt+1,t+1− δ⊤t ∆−1
t δt = 0. Thus

limt→∞ ∥∂V Φ1,t(P∗, Q∗)∥ = 0.
Proof of Lemma 2:
We begin with the lower bound in (36). Denote by ot(1)

any scalar quantity that converges to 0 as t →∞.
Let us specialize ΨM

1,t to P̃∗ = (u∗, r∗, ṽ∗, w∗) where

ṽ∗ =
η∗ − γ∗

η∗
∆−1/2

t δt = v∗ + ∂V Φ1,t(P∗, Q∗). (149)

Then Lemma 10 shows ∥ṽ∗ − v∗∥ = ot(1). Observing that
∥w∗∥2 = (γ∗/η∗)2κ∗δ∗ is constant in t, and applying (137),
we then have

ΨM
1,t(P̃∗) =−1

2
+

γ∗
2η∗

+ ot(1) + inf
U,R,V,W

XM (U, R, V, W )

+
1
2

inf
ζ,χA,χB ,χC

Y (ζ, χA, χB , χC) (150)

where

XM (U, R, V, W ) = E log cM
π

(
U,

− 2UX⋆ + b
−1/2
∗ RE

+ V ⊤∆−1/2
t (X1, . . . ,Xt)

+ κ
−1/2
∗ W⊤∆−1/2

t (Y1, . . . ,Yt)
)

− (u∗ − ρ∗)U − r∗R

− (ṽ∗ + π∗∆
−1/2
t 1t×1)⊤V − w⊤∗ W,

Y (ζ, χA, χB , χC) = H(ζ,A(P̃∗)) + E
[

E2
b

ζ + D2
(χA)2

]
+ E

[ 1
ζ + D2

(
θ
(
D2
)

− λ
(
D2
)
χB − χC

)2]
B(ṽ∗, w∗).

Let X(U,R, V, W ) have the same definition as
XM (U, R, V, W ) with cM

π replaced by cπ . We note
that by Lemma 10, (149) is defined exactly so that
(U∗, R∗, V∗, W∗) is a critical point of X(·). Since X(·) is

convex, (U∗, R∗, V∗, W∗) is then a global minimizer of X .
We claim that

sup
M>0

inf
U,R,V,W

XM (U,R, V, W ) = X(U∗, R∗, V∗, W∗). (151)

This is trivial if π has bounded support, because
XM (U, R, V,W ) is increasing in M and equals
X(U, R, V,W ) whenever [−M, M ] contains the support
of π. To show (151) when π has unbounded support, let
us check the strict convexity of X(·): Fix any unit vector
(U ′, R′, V ′, W ′) ∈ R2t+2 and s > 0, and denote

(U(s), R(s), V (s), W (s)) =(U∗, R∗, V∗, W∗)
+ s · (U ′, R′, V ′, W ′).

Set

F =

 b
−1/2
∗ E

∆−1/2
t (X1, . . . ,Xt)

κ
−1/2
∗ ∆−1/2

t (Y1, . . . ,Yt)

 ∈ R2t+1. (152)

Recalling U∗ = −γ∗/2 and A∗ from (134), denote

⟨f(x)⟩∗ =

∫
f(x) exp

(
−γ∗

2 x2 + A∗x
)
dπ(x)∫

exp
(
−γ∗

2 x2 + A∗x
)
dπ(x)

with the corresponding variance V∗[f(x)] = ⟨f(x)2⟩∗ −
⟨f(x)⟩2∗ (conditional on X⋆, E, X1, . . . ,Xt, Y1, . . . ,Yt). Then,
applying (143) and the chain rule,

∂2
sX(U(s), R(s), V (s), W (s))

∣∣
s=0

= E
[
V∗
[
U ′(x− X⋆)2 + (R′, V ′, W ′)⊤F · x

]]
. (153)

Since π has unbounded support, there are at least three distinct
points in its support, and hence also three distinct points in
the support of the posterior measure defining ⟨·⟩∗. Then the
conditional variance V∗

[
U ′(x− X⋆)2 + (R′, V ′, W ′)⊤F · x

]
is 0 only if the quadratic function x 7→ U ′(x − X⋆)2 +
(R′, V ′, W ′)⊤F · x takes constant value at these three points,
which occurs only when both U ′ = 0 and (R′, V ′, W ′)⊤F =
0. When U ′ = 0, we have ∥(R′, V ′, W ′)∥ = 1. By The-
orem 2.2, Corollary 1, and Proposition 7, F has zero mean
and identity covariance, so (R′, V ′, W ′)⊤F has variance 1.
Then in particular, (R′, V ′, W ′)⊤F ̸= 0 with positive prob-
ability. Then V∗

[
U ′(x− X⋆)2 + (R′, V ′, W ′)⊤F · x

]
> 0

with positive probability, and hence (153) is strictly positive.
This shows the strict convexity ∇2X(U∗, R∗, V∗, W∗) ≻
0 as desired. Then by continuity, also ∇2X(U, R, V,W ) ≻
0 and X(U, R, V,W ) < ∞ in a bounded neighborhood
O of (U∗, R∗, V∗, W∗). By the monotone convergence the-
orem, limM→∞XM (U,R, V, W ) = X(U, R, V,W ), and
this convergence is uniform over O because XM and
X are convex [48, Theorem 10.8]. Then the infimum of
XM (U, R, V,W ) is attained also in O for all large M , and
limM→∞ infU,R,V,W XM (U, R, V,W ) = X(U∗, R∗, V∗, W∗).
Hence (151) holds, as claimed.

For the second term Y (ζ, χA, χB , χC), recall
A(P∗) = η−1

∗ from (138), and ∂ζH(ζ∗, η−1
∗ ) = 0.

Then, since ∥v∗∥2 − ∥ṽ∗∥2 = ot(1), we have A(P̃∗) =
η−1
∗ + ot(1) and ∂ζH(ζ∗,A(P̃∗)) = ot(1). Furthermore

∂2
ζH(ζ,A(P̃∗)) = −G′(ζ) > 0 in a neighborhood

of ζ∗, so infζ>d− H(ζ,A(P̃∗)) = H(ζ∗, η−1
∗ ) + ot(1)
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(see e.g. [33, Proposition C.2]). Applying that the
infimum of Y (ζ, χA, χB , χC) occurs at χA = 0, and
that B(ṽ∗, w∗) = ∥v∗ − ṽ∗∥2 = ot(1), we obtain

inf
ζ,χA,χB ,χC

Y (ζ, χA, χB , χC) = H(ζ∗, η−1
∗ ) + ot(1). (154)

Applying (151) and (154) to (150), we obtain

lim
t→∞

sup
M>0

ΨM
1,t(P̃∗) =− 1

2
+

γ∗
2η∗

+ X(U∗, R∗, V∗, W∗)

+
1
2
H(ζ∗, η−1

∗ ) = ΨRS,

which implies the lower bound in (36).
For the upper bounds in (36) and (37), we now fix h ∈ R+

and specialize the dual variables Q = Q(P) as functions of
P = (u, r, v, w), given by

U(u) = U∗ + h(u− u∗), R(r) = R∗ + h(r − r∗),
V (v) = V∗ + h(v − v∗), W (w) = W∗ + h(w − w∗),
ζ(P) = G−1(A(P)),

χA(r) = −
(

γ∗(η∗ − γ∗)
η∗

− b−1
∗ + rb

−3/2
∗ e∗

)
,

χB = χB
∗ = 0, χC = χC

∗ = 0.

Here, for any P ∈ V with u ∈ (0, K), we have A(P) < K
so ζ(P) is well-defined for all e sufficiently small. Note that
under the above choices of χA, χB , χC , we have

Fe
22(ζ, r) = E

[
E2

b

ζ + D2

([
γ∗
η∗
− b

−1/2
∗ r

]
D2 − χA(r)

)2
]

,

F22(ζ) = E
[

1
ζ + D2

(
θ
(
D2
)
− λ

(
D2
)
χB
∗ − χC

∗
)2]

where Fe
22,F22 are the functions previously defined in (110).

Then

Ψ1,t(P) = inf
Q

Φ1,t(P, Q) ≤ Φ1,t(P, Q(P)) =: Ψ̄1,t(P)

= −1
2

+ I + II +
1
2

(
III + IV + V + VI

)
(155)

where, recalling F from (152), we define

I = E log cπ

(
U(u),−2U(u)X⋆ + (R(r), V (v), W (w))⊤F

)
II = −(u− ρ∗) · U(u)− r ·R(r)

− (v + π∗∆
−1/2
t 1t×1)⊤V (v)− w⊤W (w)

III = −e∗r
2

b∗
+

2r√
b∗
− Tr

(
d∗ a∗
a∗ c∗

)(
v,

w
√

κ∗

)⊤(
v,

w
√

κ∗

)
IV = H (ζ(P),A(P)) , V = Fe

22(ζ(P), r),
VI = F22(ζ(P)) · B(v, w) (156)

At P = P∗, using A(P∗) = η−1
∗ , ζ∗ = G−1(η−1

∗ ),
and (142) to verify χA(r∗) = 0, we observe that these
specializations give Q(P∗) = Q∗. Then Ψ̄1,t(P∗) =
Φ1,t(P∗, Q∗) = ΨRS by Lemma 10. Furthermore, noting that
the only coordinates of Q(P) depending on v are V (v) and
ζ(P), the derivative of Ψ̄1,t in v is

∂vΨ̄1,t(P∗) =∂vΦ1,t(P∗, Q∗) + ∂ζΦ1,t(P∗, Q∗) · ∂vζ(P∗)
+ ∂V Φ1,t(P∗, Q∗) · ∂vV (v∗).

The first term has norm ot(1), and the remaining two
terms are 0, by Lemma 10. Similarly ∂uΨ̄1,t(P∗) = 0,
∂rΨ̄1,t(P∗) = 0, and ∂wΨ̄1,t(P∗) = 0, so ∥∇Ψ̄1,t(P∗)∥ =
ot(1).

We now show, using the small-e approximations of Propo-
sition 8, that the upper bound Ψ̄1,t(P) in (155) is concave in
P over the domain {P ∈ V : u ∈ (0, K)}. Let us write O(1),
O(e) etc. for scalar quantities bounded in magnitude by C, Ce,
etc. where the constant C > 0 depends only on C, K (and not
on d∗, e, h or the dimension t). Fix any P = (u, r, v, w) ∈ V
with u ∈ (0, K), fix any unit vector (u′, r′, v′, w′) ∈ R2t+2,
and define for s > 0

P(s)=(u(s), r(s), v(s), w(s))=(u, r, v, w)+s·(u′, r′, v′, w′).
(157)

We compute the second derivative of Ψ̄1,t(P(s)) at s = 0.
For the first term I, denote

⟨f(x)⟩P =
A

B

where

A :=
∫

f(x)exp
(
U(u) · x2 − 2U(u)X⋆ · x

+ (R(r), V (v), W (w))⊤F · x
)
dπ(x)

B :=
∫

exp
(
U(u) · x2 − 2U(u)X⋆ · x

+ (R(r), V (v), W (w))⊤F · x
)
dπ(x)

and let VP[f(x)] = ⟨f(x)2⟩P−⟨f(x)⟩2P be the corresponding
variance. Then

∂2
s I
∣∣
s=0

=h2 E
[
VP

[
u′x2 − 2u′X⋆ · x + (r′, v′, w′)⊤F · x

]]
≤ 2h2 E

[
(u′)2 · VP[x2] (158)

+
(
−2u′X⋆ + (r′, v′, w′)⊤F

)2 VP[x]
]
. (159)

Let us apply Assumption 1.3 and Proposition 16 in dimension
k = 1, with Γ = γmax = γmin = U(u) and z =
−2U(u)X⋆ + (R(r), V (v), W (w))⊤F. We observe that, since
u, u∗ ∈ (0, K), we have

U(u) = U∗ + h(u− u∗) = −(γ∗/2) + h(u− u∗)
= −(d∗/2)(1 + O(e)) + O(h),

(160)

the last equality applying Proposition 8. In particular, since
d∗ > 0, for all h ∈ (0, h0) where h0 is a small constant
depending only on (K, C), we have Γ < (4C)−1. Then the
condition (6) from Assumption 1.3 implies VP[x] = O(1).
Since also r2 + ∥v∥2 + ∥w∥2 < u < K and r2

∗ + ∥v∗∥2 +
∥w∗∥2 < u∗ < K and b∗ + κ∗δ∗ = γ−1

∗ and γ∗ = d∗(1 +
O(e)), we have

∥(R(r), V (v), W (w))∥ ≤ ∥(R∗, V∗, W∗)∥+ O(h)

= (γ2
∗b∗ + γ2

∗κ∗δ∗)
1/2 + O(h) = d

1/2
∗ (1 + O(e)) + O(h).

Then, for all h ∈ (0, h0), we have ∥z∥2 ≤ (X⋆2 + (q⊤F)2) ·
O(1 + d∗) for some unit vector q ∈ R2t+1. From (160),
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we have C−1 − γmax ≥ c(1 + d∗) and −γmin < C(1 + d∗)
for constants C, c > 0 depending only on (K, C). So Proposi-
tion 16 shows VP[x2] ≤ C(1+X⋆2+(q⊤F)2). Applying these
to (159), and applying also E[X⋆2] ≤ C and E[(q⊤F)2] = 1 for
any unit vector q, we obtain

∂2
s I
∣∣
s=0

= O(h2). (161)

For II, we have

∂2
s II |s=0= −2h(u′2 + r′

2 + ∥v′∥2 + ∥w′∥2) = −2h. (162)

For III, applying Proposition 8,

∂2
s III

∣∣
s=0

= −2Tr

(
d∗ a∗κ

−1/2
∗

a∗κ
−1/2
∗ c∗κ

−1
∗

)
(v′, w′)⊤(v′, w′)

−2e∗
b∗

r′
2 = −2d∗∥(r′, v′, w′)∥2 + O(e).

(163)

For IV, we have IV =
∫ A(P(s))

0
R(z)dz by [33, Proposi-

tion 2.9(a)]. It is easily checked that |A(P(s))| = O(1),
|∂sA(P(s))| = O(1), and ∂2

sA(P(s)) = −2∥(r′, v′, w′)∥2 at
s = 0. Then by Proposition 8,

∂2
s IV

∣∣
s=0

= R′(A(P(s))) · ∂sA(P(s))2

+R(A(P(s))) · ∂2
sA(P(s))2

∣∣∣
s=0

= 2d∗∥(r′, v′, w′)∥2 + O(e2). (164)

For V, we may apply the series expansion for R(z) from
(219) with κ1 = −E[D2] = −d∗, to write for any z ∈ (0, K),
x ∈ [d∗ − e, d∗ + e], and sufficiently small e,

(G−1(z) + x)−1 =
(
R(z) + z−1 + x

)−1
(165)

= z

1 + (x− d∗)z +
∑
k≥2

κkzk

−1

= z ·
∑
j≥0

− (x− d∗) z −
∑
k≥2

κkzk

j

(166)

=: z +
∑
k≥1

ck(x)zk+1. (167)

Here, |ck(x)| ≤ (O(e))k, and these series are absolutely
convergent for sufficiently small e. Then the derivatives in
z may be computed term-by-term. Recalling ζ(P(s)) =
G−1(A(P(s))) where A(P(0)) ∈ (0, K), we obtain by the
chain rule

sup
x∈supp(D2)

∣∣∂k
s (ζ(P(s)) + x)−1

∣∣ ∣∣∣
s=0

= O(1) for k = 0, 1, 2.

(168)

Recalling υA(x) from (110) and applying Proposition 8,
we have for any x ∈ [d∗ − e, d∗ + e],

υA(x) = b
−1/2
∗

(
−x +

e∗
b∗

)
=O(b−1/2

∗ e).

By Proposition 8, we have γ∗ = d∗+O(κ2/η∗) and also b−1
∗ =

d∗(1 + η−1
∗ · O(κ2/d∗)) = d∗ + O(κ2/η∗). Then recalling

υB(x) from (110), we have

υB(x) =
(

γ∗
η∗

)
x +

(
γ∗ (η∗ − γ∗)

η∗
− 1

b∗

)
=

γ∗
η∗

(x− γ∗) + O

(
κ2

η∗

)
= O

(
γ∗e

η∗
+

κ2

η∗

)
.

Here, κ2 = O(d∗e) = O(γ∗e), the second equality holding
because γ∗ = d∗(1 + O(e)). Then, applying also η−1

∗ = O(1)
and 0 < γ∗ < η∗ by Proposition 1, this gives

υB(x) = O

(
γ∗e

η∗

)
= O

(√
γ∗
η∗
·
√

1
η∗
· √γ∗ · e

)
= O(

√
d∗ · e)

= O(b−1/2
∗ · e).

Now applying these bounds for υA, υB to fe(x, r) from (110)
and differentiating by the chain rule,

sup
x∈supp(D2)

∣∣∂k
s fe(x, r(s))

∣∣ ∣∣∣
s=0

= O(b−1/2
∗ · e) for k = 0, 1, 2.

(169)

Combining (168) and (169) and differentiating Fe
22 from (110)

by the chain rule,

∂2
sV
∣∣
s=0

= ∂2
sFe

22(ζ(P(s)), r(s))
∣∣∣
s=0

≤ O(b−1
∗ · e2) · E[E2

b ]
= O(b−1

∗ · e2) · b∗
= O(e2). (170)

For VI, for any x ∈ [d∗ − e, d∗ + e], we may write θ(x)
from (33) as

θ(x) = x− d∗ − αB
∗

(
1

1− η−1
∗ (γ∗ − x)

− 1
)

= x− d∗ − αB
∗

∑
k≥1

(
γ∗ − x

η∗

)k

= (x− γ∗)
(
1 + η−1

∗ αB
∗
)

+ γ∗

− d∗ − αB
∗

∑
k≥2

(
γ∗ − x

η∗

)k

.

Then, using |x− γ∗|/η∗ = O(e), we have

E
[
θ(D2)2

]
≤3

(
(1 + η−1

∗ αB
∗ )2 · E

[
(D2 − γ∗)2

]
+ (γ∗ − d∗)2

+
(
αB
∗
)2 E

[(
γ∗ − D2

η∗

)4
]

(1 + O(e))

)
By Proposition 8 and Lemma 13(c), we have (γ∗ − d∗)2 =
O(κ2

2η
−2
∗ ) = O(κ2e

2/η2
∗), E[(D2−γ∗)2] = κ2 +(d∗−γ∗)2 =
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O(κ2), E[(D2 − γ∗)4] = O(µ4 + (d∗ − γ∗)4) = O(κ2e
2),

1 + η−1
∗ αB

∗ = O(e/η∗), and η−2
∗ (αB

∗ )2 = O(1). This gives

E[θ(D2)2] = O(κ2e
2/η2

∗) (171)

Then, applying again (168) and differentiating F22 from (110),
we have at s = 0 that ∂k

sF22(ζ(P(s))) = O(κ2e
2/η2

∗)
for k = 0, 1, 2. Using αA

∗ = η∗√
κ2

(1 + O(η−1
∗ e))

and ∥v∥ , ∥w∥ , ∥v′∥ , ∥w′∥ = O(1), we have also
∂k

sB(v(s), w(s)) = O(max(1, η2
∗/κ2)) for k = 0, 1, 2.

Combining these bounds, we conclude that

∂2
sVI

∣∣∣
s=0

= O(e2). (172)

Now, combining (161), (162), (163), (164), (170), (172), and
setting h = e1/2, we conclude that

∂2
s Ψ̄1,t(P(s))|s=0 = −2e1/2 + O(e) < −e1/2

for all e < e0(C, K). This holds for P(s) as defined in (157)
for any (u, r, v, w) ∈ V with u ∈ (0, K) and for any unit
vector (u′, r′, v′, w′), implying the concavity

∇2Ψ̄1,t(P) ≺ −e1/2I over {P ∈ V : u ∈ (0, K)}. (173)

Finally, since u∗ = 2η−1
∗ ∈ U ⊆ (0, K) by assumption,

we have that P∗ = (u∗, r∗, v∗, w∗) is an interior point of
the open domain {P ∈ V : u ∈ U}. Recalling Ψ̄1,t(P∗) =
ΨRS and ∥∇Ψ̄1,t(P∗)∥ = ot(1), we then have (see
e.g. [33, Proposition C.2])

sup
P∈V:u∈U

Ψ1,t(P) ≤ sup
P∈V:u∈U

Ψ̄1,t(P)

= Ψ̄1,t(P∗) + ot(1)
= ΨRS + ot(1).

This shows the upper bound of (36). Furthermore, by (173)
and a Taylor expansion, for any P ∈ V with u ∈ (0, K) and
|u− u∗| > ς , we have

Ψ̄1,t(P) ≤ Ψ̄1,t(P∗) +∇Ψ̄1,t(P∗)⊤(P−P∗)

− 1
2
e1/2∥P−P∗∥2

≤ ΨRS + ot(1) · ∥P−P∗∥ −
1
2
e1/2ς2.

Applying the bound ∥P − P∗∥ < C for a constant C =
C(K) > 0 independent of t, and taking the limit t → ∞,
we obtain (37). ■

APPENDIX D
ANALYSIS OF THE CONDITIONAL SECOND MOMENT

In this appendix we prove Lemmas 3 and 4. We will
abbreviate parts of the arguments that are similar to the
preceding analysis of the conditional first moment, and also
refer to [33, Lemmas 4.1 and 4.2] for some of the technical
details.

Lemma 11: Let π be any probability distribution over R.
For a, b ∈ R2 and c ∈ R, let cπ(a, b, c) be as defined in (42),
and let

O=
{
(a, c)∈ R3 :

∫
ea1x2

1+a2x2
2+cx1x2dπ(x1)dπ(x2) < ∞

}
.

Then O is a non-empty convex subset of R3. For any (a, c)
in the interior of the complement of O and any b ∈ R2, we
have cπ(a, b, c) = ∞. For any (a, c) in the interior of O, the
function b 7→ log cπ(a, b, c) is continuous and satisfies, for
some (a, c, π)-dependent constant C > 0 and for all b ∈ R2,

log cπ(a, b, c) ≤ C(∥b∥2 + 1).

Proof: The set O is convex by convexity of the func-
tion (a, c) 7→ cπ(a, 0, c), and non-empty because (a, c) =
0 belongs to O. The proofs of the remaining statements are
similar to the proof of Lemma 9 and omitted for brevity.

Proof of Lemma 3: Fix t and write G, X, Y, S, ∆ for
Gt, Xt, Yt, St, ∆t. Then

E[Z(U)2 | G] =
∫

I
( 1

n
∥σ̃∥2 ∈ U ,

1
n
∥τ̃∥2 ∈ U

)
× exp

(
−∥ϵ∥2 +

n

2
· fn(σ̃, τ̃)

) n∏
i=1

dπ(σi)dπ(τi)

with σ̃ := σ̃(σ) = σ − β⋆, τ̃ := τ̃(τ) = τ − β⋆, and

fn(σ̃, τ̃) :=
2
n

log E
[
exp
(
− σ̃⊤O⊤D⊤DOσ̃

2

− τ̃⊤O⊤D⊤DOτ̃

2
+ (σ̃ + τ̃)⊤O⊤D⊤ξ

) ∣∣∣∣ G].
Uniform Approximation of fn(σ̃, τ̃): Define P(σ̃, τ̃) =

(u(σ̃, τ̃), r(σ̃, τ̃), v(σ̃, τ̃), w(σ̃, τ̃), p(σ̃, τ̃)) by

u(σ̃, τ̃) =
1
n

(
∥τ̃∥2, ∥σ̃∥2

)
∈ R2, p(σ̃, τ̃) =

1
n

σ̃⊤τ̃ ∈ R,

r(σ̃, τ̃)⊤

v(σ̃, τ̃)
w(σ̃, τ̃)

 =

 1
n

 e⊤e e⊤X e⊤Y
X⊤e X⊤X X⊤Y
Y ⊤e Y ⊤X Y ⊤Y

−1/2

× 1
n

(e, X, Y )⊤(σ̃, τ̃) ∈ R(2t+1)×2

where r(σ̃, τ̃) ∈ R2 and v(σ̃, τ̃), w(σ̃, τ̃) ∈ Rt×2. Define the
open domain

K=
{̃
σ, τ̃ ∈ Rn : u(σ̃, τ̃)∈(0, K)2, A(P(σ̃, τ̃)) ≻ 0

}
(174)

and write again an(σ̃, τ̃) .= bn(σ̃, τ̃) to mean an(σ̃, τ̃) −
bn(σ̃, τ̃) → 0 uniformly over (σ̃, τ̃) ∈ K, almost surely as
n, m →∞.

Recall σ̃⊥, σ̃∥ from (84), Π = Π(eb,S,ΛS)⊥ ∈ Rn×(n−2t−1),
and denote similarly

τ̃⊥=Π⊤(e,X,Y )⊥ τ̃ ∈ Rn−2t−1,

τ̃∥=(eb, S,ΛS)

 e⊤e e⊤X e⊤Y
X⊤e X⊤X X⊤Y
Y ⊤e Y ⊤X Y ⊤Y

−1

(e, X, Y )⊤τ̃ ∈Rn.

Observe that, similarly to (90), we have

A(P(σ̃, τ̃)) =
1
n

(
∥σ̃⊥∥2 σ̃⊤⊥ τ̃⊥
σ̃⊤⊥ τ̃⊥ ∥τ̃⊥∥2

)
.

The condition A(P(σ̃, τ̃)) ≻ 0 defining K then requires
that σ̃⊥ and τ̃⊥ are non-zero and linearly independent. Then
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for a sufficiently small constant d > 0, an application of
[34, Lemma B.2] and [33, Proposition 2.8] yields

fn(σ̃) .= − 1
n

(
σ̃⊤∥ D⊤Dσ̃∥ + τ̃⊤∥ D⊤Dτ̃∥

)
+

2
n

(σ̃∥ + τ̃∥)⊤D⊤ξ + En(σ̃, τ̃) (175)

where

En(σ̃, τ̃) = inf
Z⪰(−d+d)I

{
1
n

Tr
[
Z ·
(
∥σ̃⊥∥2 σ̃⊤⊥ τ̃⊥
σ̃⊤⊥ τ̃⊥ ∥τ̃⊥∥2

)]
+

1
n

(
Π⊤D⊤ξ −Π⊤D⊤Dσ̃∥
Π⊤D⊤ξ −Π⊤D⊤Dτ̃∥

)⊤(
Z⊕Π⊤D⊤DΠ

)−1

×
(

Π⊤D⊤ξ −Π⊤D⊤Dσ̃∥
Π⊤D⊤ξ −Π⊤D⊤Dτ̃∥

)
− 1

n
log det

(
Z⊕Π⊤D⊤DΠ

)
−
(

2 + log det
1
n

(
∥σ̃⊥∥2 σ̃⊤⊥ τ̃⊥
σ̃⊤⊥ τ̃⊥ ∥τ̃⊥∥2

))}
(176)

and we define

Z⊕Π⊤D⊤DΠ: =Z⊗ I(n−2t−1)×(n−2t−1)

+ I2×2 ⊗Π⊤D⊤DΠ.

Similarly to (97), (98), and (99) from Lemma 1, we have

1
n

(σ̃⊤∥ D⊤Dσ̃∥ + τ̃⊤∥ D⊤Dτ̃∥)
.=

2∑
i=1

e∗ri(σ̃, τ̃)2

b∗
(177)

+ Tr
(

d∗ a∗
a∗ c∗

)(
vi(σ̃, τ̃),

wi(σ̃, τ̃)
√

κ∗

)⊤
(178)

×
(

vi(σ̃, τ̃),
wi(σ̃, τ̃)
√

κ∗

)
, (179)

2
n

(σ̃∥ + τ̃∥)⊤Dξ
.=

2∑
i=1

2ri(σ̃, τ̃)√
b∗

, (180)

and

1
n

Tr
[
Z ·
(
∥σ̃⊥∥2 σ̃⊤⊥ τ̃⊥
σ̃⊤⊥ τ̃⊥ ∥τ̃⊥∥2

)]
(181)

− 1
n

log det
(
Z⊕Π⊤D⊤DΠ

)
(182)

−
(

2 + log det
1
n

(
∥σ̃⊥∥2 σ̃⊤⊥ τ̃⊥
σ̃⊤⊥ τ̃⊥ ∥τ̃⊥∥2

))
.= H(Z,A(P(σ̃, τ̃))). (183)

This last approximation (183) holds uniformly over
Z ⪰ (−d− + d)I , by the same argument as in the proof of
[33, Lemma 4.2].

For the remaining second term of En(σ̃, τ̃), write the eigen-
decompositions

Z =
(
y1 y2

)(ζ1 0
0 ζ2

)(
y⊤1
y⊤2

)
,

Π⊤D⊤DΠ = Π′⊤D′Π′

= Π′⊤ diag
(
d′1, . . . , d

′
n−2t−1

)
Π′

where ζ1, ζ2 and d′1, . . . , d
′
n−2t−1 are the eigenvalues of Z

and Π⊤D⊤DΠ respectively, and y1, y2 ∈ R2 and the rows of
Π′ ∈ R(n−2t−1)×(n−2t−1) are the eigenvectors. Then

(Z⊕Π⊤D⊤DΠ)−1 =
(

Π′ 0
0 Π′

)⊤
×
(

Z11 · I + D′ Z12 · I
Z12 · I Z22 · I + D′

)−1(Π′ 0
0 Π′

)
and we may compute the inverse on the right side by inverting
separately the 2× 2 blocks,(

Z11 + d′i Z12

Z12 Z22 + d′i

)−1

=
1

ζ1 + d′i
y1y

⊤
1 +

1
ζ2 + d′i

y2y
⊤
2 .

Then for each j, k ∈ {1, 2}, the (j, k) block of (Z ⊕
Π⊤D⊤DΠ)−1 is

(Z⊕Π⊤D⊤DΠ)−1
jk = y1jy1k

(
ζ1I + Π⊤D⊤DΠ

)−1

+y2jy2k

(
ζ2I + Π⊤D⊤DΠ

)−1
. (184)

Recall υA, υB from (110), and define Xe(ζ) = Xe
22(ζ) −

Xe
12(ζ)Xe

11(ζ)−1Xe
12(ζ)⊤ ∈ R2×2 where

Xe
22(ζ) = E

E2
b

ζ + D2

(
υA(D2)
υB(D2)

)(
υA(D2)
υB(D2)

)⊤
,

Xe
12(ζ) = E

E2
b

ζ + D2

(
υA(D2)
υB(D2)

)
, Xe

11(ζ) = E
E2

b

ζ + D2
.

Note in particular that Fe defined in (105) is given by
Fe(ζ, r) = (r 1)Xe(ζ)(r 1)⊤. Then, applying the argument
leading to (122) separately for each of the four blocks j, k ∈
{1, 2} of (184), we have

1
n

(
Π⊤D⊤ξ −Π⊤D⊤Dσ̃∥
Π⊤D⊤ξ −Π⊤D⊤Dτ̃∥

)⊤(
Z⊕Π⊤D⊤DΠ

)−1
(185)

×
(

Π⊤D⊤ξ −Π⊤D⊤Dσ̃∥
Π⊤D⊤ξ −Π⊤D⊤Dτ̃∥

)
.=

2∑
j,k=1

y1jy1k

[ (
rj(σ̃, τ̃) 1

)
Xe(ζ1)

(
rk(σ̃, τ̃)

1

)
(186)

+ F(ζ1) · B(v(σ̃, τ̃), w(σ̃, τ̃))jk

]
+ y2jy2k

[ (
rj(σ̃, τ̃) 1

)
Xe(ζ2)

(
rk(σ̃, τ̃)

1

)
(187)

+ F(ζ2) · B(v(σ̃, τ̃), w(σ̃, τ̃))jk

]
= Tr

[ 2∑
i=1

(
r1(σ̃, τ̃) r2(σ̃, τ̃)

1 1

)⊤
Xe(ζi) (188)(

r1(σ̃, τ̃) r2(σ̃, τ̃)
1 1

)
yiy

⊤
i

]
(189)

+ Tr
[
F(Z) · B(v(σ̃, τ̃), w(σ̃, τ̃))

]
(190)

uniformly over Z ⪰ (−d− + d)I , where F is applied in the
second term spectrally to Z via functional calculus.
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From the form of F in (113), the second term of (190) may
be expressed as

Tr[F(Z) · B(v, w)]

= inf
χB ,χC∈R2

2∑
i=1

E
[

1
ζi + D2

(
θ
(
D2
)

− λ
(
D2
)
χB

i − χC
i

)2
]
y⊤i B(v, w)yi. (191)

For the first term, for r = (r1, r2) ∈ R2, set

fe(x, r) =
(

fe(x, r1)
fe(x, r2)

)
=
(

r1 r2

1 1

)⊤(
υA(x)
υB(x)

)
∈ R2,

where fe(x, ri) is the function defined in (110). Then define

Fe(Z, r) = inf
χA∈R2

E
[((γ∗

η∗
− b

−1/2
∗ r1

γ∗
η∗
− b

−1/2
∗ r2

)
D2 − χA

)⊤
(192)

×
(
E2

b(Z + D2 · I)−1
)

(193)

×

((
γ∗
η∗
− b

−1/2
∗ r1

γ∗
η∗
− b

−1/2
∗ r2

)
D2 − χA

)]
= inf

χA∈R2
E
[(

fe(D2, r)− χA
)⊤

(194)

×
(
E2

b(Z + D2 · I)−1
)(

fe(D2, r)− χA
)]

(195)

where these expressions are equivalent by an additive shift
of χA. Evaluating explicitly the infimum over χA, we get
Fe(Z, r) = Fe

22(Z, r)−Fe
12(Z, r)⊤Fe

11(Z)−1Fe
12(Z, r) where

Fe
22(Z, r) = E fe(D2, r)⊤

(
E2

b(Z + D2 · I)−1
)
fe(D2, r)

= E
2∑

i=1

(
υA(D2)
υB(D2)

)⊤(
r1 r2

1 1

)
· E2

byiy
⊤
i

ζi + D2

×
(

r1 r2

1 1

)⊤(
υA(D2)
υB(D2)

)
= Tr

[
2∑

i=1

(
r1 r2

1 1

)⊤
Xe

22(ζi)
(

r1 r2

1 1

)
yiy

⊤
i

]
,

Fe
12(Z, r) = E E2

b(Z + D2 · I)−1fe(D2, r)

= E
2∑

i=1

E2
byiy

⊤
i

ζi + D2
·
(

r1 r2

1 1

)⊤(
υA(D2)
υB(D2)

)

=
2∑

i=1

yiy
⊤
i

(
r1 r2

1 1

)⊤
Xe

12(ζi),

Fe
11(Z) = E E2

b(Z + D2 · I)−1 = E
2∑

i=1

E2
byiy

⊤
i

ζi + D2

=
2∑

i=1

yiy
⊤
i Xe

11(ζi). (196)

Then it follows that the first term of (190) has the form

Tr

[
2∑

i=1

(
r1 r2

1 1

)⊤
Xe(ζi)

(
r1 r2

1 1

)
yiy

⊤
i

]
= Fe(Z, r).

(197)

Combining (175), (176), (179), (180), (183), (190), and (197),
we obtain the uniform approximation

lim
n,m→∞

sup
(σ̃,τ̃)∈K

∣∣∣fn(σ̃, τ̃)− f(P(σ̃, τ̃))
∣∣∣ = 0

where we define on the domain V = {P : A(P) ≻ 0} the
function

f(P) = inf
Z

(
− e∗∥r∥2

b∗
+

2r⊤12×1√
b∗

− Tr
(

d∗ a∗
a∗ c∗

)[(
v1,

w1√
κ∗

)⊤(
v1,

w1√
κ∗

)
+
(

v2,
w2√
κ∗

)⊤(
v2,

w2√
κ∗

)]
+H(Z,A(P)) + Fe(Z, r) + Tr[F(Z) · B(v, w)]

)
and the infimum is over Z ⪰ (−d−+d)I . It is immediate from
the forms (191) and (195) that Fe(Z, r) and Tr[F(Z)·B(v, w)]
are decreasing in the eigenvalues ζ1, ζ2 of Z. The same
argument as in the proof of [33, Lemma 4.2] shows that
H(Z,A(P)) is also decreasing in each eigenvalue ζ1, ζ2 over
the range (−d−,−d− + d], and hence this infimum may be
extended to the domain Z ≻ −d− · I . Finally, since fn

is continuous on K and the map P : K → {P ∈ V :
u1, u2 ∈ [0, K]} is continuous, relatively open, and maps K
to the interior {P ∈ V : u1, u2 ∈ (0, K)} for each fixed n,
[33, Proposition C.1] shows that f extends continuously to
{P ∈ V : u1, u2 ∈ [0, K]}, and

lim
n,m→∞

sup
(σ̃,τ̃)∈K

∣∣∣fn(σ̃, τ̃)− f(P(σ̃, τ̃))
∣∣∣ = 0.

Then, writing ⟨·⟩π for the expectation over (σi)n
i=1, (τi)n

i=1
iid∼

π, we obtain

lim
n,m→∞

1
n

log E[Z(U)2 | G] =

− 1 + lim
n,m→∞

1
n

log
〈

I
{
u(σ̃, τ̃) ∈ U × U

}
exp
(n

2
f(P(σ̃, τ̃))

)〉
π

.

Large Deviations Analysis: Introduce dual variables R =
(U, R, V,W, P ) where U, R ∈ R2, V,W ∈ Rt×2, and P ∈ R.
Define

λn(R) =
1
n

log
〈
exp

(
n ·P(σ̃, τ̃)⊤R

)〉
π

λ(R) = E log cπ(U, A(R), P ) + ρ∗ U⊤12×1

− π∗ V ⊤
1 ∆−1/2

t 1t×1 − π∗ V ⊤
2 ∆−1/2

t 1t×1 + ρ∗ P

where cπ is the function from (42), and where

A(R) = −2U X⋆ +
R E√

b∗
+ V ⊤∆−1/2

t (X1, . . . ,Xt)

+
W⊤∆−1/2

t (Y1, . . . ,Yt)√
κ∗

− P X⋆12×1 ∈ R2.

Then, applying Lemma 11 and the same argument as leading
to (125), we have almost surely
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• limn,m→∞ λn(R) = λ(R) < ∞ if (U, P ) is in the
interior of O

• limn,m→∞ λn(R) = λ(R) = ∞ if (U, P ) is in the
interior of the complement of O

where O is the convex set defined in Lemma 11. Under
the sub-Gaussian condition (5), (U, P ) = 0 belongs to the
interior of O, so the Fenchel-Legendre dual λ∗ of λ is a
good convex rate function [47, Lemma 2.3.9(a)]. Defining
λ̄(R) = lim supn,m→∞ λn(R), this coincides with λ(R)
whenever (U,P ) /∈ ∂O, the boundary of O. For (U, P ) ∈ ∂O,
since O is convex and 0 belongs to the interior of O, the open
line segment {s·(U, P ) : s ∈ [0, 1)} also belongs to the interior
of O [48, Theorem 6.1]. The Gale-Klee-Rockafellar Theorem
shows that λ, λ̄ are upper-semicontinuous on {s · (U, P ) :
s ∈ [0, 1]}, so the supremum defining the Fenchel-Legendre
dual λ∗(P) = supR P⊤R − λ(R) may then be restricted
to R where (U,P ) /∈ ∂O, and similarly for λ̄. Then λ∗

coincides with the Fenchel-Legendre dual of λ̄, and the proof
is concluded as in Lemma 1 by an application of the upper
bound in the Gärtner-Ellis Theorem and Varadhan’s lemma. ■

We now prove Lemma 4. Let et = (0, . . . , 0, 1) ∈ Rt, and
consider P∗, Q∗ with the components

u∗ =
2
η∗

12×1, r∗ =
γ∗
η∗

b
1/2
∗ 12×1,

v∗ =
η∗ − γ∗

η∗
∆1/2

t (et, et),

w∗ =
γ∗
η∗

κ
1/2
∗ ∆1/2

t (et, et), p∗ =
1
η∗

Z∗ = (η∗ − γ∗) · I2×2, χA
∗ = χB

∗ = χC
∗ = 0,

U∗ = −γ∗
2

12×1, R∗ = γ∗b
1/2
∗ 12×1, V∗ = 0,

W∗ = γ∗κ
1/2
∗ ∆1/2

t (et, et), P∗ = 0.

Here, each of the two coordinates/columns of
u∗, r∗, v∗, w∗, U∗, R∗, V∗, W∗ coincides with our previous
specialization (130) in the analysis of the conditional first
moment.

Lemma 12: In the setting of Lemma 4, for all t ≥ 1 and
each ι ∈

{
u, r, v, w, p,Z, χA, χB , χC , U,R, W,P

}
,

Φ2,t(P∗, Q∗) = 2ΨRS, ∂ιΦ2,t(P∗, Q∗) = 0,

lim
t→∞

∥∂V Φ2,t(P∗, Q∗)∥ = 0. (198)

Proof: At P∗ = 0, we have log cπ(a1, a1, b1, b2, 0) =
log cπ(a1, b1) + log cπ(a2, b2) where cπ on the right side is
defined by (33). At P∗, we have also A(P∗) = η−1

∗ · I2×2

by the same calculation as (138), and B(v∗, w∗) = 0 because
v∗ = αA

∗ w∗. Since both A(P∗) and Z∗ are diagonal, it is then
easily checked that

Φ2,t(P∗, Q∗) = 2Φ1,t(P∗, Q∗)

where P∗, Q∗ on the right side are the specializations of (130)
from our previous analysis of the conditional first moment.
Then Φ2,t(P∗, Q∗) = 2ΨRS follows from Lemma 10.

To check the stationarity conditions, define

A∗ = −2U∗X
⋆ + b

−1/2
∗ R∗E + V ⊤

∗ ∆−1/2
t (X1, . . . ,Xt)

+ κ
−1/2
∗ W⊤

∗ ∆−1/2
t (Y1, . . . ,Yt)− P∗X

⋆12×1

= γ∗(X⋆ + E + Yt)12×1.

Then we obtain, similarly to (140), (141), and (144),

∂ZH(Z∗,A(P∗)) = 0, ∂AH(Z∗,A(P∗)) = −γ∗ · I2×2,

∂r, ∂Z, ∂χAE
[([

γ∗
η∗

12×1 −
r∗√
b∗

]
D2 − χA

∗

)⊤
×
(
E2

b(Z∗ + D2 ·I2×2)−1
)([γ∗

η∗
12×1 −

r∗√
b∗

]
D2 − χA

∗

)]
= 0,

and

∂a1 log cπ(U∗, A∗, P∗) = ∂a2 log cπ(U∗, A∗, P∗)
= γ−1

∗ f ′(X⋆ + E + Yt)
+ f(X⋆ + E + Yt)2,

∂b1 log cπ(U∗, A∗, P∗) = ∂b2 log cπ(U∗, A∗, P∗)
= f(X⋆ + E + Yt),

∂c log cπ(U∗, A∗, P∗) = f(X⋆ + E + Yt)2.

Using these, B(v∗, w∗), ∂vB(v∗, w∗), ∂wB(v∗, w∗) = 0, and
the identities (146) and (148), we have

∂ZΦ2,t(P∗, Q∗) = 0, ∂pΦ2,t(P∗, Q∗) = −P∗ = 0,

∂P Φ2,t(P∗, Q∗)
= Ef(X⋆ + E + Yt)2 − 2EX⋆f(X⋆ + E + Yt)− (p∗ − ρ∗)
= 0,

and the analyses of the remaining derivatives are the same as
in Lemma 10.

Proof of Lemma 4: The proof is analogous to the upper
bound of Lemma 2. We fix h ∈ R+ and specialize the dual
variables Q = Q(P) as functions of P = (u, r, v, w, p), given
by

U(u) = U∗ + h(u− u∗), R(r) = R∗ + h(r − r∗),
V (v) = h(v − v∗), W (w) = W∗ + h(w − w∗),
P (p) = h(p− p∗), Z = G−1(A(P)),

χA(r) =
(

γ∗(η∗−γ∗)
η∗

− b−1
∗

)
12×1 + b

−3/2
∗ e∗r,

χB = χC = 0 (199)

where G−1(A) is defined spectrally by functional calculus.
Then

Ψ2,t(P) = inf
Q

Φ2,t(P, Q) ≤ Φ2,t(P, Q(P))

=: Ψ̄2,t(P) = −1 + I + II +
1
2

(
III + IV + V + VI

)
(200)

where

I = E log cπ

(
U(u), −2X⋆ U(u)− X⋆P (p) 12×1

+
(
R(r) V (v)⊤ W (w)⊤

)⊤
F, P (p)

)
II = −(u− ρ∗12×1)⊤U(u)− r⊤R(r)

− (v1 + π∗∆
−1/2
t 1t×1)⊤V1(v)

− (v2 + π∗∆
−1/2
t 1t×1)⊤V2(v)

− w⊤1 W1(w)− w⊤2 W2(w)− (p− ρ∗)P (p)
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III = −e∗∥r∥2

b∗
+

2r⊤12×1√
b∗

− Tr
(

d∗ a∗
a∗ c∗

)
×

[(
v1,

w1√
κ∗

)⊤(
v1,

w1√
κ∗

)
+
(
v2,

w2√
κ∗

)⊤(
v2,

w2√
κ∗

)]
IV = H

(
Z(P),A(P)

)
, V = Fe

22(Z(P), r),
VI = Tr[F22(Z(P)) · B(v, w)]. (201)

Here F in I is the tuple of random variables defined in
(152), the function Fe

22(Z, r) = E[fe(D2, r)⊤(E2
b(Z + D2 ·

I)−1)fe(D2, r)] in V is as previously defined in (196), and the
function F22(ζ) = E[θ(D2)2/(ζ +D2)] in VI is as previously
defined in (110) and applied to Z by functional calculus.
We observe that Q(P∗) = Q∗, so Ψ̄2,t(P∗) = 2ΨRS.
An analysis similar to that of Lemma 2 shows also that
∥∇Ψ̄2,t(P∗)∥ = ot(1).

We now show that for sufficiently small e0 = e0(C, K) >
0 and e < e0, this function Ψ̄2,t(P) is concave over {P ∈
V : u1, u2 ∈ (0, K)}, by analyzing the Hessian of each term
I-VI. Fix P = (u, r, v, w, p) ∈ V with u1, u2 ∈ (0, K), fix a
unit vector P′ = (u′, r′, v′, w′, p′), and define for s > 0

P(s) = (u(s), r(s), v(s), w(s), p(s))
= (u, r, v, w, p) + s · (u′, r′, v′, w′, p′).

For I, recalling the random vector F ∈ R2t+1 from (152),
define

Q(x1, x2) =


x2

1 − 2x1X
⋆

x2
2 − 2x2X

⋆

x1x2 − x1X
⋆ − x2X

⋆

x1F
x2F

 ∈ R4t+5.

Vectorize Q(P) in the corresponding order
(U1, U2, P, R1, V1, W1, R2, V2, W2) ∈ R4t+5 and vectorize
similarly P′, and denote

⟨f(x1, x2)⟩P =

∫
f(x1, x2) exp

(
Q(P)⊤Q(x1, x2)

)
dπ(x1)dπ(x2)∫

exp
(
Q(P)⊤Q(x1, x2)

)
dπ(x1)dπ(x2)

.

Write VP[·] for the corresponding variance. Then we have,
analogous to (159),

∂2
s I = h2E[VP[P′⊤Q(x1, x2)]].

Note that the distribution defining ⟨·⟩P corresponds to µ in
Assumption 1.3 with k = 2 and

Γ =
(

U1(u) 1
2P (p)

1
2P (p) U2(u)

)
,

z=−2X⋆ U(u)−X⋆P (p) 12×1+
(
R(r) V (v)⊤ W (w)⊤

)⊤
F.

By Proposition 8, we have U1,∗ = U2,∗ = −γ∗/2 =
−(d∗/2)(1 + O(e)). We have also P∗ = 0 and
u1, u2, p, u1,∗, u2,∗, p∗ ∈ (0, K) under the conditions 2η−1

∗ ∈
(0, K) and P ∈ V . Thus, choosing h < h0 for a sufficiently
small constant h0 depending only on (K, C), we have Γ ≺
(4C)−1I , and also C−1 − γmax ≥ c(1 + d∗) and −γmin <
C(1 + d⋆) for its largest and smallest eigenvalues. The same
arguments as leading to (161) show ∥z∥2 ≤ (X⋆2 +(q⊤F)2) ·
O(1 + d∗), and hence by Assumption 1.3 and Proposition 16,

∂2
s I
∣∣
s=0

= O(h2).

The same arguments as in (162–163) show

∂2
s II
∣∣
s=0

= −2h, ∂2
s III

∣∣
s=0

= −2d∗ ∥(r′, v′, w′)∥
2 + O(e)

where (r′, v′, w′) ∈ R4t+2 is its vectorization and ∥ · ∥ is its
Euclidean norm. For IV, we have by [33, Proposition 2.9(b)]
that IV = Trf(A(P(s))) where f(α) =

∫ α

0
R(z)dz. For all

sufficiently small e, we may integrate the series representation
(219) for R(z) term-by-term to write f(A(P(s))) as the
convergent matrix series

f(A(P(s))) = −A(P(s)) +
∑
k≥2

κk

k
A(P(s))k

where |κk| ≤ κ2(16e)k−2 and κ2 = O(e2). It is easily
checked that at s = 0, we have ∥∂k

sA(P(s))∥ = O(1) for
k = 0, 1, 2, and in particular ∂2

sA(P(s)) = −2(r′r′⊤ +
v′
⊤

v′ + w′
⊤

w′) ∈ R2×2, with trace −2∥(r′, v′, w′)∥2. Then,
differentiating f(A(P(s))) term-by-term and taking the trace,
it follows that

∂2
s IV

∣∣
s=0

= 2d∗ ∥(r′, v′, w′)∥
2 + O(e2).

For V, applying the series expansion (167) now to the matrix
argument z = A(P(s)) and differentiating term-by-term,
we have

sup
x∈supp(D2)

∥∥∂k
s (Z(P(s)) + xI)−1

∥∥ ∣∣∣∣
s=0

=O(1) for k=0, 1, 2.

(202)

Combining with the bound (169), we have as in the proof
of Lemma 2 that ∂2

sV
∣∣
s=0

= O(e2). For VI, recalling the
bound (171) and combining this with (202), we obtain at
s = 0 that ∥∂k

sF22(Z(s))∥ = O(κ2e
2/η2

∗) for k = 0, 1, 2.
As in the proof of Lemma 2, we have ∥∂k

sB(v(s), w(s))∥ =
O(max(1, η2

∗/κ2)) for k = 0, 1, 2. Then ∂2
sVI

∣∣
s=0

= O(e2).
Combining the above and setting h = e1/2, we conclude

that for e < e0(C, K),

∇2Ψ̄2,t(P) ≺ −e1/2 · I for all P ∈ V with u1, u2 ∈ (0, K).

Since u∗ ∈ U ⊆ (0, K) by assumption, the same argument as
in Lemma 2 shows supP∈V:u1,u2∈U Ψ2,t(P) ≤ Ψ̄2,t(P∗) +
ot(1) = 2ΨRS + ot(1), and taking the limit t →∞ concludes
the proof. ■

APPENDIX E
CONCENTRATION OF THE LOG-PARTITION FUNCTION

Proof: [Proof of Lemma 5] Recall the representation (82)
and (86) of the conditional law of Z(U) given Gt,

1
n

logZ(U)
∣∣∣∣
Gt

L=
1
n

log
∫ n∏

i=1

dπ(σi)I
(

1
n
∥σ̃∥2 ∈ U

)
× exp

(
− ∥ξ∥2

2
−

(ΠÕσ̃⊥ + σ̃∥)⊤D⊤D(ΠÕσ̃⊥ + σ̃∥)
2

+
(
ΠÕσ̃⊥ + σ̃∥

)⊤
D⊤ξ

)
(203)

where σ̃ = σ − β⋆ and ∥σ̃∥∥2, ∥σ̃⊥∥2 ≤ ∥σ̃∥2. We denote
the right side of (203) as F (Õ), where Õ ∼ Haar(SO(n −
(2t+1))) is independent of Gt, and all other quantities defining
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F (Õ) are Gt-measurable. On the event E , this integral in (203)
is non-zero, so for any Õ ∈ SO(n − (2t + 1)) the Euclidean
gradient of F is bounded as∥∥∥∥ ∂

∂Õ
F (Õ)

∥∥∥∥
F

≤ 1
n

sup
σ̃:
∥σ̃∥2

n ∈U

∥∥∥∥− σ̃⊥σ̃⊤⊥Õ⊤Π⊤D⊤DΠ

− σ̃⊥σ̃⊤∥ D⊤DΠ + σ̃⊥ξ⊤DΠ
∥∥∥∥

F

≤ 1
n

sup
σ̃:
∥σ̃∥2

n ∈U

(∥∥D⊤D
∥∥

op
∥σ̃⊥∥2

+
∥∥D⊤D

∥∥
op
∥σ̃⊥∥

∥∥σ̃∥∥∥+ ∥σ̃⊥∥
∥∥D⊤ξ

∥∥)
≤ 2K∥D⊤D∥op +

√
KL

where we applied ∥Õ∥op, ∥Π∥op ≤ 1, ∥D⊤ξ∥2 ≤ Ln,∥∥uv⊤A
∥∥ ≤ ∥A∥op ∥∥uv⊤

∥∥
F

= ∥A∥op ∥u∥∥v∥, and the bounds
∥σ̃⊥∥ ,

∥∥σ̃∥∥∥ ≤ ∥σ̃∥ ≤
√

nK when U ⊆ [0, K]. Then,
applying the assumption

∥∥D⊤D
∥∥

op
→ d+, this bound is less

than 2K(d+ + 1) +
√

KL for all large n. Then

P
(∣∣∣∣ 1n logZ(U)− E

[
1
n

logZ(U)
∣∣∣∣ Gt

]∣∣∣∣ ≥ δ

∣∣∣∣ Gt

)
I{E}

≤ 2 exp
(
− (n− (2t + 1)− 2)δ2

8(2K(d+ + 1) +
√

KL)2

)
by Gromov’s inequality, see e.g. [49, Theorem 4.4.27]. Choos-
ing C(K, L, d+) > 8(2K(d+ + 1) +

√
KL)2 strictly, the

statement (47) thus holds for all sufficiently large n.
Proof of Corollary 3: Set U = [0, K]. Fix any δ′ > 0, and

fix L > 0 such that the condition ∥D⊤ξ∥2 ≤ Ln in Lemma 5
holds almost surely for all large n. By Lemma 5, for a constant
c0 = c0(δ′, K, L, e) > 0, any t ≥ 1, and all large n,

P
(∣∣∣∣ 1n logZ(U)− E

[
1
n

logZ(U)
∣∣∣∣ Gt

]∣∣∣∣ ≥ δ′
∣∣∣∣ Gt

)
I(E)

≤ e−c0n.
(204)

Now fix any δ ∈ (0, c0/6). By Lemmas 1, 2, 3, and 4, for a
large enough iteration t = t(δ) ≥ 1 and large enough M =
M(δ) > 0, almost surely

lim sup
n,m→∞

1
n

log E
[
Z(U) | Gt

]
≤ sup

u∈U
Ψ1,t(u) < ΨRS + δ

(205)

lim inf
n,m→∞

1
n

log E
[
Z(U) | Gt

]
≥ sup

u∈U
ΨM

1,t(u) > ΨRS − δ

(206)

lim
n,m→∞

1
n

log E
[
Z(U)2 | Gt

]
≤ sup

u∈U
Ψ2,t(u) < 2ΨRS + δ.

(207)

Letting E be the (Gt-measurable) event in Lemma 5, if the
first condition of E does not hold, then we have P[Z(U) = 0 |
Gt] = 1 and hence log E[Z(U) | Gt] = −∞. Thus the finite
lower bound in (206) and the above choice of L > 0 imply
that E holds almost surely for all large n. Then taking the

expectation of (204) and applying the Borel-Cantelli lemma,
this implies almost surely for all large n,

1
n

logZ(U) < E
[

1
n

logZ(U)
∣∣∣∣ Gt

]
+ δ′.

Then applying Jensen’s inequality and (205), almost surely
for all large n,

1
n

logZ(U)<
1
n

log E[Z(U) | Gt]+δ′<ΨRS+δ+δ′. (208)

For the complementary lower bound, let E ′ be the
(Gt-measurable) event where

1
n

log
E
[
Z(U) | Gt

]
2

> ΨRS − δ,

1
n

log E
[
Z(U)2 | Gt

]
< 2ΨRS + δ.

Then (206) and (207) show that E ′ holds almost surely for
all large n. On E ∩ E ′,

P
[

1
n

logZ(U) > ΨRS − δ

∣∣∣∣ Gt

]
I(E ∩ E ′)

(a)

≥ P

[
1
n

logZ(U) ≥ 1
n

log
E
[
Z(U) | Gt

]
2

∣∣∣∣∣ Gt

]
I(E ∩ E ′)

= P

[
Z(U) ≥

E
[
Z(U) | Gt

]
2

∣∣∣∣ Gt

]
I(E ∩ E ′)

(b)

≥
E
[
Z(U) | Gt

]2
4E
[
Z(U)2 | Gt

] · I(E ∩ E ′) (c)
> e−3nδ · I(E ∩ E ′)

where (a) and (c) apply the definition of the event E ′, and
(b) applies the Paley-Zygmund inequality. By our choice δ <
c0/6 where c0 is the constant in (204), on the event E ∩ E ′
this last quantity is bounded below by e−c0n/2. This and (204)
together imply that on the event E ∩ E ′,

E
[

1
n

logZ(U)
∣∣∣∣ Gt

]
> ΨRS − δ − δ′.

Then multiplying (204) by I(E ′), taking the expectation on
both sides, and applying the Borel-Cantelli lemma and the
statement that E ∩ E ′ holds almost surely for all large n, we
get

1
n

logZ(U) > E
[

1
n

logZ(U)
∣∣∣∣ Gt

]
− δ′ > ΨRS − δ − 2δ′

(209)

almost surely for all large n. The result follows upon taking
δ, δ′ → 0 in (208) and (209). ■

APPENDIX F
PROOFS FOR UNBOUNDED SUPPORT

In this appendix, we complete the proofs of Theorems 1.7,
1.9, and 1.10 in the more general setting of Assumption 1.3
where π may have unbounded support.
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Proof of Theorem 1.7, Unbounded Support: We apply a
truncation argument. First note from (30) that

ΨRS

(a)

≥ −1
2
− γ∗ρ∗

2
+

γ∗
2η∗

− d∗
2η∗

+ E log cπ

(
−1

2
γ∗, γ∗X

⋆ +
√

γ∗Z

)
(b)

≥ −1
2
− γ∗ρ∗ +

γ∗
2η∗

− d∗
2η∗

where in (a) we used that R(z) is increasing by Lemma 13,
so R(z) ≥ limz→0 R(z) = E[−D2] = −d∗, and in
(b) we used Jensen’s inequality and the condition that π
has mean 0 to bound E log cπ

(
− 1

2γ∗, γ∗X
⋆ +

√
γ∗Z

)
≥∫

(− 1
2γ∗)x2 dπ(x) = − 1

2γ∗ρ∗. Then applying η−1
∗ ≤ ρ∗ ≤ C

by Proposition 1, and γ∗ ∈ [d∗/2, 2d∗] for all e < e0(C)
sufficiently small by Proposition 8,

ΨRS > −1
2
− 5d∗

2
C =: ΨLB. (210)

Fix a constant K > 6C, let U = (0, K), and consider

Z − Z(U) = Z((K,∞))

=
∫

I
(

1
n
∥σ − β⋆∥2 > K

)
× exp

(
−∥Aβ⋆ + ϵ−Aσ∥2

2

)
n∏

i=1

dπ(σi).

Define the event A where

n−1∥β⋆∥2 < 2C, n−1∥Qϵ∥2 < 2,

min(diag(D⊤D)) > d∗ − 2e.

Observe that under the conditions min(diag(D⊤D)) → d− ≥
d∗ − e by (4) and Assumption 1.4, ρ∗ ≤ C by (5), and the
concentration bound of Proposition 15, this event A holds
almost surely for all large n. On the event A and for σ
satisfying n−1∥σ − β⋆∥2 > K, let us first bound

e−
∥Aβ⋆+ϵ−Aσ∥2

2 = e−
∥DO(β⋆−σ)+Qϵ∥2

2

≤ e−
∥DO(β⋆−σ)∥2

4 +
∥Qϵ∥2

2

≤ e(−
(d∗−2e)

4 K+1)n

Note that this quantity is also bounded above trivially by e0 =
1. Let us then apply ∥σ − β⋆∥2 ≤ 2∥σ∥2 + 2∥β⋆∥2 to bound

I(A) · Z((K,∞)) ≤ exp
(

min
(

0,−d∗ − 2e

4
K + 1

)
n

)
(211)

×
∫

I
(

1
n
∥σ∥2 >

K − 4C

2

)
·

n∏
i=1

dπ(σi)

≤ 2exp
(

min
(

0,−d∗ − 2e

4
K + 1

)
n (212)

− c0 min

((
K − 6C

2C

)2

,

(
K − 6C

2C

))
n

)
(213)

where the second inequality applies Proposition 15 and that
the mean of n−1∥σ∥2 is ρ∗ ≤ C under π. If d∗ < 1, then

ΨLB > −(1/2)(1 + 5C). Choosing K > 6C + 2C ·
max(1, (2c0)−1 · (1 + 5C)) and bounding the first term in the
exponent of (213) by 0, we obtain almost surely

lim sup
n→∞

1
n

logZ((K,∞)) < ΨLB < ΨRS. (214)

If d∗ ≥ 1, then assuming e < e0 < 1/4, the first term in the
exponent of (213) is at most [−(d∗/8)K+1]n. Then choosing
K > 20C+12 and bounding the second term in the exponent
of (213) by 0 again ensures (214). In either case, the choice of
K depends only on C. Combining with n−1 logZ(U) → ΨRS

from Corollary 3, which holds for e < e0(K, C) sufficiently
small, this shows n−1 logZ → ΨRS almost surely.

To apply the dominated convergence theorem, observe that
the right side of (50) may be bounded using

∫
n−1∥β⋆ −

σ∥2
∏

i dπ(σi) ≤ (2/n)∥β⋆∥2 + 2ρ∗, and that {∥β⋆∥2/n}n≥1

is uniformly integrable by the tail bound of Proposition 15.
Then the dominated convergence theorem yields n−1E[logZ |
A] → ΨRS almost surely, and the remainder of the proof is
the same as in the setting where π has bounded support. ■

Proof of Theorem 1.9, Unbounded Support: Recall ΨLB

from (210), and consider again Z((K,∞)) for K > 6C.
Recall the bound (214), and note that this bound holds
simultaneously for every K > 6C on the event A which
holds almost surely for all large n. Applying this bound with
K(t) = 6C + 2C · min(1,−(2c0)−1 · (1 + 5C)) + t when
d∗ < 1 and with K(t) = 20C+12+4c0t/C when d∗ ≥ 1 and
e < e0 < 1/4 gives

I(A) · Z((K(t),∞)) ≤ 2 exp
(

ΨRS · n−
c0t

2C
· n
)

.

Write as shorthand X(σ, β⋆) = n−1∥σ − β⋆∥2. Applying
E[X · I(X > t)] =

∫∞
0

P[X > max(s, t)]ds for any
nonnegative random variable X , we then have

I(A)
〈
X(σ, β⋆) · I

(
X(σ, β⋆) > K(1)

)〉
=
∫ ∞

0

I(A) ·
〈

I
(
X(σ, β⋆) > max(s, K(1))

)〉
ds

=
1
Z

∫ ∞

0

I(A) · Z
(
(max(s, K(1)),∞)

)
ds

≤ 2C

Z
exp

(
ΨRS · n−

c0

2C
· n
)

for a constant C > 0 depending only on (K(1), C, c0). The
event A holds almost surely for all large n, and the preceding
proof of Theorem 1.7 verifies n−1 logZ → ΨRS almost
surely. Writing as shorthand K = K(1), this shows that almost
surely

lim
n,m→∞

〈
X(σ, β⋆) · I

(
X(σ, β⋆) > K

)〉
= 0. (215)

Fixing any small constant ς > 0 and defining U = (0, K) \
(2η−1

∗ − ς, 2η−1
∗ + ς), the proof in the setting of bounded

support shows

lim
n,m→∞

〈
I
(
X(σ, β⋆) ∈ U

)〉
= 0 (216)
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where U is the closure of U . Then, applying 2η−1
∗ ≤ 2ρ∗ ≤

2C, 〈∣∣X(σ, β⋆)− 2η−1
∗
∣∣〉

≤ ς +
〈∣∣∣X(σ, β⋆)− 2η−1

∗

∣∣∣ · I(X(σ, β⋆) ∈ U
)〉

+
〈∣∣∣X(σ, β⋆)− 2η−1

∗

∣∣∣ · I(X(σ, β⋆) > K
)〉

≤ ς + (K + 2C) ·
〈

I
(
X(σ, β⋆) ∈ U

)〉
+
〈(

X(σ, β⋆) + 2C
)
· I
(
X(σ, β⋆) > K

)〉
.

This last bound is at most 2ς almost surely for all large n by
(215) and (216). Thus, almost surely

lim
n,m→∞

1
2n
⟨∥σ − β⋆∥2⟩ = lim

n,m→∞

X(σ, β⋆)
2

= η−1
∗ .

To apply the dominated convergence theorem, note
that (2n)−1⟨∥σ − β⋆∥2⟩ ≤ ⟨∥σ∥2/n⟩ + ∥β⋆∥2/n. Here
{∥β⋆∥2/n}n≥1 is uniformly integrable by the tail bound of
Proposition 15, and {⟨∥σ∥2/n⟩}n≥1 is uniformly integrable
as it is uniformly bounded in L2:

E
[〈

∥σ∥2

n

〉2 ]
≤ E

[〈
∥σ∥4

n2

〉]
= E

[
∥σ∥4

n2

]
≤ 1

n

n∑
i=1

E[σ4
i ]

= EX∼π[X4] < ∞.

Thus the dominated convergence theorem yields
E[(2n)−1⟨∥σ − β⋆∥2⟩] → η−1

∗ almost surely, and Lemma 6
concludes the proof. ■

Proof of Theorem 1.10, Unbounded Support: Having
established Theorem 1.9 under Assumption 1.3, the proofs of
Proposition 5 and Theorem 1.10 are the same as in the setting
where π has bounded support. We note that the expectation
of the right side of (53) remains finite and independent of
n, by the sub-Gaussian condition (5) for π, justifying the
application of the dominated convergence theorem. The same
bound (53) holds for ∥rt

1∥4/n2 and each t ≥ 1, so that the
application of the dominated convergence theorem for (59)
is justified by the Lipschitz condition for f and the same
argument. ■

APPENDIX G
AUXILIARY LEMMAS

A. Empirical Wasserstein Convergence

Definition 7.1: For a matrix (v1, . . . , vk) =
(vi,1, . . . , vi,k)n

i=1 ∈ Rn×k and a random vector (V1, . . . ,Vk),
we write

(v1, . . . , vk) W→ (V1, . . . ,Vk)

for the convergence of the empirical distribution of rows of
(v1, . . . , vk) to (V1, . . . ,Vk) in Wasserstein-p for every order
p ≥ 1. This means that (V1, . . . ,Vk) has finite mixed moments
of all orders, and for any continuous function f : Rk → R
satisfying

|f (v1, . . . , vk)| ≤ C
(
1 + ∥(v1, . . . , vk)∥p) (217)

for some C > 0 and p ≥ 1, we have
limn→∞

1
n

∑n
i=1 f (vi,1, . . . , vi,k) = E [f (V1, . . . ,Vk)].

The following results are direct consequences of [50, Propo-
sitions E.1, E.2, E.4, F.2].

Proposition 9: Suppose V ∈ Rn×t has i.i.d. rows equal in
law to V ∈ Rt, which has finite mixed moments of all orders.
Then V

W→ V almost surely as n → ∞. Furthermore, if E ∈
Rn×k is deterministic with E

W→ E, then (V,E) W→ (V, E)
almost surely where V is independent of E.

Proposition 10: Suppose V ∈ Rn×k satisfies V
W→ V as

n → ∞, and g : Rk → Rl is continuous with ∥g(v)∥ ≤
C(1 + ∥v∥)p for some C > 0 and p ≥ 1. Then g(V ) W→ g(V)
where g(·) is applied row-wise to V .

Proposition 11: Suppose V ∈ Rn×k, W ∈ Rn×l, and
Mn, M ∈ Rk×l satisfy V

W→ V, W
W→ 0, and Mn → M

entrywise as n →∞. Then V Mn + W
W→ V⊤ ·M .

Proposition 12: Fix l ≥ 0, let O ∼ Haar(SO(n − l)), and
let v ∈ Rn−l and Π ∈ Rn×(n−l) be deterministic, where Π has
orthonormal columns and n−1∥v∥2 → σ2 as n → ∞. Then
ΠOv

W→ Z ∼ N(0, σ2) almost surely. Furthermore, if E ∈
Rn×k is deterministic with E

W→ E, then (ΠOv,E) W→ (Z, E)
almost surely where Z is independent of E.
We note that Proposition 12 is stated in [50, Proposition F.2(a)]
for O ∼ Haar(O(n − l)), but the proof is identical also for
O ∼ Haar(SO(n− l)).

B. Properties of Cauchy- and R-Transform

Let {µk}k≥2 and {κk}k≥1 be the central moments and free
cumulants of −D2 respectively (see e.g. [51, Lecture 11]).
In particular, κ1 = −ED2 = −d∗ and κ2 = µ2 = V

(
D2
)
.

The following shows that the Cauchy- and R-transforms of
−D2 are well-defined by (10), and reviews their properties.

Lemma 13: Let G(·) and R(·) be the Cauchy- and
R-transforms of −D2 under Assumption 1.1.
(a) The function G : (−d−,∞) → R is posi-

tive and strictly decreasing. Setting G (−d−) :=
limz→−d− G(z) ∈ (0,∞], G admits a functional inverse
G−1 : (0, G(−d−)) → (−d−,∞).

(b) The function R : (0, G (−d−)) → R is negative and
strictly increasing.

(c) Suppose that Theorem 1.4 holds. Then G(−d−) ∈
[(2e)−1,∞]. Furthermore, κ2 ≤ min{e2, d∗e}, and for
k ≥ 2,

|µk| ≤ ek−2κ2 ≤ ek, |κk| ≤ 16kek−2κ2 ≤ (16e)k.
(218)

For all z ∈ (0, (16e)−1), the R-transform admits the
convergent series expansion

R(z) =
∑
k≥1

κkzk−1. (219)

Proof:
(a) The positivity and monotonicity of G follow directly

from the definition. Since limz→−d− G(z) = G(−d−)
and limz→∞G(z) = 0, G has an inverse on the stated
domain.
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(b) For any z ∈ (0, G (−d−)),

z = G(G−1(z)) = E
1

D2 + R(z) + 1
z

<
1

R(z) + 1
z

where the inequality is strict because D2 has strictly
positive mean and variance. Then R(z) < 0. Fur-
thermore, by Jensen’s inequality E 1

(D2+G−1(z))2
>(

E 1
D2+G−1(z)

)2

= z2 which also holds strictly since
D2 has strictly positive variance,

R′(z) =
1

G′ (G−1(z))
+

1
z2

= −

(
E

1
(D2 + G−1(z))2

)−1

+
1
z2

> 0.

Thus R(z) is strictly increasing.
(c) Under Theorem 1.4, we have both d− ∈ [d∗ − e, d∗ + e]

and D2 ∈ [d∗ − e, d∗ + e] almost surely, so G (−d−) ∈
[(2e)−1,∞]. Furthermore κ2 = V(D2) ≤ e2, and also
κ2 ≤ ED2(d∗ + e)− (ED2)2 = d∗e. For any k ≥ 2,

|µk| = |E[(−D2 + d∗)k]| ≤ ek−2E
(
−D2 + d∗

)2
= ek−2κ2 ≤ ek.

The free cumulants κk for k ≥ 2 are the same as those
of the centered variable −D2 +d∗. Then, setting µ1 = 0,
the non-crossing moment-cumulant relations applied to
−D2 + d∗ yield

|κk| =

∣∣∣∣∣∣
∑

π∈NC(k)

Mobi (π, 1k) ·
∏
S∈π

µ|S|

∣∣∣∣∣∣
≤ 16k max

π∈NC(k)

∏
S∈π

∣∣µ|S|∣∣
≤ 16kek−2κ2 ≤ (16e)k

where NC(k) is the lattice of all non-crossing partitions
of {1, . . . , k}, Mobi(·, ·) are the Möbius functions on the
non-crossing partition lattice, 1k is the trivial partition
consisting of the single set {1, . . . , k}, and the first
inequality applies |Mobi (π, 1k)| ≤ 4k and |NC(k)| ≤ 4k

[51, Proposition 13.15]. The statement on the R-transform
follows from [51, Notation 12.6, Proposition 13.15]).

C. Prior Distribution

We verify that Assumption 1.3 holds for priors having
bounded support or log-concave density.

Proposition 13: Suppose π has mean 0 and variance ρ∗ >
0. Then Assumption 1.3 holds if

(a) π has support contained in [−
√

C,
√

C], or
(b) π admits a Lebesgue density function e−g(x) for all x ∈

R, where g′′(x) ≥ 1/C.
Proof: Under (a), both statements of (6) and the first

statement of (5) are evident, and the second statement
of (5) follows from Hoeffding’s inequality. Under (b), the first
statement of (5) follows from the Brascamp-Lieb inequality
V[f(X⋆)] ≤ C · E[f ′(X⋆)2], see e.g. [52, Theorem 13.13],

and the second from the Bakry-Emery theorem, see e.g.
[52, Theorem 13.6, Proposition 13.8]. We observe that for
any Γ ⪯ (4C)−1I , the measure µ has a density e−gµ(x) where
∇2gµ(x) ⪰ 3/(4C). Hence the Brascamp-Lieb inequality
applies also to µ, and both statements of (6) follow.

In the proofs of the main results, we use the following
implications of Assumption 1.3.

Proposition 14: Under Assumption 1.3, the posterior mean
denoiser f(y, γ) defined by (8) is continuously-differentiable
and Lipschitz in y, with derivative ∂

∂y f(y, γ) = γ · Vµ[x]. In
particular, | ∂

∂y f(y, γ)| ≤ Cγ for a constant C > 0 depending
only on C.

Proof: In the notation of Assumption 1.3, setting k = 1,
Γ = −γ

2 , and z = γy, we have f(y, γ) = ⟨x⟩µ. A straightfor-
ward application of the dominated convergence theorem shows
that y 7→ f(y, γ) is continuously differentiable, with derivative
∂
∂y f(y, γ) = γ · Vµ[x]. The inequality | ∂

∂y f(y, γ)| ≤ Cγ
then follows from (6), and this implies that f(y, γ) is (Cγ)-
Lipschitz in y.

Proposition 15: Under Assumption 1.3, suppose
σ1, . . . , σn

iid∼ π. Then for a universal constant c0 > 0 and
any s > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

(σ2
i − ρ∗)

∣∣∣∣∣ ≥ s

)
≤ 2 exp

(
−c0 min

(
s2

C2
,
s

C

)
n

)
Proof: Under the sub-Gaussian condition (5), the ran-

dom variables σ2
i are sub-exponential with mean ρ∗, so

the result follows from Bernstein’s inequality, see e.g.
[53, Theorem 2.8.2].

Proposition 16: Fix k ∈ {1, 2} and let Γ, z and ⟨·⟩µ, Vµ[·]
be as defined in Assumption 1.3. Let γmax, γmin be the largest
and smallest eigenvalues of Γ. Then for any unit vector v ∈ Rk

and for a constant C > 0 depending only on C,

Vµ[(v⊤x)2] ≤ C

(
1 +

∥z∥2

(C−1 − γmax)2
+

max(−γmin, 0)
C−1 − γmax

)
.

Proof: Applying both conditions of (6),

Vµ[(v⊤x)2]≤C(1+Vµ[v⊤x]+⟨v⊤x⟩2µ)≤C(1+C +⟨v⊤x⟩2µ)
(220)

so it suffices to bound ⟨v⊤x⟩2µ. We apply an idea similar to
[54, Proposition 2]: Set a = 3/(4C) and denote Ω = aI− 2Γ,
w = Ω−1z, ∥x − w∥2Ω = (x − w)⊤Ω(x − w), and dπ(x) =∏k

i=1 dπ(xi). Let ωmin = a−2γmax be the smallest eigenvalue
of Ω, and note that ωmin > 0 because γmax < (4C)−1 in
Assumption 1.3. We have

⟨v⊤x⟩µ =
∫

v⊤x · e a
2 ∥x∥

2
e−

1
2∥x−w∥2Ωdπ(x)∫

e
a
2 ∥x∥2e−

1
2∥x−w∥2Ωdπ(x)

.

Denote cΩ(w) = log
∫

e
a
2 ∥x∥

2
e−

1
2∥x−w∥2Ωdπ(x). On the event

∥x− w∥2Ω ≥ −2cΩ(w), we have

e−
1
2∥x−w∥2Ω∫

e
a
2 ∥x∥2e−

1
2∥x−w∥2Ωdπ(x)

≤ 1.
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On the complementary event ∥x−w∥2Ω < −2cΩ(w), we have
cΩ(w) < 0 and

|v⊤x| ≤ ∥w∥+ ∥x− w∥
≤ ∥w∥+ ω

−1/2
min ∥x− w∥Ω

≤ ω−1
min∥z∥+ ω

−1/2
min (−2cΩ(w))1/2.

Thus, combining these bounds,

|⟨v⊤x⟩µ| ≤
∫
|v⊤x| · e a

2 ∥x∥
2
· 1 dπ(x)

+
(
ω−1

min∥z∥+ ω
−1/2
min (−2cΩ(w))1/2

)
· 1{cΩ(w) < 0}.

Applying a
2 = 3

8C and the sub-Gaussian tail bound
(5), it is easily checked that the first term satisfies∫
|v⊤x| e a

2 ∥x∥
2
dπ(x) < C for a constant C > 0 depending

only on C. For the second term, by Jensen’s inequality and
the condition that π has mean 0,

−cΩ(w) ≤
∫ (

−a

2
∥x∥2 +

1
2
∥x− w∥2Ω

)
dπ(x)

≤ −γmin

∫
∥x∥2 dπ(x) +

1
2
∥w∥2Ω

≤ C
(

max(−γmin, 0) + ω−1
min∥z∥

2
)
.

Applying this above yields |⟨v⊤x⟩µ| ≤ C(1 + ω−1
min∥z∥ +

ω
−1/2
min max(−γmin, 0)1/2). Then, applying this to (220) and

using ωmin ≥ c(C−1 − γmax) for a universal constant c >
0 concludes the proof.

D. Varadhan’s Lemma

We apply the following version of Varadhan’s lemma; the
proof is a straightforward extension of [47, Lemmas 4.3.4 and
4.3.6] and omitted for brevity.

Lemma 14: Let (Xn)n≥1 be a sequence of random vari-
ables taking values in a regular topological space X , and let
f : X → R be a bounded continuous function.

(a) If λ∗ : X → [0,∞] is such that
lim infn→∞ n−1 log P[Xn ∈ G] ≥ − infx∈G λ∗(x)
for all open G ⊆ X , then

lim inf
n→∞

1
n

log E[I(Xn ∈ G)enf(Xn)]

≥ sup
x∈G

f(x)− λ∗(x) for all open G ⊆ X .

(b) If λ∗ : X → [0,∞] is lower-semicontinuous, the level
sets {x ∈ X : λ∗(x) ≤ K} are compact for all
K ∈ [0,∞), and lim supn→∞ n−1 log P[Xn ∈ F ] ≤
− infx∈F λ∗(x) for all closed F ⊆ X , then

lim sup
n→∞

1
n

log E[I(Xn ∈ F )enf(Xn)]

≤ sup
x∈F

f(x)− λ∗(x) for all closed F ⊆ X .

E. Extension of Results to O ∼ Haar (O(n))

We explain the claim of Remark 1.6. Observe first that
if D,Q are random and independent of O, β⋆, ϵ, where (4)
holds almost surely as n, m → ∞, then the results of
Theorems 1.7, 1.9, and 1.10 all hold almost surely as

n, m → ∞ conditional on D,Q, and hence also uncondi-
tionally. If A = Q⊤DO where O ∼ Haar(O(n)), then we
have the equality in law O

L= PO′ where O′ ∼ Haar(SO(n))
and P = diag(1, . . . , 1, b) ∈ Rn×n with b ∈ {+1,−1}
having equal probability. If n > m, then DP = D,
so A = Q⊤DO′ and the model is identical to the setting
of O ∼ Haar(SO(n)). If n ≤ m, then DP = P ′D where
P ′ = diag(1, . . . , 1, b, 1, . . . , 1) ∈ Rm×m has b in the nth

entry. Setting Q′ = P ′Q, this implies A = (Q′)⊤DO′. The
asymptotic statements of Theorems 1.7, 1.9, and 1.10 thus hold
almost surely conditional on b, and hence also unconditionally.
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