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Abstract—In this paper, we consider the problem of learning a
linear regression model on a data domain of interest (target) given
few samples. To aid learning, we are provided with a set of pre-
trained regression models that are trained on potentially different
data domains (sources). Assuming a representation structure for
the data generating linear models at the sources and the target
domains, we propose a representation transfer based learning
method for constructing the target model. The proposed scheme
is comprised of two phases: (i) utilizing the different source
representations to construct a representation that is adapted
to the target data, and (ii) using the obtained model as an
initialization to a fine-tuning procedure that re-trains the entire
(over-parameterized) regression model on the target data. For
each phase of the training method, we provide excess risk bounds
for the learned model compared to the true data generating target
model. The derived bounds show a gain in sample complexity for
our proposed method compared to the baseline method of not
leveraging source representations when achieving the same excess
risk, therefore, theoretically demonstrating the effectiveness of
transfer learning for linear regression.

I. INTRODUCTION

A critical challenge for Deep Learning applications is the
scarcity of available labeled data to train large scale models
that generalize well to the data distribution. This is captured
under the framework of Few-Shot Learning where Transfer
Learning has emerged as an attractive framework to address
this issue [1]. In transfer learning, one typically has access to
a model trained on some data domain (hereby called source

domain) that can be adapted to the data domain of interest
(target domain). Within this context, a recently proposed
strategy is that of representation transfer learning [2], [3],
where one typically assumes a shared structure between the
source and target learning tasks. The idea is to then learn a fea-
ture mapping for the underlying model (e.g. Neural Network
representations) using the sample rich source domain that can
be utilized directly on the target domain, for e.g, by training a
few layers on top of the obtained network representation. This
adaptation utilizes much fewer samples than what is required
for training the entire model from scratch, while achieving
good generalization performance which has been empirically
observed for various large-scale machine learning application
including image, speech and language [1], [4], [5] tasks.

A defining factor in the need for representation transfer
methods is that the source and target domains have different
distributions. Learning across different domains has been

studied extensively in the context of Domain Adaptation (see
for e.g. [6], [7]) where it is usually assumed that source and
target domain data can be accessed simultaneously. However,
in many important practical scenarios of interest, the target
data samples (labeled or unlabeled) are not available when
training the source models. Transferring the source dataset to
the target deployment scenario is infeasible for modern large-
scale applications and violates data privacy. Thus there has
been an increasing interest in transferring pre-trained source
models to the target domain for sample efficient learning.

Despite the immense empirical success of representation
transfer learning, development of a theory for understanding
the generalization of representation learning methods and the
sample complexity requirements is still in its infancy. Recent
efforts in this direction have been made in understanding
generalization for the simpler case of linear models [8]–
[11]. Within these works, [8], [10], [11] consider a common
low-dimensional representation in the data generation process
for the source and target domains, while [9] allows for the
general case of data-generating representations being different.
However, the analysis presented in that work requires the
number of samples at the target to scale with the dimension
of the model (see [9, Theorem 3.1]), which is impractical for
few-shot learning scenarios.

A related line of work for understanding generalization of
large scale models in the small sample regime is through the
lens of benign overfitting. This is inspired by the surprising
(empirical) observation that many large models, even when
they overfit, tend to generalize well on the data distribution
[12], [13]. In this context, [14]–[16] study this phenomena
for linear models and analyze the generalization properties
of the min-norm solution, where optimization methods like
Gradient Descent are known to converge to in this setting [17],
[18]. Specifically, these works seek to understand how the data
distribution affects the excess population risk of the min-norm
solution relative to the true data-generating linear model.

In this paper, we make efforts to understanding the gener-
alization of linear models while leveraging pre-trained models
inspired by the notions of representation transfer learning and
benign-overfitting discussed above. These ideas lend them-
selves organically to the construction of a sample efficient
training method for the target which we describe below briefly,
along with our contributions.



Key Contributions: Our work provides a method for leverag-
ing multiple pre-trained models for linear regression objectives
(of dimension d) on a target task of interest in the small
sample regime (samples nT ⌧ d). The proposed two-phase
approach leverages representation transfer (Phase 1) and over-
parameterized training (Phase 2) to construct the target model,
and we provide theoretical bounds for the excess risk for each
phase of the training process (Theorem 1 and Theorem 2). In
particular, we show that the learned model after the first phase
has an excess risk of O(q/nT )+✏, where q is dimension of the
subspace spanned by learned source representations and ✏ is a
constant that captures the approximation error when utilizing
source representations for the target model (c.f. Assumption 1).
This provides a gain in sample complexity compared to the
baseline O(d/nT ) when learning the target model from scratch
when the given source representations span a subspace of
dimension much smaller than d (i.e. q ⌧ d). For the case
when all representations are the same (✏ = 0), we recover the
result of [8] for a single common representation. Similarly, for
the overall model obtained after the second phase, we provide
conditions on the target data distribution and the source/target
representations that lead to an excess risk much smaller than
O(d/nT ). Thus, we theoretically demonstrate the benefit of
leveraging pre-trained models for linear regression.

A. Related Work

The problem of learning with few samples has been studied
under the framework of Few-Shot learning, where Meta-

learning– using experiences from previously encountered
learning tasks to adapt to new tasks quickly [19], and Transfer-

learning– transferring model parameters and employing pre-
training or fine-tuning methods [3], are two major approaches.
Theoretical works on Meta-learning algorithms typically as-
sume some relation between the distribution of source and
target tasks, for e.g., being sampled from the same task distri-
bution. A more general framework is that of Out-of-Domain

(OOD) generalization, where the goal is to learn models in a
manner that generalize well to unseen data domains [20].

Transfer learning, especially, representation transfer learn-
ing has shown empirical success for large-scale machine
learning [2], however, theoretical works on understanding
generalization in this setting are few; see [11], [21], [22]. A
related line of work is representation learning in context of
Domain Adaptation (DA), see for e.g. [23]–[26]. However, this
usually assumes that source and data domains can be accessed
simultaneously. There are deviations from this theme in Multi-

Source DA where the goal is to understand how multiple source
models can be combined to generalize well on a target domain
of interest, although without changing the learned model based
on the target samples [27]–[29].

In context of leveraging pre-trained models for linear re-
gression, our work is most closely related to [8], [9] that
theoretically analyze representation transfer for linear models.
In contrast to [8], we allow for the true target representations to
be different among the source models as well as the target, and
introduce a notion of closeness between these representations

(c.f. Assumption 1). Although a similar setting was considered
in [9] where representations are assumed to be close in the
`2 norm, their resulting bound for the fine-tuned model risk
shows that the required number of target samples scale with
the dimension of the learned model for efficient transfer [9,
Theorem 3.1]. In contrast, the proposed method in our work
provides analysis relating these bounds to the properties of
the target data distribution taking inspiration from works on
benign overfitting for linear regression [14], [18], [30]. This
enables us to identify conditions on the target data distribution
that allow the required target samples to be much smaller than
the overall model dimension (see Theorem 2).

B. Paper Organization

We set up the problem and define the notation we use
throughout the paper in Section II. In Section III we describe
our training method for the target task model when given
access to multiple pre-trained source models. Section IV
establishes excess risk bounds of our proposed scheme and
we provide concluding remarks in Section V. Omitted proof
details can be found in the arxiv version of the paper.

II. PROBLEM SETUP AND NOTATION

Notation: We use boldface for vectors and matrices, with
matrices in uppercase. For a matrix A, we denote the projec-
tion matrix onto its column space by PA := A(A>A)†A>

where W† denotes the Moore-Penrose pseudo-inverse of the
matrix W. We define P?

A := I � PA, where I denotes the
identity matrix of appropriate dimensions. We denote by C(A)
the column space of a matrix A and by �i(A), �i(A) its ith

largest singular value and eigenvalue, respectively. k.kF de-
notes the Frobenius norm. For a vector v, kvk2 denotes the `2
norm, while for a matrix V, kVk2 denotes the spectral norm.
Tr[ . ] denotes the trace operation. . denotes the inequality
sign where we ignore the constant factors. The notation O is
the ‘big-O’ notation and we define [m] = {1, 2, . . . ,m}.
Setup: We consider m number of source tasks and a single
target task. We denote by X ✓ Rd the space of inputs and Y ✓

R the output space. The source and target tasks are associated
with data distributions pi, i 2 [m] and pT , respectively, over
the space X . We assume a linear relationship between the
input and output pairs for source task i 2 [m] given by:

yi = x>
i B

⇤
iw

⇤
i + zi, ✓⇤

i := B⇤
iw

⇤
i (1)

where xi 2 X denotes an input feature vector drawn from
distribution pi, yi 2 Y is the output, and zi ⇠ N (0,�2)
denotes Gaussian noise. The associated true task parameter
✓⇤
i := B⇤

iw
⇤
i is comprised of the representation matrix

B⇤
i 2 Rd⇥k which maps the input to a lower k�dimensional

space (where k ⌧ d) and a head vector w⇤
i 2 Rk mapping

the intermediate sample representation to the output. The data
generation process for the target task is defined similarly with
distribution pT and associated target task parameter given by
✓⇤
T = B⇤

Tw
⇤
T . For sources i 2 [m], we define the input

covariance matrix ⌃i = Exi⇠pi [xix>
i ] and similarly for the

target distribution, ⌃T = ExT⇠pT [xTx>
T ].



In our scenario of interest, the pre-trained models are trained
‘offline’ on source distributions and are made available to the
target task during deployment. That is, for training the target
task, we have access to only the models learned by the source
tasks and not the source datasets themselves. For learning the
pre-trained source models, we assume nS number of samples
for each of the source tasks (thus, mnS source task samples
in total) denoted by the pair (Xi,yi) for source i 2 [m]
where Xi 2 RnS⇥d contains row-wise input feature vectors
and yi 2 RnS is the vector of corresponding outputs. We
similarly have nT samples (XT ,yT ) for the target task where
nT ⌧ nS . We also assume nT ⌧ d.
With the data generation process defined above, we now define
the expected population risk on the target distribution for ✓̂:

R(✓̂) = Ex⇠pTEy|x>✓⇤
T
[(y � x>✓̂)2]

Our goal is to learn a model ✓̂ for the target task that
generalizes well to the target data distribution. Thus, we want
✓̂ that minimizes the Expected Excess Risk defined by:

EER(✓̂,✓⇤
T ) := R(✓̂)�R(✓⇤

T ) (2)

Since we are given access to only nT ⌧ d target samples, it
is infeasible to learn a predictor from scratch that performs
well for the excess risk defined in (2).
To aid learning on the target, we have access to models learned
on the source tasks. Specifically, the target has access to
the trained source models representations {bBi}

m
i=1 that are

solutions of the following empirical minimization problem:

{bBi, bwi}
m
i=1  min

{Bi},{wi}

1

mnS

mX

i=1

kyi �XiBiwik
2
2 (3)

Since we have data rich source domains (nS � d), we expect
the obtained source models bBi bwi to be close to ✓⇤

i for i 2 [m]
(c.f. Equation (1)). For effective representation transfer, we
also want the representations {bBi} to be close to the true rep-
resentations {B⇤

i }, in the sense that they approximately span
the same subspace. We make this notion precise in Lemma 1
stated with our main results in Section IV. Given access to
the source model representations, our proposed method for
training the target model leverages the representation maps
{bBi}

m
i=1 to drastically reduce the sample complexity. We

describe our training method in Section III and provide the
excess risk bounds for the resulting target model in Section IV.

III. LEARNING WITH MULTIPLE PRE-TRAINED MODELS

To leverage source representations for training the target
model, it is instinctive that there should be a notion of close-
ness between the true source and target model representation
that can be exploited for target task training. We now make this
notion precise. We first define as V⇤

2 Rd⇥l the matrix whose
columns are an orthonormal basis of the set of columns of all
the source representation matrices {B⇤

i }
m
i=1. The individual

source models can be represented by ✓⇤
i = V⇤ ew⇤

i for some
ew⇤
i 2 Rl for all i 2 [m]. The target model ✓⇤

T = B⇤
Tw

⇤
T

governing the target data generation is assumed to satisfy:

Assumption 1: Consider the projection of the target model
B⇤

Tw
⇤
T to space C(V⇤) given by V⇤ ew⇤

T for some ew⇤
T 2 Rl.

Then for some ✏ > 0, we have:

Ex⇠pT

⇥
x>V⇤ ew⇤

T � x>B⇤
Tw

⇤
T

⇤2
 ✏2

The value of ✏ in Assumption 1 above captures how far away
the output of the true target model is to a model learned using
the true source representations. Note that if the columns of B⇤

T
can be constructed by the vectors in V⇤, the above is satisfied
for ✏ = 0. Assumption 1 can also be re-written in terms of the
target covariance matrix as:

���⌃
1/2
T (V⇤ ew⇤

T �B⇤
Tw

⇤
T )

���
2

2
 ✏2 (4)

We are given access to nT samples for the target machine
given by (XT ,yT ) and pre-trained models representations
from the sources {bBi}

m
i=1 (c.f. Equation (3)). Our proposed

training scheme consists of two phases, which we will now
describe independently in the following. We split the available
nT target samples into nT1 , nT2 for the two respective phases.
At a high level, in Phase 1, we make use of the available
source representations to construct a target representation and
adapt it to the target task using nT1 samples. The obtained
model is then used as an initialization for Phase 2 where
we train the entire (over-parameterized) model, including the
representation matrix, using nT2 samples. We provide the
resulting excess risk bounds for the model obtained after Phase

1 and the final target model after Phase 2 in Section IV.

A. Phase 1: Transferring source representation to target

In the context of utilizing pre-trained models, we will make
use of the empirical source representations {bBi}

m
i=1 to learn

the target model. We first construct a matrix bV 2 Rd⇥q whose
columns are the orthonormal basis of the columns of {bBi}

m
i=1

which denotes a dictionary of the learned source representation
matrices1. Note that we have q  mk. Having constructed the
representation, we train a head vector bwT1 2 Rq minimizing
the empirical risk on nT1 samples:

bwT1  min
wT2Rq

1

nT1

���yT1 �XT1
bVwT

���
2

2
(5)

Here, yT1 2 RnT1 denotes the first nT1 values of yT and
XT1 2 RnT1⇥d the first nT1 rows of XT . We denote the
resulting model at the end of this phase by ✓Phase1 := bVbwT1 .
Since we only have to learn the head vector using the avail-
able representation bV, the sample complexity requirement is
greatly reduced, which is also evident from our bound for
EER(✓Phase1 ,✓

⇤
T ) provided in Theorem 1.

B. Phase 2: Fine-tuning with initialization

The obtained model ✓Phase1 from the previous phase utilizes
empirical source representation for its construction. However,
the true target model ✓⇤

T may not lie in the space spanned by

1The construction of bV from {bBi} can be done by the Gram-Schmidt
process. This can be done in the pre-deployment phase after training the
source models, and bV can be made available directly to the target task.



the source representation and thus ✓Phase1 lies in a ball centered
✓⇤
T whose radius scales with ✏ (c.f. Assumption 5). To move

towards the true model ✓⇤
T , we utilize nT2 number of target

samples (independent from the nT1 samples in the previous
phase) to train the entire linear model using Gradient Descent
(GD) with ✓Phase1 as the initialization. In particular, the GD
procedure minimizes the following starting from ✓Phase1 :

f(✓) =
1

nT2

kyT2 �XT2✓k
2
2 (6)

Here, yT2 2 RnT2 and XT2 2 RnT2⇥d are the remaining
sample values from Phase 1. Since nT2 ⌧ d, we are in an
over-parameterized regime, for which it is known that GD
procedure optimizing the objective in (6) converges, under
appropriate choice of learning rate, to a solution closest in
norm to the initialization [17], [18], [31]; mathematically:

min
✓
k✓ � ✓Phase1k2 (7)

s.t. kyT2 �XT2✓k2 = min
b
kyT2 �XT2bk2

We denote the solution of the above optimization problem as
✓Phase2 , which forms our final target task model. We provide
bounds for EER(✓Phase2 ,✓

⇤
T ) in Theorem 2.

IV. MAIN RESULTS

We now provide theoretical bounds on the excess risk for the
target (c.f. Equation (2)) when leveraging pre-trained source
models. In Section IV-A, we first state excess risk bounds
for the model obtained after Phase 1 (see Section III-A),
denoted by ✓Phase1 := bVbwT , where target representation bV
is constructed as a combination of source representations and
adapted to the target data using nT1 amount of target samples
by training a target-specific head vector bwT . In Section IV-B,
we provide our overall excess risk for the model ✓Phase2
(c.f. Equation (7)) obtained by re-training the entire (over-
parameterized) model via Gradient Descent with nT2 number
of target samples (independent form the previously utilized
nT1 samples) using ✓Phase1 as the initialization.

A. Theoretical results for representation transfer: Phase 1

We work with the following assumptions:
Assumption 2 (Subgaussian features): We assume that

Ex⇠pj [x] = 0 for all j 2 [m][ {T}. We consider p̄j to be the
whitening of pj (for j 2 [m] [ {T}) such that Ex̄⇠p̄j [x] = 0
and Ex̄⇠p̄j [x̄x̄

>] = I. We assume there exists ⇢ > 0 such that
the random vector x̄ ⇠ p̄j is ⇢2-subgaussian.

Assumption 3 (Covariance Dominance): There exists r > 0
such that ⌃i ⌫ r⌃T for all i 2 [m].

Assumption 4 (Diverse source tasks): Consider the source
models ✓⇤

i = V⇤ ew⇤
i for i 2 [m]. We assume that the matrix

fW⇤ := [ew⇤
1, . . . , ew⇤

m] 2 Rl⇥m satisfies �2
l (
fW⇤) � ⌦

�
m
l

�

Assumption 5 (Distribution of target task): We assume that
ew⇤
T follows a distribution ⌫ such that

��Eew⇠⌫ [ewew>]
��
2

is
O
�
1
l

�
. We denote ⌃ew⇤

T
= Eew⇠⌫ [ewew>].

Note on Assumptions: Assumption 2 on sub-Gaussian fea-
tures is commonly used in literature to obtain probabilistic tail

bounds [8], [9], [14], [30]. Following [8], Assumption 3 states
the target data covariance matrix is covered by the covariance
matrices of the source data distributions. We remark that this
assumption allows the covariance matrices to be different, in
contrast to works [9], [10] that assume a common covariance
matrix for all the distributions. Assumption 4 (also made in
related works [8], [9], [32]) says that the head vectors corre-
sponding to the matrix V⇤ for each source model should span
Rl. This effectively allows us to recover the representation V⇤

provided enough source machines (m > l) that individually
capture one or more features of V⇤. This assumption is also
central to proving our result in Lemma 1 provided below which
show that the matrices bV and V⇤, whose columns form an
orthonormal basis for the span of {bBi} and {B⇤

i }, respectively,
span the same subspace for constructing the target model.

Lemma 1: Let matrix bV 2 Rd⇥q be formed by empirical
source representations {bBi} obtained from solving (3) and the
matrix V⇤

2 Rd⇥l formed from the true representations {B⇤
i }.

Under Assumption 2-4, for any b 2 Rl such that kbk2 = 1,
ns � ⇢4(d+ log(m/�)) and nT1 � ⇢4(max{l, q}+ log(1/�)),
with probability at-least 1� �1, we have:

min
u2Rq

kXT1
bVu�XT1V

⇤bk2


�2nT1

rnS

✓
km+ kdm log(ns) + log

✓
1

�1

◆◆

We now state our main result for the excess risk on after Phase
1.

Theorem 1 (Phase 1 training result): Fix a failure prob-
ability � 2 (0, 1) and further assume 2k  min{d,m}

and the number of samples in the sources and target satisfy
ns � ⇢4(d+ log(m/�)) and nT1 � ⇢4(max{l, q}+ log(1/�)),
respectively. Define  =

maxi2[m] �max(⌃i)
mini2[m] �min(⌃i)

where �max(⌃i)
denotes the maximum eigenvalue of ⌃i. Then with probability
at least 1� � over the samples, under Assumptions 1 - 5, the
expected excess risk of ✓Phase1 := bVbw satisfies:

E[EER(✓Phase1 ,✓
⇤
T )] .

�2

nT1

(q + log(1/�)) + ✏2

+ �2


1

rnsm
log

✓
1

�

◆
+

✓
kd log(ns) + k

rns

◆�

where expectation is taken over ew⇤
T for the target task (c.f.

Assumption 5).
Discussion: The bound in Theorem 1 shows the population
risk of the learned model ✓Phase1 lies in a ball centered at the
true target model risk R(✓⇤

T ) with radius ✏2, which represents
the approximation error for using source representations for
the target task (see Assumption 1). Note that the expected
excess risk scales as O(q/nT1) with respect to the number
of target samples when the representation is learned from
the source representations. This demonstrates a sample gain
compared to the baseline of O(d/nT1) for learning the entire
model (including representation) with the target data when
q ⌧ d, that is, when the empirical source representations
together span a subspace of dimension much smaller than d.
For the case when source and target representations are all the



same, B⇤
T = B⇤

i = B⇤
2 Rd⇥k for all i 2 [m], the excess

risk scales as O(k/nT1), which recovers the result of [8].

B. Theoretical results for overall scheme: Phase1 + Phase2

We require the following additional assumptions:
Assumption 6: The rows of the target data matrix XT are

linearly independent.
Assumption 7: The Gradient Descent procedure to optimize

(6) converges to ✓Phase2 with f(✓Phase2) = 0.
Assumption 6 is typically made in literature for analysis

in the over-parameterized regime for linear regression, see
[14], and can also be relaxed to hold with high probability
instead and incorporated in the analysis [30]. Assumption 7
holds in our setting as the objective in (6) is strongly convex
and smooth for which GD can converge to the optimum [33].

Theorem 2 (Phase 1 + Phase 2 training result): Consider
obtaining the final target model by using nT1 samples during
Phase 1 for representation transfer and then fine-tuning in
Phase 2 with nT2 samples (independently drawn from Phase
1). Denote the eigenvalues of the covariance matrix of the
underlying data ⌃T by {�i}

d
i=1. Then under Assumptions 1-7,

the excess risk of the final parameter ✓̂T := ✓Phase2 is bounded
as follows with probability at least 1� �:

E[EER(✓̂T ,✓
⇤
T )] .

�1

�d

r0(⌃T )

nT2

✓
�2

nT1

(q + log(1/�)) + ✏2
◆

+ r�2 log

✓
1

�

◆✓
k⇤

nT2

+
nT2

Rk⇤(⌃T )

◆

+
�1�2

�d

r0(⌃T )

nT2

✓
1

rnsm
log

✓
1

�

◆
+

✓
kd log(ns) + k

rns

◆◆

where rk(⌃T ) = ⌃i>k�i

�k+1
, Rk⇤(⌃T ) = (⌃i>k�i)

2

⌃i>k�2
i

. Here,
constant b > 1 and k⇤ = min{k � 0 : rk(⌃) � bnT2} with
k⇤ 

nT2
c1

for some universal constant c1 > 1.

Discussion: Theorem 2 shows the excess risk of our overall
target model (✓̂T = ✓Phase2 ) as a function of the number of
samples nS , nT1 , nT2 and parameters depending on the target
data covariance matrix, ⌃T . Since we re-train the entire model
(including the representation) with nT2 target samples, the
population risk of the learned model R(✓Phase2) can be made
closer to the true risk R(✓⇤

T ) by increasing nT2 , which is in
contrast to the result of Theorem 1 which shows closeness
only in an ✏2 radius ball due to using source representation
directly to construct the target model.
We now provide a baseline comparison to the standard linear
regression scenario where we do no utilize any source models
and instead learn the target task model from scratch using the
available nT = nT1 + nT2 samples. The excess risk in this
setting is O

⇣
�2d
nT

⌘
. If the number of source samples are large

enough (nS � d) to get a good empirical performance on the
source models (c.f. Equation (3)), the bound from Theorem 2
demonstrates a sample gain compared to the baseline when:

�1

�d

r0(⌃T )

nT2

✓
�2

nT1

(q + log(1/�)) + ✏2
◆

+ c�2 log

✓
1

�

◆✓
k⇤

nT2

+
nT2

Rk⇤(⌃T )

◆
⌧

�2d

nT1 + nT2

(8)

It can be seen that for the above relation to hold, we require:
• The target data covariance matrix ⌃T should be such

that the term Rk⇤(⌃T ) is much larger than nT2 , and
k⇤ ⌧ nT2 . This is satisfied, for e.g., in the case when
eigenvalues of ⌃T decay slowly from largest to smallest,
and are all larger than a small constant [14].

• Using the definition of r0(⌃T ) =
Pd

i=1 �i/�1, and noting
that

Pd
i=1 �i/�d < d, the following provides a sufficient

condition the first term on the L.H.S. of (8):
qd

nT1nT2

⌧
d

nT1 + nT2

This, is turn, imposes the following restriction on q,
which is the dimension of the subspace formed by the
source representations {bBi}:

q ⌧
nT1nT2

nT1 + nT2

(9)

Since nT1 +nT2 = nT , it is easy to check that the R.H.S.
of (9) is maximized when nT1 = nT2 = n/2. With this
optimal splitting of the target samples for each of the
phases, we require q ⌧ nT/2 for the inequality in (8).

V. CONCLUSION

In this work, we proposed a method for training linear re-
gression models via representation transfer learning in the lim-
ited sample regime, when given access to multiple pre-trained
linear models trained on data domains (sources) different form
the target of interest. We established excess risk bounds for
the learned target model when (i) source representations are
used directly to construct a target representation and adapted
to the target task, and (ii) when the entire resulting model is
fine-tuned in the over-parameterized regime using target task
samples. Our bounds show a gain in target sample complexity
compared to the baseline case of learning without access to the
pre-trained models, thus demonstrating the benefit of transfer
learning for better generalization in the limited sample regime.

As future extensions to this work, it is of interest to see
how non-linear activation functions can be introduced in the
model to analyze more complicated architectures like Neural
Networks (NNs). Analyzing representation transfer learning
with multiple NNs and utilizing recently developed results in
benign over-fitting for this setting [34] is an interesting next
step. In many scenarios of interest, for training the source task
models, unlabeled data from the target distribution might be
available. While there are empirical works utilizing unlabeled
samples in the context of semi-supervised adaptation ( [26],
[35], [36]), theoretical results on understanding generaliza-
tion of representation transfer learning methods (with pre-
training/fine-tuning) and their sample complexity requirements
are missing and would be an interesting direction to pursue.
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