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Fine-mapping aims to identify causal genetic variants for phenotypes.

Bayesian fine-mapping algorithms (for example, SuSiE, FINEMAP, ABF and
COJO-ABF) are widely used, but assessing posterior probability calibration
remains challenging in real data, where model misspecification probably
exists, and true causal variants are unknown. We introduce replication
failure rate (RFR), ametric to assess fine-mapping consistency by
downsampling. SuSiE, FINEMAP and COJO-ABF show high RFR, indicating
potential overconfidence in their output. Simulations reveal that nonsparse
geneticarchitecture can lead to miscalibration, while imputation noise,
nonuniform distribution of causal variants and quality control filters have
minimalimpact. Here we present SuSiE-inf and FINEMAP-inf, fine-mapping
methods modeling infinitesimal effects alongside fewer larger causal
effects. Our methods show improved calibration, RFR and functional
enrichment, competitive recall and computational efficiency. Notably, using
our methods’ posterior effect sizes substantially increases polygenic risk
score accuracy over SuSiE and FINEMAP. Our work improves causal variant
identification for complex traits, afundamental goal of human genetics.

Over the past two decades, genome-wide association studies (GWAS)
have successfully identified thousands of locithat are associated with
various diseases and traits'. However, refining these associations to
identify causal variants remains challenging, due to extensive linkage
disequilibrium (LD) among associated variants’. Many approaches can
be taken to help nominate causal variants from associations, such as
overlapping GWAS signals with coding or functional elements of the
genome’, with expression quantitative trait loci*, and across popula-
tions having different ancestries and patterns of LD*”. Complemen-
tary to and in conjunction with these approaches, Bayesian sparse

regression and variable selection methods, which aim toidentify causal
variants and quantify their uncertainty based on a statistical model
(for example, SuSiE®, FINEMAP®'°, ABF" and COJO'*-ABF), are widely
applied in practice™ ™.

The appeal of Bayesian approaches to fine-mapping is two-fold.
First, these methods determine a posterior inclusion probability (PIP)
for each variant, quantifying the probability that the variant is causal
under the model, which canreflect uncertainty due toLD. For example,
two variants in strong LD and harboring a strong association with the
phenotype may each have PIP close to 50%, representing confidence
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that there is a causal signal but uncertainty about which variant(s)
is/are causal.Second, these methodsincorporate assumptions about
genetic architecture—namely the relative probabilities of different
numbers of and configurations of causal single nucleotide polymor-
phisms (SNPs), asreflected by a Bayesian prior—toimprove statistical
power for identifying high-confidence variants.

Bayesian fine-mapping methods are correctly calibrated when
the PIPs accurately reflect the true proportions of causal variants, for
example, nine out of ten variants having PIP 90% are truly causal for
the trait. Calibration (thatis, whether or not the posterior probability
of causality reflects the true proportion of causal variants) is ensured
whenthe linear model for genetic effects and Bayesian prior for genetic
architecture across loci are both correctly specified, and accurate
calibration has also been demonstrated empirically in simulations to
be robust under mild model misspecifications®. However, the actual
calibration and false discovery rates of these methods in real data
applications are not easily determined, as true causal variants and the
sources of model misspecification may be unknown.

In this Article, we propose the replication failure rate (RFR) to
assess the stability of fine-mapping methods by evaluating the con-
sistency of PIPs in random subsamples of individuals from a larger
well-powered cohort. We found the RFR to be higher than expected
across traits for several Bayesian fine-mapping methods. Moreover,
variants that failed toreplicate at the higher sample size were less likely
to be coding. Together these analyses suggest that SuSiE, FINEMAP
and COJO-ABF may be miscalibrated in real data applications. Inother
words, they may return a disproportionately large number of false
discoveries among high-PIP variants.

We performed large-scale simulations to assess the effects of
several plausible sources of model misspecification on calibration.
These simulations—which include, among other factors, varying lev-
els of nonsparsity and stratification—suggest that a denser and more
polygenic architecture of genetic effects may be a major contribu-
tor to PIP miscalibration. We thus propose incorporating a model of
infinitesimal effects when performing Bayesian sparse fine-mapping,
recasting the goal of fine-mapping as the identification of asparse set
of large-effect causal variants among many variants having smaller
effects. We develop and implement fine-mapping tools SuSiE-inf and
FINEMAP-inf that extend the computational ideas of SuSiE and FIN-
EMAP to model additional infinitesimal genetic effects within each
fine-mapped locus.

Applying SuSiE-inf and FINEMAP-inf to ten quantitative traits
in the UK Biobank (UKBB) shows improved RFR. SuSiE-inf high-PIP
variants are more functionally enriched than SuSiE high-PIP variants.
Cross-ancestry phenotype prediction using SuSiE-inf/FINEMAP-inf
shows substantial improvement over SuSiE/FINEMAP across seven
traits and six diverse ancestries. These results suggest that explicit
modeling of a polygenic genetic architecture, even within individual
genome-wide significantloci, may substantially improve fine-mapping
accuracy.

Results

Current methods are probably miscalibrated inreal data

Real databenchmarking of fine-mapping methods is challenging due
to the lack of ground truth. However, downsampling large cohorts
allows assessment of the methods’ stability. We chose ten well-powered
quantitative phenotypes (Methods) in the UKBB and computed the
RFR for SuSiE and FINEMAP as follows (for results related to ABF and
COJO-ABF, see Supplementary Note 1). Our group previously performed
fine-mapping®® ona cohort 0of 366,194 unrelated “white British” ances-
tryindividuals defined in the Neale Lab UKBB GWAS*. We downsampled
this cohort to a random subsample of 100,000 and performed
fine-mapping with the same pipeline (Methods). RFRis defined as the
proportion of high-confidence (PIP>0.9) variants fine-mappedin the
100,000 subsample that failed to replicate (PIP <0.1) in the full

366,000 cohort. This RFRis an estimate of the conditional probability
Pr(PIP366:000 < 01| PIP100.000 > 0.9)forarandomly chosenvariant.In
atruly sparse causal model, assuming that the method is well powered
atsample size N=366,000 to detect true causal variants, which are
identified with high confidence at100,000, the RFR is an approximate
lowerboundforthefalsediscoveryrate Pr(not causal | PIP100:000 . ( 9)
(Supplementary Note 2).

Acrossallten traits, we observed different levels of RFR for differ-
entphenotypes,and anaggregated RFR of 15% for SuSiE and 12% for FIN-
EMAP (Fig.1a,b; see Extended Data Fig. 1for different PIP thresholds).
These values far exceed the false discovery rate expectedinacorrectly
specified sparse Bayesian model (SuSiE 1.8% and FINEMAP 2.0%), which
we denote by expected proportion of noncausal variants (EPN) and
estimate from the mean reported PIPs exceeding 0.9.In contrast, ideal
simulations under correctly specified models show close agreement
between RFR and EPN (Fig. 1a, Methods and Supplementary Note 3).

To gain insight into whether nonreplicating variants (PIP 0.9 at
100,000 and PIP <0.1 at 366,000) are causal, we examined the func-
tional annotations, focusing on two distinct categories: coding and
putative regulatory (Methods). We found a significant depletion of
functionally important variants in the nonreplicating set compared
tothereplicated set (P=1.7 x107) (Fig. lcand Methods). This suggests
that many nonreplicating variants may be noncausal, and that SuSiE
and FINEMAP may be miscalibrated when applied in real data (for our
investigation into other potential causes for high RFR, see Supple-
mentary Note 4). We found higher functional enrichmentin the set of
nonreplicating variants than the background, suggesting some PIPs
at N=366,000 may be too conservative. However, here we focus on
investigating the more concerning under-conservative PIPs that can
lead to elevated false discovery rate.

Unmodeled nonsparse effects can lead to miscalibration
Bayesian sparse variable selection approaches to fine-mapping,
including SuSiE and FINEMAP, commonly rely on some of the follow-
ing assumptions. (1) Within each genome-wide significant locus, one
or asmall number of variants have a true causal contribution to the
phenotype. (2) All true causal variants withinthe locus are includedin,
ortagged by asparse subset of, the analyzed genotypes. (3) The distri-
bution of causal variant effect sizes is well approximated by a simple,
oftentimes Gaussian, prior. (4) Thereis no uncorrected confounding,
and the residual error is uncorrelated with the genotype. (5) There is
no imputation noise or error in the genotypes. Violations of any of
these assumptions can, in principle, cause miscalibration, although
the severity of such miscalibration under the degrees of violation that
are present in fine-mapping applications is unclear a priori.

We designed large-scale simulations to investigate how SuSiE
and FINEMAP may be affected by these five sources of misspecifica-
tion. Our simulations use UKBB genotypes (N = 149,630 individuals of
white British ancestry) and BOLT linear mixed model (BOLT-LMM)?*
for GWAS, incorporating (1) varying amounts of unmodeled nonsparse
causal effects (varying both the coverage of nonsparsity, that is, the
proportion of variants with nonzero effects, and the amount of herit-
ability the nonsparse component explains), (2) missing causal variants
that are removed by quality control filtering before fine-mapping, (3)
effect size distributions for the large and sparse causal variants that
reflect estimates from fine-mapping of real traits, (4) varying amounts
of uncorrected population stratification, and (5) imputation noise
in the input genotypes (see Methods for detailed description of our
simulations and other misspecifications we considered). In previous
work?’ by our group, we found that quality control filters and imputa-
tion noise did not contribute to miscalibration in simulations; here
we continued to include them while adding nonsparsity, effect size
estimates fromreal data, and uncorrected population stratification as
additional sources of miscalibration. Note that we simulated a single
cohort, without the heterogeneity that often comes with meta-analysis,
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Fig.1|RFRs and functional enrichments. a, RFRs for SuSiE and FINEMAP
aggregated across ten UKBB quantitative phenotypes, contrasted with RFRs in
ideal simulations and with EPN. b, Trait-separated RFRs for SuSiE and FINEMAP.
The ten UKBB traits are height, eBMD, Plt, HbAlc, RBC, ALP, IGF1, LDLC, Lym and
eGFR. ¢, Functional annotations in three disjoint categories: coding, putative
regulatory and nongenic (see Methods for detailed definitions). Variants are
aggregated between SuSiE and FINEMAP with nonreplicating, the group of
nonreplicating variants (PIP>0.9 at N=100,000 and PIP <0.1at N=366,000);
replicated, the group of replicated variants (PIP >0.9 at both N=100,000 and

eBMD IGF‘I

eGFR t RB

T T
LDLC ALP HbAlc  Lym

N=366,000); and background, the group of all variants included in the fine-
mapping analysis, aggregated across ten traits. For method-separated plots and
more sets of variants, see Supplementary Fig. 1. Error bars represent one standard
deviation of the corresponding binomial distribution Binom(n,p), where nis the
total number of variants (for aand b, nis the total number of high-PIP variants at
sample size N=100,000; for ¢, nis the total number of variants in each group) and
pisthe corresponding proportion (RFRinaand b and proportion of annotated
variantsin c). Bar plot data are presented as proportion + standard deviation.
Numerical results are available in Supplementary Tables 4 and 5.

where quality control (QC) and imputationare important contributors
to miscalibration®. Moreover, we did not consider error in the prob-
abilities outputted by standard imputation software or different types
of genotyping error, which could contribute to miscalibration evenin
the absence of heterogeneity.

Our simulations show that missing causal variants due to QC, use
of arealistic non-Gaussian effect size distribution estimated from real
data, and imputation error did not induce miscalibration, consistent
with and extending previous results®.

SuSiE and FINEMAP were both miscalibrated in simulations with
nonsparse effects. For example, when nonsparse causal effects explain
75% of the total SNP heritability, only about 80% of variants with PIP
>0.9 are causal, far below the rate of approximately 97% that we would
expectgiven the variants’mean PIP. Miscalibrationincreased and recall
decreased as weincreased the proportion of total SNP heritability (set
at 0.5; for comparison, see Supplementary Table 1 for common SNP
heritability in real traits) explained by nonsparse effects from 58% to
100% (Fig.2a,b and Table 1) while fixing the coverage to 1%. This trend
was consistently observed at different levels of coverage. See Meth-
ods and Extended Data Fig. 2 for results at 0.5% and 5% coverage. We
emphasize that calibration was measured against the set of all causal
variants, including the nonsparse causal effects.

To further support that unmodeled nonsparse causal effects—
among all the misspecification we incorporated—formed the primary
driver of the observed miscalibration, we decomposed the simulated
genetic component XP of the phenotype into the sum of four sub-
components representing sparse causal effects, missing causal vari-
ants, uncorrected stratification and unmodeled nonsparse causal
effects. Regressing each of these four subcomponents onthe true and

false positive variants (respectively defined as causal and noncausal
variants with PIP >0.9), false positive variants were more correlated
with the nonsparse causal effects than true positive variants (Fig. 2¢
and Methods).

Our simulated population stratification in the standard pipeline
(Methods), where BOLT-LMM was used for association mapping, failed
to induce miscalibration. Replacing BOLT-LMM with ordinary least
squares (OLS) for association mapping allowed us to induce higher
levels of uncorrected confounding (Supplementary Table 2) that did
lead to miscalibration (Fig. 3), but are less true to the pipeline used in
our real data applications. See Methods for interpretation and more
discussion on these results.

In conclusion, the presence of nonsparse effects is a driver of
miscalibration for SuSiE and FINEMAP. The stratification we simulated
onlyinduced miscalibration when using OLS for association mapping
but not when using BOLT-LMM. None of the other sources of misspeci-
ficationincorporated in our simulations caused miscalibration within
our fine-mapping pipeline.

Modeling infinitesimal effects in addition to sparse effects
To address PIP miscalibration that may arise from nonsparse causal
effects, we propose to explicitly incorporate a model of broad infini-
tesimal genetic effects when fine-mapping causal variants. Here, we
describe two specificimplementations of thisidea that extend FINEMAP
and SuSiE. We call the resulting methods FINEMAP-inf and SuSiE-inf.
FINEMAP-inf and SuSiE-inf are based on a random-effects linear
model y = X (B + &) + e for observed phenotypes yacross nsamples,
where X is an n by p genotype matrix for p variants, B is a vector of
sparse genetic effects of interest, « is an additional vector of dense
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Fig.2|Simulations with nonsparse effects. a, Calibration for SuSiE, FINEMAP,
minPIP and corresponding ‘inf’ methods under nonsparsity simulation settings
detailed in Table 1and Methods. minPIP and minPIP-inf are aggregating methods:
minPIP-infis equal to min(PIP) between SuSiE-inf and FINEMAP-inf, and minPIP

is equal to min(PIP) between SuSiE and FINEMAP. The colored markers show

true proportion of causal variants, and the short black lines show the expected
proportion of causal variants in each PIP bin for each method. b, Recall for the

same methods, defined as the percentage of simulated large effects among
the top Nvariants when ranked by PIP. Error bars on calibration and recall plots
correspond to 95% Wilson confidence interval. Note that ‘no large effects’
simulations are not shown on the recall plot because there are zero simulated
large effects. ¢, Regressing subcomponents of ‘high nonsparsity’ phenotype
ontrue versus false positives (variants with PIP>0.9 that are either causal or
noncausal). Numerical results are available in Supplementary Tables 6-8.

infinitesimal effectsand e isthe residual error. Inthe context of sucha
model, we define the primary goal of fine-mapping as inferring the
nonzero coordinates of the sparse component . We will refer to these
coordinates as the ‘causal model’ and the ‘causal variants, althoughin
thismodel, every variant may have anadditional small causal effect on
ythrough the infinitesimal component a.

We model coordinates of a and of the residual error € asindepend-
entand identically distributed with normal distributions #°(0, 72) and
(0, 0?), respectively, where 72is the effect size variance for the infini-
tesimal effect. For FINEMAP-inf, coordinates of the sparse effects p are
also modeled as independent and identically distributed, with
point-normal distribution mo4" (0, s2) + (1 — 1p) 6. We use a shotgun
stochastic search procedure as in FINEMAP for performing approxi-
mate posterior inference of the sparse component 8, marginalizing its
posterior distribution over both the infinitesimal effects « and
the residual errors €. The shotgun stochastic search is divided into
several epochs, and we propose a method-of-moments approach
to update estimates of the variance components (0%, 72) between
epochs.

For SuSiE-inf, we follow the approach of SuSiE and insteadeara-
metrize the sparse causal effects as asumof single effects = lelﬂ(b
forapre-specified number of causal variants L. As in SuSiE, we perform
posteriorinference for f using a variational approximation for the joint
posterior distribution of B, ..., B, again marginalizing over both &«
and e. The approximation is computed by iterative stepwise optimiza-
tion of anevidence lower bound, where updated estimates of the vari-
ance components (02, %) are computed within each iteration using a
method-of-moments approach.

Theresultingmodels are similar to LMMs commonly used in con-
texts of association testing and phenotype prediction’**"°, See Dis-
cussion for an explanation of why we do not apply existing methods
for fitting LMMs.

Both methodstake asinput either the GWAS data (y, X) or sufficient
summary statistics given by the un-standardized per-SNP z scores,
z = (1/4/n)X"y, thein-sample LD correlation matrix LD = (1/n)X" X, and
the mean-squared phenotype (y*) = (1/n)y"y. Both methods output
estimates of (02, 72)for each locus fine-mapped, together witha PIP and
posterior mean effect size estimate for each SNP. Computational cost
isreduced by expressingall operationsin terms of the eigenvalues and
eigenvectors of LD, which may be pre-computed separately for each
fine-mapped locus (Fig. 4). Details of the methods and computations
are provided in Supplementary Note 5. We have released open-source
software implementing these methods ('Code availability").

SuSiE-infand FINEMAP-inf show improved performance

In our simulations, we find that SuSiE-Inf and FINEMAP-Inf have
improved calibration over SuSiE and FINEMAP, respectively, except
for simulations using OLS that introduced uncorrected population
stratification, which areless relevant to our findingsin real data using
BOLT-LMM (Figs. 2a and 3a and Methods). Recall of SuSiE-Inf and
FINEMAP-Infwas very similar to, but slightly lower than, that of SuSiE
and FINEMAP, respectively (Figs. 2b and 3b). With improved perfor-
manceinsimulations having nonsparse genetic effects, and similar per-
formancein simulations with stratification using BOLT-LMM (Fig. 3a),
we turned to real data benchmarking to assess whether SuSiE-inf and
FINEMAP-infimprove performance in practice.
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Table 1| Parameter settings for large-scale simulations

Imputation noise Sparse causal 20 PC effects PCscorrectedin Nonsparse causal Missing causal

prior multiplier GWAS effects effects

Ideal No Uniform 0 0 None None

Baseline misspecification Yes SuSiE Height 1 19 out of 20 None None
posterior

Moderate stratification with BOLT Yes SuSiE Height 5 0 out of 20 None None
posterior

Severe stratification with BOLT Yes SuSiE Height 8 0 out of 20 None None
posterior

Moderate stratification with OLS Yes SuSiE Height 1 0 out of 20 None None
posterior

Severe stratification with OLS Yes SuSiE Height 2 0 out of 20 None None
posterior

Moderate nonsparsity Yes SuSiE Height 1 19 out of 20 58% of h?, Yes
posterior 1% coverage

High nonsparsity Yes SuSiE Height 1 19 out of 20 75% of h?, Yes
posterior 1% coverage

Very high nonsparsity Yes SuSiE Height 1 19 out of 20 83% of h?, Yes
posterior 1% coverage

No large effects Yes SuSiE Height 1 19 out of 20 100% of h?, Yes
posterior 1% coverage

0.5% coverage, ratio 3:1 Yes SuSiE Height 1 19 out of 20 75% of h?, Yes
posterior 0.5% coverage

5% coverage, ratio 3:1 Yes SuSiE Height 1 19 out of 20 75% of h?, Yes
posterior 5% coverage

5% coverage, ratio 15:1 Yes SuSiE Height 1 19 out of 20 94% of h?, Yes
posterior 5% coverage

Different parameter settings for ten sets of simulations are mentioned in the main text. Note that PCs corrected in GWAS used in-sample (N=150,000) PCs as covariates for phenotypes
generated with full sample (N=366,000) PCs. See Methods for details on how each misspecification is incorporated. h?, heritability.
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Fig.3|Simulations with uncorrected stratification. a, Calibration plot for
SuSiE, FINEMAP, minPIP and corresponding “inf” methods in four stratification
simulation settings (Table 1). The colored markers show true proportion of
causal variants, and the short black lines show the expected proportion of causal
variants in each PIP bin for each method. b, Recall for the same methods and
simulations, defined as the percentage of simulated large effects among the top
N(N=50,100,500,1,000 and 5,000) variants when ranked by PIP. Error bars
correspond to 95% Wilson confidence interval. Numerical results are available in
Supplementary Tables 6 and 7.

Real data benchmarking shows improvements by several met-
rics. RFR was substantially decreased for SuSiE-inf (Fig. 5a). SuSiE-
inf-specific high-PIP variants (variants that are assigned a high PIP by
SuSiE-infbut not by SuSiE) are 58% more enriched in functionally impor-
tant categories than SuSiE-specific high-PIP variants (P= 6 x 107*); the
analogous difference in functional enrichment for FINEMAP versus
FINEMAP-inf was nonsignificant (38% more for FINEMAP-inf specific
variants, P=0.07; Fig.5b,c).Inaddition to high-PIP variants identified
with PIP >0.9, we also observed better functional enrichment for top
N(N=500,1,000,1,500 and 3,000) variants (Extended Data Fig. 3a),
demonstrating better prioritization of variants by our methods. Similar
improvements were observed when using OLS for GWAS instead of
BOLT-LMM (Extended Data Fig. 3b,c), upon correcting for stratifica-
tion using principal component (PC) analysis. Compared to SuSiE
and FINEMAP, we obtained fewer high-PIP variants (16% reduction
aggregated between SuSiE and FINEMAP); however, the reduction is
smaller for high-confidence variants, characterized either by repli-
cated variants (11% reduction) or variants achieving PIP >0.9 for both
SuSiE-Inf and FINEMAP-Inf/both SuSiE and FINEMAP (11% reduction)
(Extended Data Fig.3d). We observed a more substantial reduction of
42%inthe number of credible sets when using SuSiE-inf; however, the
reduction for smaller credible sets (number of variants <10) was some-
what smaller (36% reduction). Credible sets generated by SuSiE-inf
are smaller on average than those generated by SuSiE (Extended Data
Fig. 3e). Together, these results demonstrate both that SuSiE-inf and
FINEMAP-inf allow for more confident identification of likely causal
variants than the current state of the art, and that there is room for
further methodologicalimprovement.

In simulation, estimates of the infinitesimal variance 7*> were
higher on average for simulation settings with higher true infinitesimal
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Fig.4 | Runtime comparison. a, Runtime for SuSiE, FINEMAP, as well as SuSiE-inf
and FINEMAP-inf, with/without provided eigen-decomposition of the LD matrix,

is shown. We took all fine-mapped loci across the ten phenotypes we examined

in UKBB and grouped theminto ten quantiles based on the number of SNPsin
thelocus. Each point in the plot represents the average runtime foramethodina
quantile. b, Distribution of fine-mapped locus sizes in terms of number of SNPs in
thelocus, aggregated across ten UKBB phenotypes and across two sample sizes:
N=100,000and N=366,000. Numerical results available in Supplementary Table 9.

variance (Extended Data Fig. 4a,b). Estimates of ? were also higher in
the presence of more residual stratification in the simulations, fix-
ing all other simulation parameters (Extended Data Fig. 4c). In UKBB
data, estimates of ° varied across traits, with height showing the high-
est estimates and LDL showing the lowest estimates (Extended Data
Fig. 5a,b). We also found that estimates of 7% increased, on average,
as the number of credible sets in a locus increased (Extended Data
Fig.5c). Estimates of 7° varied across loci for agiven trait, due either to
differencesin genetic architecture, residual stratification or estimation
noise. We caution against the interpretation of *as a direct reflection of
trait heritability or genetic architecture, without further investigations
into these factors that may contribute to the 7° estimates.

To further validate our methods in real data, we performed
cross-ancestry polygenic risk score (PRS) prediction®?, using poste-
rior effect sizes estimated on 366,000 samples from the ‘white British’
cohort in UKBB to predict phenotypes in six held-out cohorts of dif-
ferent ancestries”: African ancestry (N = 6,637), admixed American

ancestry (N=982), Central/South Asian ancestry (N = 8,876), East Asian
ancestry (N=2,709), European ancestry test (N =54,337) and Mid-
dle Eastern ancestry (N=1,599). Prediction accuracy is measured by
‘AR*,which s the difference in R*from a model that includes both the
covariates and genotype effects relative to a model that includes the
covariates alone. Using posterior mean effect size estimates for the
sparse component 8 in SuSiE-inf/FINEMAP-inf yields, on average, a
near ten-fold increase in AR? over SuSiE/FINEMAP across all held-out
cohorts and traits (Methods, Fig. 5c,d and Supplementary Table 3).
Here we compute PRS using only the sparse component, to provide a
validation metric for the fine-mapped SNPs. We leave an exploration of
improving PRS accuracy by integrating estimated infinitesimal effect
sizes to future work.

Our group has shown previously that combining SuSiE and FIN-
EMAP can yield more reliable PIPs*°. Here we recommend using the
minimum PIP between SuSiE-inf and FINEMAP-inf (minPIP-inf) for each
fine-mapped variant. Compared to minPIP (minimum PIP between
SuSiE and FINEMAP), minPIP-inf retains more high confidence vari-
ants, showing better agreement between SuSiE-inf and FINEMAP-inf
(Extended Data Fig. 6). We observed substantially improved RFR for
minPIP-infover minPIP (Extended DataFig. 7a). Functional enrichment
for the top Nvariants, simulation and PRS performance for minPIP-inf
iscomparableto either SuSiE-inf or FINEMAP-infindividually (Fig.2a,b
and Extended DataFig. 7b-d). Asexamples of the improved effective-
ness of the minPIP-inf method over minPIP, we examined two loci. At the
PCSK9locus for low-density lipoprotein cholesterol (LDLC), inaddition
tothe well-known causal variant rs11591147, SuSiE-infand FINEMAP-inf
consistently identified two intronic variants: rs499883 and rs7552841
with high confidence, replicating a previous finding using functionally
informed priors®, whereas SuSiE did not identify variant rs499883. At
the AK3locus for platelet count (PIt), a known causal missense vari-
ant, rs7412, is in high LD with variant rs1065853. Only FINEMAP-inf
captured rs7412, while SuSiE, SuSiE-inf and FINEMAP-inf captured
another known causal variant, rs429358. MinPIP between SuSiE and FIN-
EMAP missed both, whereas minPIP-inf captured one (Extended Data
Figs.8and9).

Discussion

We propose fine-mapping methods that control for infinitesimal causal
effects while fine-mapping sparse causal effects. Using our methods,
we observed substantialimprovementsin simulations with nonsparse
genetic architecture. Our results when simulating uncorrected strati-
fication were ambiguous: when using BOLT-LMM, stratification did
not lead to miscalibration and our methods performed similarly to
the previous methods; however, when using OLS, stratification led
to substantial miscalibration that was similar between FINEMAP and
FINEMAP-inf and worse for SuSiE-inf than SuSiE. In contrast, real data
benchmarking demonstrated an unambiguous improvement in per-
formance, for example, decreased RFR, improved functional enrich-
ment of top variants, and large gains in polygenic risk prediction. Put
together, the accuracy of identifying sparse causal variants is greatly
improved when incorporating the infinitesimal model, although
our results show that there is also room for further methodological
improvement.

The models we propose here are similar to models that have
been used previously to model genome-wide genetic architecture
for risk prediction, heritability estimation and association map-
ping?**?*32_Fine-mapping differs from these other applications in
that (1) fine-mapping requires inclusion of a denser set of variants
with higher LD in each locus, so that the causal variants are likely to
be included; (2) fine-mapping requires accurate inference of poste-
rior inclusion probabilities; (3) fine-mapping is often performed at
very large sample sizes; and (4) fine-mapping does not require joint
modeling of genome-wide data, which would be computationally
challenging given the density of variants and typical sample sizes.
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Fig. 5| Real data performance improvements. a, RFRs are shown for SuSiE,
FINEMAP, SuSiE-infand FINEMAP-inf, aggregated across ten UKBB traits
(Supplementary Table 4). b, Functional enrichment of the set differences
between SuSiE and SuSiE-inf high-PIP variants (PIP>0.9), and FINEMAP and
FINEMAP-inf high-PIP variants, is shown. Error bars represent one standard
deviation of the corresponding binomial distribution Binom(n,p), where nis

the total number of variants (for a, nis the total number of high-PIP variants at
sample size N=100,000; for b, nis the total number of variants in each set) and p
isthe corresponding proportion (RFRin aand proportion of annotated variants
inb).Bar plot datais presented as proportion + standard deviation. Numerical

results are available in Supplementary Table 10. ¢,d, PRS accuracy, in terms of AR?,
when applying SuSiE posterior effect sizes versus SuSiE-inf sparse component
ofthe posterior effect sizes as weights (c), as well as PRS accuracy when applying
FINEMAP posterior effect sizes versus FINEMAP-inf sparse component of the
posterior effect sizes as weights (d). PRSs were computed for six out-of-sample
cohorts and seven traits (see Methods for cohort and trait definition). For PRS
accuracy plots with standard errors, see Extended Data Fig. 10. Numerical results
areavailable in Supplementary Tables 11and 12. AFR, African ancestry; CSA,
Central/South Asian ancestry; EUR, European ancestry; AMR, admixed American
ancestry; EAS, East Asian ancestry; MID, Middle Eastern ancestry.

To emphasize the distinction between fine-mapping and risk predic-
tion, if two variants are in perfect LD with large marginal effect sizes,
arisk prediction method would perform equally well upon attrib-
uting this effect to either variant, whereas the desired outcome in
fine-mappingis a more precise quantification of uncertainty for which
variant(s) harbors the true effect. Because of these factors, we do
not apply existing methods for fitting LMMs in other contexts. We
instead extend algorithmic ideas in the fine-mapping literature to
better estimate and quantify uncertainty for a sparse genetic compo-
nent in the presence of strong LD, while estimating an infinitesimal
variance component separately for each genome-wide significant
locus. Our model incorporates infinitesimal effects for variants in LD
with those of the sparse component, which we believe is important
for obtaining improved calibration and fine-mapping accuracy. With
careful translation, we anticipate that methodological innovationsin
risk prediction may continue to lead to advancesin fine-mapping and
vice versa.

We view our methods as complementary to abody of recent statis-
tical developments that seek to accurately quantify and control false
discoveries under weaker modeling assumptions, using construc-
tions of knock-off variables and related conditional re-randomization
ideas®?*. Such methods have been applied to GWAS and genetic
fine-mapping applications® . Our perspective differs in the follow-
ing ways: we choose not to assume a sparse causal model or test null

hypotheses of exact conditional independence and instead aim toaccu-
rately identify large effects that drive observed GWAS associationsina
model where every variant may be causal. To yield adequate statistical
power for detecting causal variants at fine-mapping resolutions, we
rely on a strong assumption about genetic architecture, as reflected
by a Bayesian prior probability for each candidate model, rather than
testing a null hypothesis for each variant that allows for an arbitrary
geneticarchitecture excluding that variant. Thus, our methods remain
largely dependent onrelatively strong assumptions of the underlying
genetic architecture, and we view the potential integration of these
ideas into a more model-robust framework as animportant direction
for future research.

While our workimproves fine-mapping accuracy, further advances
are needed. First, exploring the effects of stratification and different
association mapping methods on fine-mapping should be a priority.
Second, our methodsimprove on RFR over previous methods, but RFR
is still elevated compared to ideal simulations, suggesting room for
improved modeling. Inaddition to better modeling, independent rep-
licationinanother biobank* andincorporation of functional evidence
such as annotations and expression quantitative trait loci*® can help
boostaccuracy of discovery. Further methodological advancements,
which may come from more flexible models of genetic architecture
or further study of uncorrected confounding, may also contribute to
furtherimprovements in cross-population polygenic risk prediction.
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Methods

Our research complies with all relevant ethical regulations. Our data
sourceis the UKBB. UKBB has approval from the North West Multicen-
tre Research Ethics Committee as a Research Tissue Bank approval.
This approval means that researchers do not require separate ethical
clearance and can operate under the Research Tissue Bank approval.
Data for this work was obtained under application number 31063.
Additional ethical approval was not required.

Statistics and reproducibility

The UKBB contains 500,000 participants with various ancestries. Our
research analyzed the ancestry with the largest sample size: 366,194
unrelated ‘white British’ individuals. Quality control of this cohort
was previously done by Neale Lab GWAS?. The individuals of British
ancestry were determined by the PC analysis-based sample selection
criteria®®*?, and were further filtered to self-reported ‘white British’,
‘Irish’ or ‘white’. Our downsampling analysis consists of randomly
selected100,000 individuals fromthe 366,194 individuals. High RFRs
across multiple quantitative traits are reproducible with other subsets
of randomly selected 100,000 individuals from this cohort.

Selection of UKBB phenotypes and downsampling analysis
Toselect theten phenotypes for which to perform downsampling analy-
ses, we used results fromref. 30 and computed the combined number
of high-PIP (PIP >0.9) variants fine-mapped at N=366,000 samples
using both SuSiE and FINEMAP. From the top 15 phenotypes (out of 94),
withthe highest number of high-PIP variants (Supplementary Table13),
we selected: height, estimated heel bone mineral density (eBMD), Plt,
hemoglobin Alc (HbAlc), red blood cell count (RBC), alkaline phos-
phatase (ALP), insulin-like growth factor 1 (IGF1), LDLC, lymphocyte
count (Lym) and estimated glomerular filtration rate based on serum
creatinine (eGFR) to perform downsampling analyses.

We downsampled from N=366,000 to a random subset of
N=100,000 twice (to increase the number of discoveries and there-
fore statistical power for RFR analyses) and performed GWAS and
fine-mapping on both sets of the N=100,000 individuals using the
same pipeline used at N=366,000 (for pipeline description, see below).
Thesample size N=100,000 was chosen to resemble the UKBB interim
release dataset of total N=150,000 with N=107,000 white British
individuals.

Fine-mapping pipeline

GWAS and fine-mapping in this paper were performed following the
pipeline described inour group’s previous work*’. Briefly, GWAS sum-
mary statistics were computed using BOLT-LMM (v2.3.2) with covari-
atesincluding sex, age, age?, age and sex interaction term, age? and sex
interactionterm, and the top 20 genotype PCs. Fine-mapping regions
were defined using a3 Mbwindow around each lead GWAS variant, with
merging of overlapping regions. Fine-mapping was performed with
in-sample LD computed using LDstore v2.0 (ref. 40).

Excessively large regions (consequence of merging) that could
not be fine-mapped due to computational limitations were tiled with
overlapping 3 Mb loci, with 1 Mb spacing between the start points of
consecutive loci. For these tiled regions, we computed a PIP for each
SNP based onthe 3 Mb locus whose center was closest to the SNP. This
tiling approach was previously described and applied®.

Although BOLT-LMM is the GWAS method of choicein our group’s
previous work®’, we also used OLS regression for some of our simula-
tions and real data applications.

We then performed fine-mapping using the following tools,
namely multiple causal variant methods SuSiE® v894ba2f and
FINEMAP®°v1.3.1, single causal variant method ABF", and conditional
association (COJ0”v1.93.0beta) plus ABF fine-mapping method, which
we denote COJO-ABF. Fine-mapping pipeline scripts are available
inref.41.

Ideal simulations

To establish reference RFR and calibration for all tested methods, we
performed ideal simulations without model misspecification using
UKBB genotypes. For simulating RFR, we performed two sets of simula-
tions eachatsample size N=366,000 and subsample size N=100,000.
We used UKBB imputed dosages as true genotypes, and only selected
‘white British’ individuals defined previously in the Neale lab GWAS?".
We drew 1,000 causal variants per simulation uniformly randomly
from a total of 6.6 million common (minor allele frequency (MAF)
>1%) imputed variants genome wide. We standardized genotypes to
mean O and variance 1 and drew per-standardized genotype causal
effect sizes from the same normal distribution N (0, 0.5/1,000) for all
selected causal variants. We then added errors randomly drawn froma
normal distribution N (0, 0.5) to simulate phenotypes. For comparison
of calibration with our simulations under model misspecifications,
three additional sets of ideal simulations at a matching sample size
N=150,000 were performed. Phenotypes were generated similarly,
with 700 uniformly sampled true causal variants having effect sizes
drawn from N (0, 0.5/700).

Functional enrichment

We analyzed functional annotations to gain insights into the poten-
tial causal status of nonreplicating variants (defined in the main text
and in the next paragraph). We define three main disjoint functional
categories: coding, putative regulatory and nongenic. These catego-
ries are derived from the seven main functional categories defined in
ref.30. The ‘coding’ category is the union of predicted loss of function
and missense categories; the ‘putative regulatory’ category is the
union of synonymous, 5’ untranslated region, 3’ untranslated region,
promoter and cis-regulatory element categories. We compare the
proportion of nongenic variants in the following groups of variants:

1. Nonreplicating, the group of variants with PIP >0.9 at
N=100,000 and PIP >0.1at N=366,000.

2. Replicated, the group of variants with PIP >0.9 at N=100,000
and PIP >0.9 at N=366,000.

3. Matched on PIP at 100,000, a group of replicated variants chosen
to match the nonreplicating variants on PIP at N=100,000. For
each nonreplicating variant with PIP <1, we find a replicated vari-
ant whose PIP is the closest as its match, and the matched variant
is removed for future matches. If the nonreplicating variant has
PIP of 1, we match a random (if there are multiple) replicated
variant with the PIP of 1. If there are more nonreplicating vari-
ants with a PIP of 1 than there are replicated variants with PIP
of 1, we do not remove the matched replicated variant from
future matches, resulting in repeated matches.

4. Matched onPIP at 366,000, a group of low-PIP variants (PIP <0.1
at N=366,000) chosen to match the nonreplicating variants
onPIP at N=366,000. Matching is performed the same way as
described above, except that there are no repeated matches.

5. Background, defined as the union of all variants included in
fine-mapping from all ten phenotypes.

Pvaluesarereported when assessing the significance of the differ-
ence between proportions of nongenic variantsin different groups of
variants. Fisher’s exact test was performed using the R (version 4.2.1)
function fisher.test, and one-sided P values were reported from the
output of this function.

Large-scale simulations with misspecification

We sselected 149,630 UKBB individuals from a set 0f 366,194 unrelated
‘white British’ individuals defined previously in the Neale Lab GWAS*
forour large-scale simulations. We performed simulations under mod-
elsthatare misspecified in the following ways: (1) genotype imputation
noise, (2) nonuniform probabilities for the identities of causal variants,
(3) nonsparsity of true causal effects, (4) uncorrected population
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stratification, and (5) missing causal variants. We performed nine
sets of simulations. All simulations included the same amount of
(1) imputation noise, (2) nonuniform prior causal probabilities, and
(5) missing causal variants. The first simulation, ‘baseline misspecifi-
cation’ in Table 1, included a small amount of (4) uncorrected strati-
fication. Another four simulations varied, in addition, (3) the level
of nonsparsity of causal effects. Finally, four additional simulations
varied in (4) the amount of simulated stratification and the methods
for correcting this stratification (Population stratification below).

Simulated genotypes
To simulate genotypes for 149,630 individuals, we randomly drew
true genotypes for all autosomes based on the imputed genotype
probabilitiesinthe ‘bgen’ files provided by UKBB. Briefly, probabilistic
true genotypes (pGTs) for a given variant , denoted pGT;, were com-
puted via pGT; = [u; — GP(X; = 0)] + [u; — GP(X; = 0) — GP(X; = 1)], where
GP(X; = k), k € {0,1,2} represents the genotype probability of having k
copiesof alternative alleles and u; ~ Uniform(0, 1)represents a uniform
randomvariable. Phenotypes were generated using the pGTs. In down-
stream GWAS and fine-mapping, we use imputed genotype dosages
provided by UKBB, thus simulating imputation noise. We only included
variants with minor allele count >10, INFO score >0.2 and Hardy-
Weinberg equilibrium Pvalue >1 x 107 in our simulations.
Causal variants simulation
To incorporate a more realistic nonuniform distribution over causal
variants, we simulated sparse causal effects from the SuSiE posterior
distribution for UKBB height, as computedinthe larger 366,000 sam-
ple®. Specifically,ineachlocus, for each credible set CS;,i € I, where /
indexesall credible sets outputted by fine-mapping height with SuSiE,
we chose a causal variant according to normalized posterior inclusion
probabilities within the corresponding SuSiE single effect (denoted
ay for k € CS;). Wethendrew the chosen variant’s raw effect size (to be
scaled later) fromanormal distribution with mean and standard devia-
tion given by the SuSiE posterior mean and standard deviation condi-
tional on inclusion in the model. In total, 1,434 sparse causal variants
were chosen.

For the simulations thatinvestigated nonsparsity of causal effects,
we drew additional causal variants uniformly at random such that x%
(x €{0.5,1,5}) of all simulated variants have a nonzero effect. For each
selected variant, we sampled its raw effect size (to be scaled later) from
N(0,v)Wherev = [2p (1 — p)]%, prepresents the MAF, and a = —0.38. The
value a is estimated in ref. 42. For all simulation settings, simulated
nonsparse effects had an overall effect size standard deviation approxi-
mately on the order of 1 x 10~* units per normalized genotype.

We simulated three settings of nonsparsity coverage: 0.5%,1% and
5%, where coverage is the percentage of all simulated variants with
nonzero effects onthe phenotype. For the simulations with 1% coverage,
we varied the heritability explained by the nonsparse causal variants
anditwasset tobe 58%, 75%, 83% and 100%, corresponding to heritabil-
ity ratios between sparse and nonsparse causal effectsof 1to1.4,1to 3,
1to5and 0tol. Toachieve these heritability proportions, we scaled all
the simulated sparse and nonsparse causal effect sizes by correspond-
ing constants. We observed that, for all simulation settings, simulated
large effects had an overall effect size standard deviation approximately
ontheorderof1x 102 units per normalized genotype. For the simula-
tions with 0.5% coverage and one set of simulations with 5% coverage,
we fixed the heritability ratio to1to 3. We performed an additional set
of simulations with nonsparsity coverage of 5% and heritability ratio
between sparse and nonsparse causal effects of 1to 15. The purpose of
this setting is to match the simulated per-SNP heritability with the 1%
coverage 1-to-3 ratio simulations. For a summary of the different set-
tings, see Table 1. We set the total SNP heritability to be 0.5. Note that
the 0.5 heritability accounts for all simulated causal SNPs and not just
the common SNPs. We have computed stratified LD score regression

(s-LDSC) estimates of common SNP heritability for all the simulations
and all ten UKBB phenotypes, and the results are available in Supple-
mentary Tables1and 2.

Interestingly, changing the coverage of nonsparsity from 0.5%
to 1% then to 5% while fixing the proportion of heritability explained
by nonsparse effects showed anonmonotonic behavior in the level of
miscalibration. This is probably due to multiple factors influencing
calibration: per-SNP heritability of nonsparse effects and LD between
nonsparse and sparse causal variants. We observed increased miscali-
brationwhen per-SNP heritability is fixed and coverage changes from
1%to 5%. Similarly, when coverage is fixed at 1% and per-SNP heritability
increases by 50% calibration also worsens (Fig. 2 and Extended Data
Fig.2).

Simulated population stratification

To simulate population stratification, we first regressed UKBB height
onthetop 20 PCs of the genotyped variants for N=360,415individuals.
We then added the sum of the PC scores multiplied by their respec-
tive regression coefficients to the simulated phenotype, scaling this
sum by a factor to vary the amount of simulated stratification. We
assessed the amount of stratification by running s-LDSC* on the
resulting GWAS summary statistics (without using any in-sample PCs
as covariates) and examining the fitted intercept (Supplementary
Table 2). As expected, we see higher s-LDSC intercept as we increase
the PC scaling factor.

For the stratification simulations referenced in the main text and
Table1, we scaled PC effects by afactor of 5 (respectively 8) for moder-
ate (respectively severe) stratification with BOLT, yielding aphenotype
with16.4% (respectively 42.9%) of its variance explained by stratifica-
tion. For stratification with OLS, we scaled PC effects by 1and 2 for mod-
erateand severe stratification, yielding phenotypes with 0.6% and 2.6%
of their variance due to stratification, respectively. s-LDSC intercepts
ofthe stratification simulations are available in Supplementary Table 2.

Simulated phenotype

Phenotypes were generated as y = Xp + C{ + ¢, where X is the above
true genotype (pGT) matrix, B is avector of the (sparse and nonsparse)
causal effects, Cisamatrix with top 20 PCs with corresponding effects
¢, and € ~ ¥(0,0%I,) where o?> was chosen to yield total phenotypic
varianceequaltol.

Incorporating missing causal variants

After generating phenotypes and before performing GWAS and
fine-mapping, we applied variant-level quality control criteria as pre-
viously defined in the Neale Lab GWAS”, which retained 13,364,303
variants after filtering for INFO >0.8, MAF >0.001 and Hardy-Weinberg
equilibrium Pvalue >1x107, with exception for the VEP-annotated
coding variants where we allowed MAF >1 x 107, Notably, this qual-
ity control step resulted in the exclusion of approximately 71% of the
simulated ‘nonsparse’ causal variants.

GWAS and fine-mapping for simulations

We performed GWAS on N = 149,630 individuals using BOLT-LMM?*
v2.3.2, with corresponding imputed variant dosages from UKBB. We
used the top 19 PCs computed in-sample as covariates in the GWAS,
except in the population stratification simulations, which included
no covariates. For some of the population stratification simulations,
we performed GWAS with OLS regression, rather than BOLT-LMM.
We performed OLS using the linear regression rows method in Hail**
v0.2.93. For fine-mapping we used the pipeline previously described
inthe subsection ‘Fine-mapping pipeline’.

Interpreting population stratification simulation results
Whenscaling PC effects by afactor of 5and computing GWAS summary
statistics using BOLT-LMM, we observed an s-LDSC intercept of 1.07,
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which is comparable to s-LDSC intercepts estimated in real complex
traits (Supplementary Table 1), and we did not observe notable miscali-
brationinthe downstream fine-mapping results. Whenwe simulateda
higherlevel of uncorrected stratification, scaling PC effects by afactor
of 8 (s-LDSC intercept of 1.16, see ‘Severe stratification with BOLT in
Table 1), PIPs obtained in downstream fine-mapping remained well
calibrated (Fig. 3).

We hypothesize that the use of BOLT-LMM in our standard fine-
mapping pipeline helped to correct for the simulated stratification
effects, even though the in-sample PCs were not explicitly provided
as covariates. This also probably explains the prima facie surprising
recallresultsin Fig. 3, where the severe stratification simulations with
BOLT have higher recall than the moderate stratification simulations
with BOLT. Inthe severe simulations, stratification accounts for 42.9%
of the phenotypic variance, whereas in the moderate simulations
stratification accounts for only 16.4% of phenotypic variance. Because
BOLT-LMM probably corrects for much of this simulated stratification,
it effectively reduces the residual noise in the associations by much
more for the severe simulations than for the moderate ones, allowing
fine-mapping to nominate more causal variants.

Toinvestigate stratification effects without usingan LMM proce-
dure, we performed two additional sets of simulations where GWAS
summary statistics were computed using OLS instead. In these simula-
tions, scaling PC effects by factors of 1 and 2 yielded average s-LDSC
intercepts of 1.055and 1.295, respectively (Supplementary Table 2), and
induced notable miscalibration across all methods. This miscalibra-
tion was more severe for SuSiE-inf and FINEMAP-infthan for SuSiE and
FINEMAP (Fig. 3).

Itisunclear to us which of these simulation settings may be closer
to reflecting the possible effects of uncorrected stratification in real
fine-mapping applications, given that common methods of comput-
ing GWAS summary statistics do use LMM procedures and, in addi-
tion, explicitly control for in-sample PCs as covariates. Our real data
results, including functional enrichment and PRS analyses, in UKBB
show evidence that SuSiE-inf and FINEMAP-inf outperform existing
methods in real data. We leave to future work a fuller investigation
of the possible effects of uncorrected stratification on downstream
fine-mapping, and a potential extension of these methods to address
uncorrected stratification.

Regression of phenotype components on high-PIP variants

To identify which of several simulated model misspecifications were
responsible for observed miscalibration, we decomposed the simu-
lated genetic component X of the phenotype into the sum of four
subcomponents representing sparse causal effects, nonsparse causal
effects, nonsparse causal effects due to quality control and the effects
of stratification. Thatis,

XB = Xﬁsparse + Xﬁnonsparse + XBmissing.nonsparse +XWT

where W isann x 20 matrix of UKBB PC loadings computed atasample
size 0f 360,415 and {isa 20 x 1vector of regression coefficients for the
top 20 PCsin UKBB height at 360,415. For each simulation, we regressed
each of the four genetic effect subcomponents on each of the PIP >0.9
variants independently, with 19 in-sample (n = 149,630) PCs as covari-
atesintheregression (thatis, the same covariates we used in GWAS in
our simulations). Forexample, for the sparse genetic effect component,
we compute the regression coefficient b and its associated F statistic
for the following equation:

Xﬁsparse = Xib +CA

whereiistheindex of a high-PIP (PIP>0.9) variant and Cis a matrix that
consists of19in-sample PCs, included here as covariates. Aisa19-by-1
vector of regression coefficients. We then compare the F statistics of
truly causal and noncausal variants.

PRS cohort assignment

We used six ancestry groups derived by the Pan UKBB project:* Euro-
pean ancestry (N=420,531, training 366,194 and testing 54,337),
Central/South Asianancestry (N = 8,876), Africanancestry (N = 6,636),
East Asianancestry (N=2,709), Middle Easternancestry (N=1,599) and
admixed American ancestry (N =980). The 1,000 Genomes Project
and Human Genome Diversity Panel were used as reference panels to
assign continental ancestry.

PRS weights

We chose seven phenotypes: HbAlc, height, LDLC, Lym, PIt, RBC and
eBMD for PRS predictions. We fine-mapped these seven phenotypes
onthetraining cohort: European ancestry (V=366,194 unrelated ‘white
British’individuals). SuSiE, FINEMAP, SuSiE-infand FINEMAP-inf poste-
rior effect sizes were obtained. Due to differences in computational effi-
ciency, notallvariants that are eligible for fine-mapping were able to be
fine-mapped by all methods. To ensure fair comparison between SuSiE
and SuSiE-inf (resp. FINEMAP and FINEMAP-inf), weinclude only variants
that were fine-mapped by both SuSiE and SuSiE-inf (resp. FINEMAP and
FINEMAP-inf) in the PRS analyses (Supplementary Table 3). PLINK2.0
(ref. 45) was then used to compute PRS for the six held-out cohorts using
these posterior effect sizes. For SuSiE-inf and FINEMAP-inf, the assigned
weight to each variantis the estimated posterior (mean) effect size from
the sparse component and does not include the estimated posterior
effect size from the infinitesimal component a.

In case of minPIP or minPIP-inf, the assigned weight to each vari-
ant is the estimated posterior effect size of the variant outputted by
methods whose PIP was taken as the minPIP. For example, if SNP1’s
PIP is 0.1 for SuSiE and 0.5 for FINEMAP, and the estimated posterior
(mean) effect size for SNP1is 0.01 for SuSiE and 0.005 for FINEMAP,
then the minPIP for SNP1is 0.1 and the weight we will use for SNP1in
PRS analysis for minPIPis 0.01.

PRS accuracy metric
We use AR*as our accuracy metric for PRS predictions*. To obtain AR?,
we fit two models:

« Model O:alinear model using only covariates as predictor.

* Model1: alinear model using true phenotype as target and both
the PRS generated from multiplying the fine-mapped posterior
effect size estimates with the genotypes and the covariates (sex,
age, age’, age and sex interaction term, age?, and sex interaction
term) as predictors.

We applied the function Imin R to obtain the adjusted R% The dif-
ference of adjusted R? of model 1 compared to adjusted R* of model O
is defined as AR

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The main fine-mapping results at N=100,000 sample size produced
by this study are publicly available at https://doi.org/10.5281/zenodo.
7055906. The fine-mappingresultsat N = 366,000 previously produced
by our group are available at https://www.finucanelab.org/data. The
UKBB individual-level data are accessible on request through the UKBB
Access Management System (https://www.ukbiobank.ac.uk/). The UKBB
analysis in this study was conducted via application number 31063.

Code availability

Software implementing SuSiE-inf and FINEMAP-inf are publicly
available at https://github.com/FinucaneLab/fine-mapping-inf
(https://doi.org/10.5281/zenodo.8427832). All scripts for figure
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generation as well as simulation scripts are available at https://github.
com/cuiran/improve-fine-mapping (https://doi.org/10.5281/
zen0do.10037442).
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Extended Data Fig. 1| Replication failure rates at different PIP thresholds. Error bars represent one SD of the corresponding binomial distribution Binom(n,

Replication failure rates at four different PIP thresholds: 0.9 (default), 0.93, 0.95, p), where nis the total number of high-PIP variants at sample size N =100 K,
0.99, for SuSiE, FINEMAP, SuSiE-inf, and FINEMAP-inf aggregated across 10 UKBB and pisthe RFR. Bar plot datais presented as RFR + /- SD. Numerical results are
quantitative phenotypes, contrasted with RFRs inideal simulationsand withEPN.  available in Supplementary Table 14.
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Calibration for SuSiE, SuSiE-inf, FINEMAP and FINEMAP-infin simulations SNP heritability in simulations where 1% SNPs are causal and heritability ratio is
with different non-sparsity coverage settings: 0.5%, 1%, and 5% (see Table 1 for 3:1. Error bars correspond to 95% Wilson confidence interval. Numerical results
more parameter settings in these simulations). Heritability ratio between small available in Supplementary Table 15.

and large effectsis fixed at 3:1for three simulation scenarios, while the fourth
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Extended Data Fig. 3| Additional evidence of performance improvements using the SuSiE-inf and FINEMAP-inf compared to using SuSiE and FINEMAP. The
inreal data. a-b. Functional enrichment of top N (N = 500,1000, 1500, and three categories are: High-PIP (PIP > 0.9 for either method, reduced from 1876 to
3000) highest PIP variants from SuSiE, SuSiE-inf, INEMAP, and FINEMAP-inf. 1578), Replicated (PIP > 0.9 at both sample sizesN =100 Kand N =366 K, reduced
GWAS summary statistics computed using BOLT-LMM and OLS. c. Functional from 665 to 595), and Shared high-PIP (PIP > 0.9 for both method, reduced from
enrichment of the set differences between SuSiE and SuSiE-inf high-PIP (PIP>0.9)  723to0 646).e. Credible set sizesin all regions fine-mapped by SuSiE and SuSiE-inf.
variants and FINEMAP and FINEMAP-inf high-PIP variants. Error bars represent Box plot lower and upper hinges correspond to 1**and 3" quantiles, whiskers
one SD of the corresponding binomial distribution Binom(n,p), where nis the extend no further than 1.5*IQR from the hinges, outliers are plotted as individual
total number of variants in each set and p is the corresponding proportion of points, solid line in the boxes show medians. Numerical results available in
annotated variants). Bar plot data is presented as proportion +/-SD.d. The Supplementary Table 16-20.

proportion of reduction for the number of variants in three categories when
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h2g = 0.05" represents the set of simulations using imputed genotypesin
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Extended Data Fig. 7| minPIP-inf performance. a. Replication failure rates

of minPIP and minPIP-infin real data and in ideal simulations. Numerical

results available in Supplementary Table 4. Error bars represent one SD of the
corresponding binomial distribution Binom(n, p), where nis the total number

of high-PIP variants at sample size N=100 K, and p is the RFR. Bar plot data is
presented as RFR +/-SD. b. Functional enrichment of top N (N = 500,1000, 1500,
and 3000) highest PIP variants from SuSiE-inf, FINEMAP-inf and minPIP-inf. Error
barsrepresent one SD of the corresponding binomial distribution Binom(n,p),
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where nis the total number of variantsin each set and p is the corresponding
proportion of annotated variants). Numerical results available in Supplementary
Table16. c-d. PRS accuracy, in terms of delta R?, when applying SuSiE-inf sparse
component of the posterior effect sizes vs. minPIP-inf sparse component of the
posterior effects sizes as weights; similarly, for FINEMAP-inf and minPIP-inf. PRS
were computed for 2 out-of-sample cohorts and 7 traits. For descriptions of PRS
weights, see Methods. Numerical results available in Supplementary Table 11-12.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a | Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X X

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X

A description of all covariates tested

X X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XX

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

XD O OO0 0O O

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis SuSiE-inf and FINEMAP-inf software packages are available at https://github.com/FinucaneLab/fine-mapping-inf
Access to the UK Biobank resource is available via application (http://www.ukbiobank.ac.uk/)
SuSiE v0.9.1.0.894ba2f is available at https://github.com/stephenslab/susieR
FINEMAP v1.3.1 is available at http://www.christianbenner.com
LDStore v2.0 is available at http://www.christianbenner.com
BOLT-LMM v2.3.2 is available at https://data.broadinstitute.org/alkesgroup/BOLT-LMM/
PLINK2 is available at https://www.cog-genomics.org/plink/2.0/
GCTA COJO v1.93.0beta is available at https://cnsgenomics.com/software/gcta/
fine-mapping pipeline scripts are available at https://doi.org/10.5281/zenodo.6908588

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data used for this study is approved under UK Biobank application number 31063. The main fine-mapping results at N=100K sample size produced by this study
are publicly available at https://doi.org/10.5281/zenodo.7055906. The fine-mapping results at N=366K previously produced by our group is available at https://
www.finucanelab.org/data. The UKBB individual-level data is accessible on request through the UK Biobank Access Management System (https://
www.ukbiobank.ac.uk/).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Sex and gender-based analyses were not performed.

Population characteristics The UK Biobank (UKBB) is a population-based cohort that recruited approximately 500,000 individuals in the United Kingdom
between 2006 and 2010.

Recruitment The UK Biobank recruited middle-aged (40-69 years old) volunteers across the United Kingdom.

Ethics oversight UK Biobank

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

X Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The UK Biobank contains 500,000 participants with various ancestries. Our research analyzed 366,194 unrelated “white British” individuals.
We chose this sample size to maximize the statistical power for single-cohort fine-mapping. We randomly downsampled this cohort to
N=100K for Replication Failure Rate (RFR) part of the analyses. This sample size is chosen to resemble the sample size of the UK Biobank
interim release dataset. We used as many samples as available in the UK Biobank after QC for the out-of-cohort PRS analyses: N=8876
Central/South Asian ancestry, N=6636 African ancestry, N=2709 East Asian ancestry, N=1599 Middle Eastern ancestry and N=980 Admixed
American ancestry.

Data exclusions  We excluded "non-white-British" samples due to statistical complications when fine-mapping multiple ancestries. A combination of PCA based
and self-reporting based quality controls are applied to exclude samples.

Replication No replication dataset was analyzed as fine-mapping requires access to individual-level genotypic data from hundreds of thousands of
individuals, which is generally not publicly available other than the UK Biobank.

Randomization  We randomly selected a subsample of N=100K out of the N=366K unrelated white-British samples in UK Biobank for the Replication Failure
Rate (RFR) part of the analyses. No other randomization has been performed for this study. We included GWAS covariates age, age”2,

inferred_sex, age * inferred_sex, age”2 * inferred_sex, and PCs 1-20 for association analyses at sample sizes N=366K and N=100K.

Blinding We did not apply any blinding because no intervention was required in this study.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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