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Abstract—We consider the problem of estimating the orienta-

tion of a 3D object with the assistance of configurable backscatter

tags. We explore the idea of designing tag response codes to

improve the accuracy of orientation estimation. To minimize

the difference between the true and estimated orientation, we

propose two code design criteria. We also derive a lower bound

on the worst-case error using Le Cam’s method and provide

simulation results for multiple scenarios including line-of-sight

only and multipath, comparing the theoretical bounds to those

achieved by the designs.

Index Terms—Wireless Sensing; RFID tags; Orientation

Tracking; Internet-of-Things; Response Design;

I. INTRODUCTION

3D orientation tracking is an important function in many do-
mains, e.g., in robotics, aerospace, and medicine. Orientation
can be estimated using many methods, e.g., inertial sensors
can be mounted on the object whose orientation has to be
measured. Orientation can also be measured using computer
vision based methods [1]–[3]. Each of the existing methods
have their own pros and cons. For example, inertial sensors
may not be suitable for many Internet-of-Things applications,
e.g., tracking packages where the solutions have to be very
cost-effective. Additionally, the performance of computer vi-
sion methods depends on light conditions, and can be difficult
for objects that exhibit symmetries.

Wireless sensing has emerged as an interesting alternative
sensing modality. Radio-frequency based methods can be
useful when visible light wavelengths are not effective, e.g.,
cases with poor visibility or non-line-of-sight scenarios. In
particular, backscatter arrays have been recently used for geo-
location and 3D orientation estimation [4], [7]–[9]. Using
backscatter arrays is philosophically akin to “painting the
faces” of an object, making it a promising option for the
orientation detection of symmetric objects such as a solid cube.
In this work, we study 3D orientation estimation with the help
of configurable backscatter arrays.

In order to aid with the estimation task, one can design
the backscatter response to received signals. Specifically, we
design the backscatter responses by changing their reflection
coefficients. Changing reflection coefficients is possible by
switching between different tag load impedances [5], [6].
For example, a tag can switch between two different load
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impedances using a multiplexer controlled by a microcon-
troller (see Fig. 2 in [5]). The design of reflection coefficients
can be captured as a binary code specifying what or when the
backscatter tags reflect. The problem of finding the best code
for the estimation task was first formulated and explored in
[10], where we proposed a heuristic code design criterion and
had a preliminary exploration of the systems performance.

Related work: In [10], we suggested a heuristic design
criteria aimed at maximizing the average-case performance,
but did not make attempts to assess its performance. Fur-
thermore, we only considered the average-case error of the
system, and did not study the worst-case error, explored in
this work. In [8], the authors propose a method for estimating
the 3D orientation of an object by measuring the relative
phase offset between RFID tags, and aggregating the outputs
of multiple 2D estimators. In [9], RFID tags are mounted
on carpet pads to measure the 2D orientation of objects in
an indoor environment. In [11], a 2D orientation-aware RFID
approach is proposed for tracking a target. In [20], the authors
track the inclination of objects using UHF RFID tags and
a statistical estimator based on the received signal strength.
The aforementioned works do not but do not explore the
design of backscatter responses and its effect on the estimation
problem. In [12], the authors use orthogonal codes (see Section
IV for a definition) to distinguish the tags from each other
and the environment. [21], [22] use RFID tags to estimate
the direction of arrival (DoA). In addition, many other works
have considered the use of passive RFID tags for localization
and orientation estimation [23]–[26]. However, as far as we
know, no past work has considered optimal code design for
3D orientation sensing.

Contributions: In this paper, we revisit the problem and
expand our understanding in the following ways. First, we
propose two analytic code design criteria that depend on
channel knowledge, and investigate their performance with
respect to a baseline orthogonal code. We also develop a lower
bound on the worst-case error, which quantifies the systems
performance with respect to channel parameters such as the
number of antennas and the number of tags used. Finally,
we provide a comprehensive numerical exploration of the
systems performance, including the impact of multipath, and
the robustness of the design criteria against imperfect channel
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By numerically evaluating the performance, we observe
the following. Our design criteria yield codes that offer
significant advantages over the channel-oblivious orthogonal
code for both the average and worst-case error performance
(see Section II-C for precise definitions). In some cases, our
designs provide an order of magnitude improvement in error
performance. We also found that precise channel knowledge
at the transmitter is not critical; Our design criteria are robust
against channel estimation errors, retaining almost all im-
provements when computed with SNR values greater than or
equal to 10dB. Furthermore, our numerical results suggest that
multipath offers SNR gain but not multipath-diversity gain;
this means that when one fixes the total energy received across
paths, the performance does not improve when multipath is
present.

Organization: Section II describes the channel model and
formulates the estimation problem. Section III describes the
main results, including the two code design criteria. Section IV
provides the various numerical results. Finally, Section VI pro-
vides proofs for the theorems and lemmas shown in Section III.

Notation: Rk and Ck are the sets of real-valued and
complex-valued k�dimensional vectors, respectively. AT and
A

H denote the transpose and conjugate transpose of the matrix
A. If x is a vector with n elements, then diag(x) denotes
the n ⇥ n square matrix with the elements of x on its main
diagonal; k·k is the standard Euclidean norm on vectors, and
k·k

F
is the Frobenius norm on matrices. h·, ·i is the dot product

between two vectors.

II. PROBLEM FORMULATION

A. System Model

We consider an object that can freely rotate around a specific
point in space. For ease of computation, we use the 3D
coordinate system in which the point the object rotates around
is 0 = [0, 0, 0]

T
2 R3. We assume a system having K full-

duplex antennas (capable of simultaneously transmitting and
receiving in the same frequency band) with position vectors
x

ant
1 , . . . ,x

ant
K

2 R3, and N backscatter tags placed on the
object with position vectors x

tag
1 , . . . ,x

tag
N

2 R3 (see Figure
1).

We specify the orientation of the object using a rotation
matrix Q 2 SO(3) ✓ R3⇥3, where SO(3) is the 3D rotation
group. If the object has tags with positions x

tag
1 , . . . ,x

tag
N

on
it, and a rotation Q is applied to the object, the tags would
have the new positions Qx

tag
1 , . . . ,Qx

tag
N

(see Figure 2). In this
framework, we specify the original orientation of the object
using the 3⇥ 3 identity matrix I3.

Each backscatter tag can be configured by setting its state to
a value i 2 {0, 1}. The state, in turn, determines the reflectivity
of the tag. For instance, we may choose to correspond a state
of 0 to a reflectivity of +0.5 and a state of 1 to a reflectivity
of �0.5. In this scenario, tags reflect regardless of their state.
On the other hand, we may choose to correspond a state of
0 to a reflectivity of 0 (does not reflect), and a state of 1 to

1Note that our method is not necessarily appropriate for real-time orienta-
tion estimation in the wild as it requires some calibration.

...
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Fig. 1: The components of the considered system. The object
along with the tags, rotate around a specific point (in this case,
the center of the sphere). The full-duplex antennas interrogate
the configurable tags and receive back the reflected signal. We
then use the received signal to infer the orientation.

a reflectivity of 1 (reflects) i.e. the state determines the on-
off condition of the tag. In addition, the state of each tag can
either remain constant (passive) or change over time (active).
We study the performance of both options.

The orientation of the object determines the position of the
tags, and the states of the tags set their reflectivities. Hence,
the orientation and tag states determines the channel model,
and in turn the received signal. We use the received signal to
estimate the orientation of the object. Our goal is to analyze
the performance of this system, and find the best set of tag
states for the estimation task. We describe our channel model
next.

We use the following free-space line-of-sight propagation
formula [13] between points x1,x2 2 R3:

⌘(x1,x2) =
1

4⇡ kx1 � x2k
exp

✓
�2⇡j kx1 � x2k

�

◆
, (1)

where � is the wavelength. In other words, suppose xTx and
xRx are the position vectors of an isolated transmitter and
receiver, and sTx and sRx the transmitted and received signals,
respectively, then

sRx = sTx⌘(xTx ,xRx). (2)

We now specify the matrices involved in our channel model.
Let HQ be the K ⇥N matrix of the line-of-sight responses
between the tags and antennas when the object is in orientation
Q, i.e. (HQ)k,n = ⌘(x

ant
k
,Qx

tag
n ). Let A be the symmetric

K ⇥ K matrix of inter-antenna line-of-sight responses with
Ak,k0 = ⌘(x

ant
k
,x

ant
k0 ). Let B be the symmetric N ⇥ N

matrix of the inter-tag channel responses when the object is
in orientation Q. In other words,

(BQ)n,n0 = ⌘(Qx
tag
n
,Qx

tag
n0 ) = ⌘(x

tag
n
,x

tag
n0 ). (3)

Applying the same rotation to any two tags does not change
the distance between them, so we can drop Q from the
subscript of BQ and use B instead (see Figure 3). Now, let
st 2 CK and s

0
t
2 CN be the vectors of the transmitted

signals at the antennas and tags respectively at time t, and
 t 2 CK and  0

t
2 CN be the vectors of the received signals

at the antennas and tags respectively at time t. The relationship
between these vectors is given by:


 t

 0
t

�
=


A HQ

H
T

Q B

� 
st

s
0
t

�
. (4)
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Fig. 2: Rotation of the object about the z-axis. When the object
rotates, the tags rotate along with it. The new positions of the
tags produce a different received signal. While the tags are
equidistant from the point of rotation in the figure, this does
not have to be the case.

As we have mentioned before, each backscatter tag can be
configured by setting its state to a value i 2 {0, 1}, which in
turn determines its reflectivity ri 2 C. Hence, the reflectivities
can be expressed in terms of the states assigned to the tags.
Letting st,n 2 {0, 1} be the state of the n

th tag at time t,
ct = (st,1, . . . , st,N ) be the codeword at time t (a codeword
is a vector of states), and r(·) be the mapping from codewords
to reflectivity vectors, we define the matrix of reflectivities at
time t as:

Rt = diag(r(ct)) 2 RN⇥N
. (5)

Using the fact that the tags reflect the incident signals, the
transmitted signal at the tags is given by s

0
t
= Rt 

0
t
. We note

that the tags also contribute an additive term. A typical RFID
reader can easily filter out this component by the receiver’s
ac-coupling capacitor or DC-offset compensation loop [5] [6].
Thus, we ignore this constant term in our model. Substituting
the value of s0

t
in (4), and adding the complex Gaussian noise

terms wt 2 CK and w
0
t
2 CN , we obtain the following

equations:

 t = Ast +HQRt 
0
t
+wt (6)

 0
t
= H

T

Qst +BRt 
0
t
+w

0
t

(7)

Solving the above equations, we obtain that the re-
ceived signal is given by  t = Ast + HQRt(I �

BRt)
�1

⇣
H

T

Qst +w
0
t

⌘
+wt. We assume that the noise term

involving w
0
t

is dominated by wt, and hence we ignore the
former. Since the first term in the previous expression does not
depend on Q, we can subtract it at the receiver2 yielding a
modified noiseless and noisy signals f(Q; ct),y(Q; ct) 2 CK

given by:

f(Q; ct) = HQRt(I �BRt)
�1

H
T

Qst, (8)
y(Q; ct) = f(Q; ct) +wt. (9)

B. Codes

The expression in (8) is the noiseless channel output when
using a codeword ct. Based on numerical simulations, we
have observed that a single codeword often only allows us to
detect some orientations, and not others. Specifically, all tag

2We are eliminating full-duplex self-interference, e.g., see [14].

Ak,`

ant k ant `

tag i

Bi,j

tag j

ant k
HQ,k,i

tag i

Fig. 3: The matrices associated with the model. For instance,
Ak,` corresponds to the free space loss from antennas k to

antenna `.

arrays we came across had the following property: for every
codeword c 2 {0, 1}

N , there exists some Q,Q
0 such that

Q 6= Q
0 and f(Q; c) ⇡ f(Q

0
; c) (see Figure 5 in Section

IV for such an array). In other words, for every codeword,
there is a pair of orientations that the codeword makes almost
indistinguishable based on the received signal.

Therefore, using different codewords over time is a natural
extension to the model as a new codeword could fill in the
gaps left by the ones used previously. Based on this intuition,
we define a code C = [c1 · · · cT ] 2 {0, 1}

N⇥T to be a binary
matrix where each column corresponds to the codeword at a
specific time t (See Figure 4). Given the code C, we denote
the concatenated noiseless and noisy channel outputs as (using
F instead of f and Y instead of y):

F (Q;C) =
⇥
f(Q; c1) · · · f(Q; cT )

⇤
2 CK⇥T

, (10)
Y (Q;C) = F (Q;C) +W 2 CK⇥T

, (11)

where W = [w1 · · ·wt] 2 CK⇥T is complex Gaussian noise.

C. Performance Measures

We consider estimation over a finite uniform subset of
orientations Q ⇢ SO(3), and use the loss function ✓(Q,Q

0
),

equal to the Frobenius norm between the two rotation matrices
i.e.,

✓(Q,Q
0
) =

��Q�Q
0��

F
. (12)

Letting C 2 {0, 1}
N⇥T be any code, the expected value of

the error of C when the ground-truth orientation of the object
is Q 2 Q is given by:

L(Q,C) = EW

h
✓

⇣
bQ (Y (Q;C)) ,Q

⌘i
. (13)

where bQ (Y (Q;C)) is the minimum distance decoder to the
grid of orientations Q i.e., the MMSE estimator of Q given
Y (Q;C). Assuming a uniform prior over the orientations
in Q; i.e., the object is equally likely to be in any of the
orientations in Q, the expected value of the error of code C

(w.r.t. to the orientations) is given by:

L(C) =
1

|Q|

X

Q2Q
L(Q,C), (14)

Now, a code that minimizes the average error (w.r.t. to the
orientations) could still provide poor performance for a par-

ticular orientation. In other words, the performance of a code
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Fig. 4: An illustration of coding over time (left) and its
corresponding code (right). Different colors denote different
states (reflectivities) of the tag, and different patterns of the
states denote different codewords.

C might vary from one orientation to the next. For this reason,
we study the worst-case error as it delivers guarantees on the
performance across every orientation. We define worst-case
error (over all possible orientations in Q) as:

M(C) = max
Q2Q

L(Q,C). (15)

We believe that both quantities are of interest for designing
an orientation estimation system and hence, we suggest criteria
for minimizing either depending on the application’s particular
requirements.

III. THEORETICAL ANALYSIS

Our goal is to find the best code for the estimation task.
However, L(C) in (14) and M(C) in (15) are intractable.
One route we could take is to investigate tractable upper or
lower bounds on the errors, and minimize those bounds as a
proxy for minimizing the errors themselves.

A. Design Criterion For The Average Error

As a proxy for the average error L(C), we minimize an
upper bound to it. We obtain the upper bound on the average
error by replacing the probability of misestimating the actual
orientation of the object by a tractable quantity. The proof of
the following result is given in Section VI-A.

Theorem III.1

Assuming complex white Gaussian noise, the average error

L(C) given in (14) is upper bounded by:

U(C) =

X

Q,Q02Q

erfc

 ��F (Q;C)� F (Q
0
;C)

��
F

2
p
2�

!
✓(Q,Q

0
).

(16)

where ✓(Q,Q
0
) is given in (12), erfc is the complement of the

Gaussian error function, and � is the standard deviation of

the noise.

Hence, the design criteria for minimizing the average error
is simply given by the optimization problem minC U(C).
We can infer the following intuition from U(C) in (16):
good codes should map orientations that are far apart (in
terms of ✓) to channel outputs that are also far apart. More-
over, since erfc(x) is tightly upper bounded by exp(�x

2
),

U(C) implies that the distance between channel outputs��F (Q;C)� F (Q
0
;C)

��
F

has an inverse exponential rela-
tionship with the average error.

B. Codes For the Worst-Case Error

Whereas we optimize an upper bound for the average error
in Section III-A, we obtain a lower bound on the worst-case
error M(C) using Le Cam’s method [15], and minimize the
bound to obtain a code for the worst-case performance. The
proof of the following theorem is provided in Section VI-B.

Theorem III.2

Assuming complex white Gaussian noise, the worst-case error

M(C) given in (15) is lower bounded by:

V(C) = max
Q,Q02Q

exp

 
�

��F (Q;C)� F (Q
0
;C)

��2
F

2�2

!
✓(Q,Q

0
)

4
,

(17)
where ✓(Q,Q

0
) is given in (12).

Hence, the design criteria for minimizing the worst-case
error is given by the optimization problem minC V(C). V(C)

corroborates the observations from Theorem III.1, and re-
lates the worst-case error to the model only through the
distances between channel outputs. V(C) again implies that
the worst-case error has an inverse exponential relationship
with

��F (Q;C)� F (Q
0
;C)

��
F

.

C. Minimax Bound

Unlike Theorem III.2 which suggests a design criteria for
the worst-case error using Le Cam’s method, the following
theorem uses the same tools to quantify the worst-error error
decay with parameters including the number of antennas K,
the number of tags N through the Frobenius norm of X

tag,
and the number of samples through the variance �

2 (as the
effective variance of the noise is �

2
/n when provided with n

samples). It also reflects the effect of code design on the error.

Theorem III.3 (Minimax Bound)
The worst-case error is bounded as:

M(C) �
32⇡

2
�
2
�
2
D

4

27K2
��Xtag

��2
F

P
T

t=1k
eBtk

2
F
kr(ct)k

2
(18)
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where eBt = (I � BRt)
�1

and D is an approximate range

between the tagged object and the antennas.

The bound indicates that placing the tags far away from the
antennas leads to a larger error. This is clear as the farther away
the tags, the weaker the signal we receive due to attenuation.
Moreover, it implies an inverse quadratic relationship between
the number of antennas and the error. This is again logical
because we would be able to receive more power from the
reflected signal with more antennas. The bound also reflects
the effect of code design through the term kB̃tk

2
F
kr(ct)k

2.
For instance, if tags can each have one of two states with
corresponding reflectivities 0 and 1 (on or off), then the bound
favors most tags to be ”on” through the term kr(ct)k

2.

D. Structure of the optimal codes

Finding the codes that minimize U(C) and V(C) is a com-
binatorial optimization problem that requires an exhaustive
search. Performing an exhaustive search has a running time
of O(2

NT
) if wish to look for the best coding matrix of size

T . Hence, for our purposes, finding the best code using brute-
force is intractable except for cases when the number of tags
N , and the size of the coding matrix T , are very small.

Therefore, we introduce the idea of code proportions which
is essential in reducing the search space. We show that our per-
formance measures depend only on the code through particular
proportions of each codeword (see Theorem III.4), therefore
reducing the search space to only those proportions. We begin
by carefully defining this idea. Let C = [c1 · · · cT ] be any
code, then we define the proportion of code configuration
c 2 {0, 1}

N in C as

⇡c =
1

T

TX

t=1

1c=ct , (19)

where 1c=ct is the indicator of the event {c = ct}. In other
words, ⇡c is the number of occurrences of c, normalized by
T , the size of the code. Moreover, let c(1), . . . , c(2

N
) be an

enumeration of the codewords in {0, 1}
N , then we define the

vector of code proportions as ⇡ =
⇥
⇡c(1) , · · · ,⇡

c(2
N )

⇤T
. It is

straightforward to see that if two coding matrices share the
same size T , and the same proportions vector ⇡, then they
are permutations of one another. In what follows, instead of
directly using the coding matrix C, we search for the optimal
coding scheme through the proportions vector ⇡.

The following theorem allows us to analyze the effect of C
on the average and worst-case errors through the proportions
vector ⇡. Moreover, we show that the derived bounds in (16)
and (17) can be written in terms of ⇡. The proofs of the
following results is given in Section VI-F.

Theorem III.4

Assuming independent and identically distributed noise, L(C)

and M(C) only depend on coding matrix C through the

proportions vector ⇡.

Lemma III.1

If we fix T , the size of the code C, then we can write the

minimization of U(C) and V(C) in term of ⇡ respectively

as:

U(⇡) =

X

Q,Q02Q

erfc

0

@

s
T
⌦
⇡, g(Q,Q

0
)
↵

8�2

1

A ✓(Q,Q
0
), (20)

V(⇡) = max
Q,Q02Q

exp

 
�
T
⌦
⇡, g(Q,Q

0
)
↵

2�2

!
✓(Q,Q

0
), (21)

where g(Q,Q
0
) 2 R2N

is given by g(Q,Q
0
)i =��f(Q; c

(i)
)� f(Q

0
; c

(i)
)
��.

Theorem III.4 and Lemma III.1 allow us to write our
design criteria as optimization problems with respect to the
proportions vector ⇡. In (20) and (21), g(Q,Q

0
) represents the

link between the design criteria and the channel model. This
implies that our design criteria will depend on the channel
model only through the distances between channel outputs
for different values of the orientation. In other words, the
design criteria for the average-case and worst-case errors are
respectively given by:

min
⇡2R2N

X

Q,Q02Q

erfc

0

@

s
T
⌦
⇡, g(Q,Q

0
)
↵

8�2

1

A ✓(Q,Q
0
)

s.t.
2NX

i=1

⇡i = 1,⇡ � 0.

(22)

min
⇡2R2N

max
Q,Q02Q

exp

 
�
T
⌦
⇡, g(Q,Q

0
)
↵

2�2

!
✓(Q,Q

0
)

s.t.
2NX

i=1

⇡i = 1,⇡ � 0.

(23)

IV. NUMERICAL SIMULATIONS

A. Simulation Setup

We use N = 4 backscatter tags that we place randomly
within a sphere around the center. The 4 tags can each

have two states, with reflection coefficients �0.5 and 0.5,
encoded as 0 and 1, respectively. We arrange K = 4 full-
duplex antennas in a 1m ⇥ 1m square on a plane 4m away
from the center of the object (see Figure 5 for a sample
arrangement). Each antenna emits an identical signal sk = 1

for all k = 1, . . . ,K. We use a wavelength � = 0.005m, and
generate a set of orientations Q with |Q| = 4096 by uniformly
sampling the ranges of the euler angles and computing the
rotation matrices that correspond to the angles.

To find the solution of (22) and (23), we use the well-known
trust-region method (TRM) [19]. The trust-region method first
defines a region around the current solution, and approximates
the original objective function using a quadratic model. TRM
then takes a step according to what quadratic model depicts
in the region. Computing the quadratic approximation to
the original objective function grows more computationally
demanding as we increase the size Q. However, instead of
decreasing the size of Q, we chose to keep Q as is and use a
uniform subset of the orientations in Q to solve (22), (23). In
particular, for our simulations, we used a set of orientations
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Fig. 5: An example of a simulation setup. The tags (given by
the red dots) are in a tetrahedron configuration, while the an-
tennas (given by the black dots) are in a square configuration.
Reflectors are denoted by the blue dots.

Q
0
⇢ Q of size 200. The optimization problem requires 5 to

10 minutes to converge on a personal machine. We define
SNR as the received signal-to-noise ratio, the received signal
strength at each antenna, divided by the noise power. In other
words SNR = 10 log10

⇣
kF k2

2
�2

⌘
, where F is the noiseless

signal and �
2 is the noise variance. We test each value of

SNR = 0, 1, . . . , 12 dB, with trials for each of the 4096

”ground truth” orientations in Q. As a measure of distance,
we use the polar and azimuthal angles in the polar coordinate
system (r, ✓,'). All things considered, the measure of distance
we use in our trials is given by:

`

h
(✓,'), (✓̂, '̂)

i
= (✓ � ✓̂)

2
+ ('� '̂)

2
, (24)

where (✓,') are the ground truth angles, and (✓̂, '̂) are the
estimated angles. To obtain an estimate bL(C) of the average-
case error L(C), we average the value of the error over
the trials, and compute root-mean-square error (RMSE). The
performance of a code varies across different orientations.
Hence, unique to average error trials, we have included the
variance of each coding method at an SNR value of 10dB.
The variance indicates how much the performance varies from
the total average across the different tested orientations. On
the other hand, to obtain an estimate cM(C) of the worst-
case error M(C), we average the 500 trials for each of the
considered orientations, and then take the maximum over all
the orientations in Q. In these simulation trials, we use codes
of size T = 24, and compare the performance of the following
methods:

• REP OPT: The best repetition code (all T = 24 code-
words used are the same). This method is equivalent to
the design criteria suggested in [10].

• ORTHOGONAL: The code where each of the vectors in
the standard basis {e1, . . . , e4} is used 6 times. Note that
ei is the vector components whose are all zero, except
for a 1 in the i

th component.
• AVERAGE DESIGN: The method we suggested to min-

imize the average error. This is the coding scheme that

minimizes the upper bound of the average error i.e.
⇡

⇤
= argmin⇡ U(⇡).

• MINIMAX DESIGN: The method we suggested to mini-
mize the worst-case error. This is the coding scheme that
minimizes the lower bound of the worst-case error i.e.
⇡

⇤
= argmin⇡ V(⇡).

B. The Average and Worst-Case Errors

The results shown in Figure 6 suggest that channel knowl-
edge at the receiver provides significant benefits over orthog-
onal codes. For the average error, the code we designed,
AVERAGE DESIGN, lead to the best performance out of the
considered methods, with the code produced by the method
we suggested for the worst-case error, MINIMAX DESIGN,
trailing behind as a close second. In particular, for the tetra-
hedron tag configuration shown in Figure 5, the average error
when using the code produced by the optimization problem
min⇡ U(⇡) is approximately 8⇥ lower than the error when
using orthogonal code. Furthermore, the performance obtained
when using the best static code is consistently the worst out
of the considered methods. This corroborates the intuition that
lead us to introduce the idea of different codes over time.
Moreover, the results shown in Figure 6 (bottom) suggest
that channel knowledge for code design once again provides
benefits for the worst-case error. For the tetrahedron array of
Figure 5, the worst-case error produced by the optimization
problem min⇡ V(⇡) is approximately 10⇥ lower than the error
produced when using orthogonal codes.

In order to test the effectiveness of the designed criteria
on tag arrays different from the one shown in Figure 5,
we randomize the positions of the tags (within a sphere of
radius 0.25m), compute the designed codes according to the
methods of AVERAGE DESIGN and MINIMAX DESIGN,
and calculate the average and worst-case error ratios obtained
when using orthogonal codes versus the designed codes. We
perform these steps for a total of 100 times, and produce the
density histogram shown in Figure 7. In many of the 100 trials,
the designed codes offered more a significant improvement
over the channel oblivious orthogonal code for the average
error (Figure 7 top) and worst-case error (Figure 7 bottom).

C. Multipath

Suppose we now add M reflectors with positions
x

ref
1 , . . . ,x

ref
M

2 R3 to our system. We treat reflectors as virtual
sources. For an antenna with position x

ant

k
, tag with position

x
tag

n
, and reflector with position x

ref
m

, the ray can take several
possible paths: (1) the path that starts at the antenna, passes
through the reflector, and ends at the tag, and back the same
path, (2) from the antenna to the tag through the LoS path,
and then back along the path of the reflector and vice versa.
To capture these paths in our model, we define

�(x
ant

k
,x

ref
m
,x

tag

n
) = ⌘(x

ant

k
,x

ref
m
)⌘(x

ref
m
,x

tag

n
). (25)

Let DQ,m be the K⇥N matrix of the multipath only channel
responses between the tags and antennas in the presence of
x

ref
m

, i.e.

(DQ,m)k,n = �(x
ant
k
,x

ref
m
,Qx

tag
n
). (26)
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Fig. 6: The average (top) and worst-case (bottom) errors versus SNR for the tag array in Figure 5. At an SNR value of 10dB,
the designed code for the average error is nearly 8⇥ more accurate than the channel-agnostic orthogonal code. Meanwhile,
the designed code for the worst-case error is nearly 10⇥ more accurate.

Fig. 7: Probability density histograms for the average error (top) and worst-case error (bottom) ratios when using the orthogonal
code and the designed code at an SNR of 10dB.

The matrices involved in our channel model remain largely
the same, except for HQ which is now replaced by EQ =

HQ+DQ, where DQ =
P

M

m=1 DQ,m The noiseless channel
model is thus extended to:

f
m
(Q; ct) = EQRt(I �BRt)

�1
E

T

Qst. (27)

In our trials, we use 10 multipath components placed 1m away
from the object. Based on observations, and the results of
Figure 8, multipath does add a small diversity gain. Moreover,
given a fixed transmit power, multipath does also offer an SNR
gain at the receiver.

D. Robustness

Computing the codes schemes suggested by our design
criteria requires channel knowledge. However, we are not
likely to have perfect channel knowledge, and so we test
the performance of our design criteria when computed using
imperfect channel estimation. We introduce channel estimation
errors through several methods: (1) adding isotropic noise to
channel outputs, (2) adding noise to the inter-tag channel re-
sponse matrix B, (3) misestimating the reflections coefficients
of the tags.

The simplest of introducing channel estimation errors is
adding isotropic noise to the channel outputs in different ori-
entations. Specifically, instead of using F (Q;C) to compute
the suggested coding scheme, we use

F
0
(Q;C) = F (Q;C) +WQ, (28)

where WQ is white Gaussian noise, and WQ is independent
of WQ0 for every Q

0
6= Q. We tested the following values of

the SNR = 5, 10, 15dB, with 50 trials each, and then averaged
the performance. In particular, the results of Figure 9 indicate
that our designed codes retain nearly all even when computed
with channel estimation errors greater than or equal to 10dB.
The figures also indicate that the design criteria maintain
considerable improvement over channel oblivious codes when
computed with channel estimation errors less than 10dB.

On the other hand, we can add channel estimation errors
by adding noise to the the inter-tag channel response matrix
B (see Equation (3)). The noise used is normalized by
the entries of B. The results of Figure 10 indicate that
misestimating B has a minor effect on the performance
when B is misestimated with errors less than or equal to
10dB. Moreover, we add channel errors by misestimating
the reflectivity of the tags (e.g. estimating the reflectivity as
+0.4,�0.4 when the actual reflectivities are +0.5,�0.5). We
measure the misestimation of tag reflection coefficients using
the relative absolute error i.e., if we assume true reflectivities
0.5,�0.5 and a relative error of 10%, then we compute
the codes under the assumption that the reflectivities are
{(0.4,�0.4), (0.6,�0.6), (0.4,�0.6), (0.6,�0.4)}.

V. CONCLUSION

Active backscatter tags can be very useful when estimating
the 3D orientation of objects if tag responses are carefully
designed. In this work, we suggested two design criteria, and
developed a bound showing how different system parameters
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Fig. 8: The average (top) and worst-case (bottom) errors for the designed codes in the cases of line-of-site only and multipath.

Fig. 9: The average (top) and worst-case (bottom) errors of the designed codes for different levels of channel estimation errors.

affect performance. Through numerical simulations, we ex-
hibited the effectiveness of the suggested designs, and their
robustness in the face of imperfect channel knowledge. There
are several open questions remaining including designs for
more complicated or time-varying environments. Additionally,
an exploration of the effectiveness of non-coherent coding in
such scenarios is a potentially interesting direction.

VI. PROOFS

A. Proof of Theorem III.1

Let Y = F (Q,C) + W be as in (11). {bQ(Y ) = Q
0
} is

the event that our estimator outputs a different orientation Q
0

when the object is in orientation Q. We can rewrite the average
error in terms of events of this form.

L(C) =

X

Q2Q
EW

h
✓(bQ(Y ),Q)

i
, (29)

=

X

Q2Q

X

Q0 6=Q

P
⇣
bQ(Y ) = Q

0
⌘
✓(Q,Q

0
). (30)

The probability of the event {bQ(Y ) = Q
0
} is a difficult

quantity to compute outside of cases when Q is very small.
Therefore, we wish to upper bound it with another probability
that is easier to compute. Recall that

bQ(Y ) = arg min
Q2Q

kY � F (Q,C)k
F
. (31)

Given the functional form of the estimator, a necessary
but insufficient condition for our estimator to output Q

0 is
for the received signal Y to satisfy kY � F (Q;C)k ���Y � F (Q

0
;C)

��. Given this relationship between the events,
we have that:

�bQ(Y )Q
0 

✓
�
kY � F (Q;C)k

F
�
��Y � F (Q

0
;C)

��
F

 
. (32)

The latter is event that our noisy channel output is closer
to the noiseless channel output corresponding to Q

0 than the
noiseless channel output corresponding to Q. Combining (30)

and (32) with the monotonicity of the probability function
(P(A)  P(B) for all events A ✓ B), we obtain an upper
bound on the average error.

L(C) =

X

Q2Q
Q0 6=Q

P
⇣
bQ(Y ) = Q

0
⌘
✓(Q,Q

0
), (33)



X

Q2Q
Q0 6=Q

P
�
kY � F (Q;C)k

F
�
��Y � F (Q

0
;C)

��
F

�

✓(Q,Q
0
).

(34)

In other words, we use the standard pairwise error probability
to develop an upper bound to the average error. Combining
(34) with the following standard lemma [16], which provides
the form for the probability of the event in the right-hand-side
of (32), we obtain the desired result.

Lemma VI.1

Let Y ⇠ CN (0,�2
In), and let a 2 Cn

, then

P (kY k � kY � ak) =
1

2
erfc

✓
kak

2
p
2�

◆
, (35)

where erfc is the complement of the Gauss error function.

B. Proof of Theorem III.2

Let C 2 [m]
N⇥T be a coding matrix, and let P be the family

of distributions given by

P = {CN (F (Q;C),�
2
I);Q 2 Q}. (36)

The probability distributions in P can be parameterized by
their orientation. Let P, P 0

2 P be distributions with Q and
Q

0 as their corresponding orientations, then Le Cam’s method
[15] asserts that:

M(C) �
✓(Q,Q

0
)

2
(1� TV(P, P

0
)) , (37)
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Fig. 10: The average (top) and worst-case (bottom) errors of the designed codes for different levels of channel estimation
errors.

Fig. 11: The average (top) and worst-case (bottom) errors of the designed codes for different levels of channel estimation
errors.

where TV(P, P
0
) is the total variation distance [17]. The

Kullback-Leibler divergence [18] is a different and widely
used measure of discrepancy between two probability distri-
butions. It has many desirable properties, and it’s an upper
bound for many other popular discrepancy measures. Through
Pinsker’s inequality [17], one can upper bound the total-
variation distance through the Kullback-Leibler divergence.
The total-variation distance between two probability distribu-
tions P and P

0, the Kullback-Leibler divergence, and Pinsker’s
inequality are respectively given by:

TV(P, P
0
) =

Z

CKT

|P (x)� P
0
(x)| dx. (38)

KL(P ||P
0
) =

Z

CKT

P (x) log
P (x)

P 0(x)
dx. (39)

kP � P
0
kTV 

r
1

2
KL(P ||P 0). (40)

M(C) �
✓(Q,Q

0
)

2
(1� TV(P, P

0
)) , (41)

�
✓(Q,Q

0
)

2

 
1�

r
1

2
KL(P ||P 0)

!
, (42)

�
✓(Q,Q

0
)

4
exp (�KL(P ||P

0
)) , (43)

=
✓(Q,Q

0
)

4
exp

 
�

��F (Q;C)� F (Q
0
;C)

��2
F

2�2

!
.

(44)

(42) follows from Pinsker’s inequality, and (43) follows from
the inequality 1 � x  e

�x. For two independent Gaussians
P = CN (µ,�

2
I) and P

0
= CN (µ

0
,�

2
I) with the same

co-variance matrix, the Kullback-Leibler divergence is given
by kµ� µ

0
k
2
/2�

2 [17], and therefore, we obtain (44). Since
(44) holds for every P, P

0
2 P , we can take the maximum

over every pair of distributions (equivalently, every pair of
orientations Q,Q

0
2 Q), which gives

M(C) � max
Q,Q02Q

exp

 
�
��F (Q;C)� F (Q

0
;C)

��2
F

2�2

!

✓(Q,Q
0
)

4
. (45)

C. Proof of Theorem III.3

Letting P be the same family of distributions as in (36), P and
P

0 distributions in P with Q and Q
0 as their corresponding

distributions, then we can start with Equation (42) which was
obtained with Le Cam’s method and Pinsker’s inequality. In
other words, we start with:

M(C) �
✓(Q,Q

0
)

2

 
1�

r
1

2
KL(P ||P 0)

!
, (46)

where KL(P ||P
0
) is the Kullback-Leibler Divergence. We ob-

tain (46) using Pinsker’s inequality [17]. For two independent
Gaussians P = CN (µ,�

2
I) and P

0
= CN (µ

0
,�

2
I) with

the same covariance matrix, KL(P, P
0
) = kµ� µ

0
k2 /2�

2.
Hence,

M(C) �
✓(Q,Q

0
)

2

✓
1�

1

2�

��F (Q;C)� F (Q
0
;C)

��
F

◆
.

(47)
Now, let Rt be the diagonal matrix of reflectivities when using
code configuration ct, then recall

f(Q; ct) = HQRt(I �BRt)
�1

H
T

Qst, (48)

= HQ(I �BRt)
�1

RtH
T

Qst, (49)

= HQ(I �BRt)
�1diag

n
H

T

Qst

o
r(ct), (50)

where r(ct) is the column vector of reflectivities correspond-
ing to code ct. We wish to bound

��f(Q; ct)� f(Q
0
; ct)

��, so
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we use the inequality kAtxtk  kAtkF kxtk with xt = r(ct)

and

At =HQ(I �BRt)
�1diag{HQst}

�HQ0(I �BRt)
�1diag{HQ0st}.

Lemma VI.2

If D is an approximate range between the tagged object’s

hinge point and the aperture, then for all t 2 {1, . . . , T}

kAtkF 

✓
K

4⇡�D2

◆��Xtag
��
F

��� eBt

���
F

✓(Q,Q
0
). (51)

Letting � =

p
✓(Q,Q

0
), we have that:

��F (Q;C)� F (Q
0
;C)

��
F

(52)

=

vuut
TX

t=1

��f(Q; ct)� f(Q
0
; ct)

�� (53)



vuut
TX

t=1

kAtk
2
F
kr(ct)k

2 (54)

 �

vuuuut

TX

t=1

✓
K

2⇡�D2

��Xtag
��
F

��� eBt

���
F

kr(ct)k

◆2

| {z }
�t

, (55)

where (54) follows from the inequality kAxk  kAk
F
kxk,

and (55) follows from Lemma VI.2. Hence, a lower bound on
the worst-case error is given by:

M(C) �
�
2

2

0

@1�
�

2�

vuut
TX

t=1

�t

1

A . (56)

To obtain a tightest bound, we have to find the maximum of
the right-hand side with respect to �. Maximizing (56) with
respect to � is equivalent to finding:

max
x

x
2
(1� x) (57)

(57) attains it’s maximum value at x = 2/3. This gives us
that:

M(C) �
32⇡

2
�
2
�
2
D

4

27K2
��Xtag

��2
F

P
T

t=1k
eBtk

2
F
kr(ct)k

2
2

(58)

D. Proof of Lemma VI.2

For ease of computation, we drop the t subscript for now,
and define eB = (I �BRt)

�1 with b̃i,j = B̃i,j , and H̃Q =

HQB̃ with h̃
Q
i,j

= (H̃Q)i,j . Taking st = 1, we have that:

kAtk
2
F
=

KX

k=1

NX

n=1

�����

KX

i=1

h̃
Q
k,n

h
Q
i,n

� h̃
Q0

k,n
h
Q0

i,n

�����

2

, (59)



KX

k=1

NX

n=1

KX

i=1

���h̃Q
k,n

h
Q
i,n

� h̃
Q0

k,n
h
Q0

i,n

���
2
. (60)

Using Cauchy-Schwartz inequality, we arrive at:
���h̃Q1

k,n
h
Q1
i,n

� h̃
Q2
k,n

h
Q2
i,n

���
2


���b̃n

���
2

2

NX

l=1

���hQ1
k,l

h
Q1
i,n

� h
Q2
k,l

h
Q2
i,n

���
2

(61)

Assuming we operate in the far-field region, we can approxi-
mate h with

h
Q
i,j

=
e
�j( 2⇡

� )kx
ant
i �Qxtag

j k
2

4⇡
��xant

i
�Qxtag

j

��
2

⇡
e
�j( 2⇡

� )kx
ant
i �Qxtag

j k
2

4⇡D
,

(62)
where D is an approximate range between the tagged object’s
hinge point and the aperture. Hence, we can make the follow-
ing approximation:

���hQ
k,l
h
Q
i,n

� h
Q0

k,l
h
Q0

i,n

���
2
⇡

✓
1

4⇡D

◆4

����e
�j( 2⇡

� )

�
kx

ant
k �Qxtag

l k
2
+kx

ant
i �Qxtag

n k
2

�

�e
�j( 2⇡

� )

�
kx

ant
k �Q0xtag

l k
2
+kx

ant
i �Q0xtag

n k
2

����� . (63)

Using 1� e
�x

 x, we can further upper bound (63) by:

0

@

q
2⇡
�

4⇡D

1

A

4

���xant

k
�Qxtag

l

��
2
+
��xant

i
�Qxtag

n

��
2

�
��xant

k
�Q

0xtag

l

��
2
�
��xant

i
�Q

0xtag

n

��
2

�
. (64)

Using the triangle and matrix norm inequalities in (64), we
obtain

���hQ
k,l
h
Q
i,n

� h
Q0

k,l
h
Q0

i,n

���
2
 2

0

@

q
2⇡
�

4⇡D

1

A

4
⇣��xtag

l

��2
2
+
��xtag

n

��2
2

⌘

✓(Q,Q
0
). (65)

Combining (65) and (60), and summing over the indices of
the tags and antennas, we obtain the desired result.

E. Proof of Lemma III.1

Let C 2 RN⇥T be a code of size T , and let ⇡ be its
corresponding proportions vector, then

��F (Q;C)� F (Q
0
;C)

��2
2

(66)

=

TX

t=1

��f(Q; ct)� f(Q
0
; ct)

��2
2
, (67)

=

TX

t=1

X

c2{0,1}N

1ct=c

��f(Q; c)� f(Q
0
; c)

�� , (68)

=

X

c2{0,1}N

TX

t=1

1ct=c

��f(Q; c)� f(Q
0
; c)

�� , (69)

= T

X

c2{0,1}N

1

T

TX

t=1

1ct=c

��f(Q; c)� f(Q
0
; c)

�� , (70)

= T

X

c2{0,1}N

⇡c

��f(Q; c)� f(Q
0
; c)

�� , (71)

= T
⌦
⇡, g(Q,Q

0
)
↵
. (72)

Substituting (72) in the expressions of U(C) and V(C), we
obtain the expressions in (20) and (21).
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F. Proof of Theorem III.4

Suppose C = [c1 · · · cT ] and C
0
= [c

0
1 · · · c

0
T
] are two coding

matrices with the same relative weight vectors. In other words,
⇡c = ⇡

0
c for every code configuration c. If the counts of the

different configurations are the same, then there exists some
permutation ⌧ on {1, . . . , T} such that c⌧(t) = c

0
t

for all t.
We show the errors do not depend on the ordering of the code
configurations due to the iid nature of the noise. To see this,
let Y = F (Q;C) +W , then

bQ(Y ) (73)

= bQ (F (Q;C) +W ) , (74)

= argmin
Q0

��F (Q;C)� F (Q
0
;C) +W

��2
F
, (75)

= argmin
Q0

TX

t=1

��f(Q; ct)� f(Q
0
; ct) +wt

��2 , (76)

= argmin
Q0

TX

t=1

��f(Q; c⌧(t))� f(Q
0
; c⌧(t)) +w⌧(t)

��2 ,

(77)

= argmin
Q0

TX

t=1

��f(Q; c
0
t
)� f(Q

0
; c

0
t
) +w⌧(t)

��2 , (78)

= bQ
�
F (Q;C

0
) +W

0�
, (79)

= bQ(Y
0
), (80)

where wt is the t
th

K-sized block of W , W 0 is the vector
with w

0
t
= w⌧(t), and Y

0
= F (Q;C

0
) + W

0. Since the
elements of W independent and identically distributed, we get
that W and W

0 are also identically distributed. Combining
the previous statement with the fact that W and W

0 are
permutations of one another, we can replace any expectation
with respect to W with an expectation with respect to W

0.
Hence,

L(C) =

X

Q2Q
EW

h
✓(bQ(Y ),Q)

i
, (81)

=

X

Q2Q
EW

h
✓(bQ(Y

0
),Q)

i
, (82)

=

X

Q2Q
EW 0

h
✓(bQ(Y

0
),Q)

i
, (83)

= L(C
0
). (84)

(82) follows from the earlier computation, and (83) follows
from the our earlier discussion. Repeating the exact same
computation with

P
Q2Q replaced with maxQ2Q shows that

M(C) = M(C
0
) i.e. C and C

0 share the same worst-case
performance. Hence, we get that C and C

0 share the same
errors, and that our performance measures depend only on
the coding matrix through the relative weight vector. It is
worthwhile to note that this property of the errors is not unique
to Gaussian noise, but is valid for any noise vector whose
components are independent and identically distributed.
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A. Stelzer, “Indoor Localization of Passive UHF RFID Tags Based
on Phase-of-Arrival Evaluation,” in IEEE Transactions on Microwave

Theory and Techniques, vol. 61, pp. 4724-4729, 2013.

Mohamad Rida Rammal is currently a PhD student
at the University of California, Los Angeles. He
received his bachelors in Electrical and Computer
Engineering and Mathematics from the American
University of Beirut (AUB) in 2019, and the M.S.
degree in Electrical and Computer Engineering from
UCLA in 2021. His research interests include Wire-
less Imaging, Statistical Learning, and Computer
Vision.

Suhas Diggavi is currently a Professor of Electrical
and Computer Engineering at UCLA. His undergrad-
uate education is from IIT, Delhi and his PhD is from
Stanford University. He has worked as a principal
member research staff at AT&T Shannon Labora-
tories and directed the Laboratory for Information
and Communication Systems (LICOS) at EPFL.
At UCLA, he directs the Information Theory and
Systems Laboratory. His research interests include
information theory and its applications to several
areas including machine learning, security & privacy,

wireless networks, data compression, cyber-physical systems, bio-informatics
and neuroscience; more information can be found at http://licos.ee.ucla.edu.

He has received several recognitions for his research from IEEE and ACM,
including the 2013 IEEE Information Theory Society & Communications
Society Joint Paper Award, the 2021 ACM Conference on Computer and
Communications Security (CCS) best paper award, the 2013 ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc)
best paper award, the 2006 IEEE Donald Fink prize paper award among
others. He was selected as a Guggenheim fellow in 2021. He also received
the 2019 Google Faculty Research Award, 2020 Amazon faculty research
award and 2021 Facebook/Meta faculty research award. He served as a IEEE
Distinguished Lecturer and also served on board of governors for the IEEE
Information theory society (2016-2021). He is a Fellow of the IEEE. He
has been an associate editor for IEEE Transactions on Information Theory,
ACM/IEEE Transactions on Networking and other journals and special issues,
as well as in the program committees of several IEEE conferences. He has
also helped organize IEEE and ACM conferences including serving as the
Technical Program Co-Chair for 2012 IEEE Information Theory Workshop
(ITW), the Technical Program Co-Chair for the 2015 IEEE International
Symposium on Information Theory (ISIT) and General co-chair for ACM
Mobihoc 2018. He has 8 issued patents.

Ashutosh Sabharwal received the B.Tech. degree
from IIT Delhi, New Delhi, India, in 1993, and
the M.S. and Ph.D. degrees from The Ohio State
University, Columbus, OH, USA, in 1995 and 1999,
respectively. He is currently the Department Chair
and a Ernest D. Butcher Professor with the Depart-
ment of Electrical and Computer Engineering, Rice
University, Houston, TX, USA. He is the Founder of
the WARP Project (warp.rice.edu), an open-source
project which is currently in use with more than 125
research groups worldwide and has been used by

more than 500 research articles. He is currently leading several NSF-funded
center-scale projects, notably Rice RENEW (renew-wireless.org), to develop
an open-source software-defined wireless network platform. His research
interests are in wireless theory, design, and large-scale deployed testbeds.
He received the 2017 IEEE Jack Neubauer Memorial Award, the 2018 IEEE
Advances in Communications Award, the 2019 ACM MobiCom Community
Contribution Award, and the 2019 and 2021 ACM Test-of-Time Awards. He
is a Fellow of National Academy of Inventors.

http://licos.ee.ucla.edu

	Introduction
	Problem Formulation
	System Model
	Codes
	Performance Measures

	Theoretical Analysis
	Design Criterion For The Average Error
	Codes For the Worst-Case Error
	Minimax Bound
	Structure of the optimal codes

	Numerical Simulations
	Simulation Setup
	The Average and Worst-Case Errors
	Multipath
	Robustness

	Conclusion
	Proofs
	Proof of Theorem III.1
	Proof of Theorem III.2
	Proof of Theorem III.3
	Proof of Lemma VI.2
	Proof of Lemma III.1
	Proof of Theorem III.4

	References
	Biographies
	Mohamad Rida Rammal
	Suhas Diggavi
	Ashutosh Sabharwal


