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We study mean-field variational Bayesian inference using the TAP
approach, for Z,-synchronization as a prototypical example of a high-
dimensional Bayesian model. We show that for any signal strength A > 1 (the
weak-recovery threshold), there exists a unique local minimizer of the TAP
free energy functional near the mean of the Bayes posterior law. Furthermore,
the TAP free energy in a local neighborhood of this minimizer is strongly con-
vex. Consequently, a natural-gradient/mirror-descent algorithm achieves lin-
ear convergence to this minimizer from a local initialization, which may be
obtained by a constant number of iterations of Approximate Message Passing
(AMP). This provides a rigorous foundation for variational inference in high
dimensions via minimization of the TAP free energy.

We also analyze the finite-sample convergence of AMP, showing that
AMP is asymptotically stable at the TAP minimizer for any A > 1, and is
linearly convergent to this minimizer from a spectral initialization for suffi-
ciently large A. Such a guarantee is stronger than results obtainable by state
evolution analyses, which only describe a fixed number of AMP iterations in
the infinite-sample limit.

Our proofs combine the Kac—Rice formula and Sudakov-Fernique Gaus-
sian comparison inequality to analyze the complexity of critical points that
satisfy strong convexity and stability conditions within their local neighbor-
hoods.

1. Introduction. Variational inference is an increasingly popular method for performing
approximate Bayesian inference, and is widely used in applications ranging from document
classification to population genetics [25, 30, 79, 100]. For large-scale problems, variational
methods provide an appealing alternative to Markov Chain Monte Carlo procedures, particu-
larly in settings where MCMC may be computationally prohibitive to apply. We refer readers
to the classical expositions [71, 121] and the recent review [24] for an introduction.

In “mean-field” models where the posterior distribution p(x|Y’) of parameters x given data
Y may be close to being a product measure, a common approach to variational inference is to
approximate p(x|Y) by a product law. The most widely used such approximation minimizes
the KL-divergence to p(x|Y) over the class Q of product measures,

6] q(x) ZangéiSDKL(C](x) I p(x|Y)).

When x € R” is high-dimensional, a problematic phenomenon may occur in which this dis-
tribution ¢ (x) provides inconsistent approximations to the posterior marginals and posterior
means, even in models where all low-dimensional marginals of p(x|Y) have approximately
independent coordinates. Such a phenomenon was first investigated by Thouless, Anderson,
and Palmer for the Sherrington—Kirkpatrick (SK) model of spin glasses, where a simple
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method of addressing this inaccuracy—now often called the “TAP correction”—was also
proposed [118]. Manifestations of this phenomenon and analogues of the TAP free energy
for several high-dimensional statistical models have been studied in [53, 59, 74, 99, 103],
and we provide further discussion in Section 1.3.

The TAP approach to variational inference constructs a free energy functional Frap by
adding a correction term to the KL-divergence objective (1). This TAP correction accounts for
dependences between pairs of coordinates of x in their posterior law, which are individually
weak but may have a nonnegligible aggregate effect in high dimensions. Variational inference
is performed by minimizing Frtap, or by solving the TAP stationary equations

() 0 = V. Frap.

Since the pioneering work of [26, 47, 72], both the theory and implementation of TAP-
variational inference have been closely connected to Approximate Message Passing (AMP)
algorithms, which provide specific iterative procedures for solving (2). TAP-variational in-
ference has been successfully applied via AMP to a variety of high-dimensional statistical
problems. We highlight in particular the line of work [10, 45, 76, 77, 88, 91, 102] on low-
rank matrix estimation, of which the Z,-synchronization problem is a specific example.

The goal of our current paper is to address several foundational questions regarding TAP-
variational inference that, despite the above successes, remain poorly understood. First, the
convergence of AMP is usually known only in a weak sense, guaranteeing /7 - V.Frap ||% <
¢ in the limit n — oo for a constant number of AMP iterations k = k(¢) independent of 7.
Such a guarantee is too weak to ensure, for example, even the high-probability existence of
a critical point of Frap to which the AMP iterates converge. It does not establish whether
the minimizer of Frap is close to the true Bayes posterior mean, and indeed, these proper-
ties remain conjectural in most models to which the AMP/TAP approach has been applied.
Second, regularity properties of the landscape of Frap are largely unknown, making it un-
clear whether optimization algorithms other than AMP can successfully implement the TAP-
variational inference paradigm.

In this paper, we clarify these properties of Frap and the convergence of AMP and other
descent algorithms for the specific model of Z;-synchronization. We build upon previous
results and techniques of [53], which studied this model in a regime of large signal-to-noise.
Our main results will show that for any signal strength above the weak-recovery threshold,
there exists a unique local minimizer m, of Frap near the Bayes posterior mean, and Frap
is strongly convex in a local neighborhood (of nontrivial size) around m,. Consequently, a
generic natural-gradient-descent (NGD) algorithm exhibits linear convergence to m, from
a local initialization, which may be obtained by a finite number of iterations of AMP. We
also show that the Jacobian of the AMP map is stable at m,, so that AMP initialized in a
(potentially very) small neighborhood of m, will also converge for fixed n as the number of
iterations t — o0. In the large signal-to-noise regime of [53], we show that both NGD and
AMP exhibit linear convergence to m, from a spectral initialization.

Formalizing these properties of Frap and the convergence of generic optimization algo-
rithms has several appeals over the existing theory around AMP. First, it clarifies a concrete
objective function for high-dimensional variational inference, which can serve a number of
practical purposes such as assessing algorithm convergence. Second, the convergence and
state evolution of AMP are tied to probabilistic aspects of the model, whereas NGD is always
a strict descent algorithm (for small enough step size, even in misspecified models) and may
provide a more flexible and robust approach for optimization in practice. Finally, understand-
ing the landscape of Frap may be useful in other contexts. For example, following the initial
posting of our work, [32, 51] have used the local strong convexity of Frap in the related
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SK model to argue that its stationary point is Lipschitz in the external field. This is a cen-
tral technical ingredient in these works to show the correctness of an algorithmic stochastic
localization procedure for sampling from the SK measure.

We review relevant background on the Z;-synchronization model in Section 1.1, and we
describe our results in more detail in Section 1.2.

1.1. Zjy-synchronization and the TAP free energy. In Zj-synchronization, we wish to
estimate an unknown binary vector x € {—1, +1}"* having the entry-wise symmetric Bernoulli

prior x; K Unif{—1, +1}. For a signal-to-noise parameter A > 0, we observe

A
(3) Y="xx"4+W where W~ GOE(n).
n
Thus W is symmetric Gaussian noise, having entries (w;; :i =1,...,n) L N(0,2/n) in-
dependent of (w;; : 1 <i < j<n) i N (0, 1/n). Equivalently, W = (Z + ZT)/«/2n where
iid.

(Zij 2i,j= 1,...,1’[) ~ N(O, l).

The parameter x is identifiable only up to & sign, and the posterior law p(x|Y) has the
corresponding sign symmetry p(x|Y) = p(—x|Y). Thus, we will consider estimation of the
sign-invariant rank-one matrix X = xx . The Bayes posterior-mean estimate of this matrix
is

4 A/X\Bayes = E[xxT | Y]-

The asymptotic squared-error Bayes risk of this estimator was characterized by Deshpande,
Abbe, and Montanari in [44]:

1—g.:(W)? ifa>1,
1 ifa<l,

1 -
. T27 _
®) i, 5B Ko~ x5 =
where g, (A) > 0O is the solution to a fixed-point equation (11). Thus for A < 1, no nontrivial
estimation is possible in the large-n limit, as the optimal Bayes risk coincides with that of the
trivial estimator X = 0. In contrast, for A > 1, the Bayes estimator achieves positive entry-
wise correlation with xx T,

[44] studied also an AMP algorithm for approximately computing X Bayes- Starting from
initializations hO, m~! e R", this algorithm takes the form

m"* = tanh(h*),

(AMP)
R =aym* —22[1 — Q(m")]m*,

where Q(m) = ||m||% /n. The analyses of [44] imply that for any A > 1 and ¢ > 0, starting
from an informative initialization h°, there exists an iterate k = k(X,e) of AMP for which
|m*m*)T — X Bayes||,2: /n* < e, with high probability for all large n. More recent results of
[91] imply that such a guarantee holds also for AMP with a spectral initialization.

The TAP free energy in this Z;-synchronization model is defined for m € (—1, 1)" by

) 1 Z 22

(TAP) Frap(m) = ——(m, Ym) — =3 h(m;) — —[1 — Q(m)[*,
2n ni 4

where Q(m) = |m ||% /n as above, and h(m) is the binary entropy function

1+m 1+4m 1—m 1—m
6 h =— 1 — 1 .
(6) (m) 5 log—5 )
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This function Ftap has the sign symmetry Frap(m) = Frap(—m), corresponding to the
above sign symmetry of the posterior law. The first two terms of (TAP) coincide! with the
KL-divergence Dky (¢(x) || p(x|Y)) for a product measure g(x) on {—1,+1}", upon pa-
rameterizing g by its mean m = Ex~4[x] € (=1, 1)". The third term of (TAP) is the TAP
correction. Applying h'(m) = — arctanh(im), the stationary condition 0 = V Fap(m) may be
rearranged as the TAP mean-field equations

m = tanh(A\Ym — Az[l — Q(m)]m),

and the AMP algorithm (AMP) is an iterative scheme for computing a fixed point of these
equations.

In [53], an upper bound for the expected number of critical points of Frap in sub-regions
of the domain (—1, 1)” was derived for any A > 0. Using this result, for > > ¢ a large enough
absolute constant, it was shown that the global minimizer m, of Frap satisfies E[||m*mI —
X Bayes ||,2:] / n? — 0, and that this holds more generally for any critical point m of Frap in the
domain

S={me (—1,1)": Frap(m) < —2/3}.

As a consequence, it was also shown that E[llm*ml— -X Bayes ||,2:] / n? must be bounded away
from O for the minimizer m, of the naive mean-field objective (1) parametrized similarly
by m. We note that the landscape guarantees in [53] do not extend to the entire weak-recovery
regime A > 1. The analyses for large A > Aq also fall short of showing uniqueness (up to sign)
of the TAP critical point m, in S, and of establishing polynomial-time convergence of AMP
or other optimization algorithms for computing m,.

1.2. Contributions. Our current work establishes the following properties of Frap(m)
and of descent algorithms for minimizing this objective function.

1. Existence of Bayes-optimal TAP local minimizer. For any A > 1, we show there exists
a local minimizer m, of Frap such that ||m,m, — Xpayesl|Z/n*> — 0 in probability. This
strengthens the guarantee of [53] that was shown for large A > Ag. Subject to the validity
of a numerical conjecture about a deterministic low-dimensional variational problem (see
Remark 4.5), our results imply that this is also the global minimizer of Frap for any A > 1.

2. Local strong convexity of the TAP free energy. For any A > 1, we show that Frap
is strongly convex in a \/en-neighborhood of this local minimizer m,. Hence, this local
minimizer is the unique critical point satisfying ||m*m;r -X Bayes||,2: / n? < (¢), for some
constant ¢(g) > 0.

3. Local convergence of natural gradient descent. We introduce a natural gradient descent
(NGD) algorithm for minimizing Frap, which is equivalently a mirror descent procedure that
adapts to the curvature of Frap near the boundaries of (—1, 1)". For any A > 1, we prove that
NGD achieves linear convergence to m, from an initialization within this ,/en-neighborhood.
This initialization may be obtained by first performing a fixed number of iterations of AMP,
thus yielding a polynomial-time algorithm for computing m,.

4. Stability of AMP. For any A > 1, we show that the AMP map is stable at m,, in the
sense of having a Jacobian with spectral radius strictly less than 1. Thus, AMP initialized in
a sufficiently small neighborhood of m, will also linearly converge to m,.

5. Finite-n convergence of AMP and NGD. Finally, for A > Ag a large enough absolute
constant, our results combine with those of [53] to show that m, is the global minimizer and
unique critical point (up to sign) of Frap in the domain {m : Frap(m) < —A%/3}. In this

1Up to an additive constant, and a replacement of Ex~4[(x, Yx)] by (m, Y m) which incurs negligible error
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signal-to-noise regime, we prove that both AMP and NGD alone exhibit linear convergence
to m, from a spectral initialization.

We emphasize that this convergence of AMP is established in the sense limg_, o mF =m,
for fixed dimension 7, which is stronger than the guarantee limsup,,_, . | mk — m*||% /n<e
for fixed k = k(X, ¢) that is obtainable by standard analyses of the AMP state evolution.

The main challenge in understanding the landscape of Ftap locally near m, is that—for
any constant signal strength A—this point m, does not converge to the true signal vector
x € {—1,41}" as n — oo, but rather remains random in (—1, 1)". Thus, it is not enough
to study the landscape of Frap in a vanishing neighborhood of x using, for example, the
uniform convergence arguments [82, 116]. The above results instead pertain to the geometry
of Frap in a random region of the cube (—1, 1)".

We will prove these results using a combination of the Kac—Rice formula and Gaussian
comparison inequalities. We provide a detailed overview of this proof in Section 4. The Kac—
Rice formula has been successfully applied to study the complexity of critical points for
various nonconvex function landscapes. However, to our knowledge, our argument for using
Kac—Rice to study also the local geometry around a particular critical point is novel. We
believe that this technique may be of independent interest for some recent analyses of related
disordered systems [27, 46, 54], where conditioning on a sequence of AMP iterates was used
as a surrogate for conditioning on an actual TAP critical point.

1.3. Further related literature.

1.3.1. Variational inference. The terminology “variational inference” encompasses a
large family of methods for approximate Bayesian inference [23, 84, 95, 126], based upon
approximating a variational representation to the evidence or marginal log-likelihood of the
observed data. Variational inference has been incorporated into many software packages in-
cluding Pyro [22], Infer.NET [83] and Edward [120].

There has been renewed interest in theoretical analyses of variational inference in recent
years, focusing on a number of common desiderata: [21, 58, 62, 63, 123] study properties of
consistency and asymptotic normality for estimates of low-dimensional parameters in latent
variable models (i.e., of the prior “hyperparameters” in Bayesian contexts), using variational
approximations for the marginal log-likelihood. In particular, [21, 58] establish such guaran-
tees for the mean-field variational approximation in stochastic block models (SBMs), which
are closely related to the Z;-synchronization model of our work. [92, 98, 127] study the
optimization landscape and convergence properties of iterative coordinate ascent (CAVI) and
block coordinate ascent (BCAVI) algorithms, with [127] showing that BCAVI achieves an op-
timal exponentially-vanishing rate of estimation error for the latent community membership
vector in SBMs with asymptotically diverging signal strength. [1, 40, 105, 125, 128] study
rates of posterior contraction for both variational Bayes and «-fractional variational Bayes
methods, establishing conditions under which the variational posteriors may enjoy the same
optimal rates of contraction in a frequentist Bernstein—von-Mises sense as the true Bayes
posteriors. In particular, [1, 40, 125] discuss applications of these results to low-rank matrix
estimation problems, including matrix completion, probabilistic PCA, and topic models.

In our work, we study the Z,-synchronization model with bounded signal strength, which
is in a different asymptotic regime from the above posterior contraction results for SBMs
and low-rank matrix estimation. Fixing the true parameter x as the all-1s vector, the Bayes
estimate for x in our setting has a marginal distribution of coordinates that converges to a
nondegenerate limit law, and an asymptotically nonvanishing per-coordinate Bayes risk.

Our focus on such a setting is motivated in part by our belief that in many applications,
Bayesian approaches to inference may be favored because the data is in a regime of limited
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signal-to-noise that is far from theoretical regimes of posterior contraction. Instead, infor-
mation in the hypothesized prior is important in informing inference, and the desideratum is
then to obtain an accurate estimate of the posterior distribution under this prior. Our results
are oriented towards this goal, showing (in a simple but illustrative model) that minimiz-
ing the TAP free energy yields a variational approximation which consistently estimates the
posterior marginals, even when the posterior distribution itself does not concentrate strongly
around the true parameter.

1.3.2. TAP free energy and the naive mean-field approximation. Thouless, Anderson and
Palmer introduced in [118] the TAP equations (and the associated TAP free energy) as a sys-
tem of asymptotically exact mean-field equations in the SK model. For spin glasses, the
validity of the TAP equations and their relation to the Gibbs measure have been extensively
studied—see, for example, [29, 31, 43, 97] in the physics literature, and [6, 18, 26, 35, 38,
39, 113, 117] for rigorous mathematical results. Direct optimization of an analogous TAP
free energy (a.k.a. approximate Bethe free energy) was proposed for Bayesian linear and
generalized linear models in [74, 103], which recognized that its critical points are in exact
correspondence with fixed points of AMP. Z;-synchronization corresponds to the SK model
with an added ferromagnetic bias, and the form of the TAP free energy that we study is identi-
cal to the (high-temperature) TAP free energy in the SK model with this added ferromagnetic
component.

We emphasize that both the TAP approach and the “naive” mean-field approach of (1)
have received significant attention in the theoretical literature. A line of work [7, 11, 36,
52, 67, 124] on the theory of nonlinear large deviations establishes that the naive mean-field
approximation to the free energy (i.e., the marginal log-likelihood in Bayesian models) is
asymptotically accurate to leading order, without the need for a TAP correction, under a con-
dition that the log-density has a “low-complexity gradient.” In Ising models with couplings
matrix ¥ € R"*" having O (1) operator norm, such a condition holds when Y is nearly low-
rank in the sense | Y II% = o(n) [11]. It does not hold for Z;-synchronization with any fixed
signal strength X, where [53, 59] contrasted variational inference based on the TAP and naive
mean-field approximations. In particular, [59] showed that for A € (1/2, 1), naive mean-field
variational Bayes may yield a “falsely informative” variational posterior, and [53] showed
that critical points of the naive mean-field free energy cannot correspond to consistent ap-
proximations of the posterior mean for any sufficiently large but fixed value of A.

1.3.3. Spiked matrix models and Z;-synchronization. Spiked matrix models have been
a mainstay in the statistical literature since their introduction by [70]. Z;-synchronization is
a specific example of the spiked model with Bernoulli prior, and also of more general syn-
chronization problems over compact groups [9, 109]. The Bayes risks in Z,-synchronization
and other spiked matrix models were studied in [10, 44, 75, 76]. For Z,-synchronization,
nontrivial signal estimation above the weak-recovery threshold A = 1 can also be achieved
by spectral methods [8, 96] and semidefinite programming [69, 90], although such methods
do not achieve the asymptotically optimal Bayes risk (5).

Z»-synchronization has been studied in part as a simpler analogue of the symmetric two-
component SBM that replaces the noise A — [E[A] of the adjacency matrix A by Gaussian
noise, and it is possible to make formal connections between estimation in these models via
universality arguments [44, 90]. We believe that certain aspects of our analyses and results
may also be extendable to the SBM via universality arguments developed for AMP in [15,
37, 50, 122] and for minimizers of optimization objective functions with random data in [64,
66, 87, 89], and this would be interesting to explore in future work.
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1.3.4. AMP algorithms. AMP algorithms were proposed and studied in [47, 72] for
Bayesian linear regression and compressed sensing. They may be derived by approximating
belief propagation on dense graphical models; see, for example, [48, 86]. Various general-
izations of AMP have been developed, including the Generalized AMP algorithm of [101]
and the Vector AMP algorithm of [104], and we refer to [55] for a recent review. The state
evolution formalism of AMP was introduced in [47] and rigorously established in [16, 26].
This has since been generalized in [20, 68, 91]. A finite-n analysis of AMP was performed in
[107], which extended the validity of the state evolution to o(logn/loglogn) iterations. Fol-
lowing the initial posting of our work, [78] established a different finite-n guarantee for AMP
via a novel decomposition of the AMP iterates, which applies for o(n/(log’ n)) iterations in
the Z,-synchronization problem with signal strength A € (1, 1.2).

1.3.5. Gaussian comparison inequalities. The proofs of our main results rely heavily on
Slepian’s comparison inequality [110] and its later development by Sudakov—Fernique [56,
114, 115], to reduce the study of Frap to a simpler Gaussian process. This approach is related
to a recent line of work that generalizes Gordon’s inequality [60, 73] to a Convex Gaussian
Minimax Theorem (CGMT) [34, 85,94, 111, 119].

1.3.6. Kac—Rice formula and complexity analysis. Physics calculations of the complex-
ity of critical points in spin glass models using the Kac—Rice formalism can be found in [28,
31, 41,42, 57]. This method was made rigorous for spherical spin glasses in [4, 5, 112], and a
more recent line of work [3, 12, 13, 19, 53, 81] has used this approach to analyze nonconvex
function landscapes in other high-dimensional probabilistic and statistical models.

2. Main results.

2.1. Local analysis of the TAP free energy. Our first result shows the existence and
uniqueness of a local minimizer of the TAP free energy Frap near the Bayes estimator (cf.
equation (4)), for any signal strength A > 1. We also establish strong convexity of Frap in a
J/en-neighborhood around this minimizer, as well as the stability of the AMP map

(7) Tamp(m, m_) = (tanh(A\Ym — A*[1 — Q(m)|m_), m)
at this local minimizer. This is the map for which the AMP iterations (AMP) may be expressed

as (m 1, m%) = Tapp (m*, m*=1).

THEOREM 2.1 (Local convexity and AMP stability). Fix any A > 1. There exist A-
dependent constants ¢,t > 0 and r € (0, 1) such that for any fixed « > 0, with probability
approaching 1 as n — 0o, the following all occur.

(a) (Bayes-optimal TAP local minimizer) Let X Bayes = E[xx " | Y. There exists a critical
point and local minimizer m, of Frap(m) such that

1 -
8) - |mm] — Xpayes|2 < .

For sufficiently small « > 0 (which is \-dependent and n-independent), this is the unique
critical point satisfying (8) up to + sign.
(b) (Local strong convexity of TAP free energy) Let Amin(+) denote the smallest eigenvalue.
For this local minimizer m,, we have
min(n - V2 Frap(m)) > 1 >0 forallm € (—1,1)" NB sz (m,).

In particular, Ftap is strongly convex over (—1,1)" N B ﬁ(m*).
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(¢) (Local stability of AMP) Let dTamp € R*?" be the Jacobian of the AMP map (7),
and let p(-) denote the spectral radius. For this local minimizer m,, we have

p(dTamp(m,, m,)) <r < 1.

Combining with the global landscape analysis of [53], this implies the following immedi-
ate corollary for large enough signal strength A.

COROLLARY 2.2 (Global landscape for large A). For an absolute constant Ao > 0, sup-
pose A > Ag. Then with probability approaching 1 as n — 0o, the local minimizers +m,
guaranteed by Theorem 2.1 are the global minimizers of Ftap. Furthermore, they are the
only critical points of Frap in the domain

S={me(~1,1)": Frap(m) < —2%/3}.
A proof sketch of Theorem 2.1 can be found in Section 4, and its detailed proof can be

found in Appendix B (see the Supplementary Material [33]). The proof of Corollary 2.2 can
be found in Appendix C.1.

2.2. Convergence of algorithms. We study convergence of the AMP algorithm (AMP),
with the spectral initialization

(S)  h° = principal eigenvector of ¥ with |h°|, = \/na2(x2 = 1), m~' = xrh".

We choose this scaling for K asin [91], Section 2.4, to simplify the AMP state evolution.
We introduce also the following more “generic” first-order natural gradient descent (NGD)
algorithm, with a step size parameter n > 0:

m* = tanh(h"),
(NGD) R = B* — yn -V Frap (m*)
= (1 — k" + n(AYm* —32[1 — Q(m*)|m").

We call this algorithm “natural gradient descent” because we may apply (d/dh)tanh(h) =
1 —tanh(h)? to write the m-gradient V Frap(m*) equivalently as a preconditioned h-gradient,

V-FTAP(mk) = I(mk)_1 . Vh}"TAp(tanh(hk)), I(m) = diag(l —1m2>’

where I(m) is proportional to the Fisher information matrix in a model of n independent
Bernoulli {—1, 41} variables with mean m € R". This identifies (NGD) as a natural gradient
method [2]. We note that setting the step size n = 1 yields an algorithm similar to (AMP), but
with m*~! replaced by m*. For simplicity, we will consider the same spectral initialization
RO for this algorithm as for AMP in (SI), although here this specific choice of initialization is
less important.

Alternatively, the iterations (NGD) may be understood as a mirror-descent/Bregman-
gradient method in the m-parameterization [17, 93]. Recalling the binary entropy function
h from (6), we define

1 1 &
L=—, H@m)=-) hm).
©) n n gl

D_g(m,m')=—H(m)+ H(m')+(VH(m'),m —m’),
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where L is the inverse step size, —H(m) is a separable convex prox function, and
D_p(m,m’) is its associated Bregman divergence. Then it may be checked that (NGD) takes
the equivalent mirror-descent form
(10) mFt = arg I(nilnl) }"TAp(mk) + (V}"TAP(mk), m— mk) +L-D_g(m, mk).
me(—1,1)"

One motivation for studying this algorithm, rather than ordinary gradient descent in the m-
parameterization, is that the Hessian V2 Frap(m) is not uniformly bounded over (—1, 1)",
and instead diverges as m approaches the boundaries of the cube. The form (10) naturally
adapts to this nonuniform curvature of Frap, allowing for a convergence analysis using tech-
niques of [14, 80] for minimizing functions that are not strongly smooth in the Euclidean
metric.

Combining the local strong convexity of Theorem 2.1, the state evolution of spectrally-
initialized AMP, and this type of convergence analysis for NGD, we deduce the following
result, whose proof can be found in Section 5.1 and Appendix C.

THEOREM 2.3 (Computation of Bayes-optimal TAP minimizer). Fix any A > 1. There
exist A-dependent constants C, i, no > 0 and T > 1 such that with probability approaching
1 as n — oo, the following occurs.

Fix any step size n € (0, ng), let mT € (=1, )" be the Tth iteration of (AMP) from the
spectral initialization (Sl), and let mT+k e (=1, 1)" be obtained by k iterations of (NGD)
with step size n from the initialization m” . Let m, be the Bayes-optimal local minimizer of
Frap in Theorem 2.1. Then for some choice of sign &+ and every k > 1,

Frap(m” %) — Frap(£m,) < C(1 — un)¥,
|m" = (my)|, < € — un)Vn.

In particular, limg_, L= {+my, —m,}.

This theorem implies that for any fixed value of A > 1, the Bayes-optimal local minimizer
m, of Frap guaranteed by Theorem 2.1 may be computed in time that is polynomial in the
problem size n (in the usual sense of linear convergence). Let us remark that the convergence
analysis of NGD in this result is purely geometric, relying only on the smoothness and local
convexity properties of Frap. We hence expect that a similar convergence analysis may be
performed for momentum-accelerated or stochastic variants of NGD, such as those developed
recently in [49, 61, 65].

For sufficiently large signal strength XA, where the more global landscape of Frap is clar-
ified by Corollary 2.2, our next result Theorem 2.4 verifies that the hybrid AMP/NGD ap-
proach in Theorem 2.3 is not needed, and that either algorithm alone can achieve linear
convergence to the global TAP minimizer m, from a spectral initialization. The proof of
Theorem 2.4 can be found in Sections 5.2 and 5.3, and Appendix C.

THEOREM 2.4 (Convergence of AMP and NGD for large 1). For an absolute constant
Ao > 0, suppose L > Ao and let m, be the global minimizer of Frap in Corollary 2.2. Then
there exist A-dependent constants C, i, no > 0 and o € (0, 1) such that with probability ap-
proaching 1 as n — 00, the following all occur.

(@) (Convergence of AMP) Let m* be the kth iterate of (AMP) from the spectral initializa-
tion (Sl). For some choice of sign = and every k > 1,

Frap(m*) — Frap(£m,) < Cok,  |mr — (£m,)|, < Ca*y/n.
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(b) (Convergence of NGD) Fix any step size n € (0, no), and let m* be the kth iterate of
(NGD) from the spectral initialization (Sl) with step size n. For some choice of sign + and
everyk > 1,

Frap(m*) — Frap(£m,) < C(A —un)*,  |m* — (£m,)||, < A — un)*/n.

In particular, for both algorithms, limy_ o mk e {(+m,, —m,}.

REMARK 2.5. We believe that the requirement A > Aq sufficiently large in Theorem 2.4
is artificial, and that this result also holds for all A > 1. This is supported by numerical sim-
ulations in Section 3 below. Let us clarify that such a guarantee for AMP does not follow
from its state evolution combined with its local stability shown in Theorem 2.1(c): The state
evolution ensures convergence to a /en-neighborhood of m,, for any fixed ¢ > 0, in a finite
number of AMP iterations. However, the local stability in Theorem 2.1(c) does not quantify
the size of the neighborhood of m, in which AMP is then guaranteed to converge to m,.

REMARK 2.6. Part of our analysis of Theorem 2.4(a) still uses the state evolution for
AMP with spectral initialization developed in [91]. This result would hold equally if AMP is
initialized with a vector m that is independent of the noise matrix W and has nonvanishing
correlation with m,, by the validity of the AMP state evolution also in this setting. For a
random initialization that is uncorrelated with m,, we note that an analysis of AMP seems
challenging even in this setting of large but fixed A > Ag, as the algorithm would still require
O (log(n)) iterations to achieve a nonnegligible correlation with m,, and existing finite-n
analyses of AMP [78, 106] do not seem to immediately apply to describe this early phase
of optimization. In Theorem 2.4(b), the spectral initialization is used to ensure that NGD is
initialized in a basin of attraction of m,, and analyses of the global landscape of Frap in [53]
are also insufficient to show that this basin of attraction includes random initializations.

3. Numerical simulations.

3.1. Convergence of algorithms. We perform numerical simulations to confirm the
global convergence of AMP and NGD for all A > 1, and to compare their convergence rates.
We initialize both AMP and NGD using the spectral initialization (SI).

In Figure 1(a), we plot the residual squared error min{[m* — m,||3/n, [m* + m,|3/n},
where m* is the kth iterate of AMP or NGD with different step sizes, and m, =
arg min,, Frap(m). (We first compute m, up to high numerical accuracy using AMP.) For
each algorithm, we simulated 10 random instances of ¥ € R"*" according to the Z,-
synchronization model (3), with n = 500 and A = 1.5. Figure 1(a) shows that AMP and
NGD with step sizes 0.1 and 0.5 all consistently achieve convergence to m,, where AMP has
the fastest rate of convergence.

In Figure 1(b), we report the success probability of NGD for achieving convergence to m,,
for various step sizes n (horizontal axis) and signal-to-noise ratios A > 1 (vertical axis). The
success probability is defined as the fraction of the 10 random instances of Y for which NGD
achieved residual squared error 10~* within k = 12,000 iterations. Figure 1(b) suggests that
NGD with step size n < 0.4 converges for any A > 1, and illustrates that as X increases, NGD
allows for a larger step size in achieving this convergence.

3.2. Universality with respect to the noise distribution. Although we analyze AMP and
NGD for Gaussian noise, we expect the properties of these estimators and of the TAP free en-
ergy landscape to be robust under sufficiently light-tailed distributions of noise entries. Here,
we verify this numerically for three examples of symmetric non-Gaussian noise matrices W:
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FiG. 1. Convergence of AMP and NGD from a spectral initialization. Left: Residual squared error
min{||m* — m,l\%/n, | mK + m,Il%/n} versus number of iterations k (both on a log-scale), for signal-to-noise
ratio . = 1.5. The mean curve is averaged over 10 independent instances, and the error bars report 1//10 times
the standard deviation across instances. Right: Success probability of NGD for convergence to my, for varying
signal-to-noise ratios ) and step sizes 1. In both panels, n = 500.

o Rademacher: (w;; : 1 <i < j <n) "~ Unif{—1/yn, 1//n}.
e Double-exponential (Laplace): W = (G + G")/+/2n, where (Gjj:1<i,j<n) i
(1/7/2) exp{—+/2 - |x]}.

o Student’s 1: W = (G + GT)/+/2n, where (G; : 1 <i, j <n) " t(1)//v] = 2) and the
degrees-of-freedom is v = 4.

In all three examples, all entries w;; have mean 0, and all off-diagonal entries w;; have
variance 1/n.

In Figure 2(a), we report the estimation mean squared error (MSE) min{||m, — x ||% /n,
lm, + x ||% /n} versus A, where m, = arg min,, Frap(m) is computed from AMP up to high
accuracy as before, and the noise matrix W is generated from either the assumed Gaussian
(GOE) model or from the above three non-Gaussian ensembles. In Figure 2(b), we report the
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FIG. 2. Universality with respect to the noise distribution. Left: Estimation mean squared error
min{||m, — x||%/n, ||my — xllg/n} versus the signal-to-noise ratio X\, for different noise ensembles. The mean
curve is averaged over 10 independent instances, and the error bars report 1//10 times the standard devia-
tion across instances. Right: Residual squared error min{ ||mk —my H%/n, ||mk + m,,||%/n} versus the number of
iterations k, for different noise ensembles and signal-to-noise ratio .. = 1.5. In both panels, n = 500.
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residual squared error min{||m* — m*II%/ n, ||lm* + m*llg /n} versus the number of algorithm
iterations k, for the same four noise ensembles. These figures show that properties of the TAP
minimizers and of the AMP and NGD iterates are indeed robust to these distributions of the
noise entries, even for some heavy-tailed distributions.

We also tested Student’s z-distribution with degrees-of-freedom v = 3, and observed that
when A € (1,2) and n = 500, AMP oscillates between two points rather than converging to
a fixed point. Instead, the NGD algorithm with a sufficiently small step size continues to
converge to the global minimizer.

3.3. Comparing TAP and mean-field variational Bayes. 'We compare the TAP approach
to naive mean-field variational Bayes (mean-field VB), under both a correctly specified noise
model and a misspecified model that lies outside of the preceding universality class.

For Z;-synchronization, parametrizing (1) by the mean vector m = Ey~,[x] gives the
mean-field VB free energy

1< A
Fygp(m)=——>» h(m;) — —{(m,Ym).
VB (m) n;(a oot )
This coincides with (TAP) upon removing the TAP correction term.
In Figure 3, we compare the mean squared errors min{|m, — x||%/n, |m, + x||%/n} for
the minimizers m, of Frap and of Fyp, when Y is generated according to the following two
models:

e The correctly specified Z;-synchronization model (3).

e A misspecified model Y = (A/n)xxT + W, where x ~ Unif({—1, +1}"*) has the assumed
discrete uniform prior, but W = UDUT does not have independent entries. We choose
U € R™" as a uniformly sampled orthogonal matrix, and D = diag(d, ..., d,) where

(di:1<i <n) " Unif((—+/3, +/3]). By this scaling of W, we have | W/|2/n ~ 1 which
matches the scaling of W ~ GOE(n).

For both free energies, we compute their (possibly local) minimizers using the NGD it-
erations B! = B* — ynv,, F(m*), with step size = 0.1 and a spectral initialization. We
observe that NGD typically converged within £ = 8000 iterations (in the sense of achieving
a small gradient), despite the lack of a theoretical convergence guarantee in certain settings.
Under this model misspecification, the minimizer m, of Ftap defined according to (TAP) is

—F—TAP, GOE
—F—VB, GOE 1
- T - TAP, Misspecified

- T - VB, Misspecified

MSE

F1G. 3.  Comparison of TAP with mean-field VB. The plot shows mean squared errors of the TAP and VB min-
imizers in both a correctly specified and a misspecified model, for signal-to-noise ratio A € [1,2] and n = 500.
The mean curve is averaged over 10 independent instances, and the error bars report 1/+/10 times the standard
deviation across instances.
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no longer expected to be asymptotically exact for the Bayes posterior mean in the true gener-
ating model. Nonetheless, we observe that m, which minimizes Frap achieves lower mean
squared error than that which minimizes Fvyg, in both the well-specified and misspecified ex-
amples. For larger values of A, the difference in mean squared error between these approaches
becomes harder to discern, although the theory implies (in the well-specified setting) that this
difference is asymptotically nonvanishing for any fixed A > 1.

4. Local analysis of the TAP free energy. In this section, we describe the main ideas
and steps in the proof of Theorem 2.1.

We will prove that each statement of the theorem holds with probability approaching 1
conditional on the signal vector x € {—1, +1}". By symmetry, this conditional probability is
the same for any given vector x € {—1, +1}", so we may assume without loss of generality

x=1=(1,1,...,1).

Conditional on x, the only remaining randomness is in the noise matrix W ~ GOE(n), and
Frap(m) is a Gaussian process indexed by m € (—1, 1)".

The proof combines information derived from the Kac—Rice formula for the expected num-
ber of critical points of Gaussian processes, the Sudakov—Fernique Gaussian comparison in-
equality, and the AMP state evolution. It is helpful to summarize the type of information each
of these tools will provide:

Kac-Rice formula. We use the Kac—Rice formula to upper bound the expected number of
critical points of the TAP free energy in certain regions of the domain (—1, 1)", or for
which the TAP Hessian or AMP Jacobian violate the stated properties of Theorem 2.1.
In particular, by establishing upper bounds that are vanishing as n — oo, we prove the
nonexistence of such critical points with high probability.

Sudakov-Fernique inequality. We use the Sudakov—Fernique inequality to lower bound
the infima of Gaussian processes defined by W ~ GOE(n) with the infima of Gaussian
processes defined by a standard Gaussian vector g € R". We then analyze the latter to
obtain variational lower bounds for large n. There are three Gaussian processes to which
we apply this technique:

e The TAP free energy itself, to obtain lower bounds on its minimum value over regions
of (-1, 1)".

e A Gaussian process whose infimum gives the minimum eigenvalue of the TAP Hessian
over subsets of (—1, 1)", to show local strong convexity of the TAP free energy.

e A Gaussian process whose infimum is related to the spectral radius of the AMP Jaco-
bian, to show local stability of the AMP map.

AMP state evolution. We use the AMP state evolution to evaluate the TAP free energy at
the iterates of AMP, giving upper bounds for the TAP free energy value near the Bayes
estimator.

The information provided by each of these three tools is distinct, and the proof of Theorem 2.1
combines the information we can extract from each.

We outline the four main steps of the proof in Section 4.1. These steps are discussed in
Sections 4.2 through 4.5, and the technical arguments that execute each step are deferred to
Appendix B.

4.1. Proof outline. For small parameters &, n > 0, we define two deterministic subsets
Bs, Dy C (=1, 1)" based on the empirical distribution of coordinates of m € (—1, 1)". These
subsets will contain the desired TAP local minimizer m, with high probability (conditional
onx =1).
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For A > 1, let ¢, = g«(}) be the unique solution in (0, 1) (cf. Proposition A.2) to the fixed-
point equation

(11) 4x = EG~n0.n[tanh (A2g, + 2 /2:G)?].
Define
(12) he =Eg~n0.1)[log 2cosh(r%q, + A/a:G)] — 2%q.,
)\’2
(13) == (1-2q. - q2) — Egn.1[log2cosh(A?q + A/qxG)].

For any point m € (—1, 1)", denote
1 2 1 T 1
QOm)=~|mly,  M@m)=—m'l, H(m)=—3 h(n),
i=1

where h(-) is the binary entropy function from (6). We define the first subset B; as

(14) Bs={me(—1,1)":|Q(m) — q.|,|M(m) — q,|, |H(m) — h,| <8}
Let
(15) 1t = distribution of tanh(A%q, 4+ A/2,G) when G ~ N (0, 1),

which will be the limiting empirical distribution of coordinates of m,. For m € (—1, 1)", let
[m be the empirical distribution of coordinates of m, that is,

-
(16) fom =~ Om;-
i=1

Denote by W (u, ') the Wasserstein-2 distance between arctanh i and arctanh 1/, where
arctanh u is shorthand for the law of arctanhm when m ~ p. That is, we have

W (u, u') = Wa(arctanh p, arctanh ')

(17) ) 12
= ( inf /(arctanhm — arctanhm”)” dv(m, m’)) :
couplings v of (u,u’)

We review properties of this distance in Appendix A.3. We define the second subset D;; as
(18) Dy={me (=1 1)": W(iim. ) <n}.
The proof of Theorem 2.1 then consists of four steps (all conditional on x = 1):

1. For sufficiently small § > 0, we use the Sudakov—Fernique inequality to lower bound
the value of Frap on Bs \ Bs/2. Comparing with the value of Frap achieved by an iterate mk e
Bs/2 of AMP, we show that Frap must have a local minimizer m, in Bs, and Frap(m,) ~ e,.

2. For any fixed n > 0, we use a Kac—Rice upper bound to show that with high probability,
any such local minimizer m, cannot belong to Bs \ D). Thus, it must belong to Bs N D,,.

3. For ¢, t > 0 sufficiently small, we apply a second Kac—Rice upper bound to show that
for all critical points m, € Dy, Amin(n - V2 Frap) > t everywhere in a /en-ball around m,.
We analyze the Kac—Rice bound by representing Amin(n - V2 Frap) over this ball as the in-
fimum of a Gaussian process, and lower bounding its value by a second application of the
Sudakov—Fernique inequality.

This implies that Frap is strongly convex near any local minimizer m, € Bs N'D,, of Steps
1 and 2. This convexity then ensures that there exists a unique such local minimizer satisfying
(8), establishing Theorem 2.1(a-b).



TAP FREE ENERGY AND AMP FOR Z,-SYNCHRONIZATION 533

4. To show Theorem 2.1(c), we relate each (possibly complex) eigenvalue u of
dTamp(my, m,) to a zero eigenvalue of a corresponding “Bethe Hessian” of Frap [108]. We
extend the Kac—Rice/Sudakov—Fernique argument of Step 3 from V2 Frap to this Bethe Hes-
sian, and show that it is positive definite whenever || exceeds some constant r (1) € (0, 1).
Thus all eigenvalues of d7amp satisfy || < r(}r).

The next four sections describe these steps in greater detail.

4.2. Sudakov—-Fernique lower bound for the TAP free energy. We record here the follow-
ing application of the Slepian/Sudakov—Fernique comparison inequality for Gaussian pro-
cesses.

LEMMA 4.1. Let X be a separable metric space, and let f : X — Randv: X — R" be
bounded measurable functions on X. Let W ~ GOE(n) and g ~ N(0,1,)). Then

. 2
E[sup v(x) Wo(x) + f(x)] < E[sup 7 lv(x)|,(g, v(x))+ f(x)]

xeX xeX

Note that (conditional on x = 1) —Ftap(m) is a Gaussian process of this form, where
X =(—1,1D)" and v(m) = \/1/2n - m. Then applying this comparison lemma and an analysis
of the comparison process, we obtain the following lower bound for Frap(m) in terms of a
low-dimensional, deterministic variational formula.

LEMMA 4.2. Fix any A > 1, and suppose x = 1. Fix any ¢ > 0 and two compact sets
K € [0, 1]* x [0, log2] and K' C R3. Then for some (A, K', &)-dependent constant ¢ > 0

—cn

and all large n, with probability at least 1 — e~ ",

(19) inf Frap(m) >  inf su E,(q,p,h;y,T,v)—¢,
me(=1,1)7:(Qm), M(m), H(m)eK @oWeK (yamegr DY
where
2 2 qy
Ej(q. 9. h: y,r,V)=—3<p2— ~a — ) —h+ et vk
(20) )

m
— EGNN’(()J){ sup I:)\.ﬁ Gm + o +Ttm+ vh(m)} }
me(—1,1) 2

Lemma 4.2 makes precise the statement that

(21) Ek(q» §0,h)= sup Ek(q’ Qﬂ,h; v, T, V)

(y,T,v)eK’
is a lower bound for Fap(m) when Q(m) ~ q, M(m) ~ ¢, and H(m) ~ h. We may show
that E,(q, ¢, h) has a local minimizer at (g, ¢, h) = (¢, g+, fx) and is strongly convex
around this minimizer, and hence give a more explicit lower bound for Frap(m) when m € Bs
for sufficiently small § > 0.

LEMMA 4.3. Fix any A > 1, and let E,(q, ¢, h; y,T,v) be as defined in Lemma 4.2.
Then

(22) Sup E)\,(qu Q*» h*7 ya T? V) = E)u (C]*» Q*, h*7 05 )\'zq*a 1) = e*-
(y,t,v)eR3

Fix any subset K’ C R3 containing (0, A2q,, 1) in its interior, and define E;, by (21). Then for
some A, K'-dependent constants 8, c > 0 and all (q, ¢, h) satisfying |q — q.|, |¢ — qx|, |h —
h*l E Ba

(23) Ex(q, 9, h) = ey +c(q — qo)* + (@ — ) + c(h — hy)>.
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Lemmas 4.2 and 4.3 together imply that the energy value Frap(m) is bounded away from
e, on the domain m € Bs \ Bs/2. The AMP state evolution may be applied to show that AMP
iterates eventually enter Bj/>, and achieve a TAP free energy value arbitrarily close to e, (cf.
Lemma A.7). Combined, these yield the following corollary.

COROLLARY 4.4. Fix any A > 1 and 6 > 0, and suppose x = 1. Then with probabil-
ity approaching 1 as n — 00, there exists a critical point and local minimizer m, of Ftap
belonging to Bs and satisfying | Frap(m,) — ex| < 6.

The detailed proofs of this section are contained in Appendix B.1.

REMARK 4.5. We conjecture, based on numerical evidence, that (gx, g« 4) is in fact the
global minimizer of E; (g, ¢, k) for all A > 1: We may first restrict Ej to v =1 and 7 = A%,
to obtain the further lower bound

(24) Ex(q,9,h) > E;(q,9) =sup Ex(q, ¢; V),
%
where
22 22 qy
2(q,9;7) 7 ¢ 4( q)+2
sz 2
—EGNN(OJ)[ sup AJ/q-Gm+ ——+A"pm + h(m)]
me(—1,1) 2

Numerical evaluations of this function Ej (¢, @) over the relevant domain g € (0, 1) and
lp| < /q are presented in Figure 4. For all tested values of A > 1, these evaluations sup-
port the claim that E; (g, ¢) has the unique global minimizer (g, ¢) = (¢, ¢,). This claim
then implies that (q,, ¢, /) is also the unique global minimizer of E; (¢, ¢, h), by the global
convexity of /i E 2 (gx» g, 1) and its strong convexity near its minimizer /..

Subject to the validity of this numerical conjecture, Lemma 4.2 may be used to show that
Frap(m) is also bounded away from e, for all m € (—1, 1)" \ Bs. Our subsequent arguments
will then imply that for any A > 1, with probability approaching 1, the (unique) local min-
imizer m, described by Corollary 4.4 and Theorem 2.1 is in fact the global minimizer of
Frap. (All theoretical results stated in this work will be established using only that m, is a
local minimizer of Frap, and they will not require the validity of this conjecture.)

-1.24
-1.25
-1.26
-1.27
-1.28
-1.29

) 13
0.2 al 131

-1.32

FIG. 4. The contour plot of the function E)(q, ¢) as defined in equation (24). Here we take > =1.1,1.2, 1.5.
The global minimum is at (q, ¢) = (gx(A), g« (X)) where g, (1.1) = 0.1917, g, (1.2) = 0.3577, g.(1.5) =~ 0.6923.
The dashed line is g = ¢.
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4.3. Kac—Rice localization of critical points. We now use a Kac—Rice upper bound to
show that the critical point(s) m, described by Corollary 4.4 must belong to the more restric-
tive set Bs N Dy, (cf. equation (14) and (18)).

Define functions g and H, which are the gradient and Hessian of the renormalized TAP
free energy

(25) g(m) =n - VFrap(m) = —AYm + arctanh(m) + Az[l — Q(m)|m,

H(m) =n - V> Frap(m)
(26)

. 1 ) 222 .
=Y ~|—dlag(1 m2> + 21— Q0m)]1— ——mm_.

We apply the following Kac—Rice upper bound from [53].

LEMMA 4.6. Fix any ) > 0, suppose x =1, and let T C (—1, 1)" \ {0} be any (deter-
ministic) Borel-measurable set. Then

E[[{m e T :g(m)=0}|] < /TE[|detH(m)| | g(m) =0]pg(m)(0)dm,
where pg(m)(0) is the Lebesgue-density of the distribution of g(m) at g(m) = 0.

Applying this bound, we eliminate the possibility that the critical point(s) described by
Corollary 4.4 belong to Bs \ D,, as stated in the following lemma. Thus they belong to
Bs N'D,, as desired.

LEMMA 4.7. Fix any A > 1 and n > 0, and suppose x = 1. Then for some (), n)-
dependent constants ¢, 8 > 0 and all large n,

P[there exists m € Bs : g(m) =0, | Frap(m) — e,| <8,m ¢ Dy] <e™".
Let us make two high-level clarifications regarding the proof: First, to show Lemma 4.7,
we wish to apply Lemma 4.6 with T being the set

{m € Bs\ Dy : |Frap(m) — e.| < 8}.

We cannot do so directly, because Frap(m) is random, and hence this is not a determin-
istic subset of (—1, 1)"”. However, restricted to points m where g(m) = 0, the identity
0O=m"' g(m) allows us to re-express m'Ym and Frap(m) as deterministic functions of m.
Lemma 4.7 is then obtained by replacing | Frap(m) — e,| < 6 with an equivalent deterministic
condition to define T'.

Second, we remark that the Sudakov—Fernique argument of the preceding section cannot
be used here to similarly localize m, to D), by bounding the TAP free energy value outside
Bs \ Dj,. This is because there exists m € (—1, 1)" with one coordinate very close to £1, so
that W (fim, 1. is arbitrarily large (cf. equation (17)) and m ¢ D), but Frap(m) is arbitrarily
close to e, in value. Thus, we use this separate Kac—Rice argument, and the condition m € B;
as an input to the Kac—Rice analysis, to establish the localization to D, in Lemma 4.7.

The detailed proofs of this section are contained in Appendix B.2.

4.4. Sudakov—Fernique lower bound for local strong convexity. We now show that the
TAP free energy is strongly convex in a local neighborhood of any critical point m, € D,;.
For a parameter ¢ > 0, define

(27) €5 (m, W) = inf{Amin(H(@)) :u € (=1, 1)" NB 7 (m)}.



536 M. CELENTANO, Z. FAN AND S. MEI

The dependence of £ on W is via H(u). We will make this dependence implicit in what
follows, and write simply ¢} (m) = ¢} (m, W). If £} (m,) >t > 0, then the TAP free energy
is strongly convex on a /en-ball around m,, as desired. We use a Kac—Rice upper bound to
show, with high probability, no critical points of Fap belong to the set

{meDy,:tfm) <t}

for some sufficiently small constant ¢ > 0.
The condition Ej (m) <t is again random, so this is not a deterministic subset of (—1, 1)".
We address this using the following extension of the Kac—Rice upper bound in Lemma 4.6.

LEMMA 4.8. Fix any A > 0, and suppose x = 1. Let Sym,, be the space of real sym-
metric n x n matrices, T C (—1,1)" \ {0} any (deterministic) Borel-measurable set, and
£:T x Sym, — R any Borel-measurable function. Let ¢ > 0 and t € R be any (possibly
n-dependent) values, and let U ~ Unif([—c, c]) be a uniform random variable independent
of W. Define

C={meT:gm)=0and {(m, W)+ U <t}.
Then

(28)  E[IC|] < /.TEHdetH(m)] 1{lm, W)+ U <t} | g(m) =0]pgm)(0)dm,

where pgm)(0) is the Lebesgue-density of the distribution of g(m) at g(m) =0, and the
expectations are over both U and W .

(Introducing this auxiliary variable U alleviates the need to check a technical condition
that £(m, W) =t and g(m) = 0 do not simultaneously occur at any m € T, when applying
the Kac—Rice lemma.)

In [53], an upper bound on the determinant | det H (in)| was established via a spectral anal-
ysis of H (m), which shows E[|det H (m)|? | g(m) = 0] < ¢“™" for m € D, and a constant
c(n) — 0 as n — 0. Thus, to show that (28) is vanishing, we complement this by showing
an exponentially small upper bound for the probability P[¢} (m) + U <t | g(m) = 0]. We
do this again using the Sudakov—Fernique inequality of Lemma 4.1, to obtain the variational
lower bound on the conditional mean E[Ej (m) | g(m) = 0] stated in part (a) of the following
lemma. This bound is shown to be positive in part (b).

LEMMA 4.9. Suppose A > 1 and x = 1. Define
H (p,us o, k,7)
o) =-[222p7+3%? = 2221~ q)p?/gu — au —kp] + 321 — g +y

— B, [(4/\2(1 —P*/q) + (22m)p/qu +a + Km)z)/(l _4m2 - 4)/)}

where z(m) = arctanhm — Azq* + 21— gs)m.

(a) Fix any t > 0 and compact domain K' C R? x (—o0, 1). For some (A, K’ 1)-
dependent constants €,n > 0, and all large n,
inf E[¢(m m)=0|> inf su H(p,u;a,k,v) —t.
05 Bl | gm) =0] = inf s B )

PE=V: /5]
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(b) Suppose K' contains (0,0, 0) in its interior. Then there is a (A, K')-dependent con-
stant to > 0 for which

inf sup Hf(p, u; o, k,y) >ty > 0.
uE[—],]] (Ol,K,y)EK/
PEI—/Gx, /%]

The desired upper bound for P[Kj(m) + U <t | g(m) = 0] then follows by concentration
of £} (m) around its mean. Applying this to (28) yields the following corollary on local strong
convexity.

COROLLARY 4.10. Fix any A > 1, and suppose x = 1. Then there exist A-dependent
constants €, n,t,c > 0 such that, for all large n,

30) P[there exist m € Dy and u € (—1,1)" N B s (m) :
g(m) =0 and )Mmin(H(u)) < l‘] <e

Finally, this convexity implies Theorem 2.1(a-b) by the following argument: Letting m*
be a sufficiently large iterate of AMP, we may pick a local minimizer m, in Corollary 4.4
such that there is a strict descent path from m* to m,. Strong convexity of Frap around m,
and an upper bound on Frap(m*) — Frap(m,) then imply an upper bound on the Euclidean
distance ||m, — m¥||;. Then this point m, must satisfy (8) by the Bayes-optimality of the
AMP iterate m¥. Furthermore, the local convexity of Frap implies that such a point m, is
unique. We provide the details of this argument in Appendix B.3.

4.5. Local stability of AMP. We now describe the proof of Theorem 2.1(c). Let us write
the input and output of Tamp in (7) as
(my,m)=Tavp(m,m_).
Differentiating by the chain rule, the Jacobian of Tayp may be expressed as
dTamp(m, m_)

G N <diag(1 —m2) - [\Y +22m_m"/n] —diag(1 —m%) - 221 — Q(m)])
- . A :

At any point m, € (—1,1)" where g(m,) = 0, we have Tamp(m,, m,) = (m,,m,). Thus
dTamp(m,, m,) = B(m,) for the matrix

B(m) — (diag(l —m?) - [AY +2)2mm" /n] —diag(l —m?) - 2*[1 — Q(m)]) '

I 0

In Appendix B.4, we first verify the simple algebraic identity that the eigenvalues u € C of
this matrix B(m), for any m € (—1, 1)", are exactly those values u € C for which the “Bethe
Hessian” matrix

2
(32) M(‘” - 2%mmT) + 221 = Qm) ]I + diag(l lmz)

is singular. Applying this relation, we then show the following deterministic lemma relating
the spectral radius of B (m) to the smallest eigenvalue of the above matrix for real arguments
u==xr.
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LEMMA 4.11. Fix any A > 1. There exist A-dependent constants § > 0 and rg € (0, 1)
such that for any r € (ro, 1) and m € (—1, 1)"* with |Q(m) — q.| < §, if we have

2

(33) xmm[ir(—xy - %mmT> + 221 — Q(m)]T + r2diag(1 _lmzﬂ >0

for both choices of sign &, then p(B(m)) <r < 1.

To prove Theorem 2.1(c), by a simple continuity argument, it will suffice to consider ex-
actly r =1 in (33) and to show that (33) holds with high probability at m = m, for both
choices of sign &. For r = 1 and sign 4, the matrix in (33) is precisely the Hessian H (m),
whose smallest eigenvalue at m = m, was bounded in the preceding section. The case of sign
— is a minor extension of these arguments: Define

2
H (m)= (AY + Z%mmT) + diag( ) +22[1 = Qm)]I,
£, (m) = inf{Amin(H™ ) 1w € (=1, 1)" NB_ sz (m)}.

We show the following lemma using the Sudakov-Fernique inequality, analogously to
Lemma 4.9.

1 —m?

LEMMA 4.12. Suppose A > 1 and x = 1. Define
H, (p,u;a,k,y)
=[222p? +32u* = 202(1 = g p*/qu — au —kp] +3°(1 = q) + ¥

. [(412(1 — p%/qs) + 2z(m)p /g + o + /<111)2)/(1 —4m2 — 4)/)}

where z(m) = arctanhm — )»zq* + 221 — g«)m. Then the statements of Lemma 4.9 hold also
with E;"(m) and H)T replaced by € (m) and H,_.

Now applying this result in the Kac—Rice upper bound of Lemma 4.8 for £(m, W) =
£, (m), we obtain that (33) also holds with high probability for » = 1 and sign —, implying
Theorem 2.1(c).

The detailed proofs of this section are contained in Appendix B.4.

5. Convergence of optimization algorithms. In this section, we describe the main ideas
in the proofs of Theorems 2.3 and 2.4. It again suffices to show that the results hold with
high probability conditional on x = 1. The detailed proofs of this section are contained in
Appendix C.

5.1. Convergence of NGD with local initialization. Theorem 2.3 is a consequence of
the local strong convexity of Frap established in Theorem 2.1(b) and the following local
convergence result for the natural gradient algorithm (NGD).

LEMMA 5.1. Fixany A > 1,1t > 0, and ¢ € (0, 1). Consider the event where m, in Theo-
rem 2.1(a) exists and is unique up to sign, and |W||op < 3 and Amin(n - VZ}"TAp(m)) >t for
everyme (—1,1)" N B /en(my). Consider any initialization m® = tanh(h®) such that

(34) fTAp(mO) < Frap(my) +te/8, ||m0 — m,,“2 < \Jen.
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There exist (A, t, €)-dependent constants C, |1, no > 0 such that if (NGD) with any step size
n € (0, no) is initialized at m®, then on this event, for every k > 1 we have

h 0
(35) ]:TAP(mk) < ]:TAP(m*) + C(l + W)(l _ Mn)k,
|| arctanh(m?) ||
(36) it ., < €1+ Tz)“ )

The proof of this lemma applies the mirror-descent form of NGD given in (10), together
with an observation that on the above event, Frap is strongly smooth and strongly convex
over (—1,1)"NB ﬁ(m*) relative to the prox function —H (m), in the sense of [14, 80]

- V3(—H(m)) 2 V> Frap(m) < L - V*(—H(m))

for some constants L, u > 0. We may then adapt a convergence analysis of [80] to show
that, for the above initialization, NGD with sufficiently small step size n > 0 must remain in
this strongly convex neighborhood and exhibit the above linear convergence to m,. For any
A > 1, the event in Lemma 5.1 holds with high probability by Theorem 2.1. The required
initial condition (34) is also with high probability achieved by a sufficiently large iteration of
AMP, as may be deduced from the AMP state evolution. Combined, this yields Theorem 2.3.
The detailed proofs of Lemma 5.1 and Theorem 2.3 are contained in Appendix C.2.

5.2. Convergence of NGD from spectral initialization. For large A, to show the result of
Theorem 2.4(b) that NGD alone converges to =m, from a spectral initialization, recall the
domain

S={me(~1,1)": Frap(m) < —2%/3}
as defined in Corollary 2.2. For a parameter g € (0, 1), define the deterministic subset
My ={me (=1,1)": M(m) > q},

where recall M (m) = m"1/n. We first establish the following more quantitative characteri-
zation of the landscape of Frap.

LEMMA 5.2. Fix any integer a > 5, and set ¢ = 1 — A™%. Suppose x = 1. For a constant
ro(a) > 0, if A > Ao(a), then there are (a, A)-dependent constants C, c,t > 0 such that with
probability at least 1 — Ce™“":

(a) Every point m € S\ M satisfies

2
Hﬁ V./TTAp(m)”2 >t.
(b) Every point m € S N M, satisfies

1 1 1
n- VZ}“TAP(m) > 5 dlag(m> > EI

Part (b) of this lemma is sufficient to imply Theorem 2.4(b) on the convergence of NGD:
The initialization m® = tanh(h°) defined by (SI) will belong to the region S N M, with
high probability, so Lemma 5.1 may again be used to show linear convergence to +m,.
The detailed proof of Lemma 5.2 is contained in Appendix C.1 and the detailed proof of
Theorem 2.4(b) is contained in Appendix C.2.
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5.3. Convergence of AMP from spectral initialization. For Theorem 2.4(a) on the con-
vergence of AMP, we directly prove contractivity of the map Tamp defined in (7) locally near
m,, in a parameterization by coordinates p that lie “between” h and m = tanh(h): Define
two strictly increasing functions I', A : R — R as

T(h) = /Oh J1—tanh(s)2ds,  A(p)=tanh(I'"!(p)),

and consider p = I'(h). Then m = tanh(h) = A(p). We write as shorthand

dm dp dm
—— =dj tanh(h), — =d,I'(h), — =d,A(p),
h ; tanh (k) =9 (h) ap 9 (p)
where these are vectors in R”, and the derivatives are applied entry-wise. These definitions of

I" and A are designed so as to factor the identity 1 — m? = dm /dh into the pair of identities

\/l—mzzd—mzd—p.
dp _ dh

(This reparameterization by p may seem mysterious, and is carefully chosen to precondition
the Jacobian of the AMP map and enable an operator norm bound for this Jacobian. We
provide a heuristic motivation for this reparametrization in Remark C.3 in Appendix C.3.)

The range of p = I'(h) is the cube Q) = (—m/2,7/2)". We denote the AMP map (7) in
the p-parameterization as .00, : Q(P) x Q(P) — Q) x QP defined by

TAe (P, p_) = (A ® A) ™" o Tavp((A ® A)(p, p_)).

Thus, reparameterizing by pk = F(hk), the AMP iterations (AMP) take the form
(P, p*) = Tln(p*, P

LEMMA 5.3. Consider the metric ||(p, p)Il. = |Iplla + A~V p/llz. Fix g =1— 217
and x = 1. For an absolute constant Ao > 0, suppose X > Ly. Then with probability at least
1 — Ce™" for A-dependent constants C, ¢ > 0, the following holds: If there exists a critical
point m, € My of Frap, then for p, = A~Ym,), any p,p_ € By-7/m(P) N QP and

(P4 P) =Tap(p. p_). we have p, € B, ;(p,) QP and

(37) ” (p+7 P) - (p*’ p*)”A =< 2)\_1/5 H (P, P—) - (p*’ p*) ”)»

The AMP state evolution guarantees that with probability approaching 1 as n — oo,
pk=1, pre B,.-7 s (p,) for a sufficiently large iteration k. Then the contractivity guaranteed
in Lemma 5.3 implies Theorem 2.4(a). The detailed proofs of Lemma 5.3 and Theorem 2.4(a)

are contained in Appendix C.3.

6. Discussion. In this paper, we showed the local strong convexity of the TAP free en-
ergy for Z,-synchronization around its Bayes-optimal local minimizer, and studied the finite-
n convergence of optimization algorithms for computing this minimizer. Numerical simula-
tions confirm that the TAP free energy can be efficiently optimized, and that properties of its
minimizer are robust to model misspecification. Our results provide theoretical justification
for using the TAP free energy to perform variational inference in this model.

In terms of proof techniques, our work introduced a method of using the Kac—Rice for-
mula to study the local geometry of a nonconvex function around its critical points. Some
intermediate results in the proof, for example the convergence of the empirical distribution
of coordinates of the TAP minimizer, are of independent interest. We note that an analogous
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TAP free energy function may be defined in broader contexts, such as for spiked matrix mod-
els with more general priors or for linear and generalized linear models, and some of our
techniques may be useful also for analyzing the local geometries of these TAP free energy
functions around their informative fixed points. However, the Rademacher {+1, —1} prior
in Zj-synchronization does have several conveniences, including a fixed second moment, an
explicit form for both its entropy and its posterior mean function, and a unique fixed-point for
the equation (11) that defines g,. Analyses of models having priors that lack these properties
would have additional technical hurdles, and we leave the exploration of such extensions to
future work.

Finally, we proved the finite-n convergence of a well-studied AMP algorithm for this prob-
lem, which is not implied by analysis of the AMP state evolution alone. Our proof of this
result required sufficiently large X, but we conjecture that the result holds for any A > 1. This
conjecture is supported by our numerical simulations and also by the stability of the AMP
map around its fixed point, which indeed holds for any A > 1. We leave this conjecture as
an open question, and hope that the techniques developed in this paper can perhaps inspire a
proof.
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Supplementary appendices (DOI: 10.1214/23-A0S2257SUPP; .pdf). Proofs of the main
results are contained in the supplementary appendices.
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