

32 **Biocatalytic enantioselective C(sp^3)–H fluorination enabled by directed evolution of**
33 **nonheme Fe enzymes**

34 Liu-Peng Zhao¹, Binh Khanh Mai², Lida Cheng¹, Fangqiu Gao¹, Yunlong Zhao¹, Rui Guo¹, Hao
35 Wu³, Yongda Zhang³, Peng Liu^{2*} and Yang Yang^{1,4*}

36
37 ¹ Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
38 93106, USA

39 ² Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

40 ³ Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road,
41 Ridgefield, Connecticut 06877, USA

42 ⁴ Biomolecular Science and Engineering (BMSE) Program, University of California, Santa
43 Barbara, California 93106, USA

44
45 *E-mail: pengliu@pitt.edu; yang@chem.ucsb.edu

46
47 Owing to the scarcity of C–F bond forming enzymatic reactions in nature and the
48 contrasting prevalence of organofluorine moieties in bioactive compounds, developing
49 biocatalytic fluorination reactions represents a preeminent challenge in enzymology,
50 biocatalysis, and synthetic biology. Additionally, catalytic enantioselective C(sp^3)–H
51 fluorination remains a challenging problem facing synthetic chemists. Although many
52 nonheme Fe halogenases have been discovered to promote C(sp^3)–H halogenation reactions,
53 efforts to convert these Fe halogenases to fluorinases have remained unsuccessful. Here, we
54 report the development of an enantioselective C(sp^3)–H fluorination reaction, catalysed by a
55 plant-derived nonheme enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO),
56 which is repurposed for radical rebound fluorination. Directed evolution afforded a C(sp^3)–
57 H fluorinating enzyme ACCO_{CHF} displaying 200-fold higher activity, substantially improved
58 chemoselectivity and excellent enantioselectivity, converting a range of substrates into
59 enantioenriched organofluorine products. Notably, almost all the beneficial mutations were
60 found to be distal to the Fe centre, underscoring the importance of substrate tunnel
61 engineering in nonheme Fe biocatalysis. Computational studies reveal that the radical
62 rebound step with the Fe(III)–F intermediate has a low activation barrier of 3.4 kcal mol^{–1}
63 and is kinetically facile.

64
65 **Introduction**

66 Over the past decade, groundbreaking studies on unnatural biocatalysis have transformed the
67 biochemical landscape of natural enzymes to encompass biocatalytic reactions that were never
68 previously encountered in nature^{1–5}. Recently, biocatalysis researchers have discovered a range of
69 useful unnatural enzymatic activities, particularly asymmetric free radical transformations with
70 metalloenzymes^{6–10} as well as nicotinamide^{11,12}, flavin^{11,12}, and pyridoxal phosphate (PLP)¹³–
71 dependent enzymes. Together, these efforts substantially expanded the reaction territory of enzyme
72 catalysis and furnished powerful tools for asymmetric synthesis. Despite these notable advances,

73 new-to-nature enzymatic C–F bond formation has long eluded the biocatalysis community. The
74 dearth of fluorination enzymatic functions is in stark contrast to the ubiquity of organofluorine
75 compounds in the pharmaceutical and agrochemical industries, as the incorporation of fluorine
76 into organic compounds can often lead to improved bioavailability, enhanced metabolic stability,
77 and desirable protein binding affinity^{14–17}. In light of the broad utility of organofluorine compounds,
78 particularly those possessing a fluorinated stereogenic centre¹⁸, fluorine biocatalysis¹⁹ and fluorine
79 synthetic biology^{20–23} have long captivated synthetic chemists and synthetic biologists. Among the
80 various fluorination methods^{24,25}, biocatalytic enantioselective C(sp³)–H fluorination would be
81 particularly valuable¹⁰, as only a handful of chemocatalytic asymmetric C(sp³)–H fluorination
82 methods are available to non-enolate systems^{26,27}, further highlighting the challenge in imposing
83 stereocontrol over fluorination processes. Among these, highly enantioselective C(sp³)–H
84 fluorination using a free radical mechanism²⁶ is particularly challenging. The successful
85 implementation of stereoselective biocatalytic fluorination will provide a more sustainable
86 alternative to traditional resource-intensive chemical syntheses of fluorinated medicinal agents^{28,29}.

87 To date, fluorinases discovered from bacteria and archaea represent the only natural enzyme
88 class capable of incorporating a fluorine atom to organic substrates (**Fig. 1a**).³⁰ Using a simple
89 bimolecular nucleophilic substitution (S_N2) mechanism, natural fluorinases catalyse the
90 conversion of S-adenosylmethionine (SAM) to 5'-fluoro-5'-deoxyadenosine (5'-FDA), giving rise
91 to fluorometabolites through downstream biosynthetic pathways.^{20,30} On the other hand, an array
92 of α -ketoglutarate (α KG)-dependent nonheme Fe enzymes has been discovered and engineered to
93 facilitate C–H (pseudo)halogenation reactions^{31–34}, including chlorination^{33–35}, bromination³⁶,
94 azidation^{37–39} and nitration³⁷ (**Fig. 1b**). Mechanistically, these nonheme Fe enzymes generate a
95 carbon-centred radical by hydrogen atom transfer (HAT) via the intermediacy of (X)Fe(IV)=O (X
96 = (pseudo)halide). The incipient carbon-centred radical subsequently undergoes halogen atom
97 transfer with the Fe(III)–X intermediate, leading to C–H halogenated products^{31–34}. Despite
98 extensive studies, to date, converting nonheme Fe halogenases to fluorinases has not been met
99 with success. Several mechanistic rationales, including the low binding affinity of Fe enzymes
100 toward the aqueous fluoride ion (F[–]) owing to the high hydration energy of F[–]⁴⁰, challenging
101 formation of the ferryl intermediate from the putative Fe(II)–F species, and difficulties steering
102 the radical rebound activity toward the Fe(III)–F over Fe(III)–OH moiety, have been postulated to
103 account for this long-standing challenge.

104 To address these limitations, we capitalised on a new-to-nature enzymatic mechanism to
105 discover and evolve Fe enzymes for asymmetric C–F bond formation. In 2021, our group
106 implemented metalloredox radical biocatalysis as a general means to develop unnatural
107 biocatalytic radical reactions (**Fig. 1c**)^{6–8}. In our prior study, we engineered P450 enzymes as atom
108 transfer radical cyclases to catalyse stereocontrolled bromine atom transfer^{6,7}. Contemporaneous
109 to our studies, elegant work from the Huang laboratory led to highly efficient nonheme Fe azidases
110 using a radical relay strategy⁹. Parallel to the study from the Huang group, we independently
111 posited that if we could concurrently generate a transient carbon-centred radical and a Fe(III)–F
112 intermediate through a metalloredox atom transfer mechanism (**Figs. 1c and 1d**), we would be able
113 to bypass the energetically demanding fluoride binding step as well as the ferryl intermediate
114 formation for radical generation, thus directly interrogating the feasibility of C–F bond formation
115 with Fe-dependent enzymes. Specifically, inspired by non-stereoselective small-molecule Fe
116 catalysis^{41,42}, our proposal for the biocatalytic asymmetric fluorination using Fe enzymes is
117 outlined in **Fig. 1d**. Starting from the *N*-fluoroamide (**I**), fluorine atom transfer to the Fe(II) enzyme
118 (**II**) would lead to a nitrogen-centred radical (*i.e.*, amidyl radical **III**) and an Fe(III)–F species (**IV**).

119 Due to the high N–H bond dissociation enthalpy (BDE (N–H) = 103.7 kcal·mol⁻¹ as determined
120 by our DFT calculations (see the Supplementary **Fig. S16** for details), rapid 1,5-hydrogen atom
121 transfer (1,5-HAT) of **III** would lead to a new carbon-centred radical (**V**). At this stage,
122 stereoselective radical rebound of **V** with the enzymatic Fe(III)–F intermediate **IV** would lead to
123 C–F bond formation **VI** and convert the ferric enzyme to its ferrous state, thereby completing the
124 catalytic cycle. If successfully implemented, this work would lead to the first examples of
125 metalloenzymes capable of forming C–F bonds. Furthermore, it would provide a rare example of
126 highly enantioselective C(sp³)–H fluorination using an open-shell mechanism.

127 Results and discussion

128 Discovery of C–H fluorinating enzyme activities

129 We commenced our investigation by evaluating an in-house collection of ca. 200
130 metalloproteins and their variants, including diverse heme and nonheme Fe proteins, by high
131 throughput experimentation using 24- or 96-well plates. All the identified active biocatalysts were
132 then validated, and representative results are summarized in **Fig. 2a**. Among all the heme proteins
133 we evaluated, only reduced amide **3a** derived from the *N*-fluoroamide substrate **1a** was observed
134 in varying yields (Table S1). For example, our previously evolved P450 atom transfer radical
135 cyclases P450_{ATRCas1} possessing a Fe-binding serine residue (Table S1, entry 1) and P450_{ATRCas2}
136 lacking an Fe-binding residue (Table S1, entry 2)⁶ provided **3a** in 14% and 17% yield, respectively,
137 with no measurable **2a** formation. In contrast to heme proteins, a set of fluorination biocatalysts
138 emerged from the nonheme Fe enzyme superfamily. Among these, isopenicillin N synthase (IPNS)
139 from *Emericella nidulans* with a two-histidine-one-carboxylate facial triad⁴³ provided the desired
140 C–H fluorination product **2a** in 0.2% yield and 10:90 enantiomeric ratio (e.r.) (**Fig. 2a**, see **Tables**
141 **S1** and **S2** for further details). Anthocyanidin synthase from *Arabidopsis thaliana*⁴⁴ furnished **2a**
142 in 0.4% yield and 37:63 e.r.. Additionally, quercetin 2,3-dioxygenase from *Bacillus subtilis*
143 (*BsuQueD*) with a three-histidine-one-carboxylate coordination sphere⁴⁵ also afforded **1a** in 0.2%
144 yield and 29:71 e.r.. Furthermore, 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) from
145 *Petunia hybrida*^{46,47}, a plant-derived nonheme Fe enzyme with a two-histidine-one carboxylate
146 facial triad whose native function is to produce ethylene from 1-aminocyclopropane-1-carboxylic
147 acid⁴⁶, furnished fluorinated **2a** in 0.9% yield and 10:90 e.r.. Finally, natural Fe- and α KG-
148 dependent C–H halogenases, including SyrB2 (Table S1, entry 7),^{48,49} WelO5 (Table S1, entry
149 8),^{35,50-55} and BesD (Table S1, entry 9),⁵⁶⁻⁵⁸ were found to be ineffective in facilitating this
150 unnatural C(sp³)–H fluorination.

151 Directed evolution of C–H fluorinating enzyme ACCO_{CHF}

152 Due to the high levels of enantioselectivity and slightly better initial activity observed with
153 wild-type (wt) *P. hybrida* ACCO, we selected this nonheme Fe enzyme as the template for the
154 further development of an efficient C(sp³)–H fluorinating biocatalyst (**Fig. 2b**). Guided by the
155 crystal structure of ACCO and our molecular docking studies, we first performed site-saturation
156 mutagenesis (SSM) and screening by targeting amino acid residues in proximity to the nonheme
157 Fe centre. Surprisingly, only a single beneficial mutation I184A with modest activity improvement
158 was found among residues in the closest sphere of Fe (**Fig. 2b**, entry 2 and **Table S3**). In light of
159 the relatively small size of ACCO’s native substrate 1-aminocyclopropane-1-carboxylic acid (see
160 the SI for further details), we postulated that substrate tunnel engineering might be required for
161 this nonheme enzyme to better accommodate bulky non-native substrates. We thus turned our
162 attention to amino acid residues in the β -sheets of the substrate tunnel in protein engineering. In

163 each round of engineering, we selected four tunnel residues for SSM. The best performing variant
164 from the four SSM libraries was then selected as the basis for further optimisation. Through
165 iterative saturation mutagenesis (ISM) and screening, five beneficial mutations distal to the Fe
166 centre were identified in the tunnel-defining β -sheets. Among these, residue 158 was found to play
167 a critical role in modulating the fluorination activity and enantioselectivity. While the
168 incorporation of K158N into ACCO I184A resulted in 1.4-fold higher yield and similar
169 enantioselectivity (**Fig. 2b**, entry 3, $(2.3 \pm 0.1)\%$ yield, 19:81 e.r.), the K158I variant of ACCO
170 I184A furnished **2a** with 3.2-fold higher yield and inverted enantio preference (entry 4, $(4.5 \pm 0.2)\%$
171 yield, 74:26 e.r.). The inverted stereochemistry observed with ACCO I184A K158I relative to that
172 with ACCO I184A is surprising, as the α -carbon of K158 is 10.8 Å away from the Fe centre. These
173 results demonstrated that remote residues such as 158 could influence not only the activity but also
174 the enantioselectivity of ACCO in the current unnatural C–H fluorination.

175 In further directed evolution, F91L was found to be another key mutation providing 6.6-times
176 higher yield and improved enantioselectivity of **2a** (entry 5, $(29.5 \pm 0.5)\%$ yield and 84:16 e.r.).
177 Notably, ACCO I184A K158I F91L was the first variant in this evolutionary lineage favouring the
178 formation of C–H fluorination over the undesired reduction (**2a**:**3a** = 82:18), giving rise to
179 substantially enhanced chemoselectivity. Ultimately, after an additional three rounds of SSM and
180 screening (entries 6–8), directed evolution led to ACCO I184A K158I F91L K172Y K93Q T89A
181 (ACCO_{CHF}, CHF = C–H fluorination), furnishing the enantioenriched fluorination product **2a** in
182 $(97 \pm 2)\%$ yield, 95:5 e.r., 98:2 chemoselectivity and (211 ± 5) total turnover number (TTN, entry
183 8). By further lowering the biocatalyst loading via decreasing the optical density of *E. coli* cells
184 ($OD_{600} = 10$) overexpressing ACCO_{CHF}, a TTN of (601 ± 5) could be achieved without lowering
185 the yield of **2a** (entry 9). Further decreasing OD_{600} to 5 led to a TTN of (820 ± 10) . Importantly,
186 among all the nonheme Fe enzymes we investigated, ACCO_{CHF} represents the only biocatalyst
187 capable of delivering enantioenriched fluorinated products in excellent yields without forming
188 other side products, such as the reduction products and C–H hydroxylation products. Furthermore,
189 550 mg of evolved ACCO_{CHF} could be obtained from 1L *E. coli* culture in TB, which represented
190 a 1.7-fold improvement in protein expression level relative to wt ACCO and underscored its utility
191 in preparative biotransformations (**Table S15** and **Fig. S12**).

192 We further characterized the Michaelis–Menten kinetics of two intermediate variants ACCO
193 I184A K158I F91L K172Y, ACCO I184A K158I F91L K172Y K93Q and the final variant
194 ACCO_{CHF} using purified enzymes in the presence of stoichiometric quantities of dithionite as the
195 reductant (**Figs. S6–S8**). Michaelis–Menten kinetics showed that while the k_{cat} value of these
196 ACCO variants remained approximately unchanged (2.1 min^{-1} , 2.5 min^{-1} and 2.3 min^{-1} ,
197 respectively), the K_M value of this evolutionary series decreased from $520\text{ }\mu\text{M}$ to $420\text{ }\mu\text{M}$ to $210\text{ }\mu\text{M}$. Together,
198 the k_{cat}/K_M value of these variants increased from $4.0\text{ mM}^{-1}\text{min}^{-1}$ to $6.0\text{ mM}^{-1}\text{min}^{-1}$
199 to $11\text{ mM}^{-1}\text{min}^{-1}$. Thus, these results indicated that the improved enzymatic activity towards C–H
200 fluorination originated from enhanced substrate binding, which may arise from substrate tunnel
201 engineering.

202 Substrate scope of biocatalytic asymmetric C–H fluorination

203 With the evolved variant ACCO_{CHF} in hand, we next examined the substrate scope of this
204 biocatalytic enantioselective C(sp³)–H fluorination. Substituents at the 3, 4, and 5 positions of the
205 aromatic ring were compatible, providing the corresponding fluorinated products in good to
206 excellent enantioselectivity (**2b**, **2c**, and **2d**). Electron-withdrawing fluorine (**2e**) and chlorine (**2f**)

207 substituents as well as electron-donating methoxy (**2g**) were compatible with this transformation.
208 *Tert*-Amyl amides (**2h**) could also be transformed with good enantioselectivity. Furthermore,
209 extended aliphatic substituents, including a propyl (**2i**), a homoallyl (**2j**) and a methoxyethyl (**2k**)
210 group, could be efficiently fluorinated with excellent enantiocontrol. A tetrahydronaphthalene core
211 (**2l**) also underwent biotransformation to furnish the corresponding enantioenriched fluorinated
212 product. Additionally, tertiary C(sp³)–H bonds could also be efficiently and chemoselectively
213 fluorinated to provide the desired fluorination product (**2i**) in excellent yields. A thiophene
214 containing substrate **1n** could also undergo C–H fluorination with excellent enantioselectivity and
215 chemoselectivity (90:10 e.r., **2n**:**3n** = 88:12, see the SI for details). Additional examples of
216 unsuccessful substrates are provided in the SI. For example, primary C(sp³)–H bonds (**1o**) could
217 not be efficiently fluorinated with evolved ACCO_{CHF}. *N*-fluoroacrylamide **1p** was transformed
218 with low activity but excellent enantio- and chemoselectivity.

219 Importantly, the excellent catalytic activity, enantioselectivity, and chemoselectivity of
220 ACCO_{CHF} allowed this biocatalytic C–H fluorination to be easily carried out on a gram-scale with
221 a relatively small amount of whole-cell biocatalysts, demonstrating the practicality of this
222 biotransformation. The absolute stereochemistry of **2a** was ascertained by single crystal X-ray
223 diffraction analysis (see the SI for details).

224 Mechanistic insights from computational investigations

225 Our radical clock experiment with a cyclopropyl substrate indicated the formation of
226 cyclopropane ring-opening product, consistent with the proposed radical mechanism (see the SI
227 for details). To gain further insights into the mechanism and the roles of active site residues of this
228 new-to-nature biocatalytic C(sp³)–H fluorination, we performed computational studies using
229 classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations
230 (see the SI for computational details). First, classical MD simulations of the complexes of *N*-
231 fluoroamide **1a** with both wt ACCO and ACCO_{CHF} variants were carried out to study the preferred
232 substrate binding modes and to identify key active site residues involved in substrate binding (**Fig.**
233 **4**). In order to model the substrate near-attack-conformations⁵⁹ that promote the fluorine atom
234 transfer step, the Fe–F distance was restrained to be within 3.0–3.2 Å using a harmonic potential
235 of 100 kcal·mol⁻¹·Å⁻².⁹ The restrained MD simulations showed that in order to minimise
236 unfavourable steric repulsions with the protein scaffold, substrate **1a** approaches the Fe centre from
237 the coordination site *trans*- to H234. Furthermore, these MD studies indicated that mutations
238 K158I, F91L, and T89A widen the substrate entrance tunnel, providing more space to facilitate the
239 transport of the bulky *N*-fluoroamide substrate **1a** into the active site. In particular, mutations
240 K158I and F91L greatly reduce the bulkiness of these tunnel bottleneck residues, increasing the
241 tunnel bottleneck radius from 3.12 Å in wt ACCO to 4.17 Å in ACCO_{CHF} (see **Fig. S15**). In addition,
242 the I184A mutation opens up more space to accommodate **1a**, allowing the fluorine atom in **1a** to
243 approach the Fe centre while circumventing unfavourable steric clashes between the adjacent *N*-
244 *t*Bu group of **1a** and active site residues.

245 Next, to elucidate the reactivities of the unnatural fluorine atom transfer and fluorine rebound
246 steps, we performed DFT calculations of the reaction energy profile of this biocatalytic C–H
247 fluorination. We constructed a truncated model based on the active site geometry of the ACCO
248 enzymes, in which imidazole (Im) and acetate (AcO) groups are used to model aspartate and
249 histidine residues, respectively⁶⁰. Our DFT calculations indicate that all the intermediates and
250 transition states in the catalytic cycle feature a high-spin quintet Fe(II) and sextet Fe(III)⁹ centres
251 (see **Fig. S18** for computed energy profile at the less favorable intermediate-spin state). Previous

252 studies indicated that fluorine atom transfer to a transition metal centre is kinetically more
253 challenging than the analogous chlorine and bromine atom transfer, due to the higher bond
254 dissociation energy (BDE) of the fluorine atom donor. In addition, fluorine atom rebound from a
255 transition metal fluoride is also slower than other halogens because of the strong metal fluoride
256 bond⁶¹. In contrast, the computed reaction energy profile (**Fig. 5**) reveals a relatively low barrier
257 of 11.8 kcal·mol⁻¹ for the initial fluorine atom transfer (**TS-1**). Here, the high exothermicity (-14.3
258 kcal·mol⁻¹) in converting an activated N–F bond in **4** to a stronger Fe(III)–F bond provides the
259 thermodynamic driving force for substrate activation. In addition, the Fe(II) centre in **4** has a
260 relatively high HOMO energy of -7.03 eV, promoting the charge transfer (0.31 e) from the Fe
261 centre to the *N*-fluoroamide substrate **1a** at the transition state (**TS-1**). After the fluorine atom
262 transfer, the nitrogen-centred radical in complex **5** undergoes rapid 1,5-hydrogen atom transfer via
263 **TS-2** to provide the benzyl radical intermediate **6**. Finally, radical rebound with the Fe(III)–F
264 species leading to C–F bond formation via **TS-3** is found to be highly kinetically facile, displaying
265 an activation barrier of 3.4 kcal·mol⁻¹ with respect to **6**. Unlike other transition metal fluorides
266 featuring a strong M–F bond with BDEs higher than 100 kcal·mol⁻¹⁶², the Fe(III)–F bond in **6** has
267 a weaker BDE of 81.4 kcal·mol⁻¹, allowing thermodynamically downhill fluorine rebound to form
268 the benzylic C–F bond with a BDE of 98.1 kcal·mol⁻¹. In addition, the heterolytic dissociation of
269 F⁻ from Fe(III)–F in **5** and **6** was found to be thermodynamically unfavourable (**Fig. S19**), allowing
270 for productive C–F bond formation via the radical rebound pathway. We note that the low
271 activation energy required for C–F bond formation involving an enzymatic Fe(III)–F intermediate
272 has broad implications in repurposing natural nonheme Fe halogenases as fluorinases.

273 Conclusion

274 In summary, we repurposed and evolved a nonheme Fe enzyme 1-aminocyclopropane-1-
275 carboxylic acid oxidase (ACCO) to catalyse C(sp³)–H fluorination reactions with excellent levels
276 of chemo- and enantiocontrol. Our evolved Fe-dependent enzyme ACCO_{CHF} constitutes the first
277 new-to-nature C–F bond forming biocatalyst, which has long been sought after in biocatalysis,
278 synthetic biology, and bioinorganic chemistry. By exploiting an underutilised radical mechanism
279 for enzymatic C–F bond formation, the current new-to-nature fluorinating enzymes complement
280 the only naturally occurring fluorinase relying on a closed-shell S_N2 mechanism for fluorination.
281 Furthermore, this biocatalytic fluorination represents a rare method for catalytic asymmetric
282 C(sp³)–H fluorination and the only radical C–H fluorination with excellent enantiocontrol. The
283 utility of our newly evolved nonheme enzymes was further demonstrated in the gram-scale
284 preparation of enantioenriched organofluorides. Together, the evolution of efficient and selective
285 Fe-dependent fluorinating enzymes affords a valuable tool for the biological synthesis of chiral
286 organofluorine compounds via a C–H functionalization logic, thereby setting the stage for the
287 further advancement of fluorine biocatalysis and synthetic biology.

288 Methods

289 Expression of ACCO_{CHF} variants.

290 *E. coli* BL21(DE3) cells harbouring recombinant plasmid encoding the appropriate ACCO variant
291 were grown overnight at 37 °C and 230 rpm in 4 mL LB media supplemented with 0.05 mg/mL
292 kanamycin (LB_{kan}). Preculture (1.5 mL, 5% v/v) was used to inoculate 28.5 mL TB media
293 supplemented with 0.05 mg/mL kanamycin (TB_{kan}) in a 125 mL Erlenmeyer flask. The culture was
294 incubated at 37 °C and 230 rpm for 2 h to reach an OD₆₀₀ of approximately 1.5. The culture was
295 then cooled on ice for 20 min and induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside

296 (IPTG, final concentrations). Protein expression was performed at 20 °C and 200 rpm for 20 h.
297 The cells were then transferred to a conical tube (50 mL) and harvested by centrifugation (3434 g,
298 4 min, 4 °C) using an Eppendorf 5910R tabletop centrifuge.

299 **Analytical scale enantioselective biocatalytic C–H fluorination.** The suspension of *E. coli* cells
300 expressing ACCO in M9-N buffer (typically $OD_{600} = 10\text{--}30$, 540 μL) was added to a vial (2 mL)
301 and kept on ice. This vial was then transferred into an anaerobic chamber, where the solution of
302 Mohr's salt (30 μL , 13.3 mM stock solution in degassed H₂O) and the *N*-fluoroamide substrate
303 (30 μL , 133 mM stock solution in MeCN) was added. The final reaction volume was 600 μL ; the
304 final concentration of the *N*-fluoroamide substrate was 6.67 mM. (Note: the reaction performed
305 with *E. coli* cells resuspended to $OD_{600} = 30$ indicates that 540 μL cell suspension with an
306 OD_{600} of 30 were added.) The vials were sealed and shaken on a Corning digital microplate shaker
307 at room temperature and 680 rpm for 24 h. The reaction mixture was then analyzed by chiral HPLC.

308 **Gram scale enantioselective biocatalytic C–H fluorination.** *E. coli* BL21(DE3) cells harbouring
309 the recombinant plasmid encoding ACCO_{CHF} were grown overnight at 37 °C and 230 rpm in 25
310 mL LB media supplemented with 0.05 mg/mL kanamycin (LB_{kan}). Preculture (20 mL, 2% v/v) was
311 used to inoculate 1 L TB media supplemented with 0.05 mg/mL kanamycin (TB_{kan}) in a 4 L
312 Erlenmeyer flask. The culture was incubated at 37 °C and 230 rpm for 2.5 h to reach an OD_{600} of
313 approximately 1.5. The culture was then cooled on ice for 30 min and induced with 0.5 mM
314 isopropyl β-D-1-thiogalactopyranoside (IPTG, final concentrations). Protein expression was
315 performed at 20 °C and 200 rpm for 20 h.

316 The cells were harvested by centrifugation (3214 g , 5 min, 4 °C) using a Thermo Scientific
317 Sorvall Lynx 6000 superspeed centrifuge and resuspended in M9-N buffer ($OD_{600} = 30$). An aliquot
318 of *E. coli* cell suspension (2 mL) was taken to determine protein concentration using the SDS-
319 PAGE assay. Cell suspensions in M9-N buffer were kept on ice until use. (Note: leaving the cell
320 suspension at room temperature for an extended period of time will lead to significantly reduced
321 enzyme activity.) To a 1 L Erlenmeyer flask equipped with a screw cap was added a suspension of
322 *E. coli* cells in M9-N buffer expressing the desired enzyme variant. The flask was transferred to
323 an anaerobic chamber, where a solution of Mohr's salt (5 mL, 150 mM stock solution in degassed
324 H₂O) and the *N*-fluoroamide substrate (1.67 g, 7.5 mmol, 500 mM in MeCN, 15 mL for substrate
325 **1a**) were added. The flask was capped, sealed with parafilm, taken out of the anaerobic chamber
326 and allowed to shake in an Eppendorf Innova 44R shaker at room temperature and 230 rpm for 24
327 h.

328 Upon the completion of this biotransformation, the reaction mixture was extracted with 300
329 mL EtOAc. The mixture was transferred to a 1 L ultracentrifugation bucket and spun down (4629
330 g , 10 min) using a Thermo Scientific Sorvall Lynx 6000 superspeed centrifuge to separate the
331 organic layer from the aqueous layer. The aqueous layer was extracted with EtOAc for an
332 additional five times. Combined organic layers were dried over MgSO₄ and an aliquot of the
333 organic layer (400 μL) was used for product enantioselectivity via chiral HPLC. Combined organic
334 layers were concentrated *in vacuo* with the aid of a rotary evaporator and purified by column
335 chromatography with the aid of a Biotage Isolera to afford the desired organofluoride product **2a**
336 in 88% yield and 95:5 e.r..

337 **Acknowledgements**

338 This research is supported by the NIH (R35GM147387 to Y.Y.), NSF (CHE-2247505 to P.L.) and
339 Boehringer Ingelheim's IU More Green Grant (BI # 763955 to Y.Y.). We acknowledge the NSF

340 BioPACIFIC MIP (DMR-1933487) and NSF MRSEC at UCSB (DMR-2308708) for access to
341 instrumentation. Computational studies were carried out at the University of Pittsburgh Center for
342 Research Computing and the Advanced Cyberinfrastructure Coordination Ecosystem: Services &
343 Support (ACCESS) program, supported by NSF award numbers OAC-2117681, OAC-1928147
344 and OAC-1928224. We thank Prof. Yiming Wang (University of Pittsburgh) for critical reading of
345 this manuscript.

346 **Data availability:** All data are available in the main text and the Supplementary Information.
347 Plasmids encoding evolved ACCO variants reported in this study are available for research
348 purposes from Y.Y. under a material transfer agreement with the University of California Santa
349 Barbara. Solid-state structure of **2a** is available free of charge from the Cambridge
350 Crystallographic Data Centre under reference number CCDC 2294341. All the protein structures
351 used are available from the protein data bank using their accession numbers.

352 **Author contributions**

353 Y.Y. conceived and directed the project. L.Z. performed all the enzyme engineering, Michaelis–
354 Menten kinetics, substrate synthesis, and substrate scope studies. Y.Y., L.C. and Y.-L.Z.
355 performed enzyme mining. L.Z. and L.C. performed initial enzyme evaluation. F.G. and R.G.
356 provided some substrates. B.K.M. carried out the computational studies with P.L. providing
357 guidance. H.W. and Y.-D.Z. participated in discussions and provided suggestions. Y.Y., L.Z., P.L.
358 and B.K.M. wrote the manuscript with the input of all other authors.

359 **Competing interests**

360 The authors declare no competing interests.

361

362 **Fig. 1. Enzymatic fluorination: an overview.** **a**, The only known fluorinating enzyme: naturally
363 occurring fluorinase that catalyses the conversion of *S*-adenosylmethionine (SAM) to 5'-
364 fluorodeoxyadenosine (5'-FDA)³⁰. **b**, Naturally occurring nonheme Fe C(sp³)–H halogenases that
365 catalyse the conversion of C–H bonds to C–X bonds (X = Cl, Br, N₃ and NO₂)^{31–34}. **c**, Our
366 previously evolved unnatural heme-dependent atom transfer halogenases^{6–8}. **d**, This work: evolved
367 nonheme Fe enzymes for unnatural enantioselective C(sp³)–H fluorination. Enzyme images were
368 generated using PyMOL from PDB structures 4H23 and 1W9Y. S_N2 = bimolecular nucleophilic
369 substitution, His = histidine, Asp = aspartate, HAT = hydrogen atom transfer, XAT = halogen atom
370 transfer.

371

372 **Fig. 2. Development of chemo- and enantioselective nonheme Fe enzyme ACCO_{CHF} for new-
373 to-nature C(sp³)–H fluorination: enzyme mining and engineering.** **a**, Discovery of fluorine
374 atom transfer activity among Fe-dependent enzymes. **b**, Directed evolution of ACCO_{CHF} as a
375 highly chemo- and enantioselective C–H fluorinating enzyme. Active-site illustration of ACCO
376 was made using Pymol from PDB ID: 1W9Y. ACCO = 1-aminocyclopropane-1-carboxylic acid
377 oxidase, His = histidine, Asp = aspartate, e.r. = enantiomeric ratio, TTN = total turnover number.
378 OD₆₀₀ = optical density of *E. coli* cells measured at 600 nm in 1 cm light path.

379

380 **Fig. 3. Substrate scope of ACCO_{CHF}-catalysed asymmetric C(sp³)–H fluorination.** Reaction
381 conditions: suspensions of *E. coli* cells harbouring ACCO_{CHF} (540 µL in M9-N), (NH₄)₂Fe(SO₄)₂

382 (30 μ L, 13.3 mM in degassed H₂O) and *N*-fluoroamide substrate **1** (30 μ L, 133 mM in MeCN), 680
383 rpm, 24 h. ^a1.5-gram scale synthesis was carried out using whole *E. coli* cells derived from 1 L of
384 TB expression culture. See the Supplementary Information for details. r.t., room temperature; CCO
385 = 1-aminocyclopropane-1-carboxylic acid oxidase.

386

387 **Fig. 4. The Most populated structures of the enzyme–substrate complexes from MD**
388 **simulations.** **a**, The most populated structures from restrained MD simulations of the enzyme–
389 substrate complexes of **1a** with wt ACCO. **b**, The most populated structures from restrained MD
390 simulations of the enzyme–substrate complexes of **1a** with tACCO_{CHF} variants. Substrate entrance
391 tunnels are shown in orange. MD = molecular dynamics, ACCO = 1-aminocyclopropane-1-
392 carboxylic acid oxidase.

393

394 **Fig. 5. Computational studies using a truncated active site model.** **a**, DFT-computed reaction
395 energy profile of C–H fluorination of *N*-fluoroamide **1** using a truncated model based on the active
396 site of ACCO enzyme at the (U)B3LYP-D3(BJ)/def2-TZVP/SMD//(U)B3LYP-D3(BJ)/6-31G(d)–
397 SDD(Fe) level of theory. Energies are with respect to **4**. Imidazole (Im) and acetate (AcO) groups
398 are models for aspartate and histidine residues, respectively. **b**, Optimized geometries of the
399 fluorine atom transfer (**TS-1**) and fluorine radical rebound (**TS-3**) transition states. Ac, acetyl; Im,
400 imidazole

401

402 References

- 1 Renata, H., Wang, Z. J. & Arnold, F. H. Expanding the Enzyme Universe: Accessing Non-Natural Reactions by Mechanism-Guided Directed Evolution. *Angew. Chem. Int. Ed.* **54**, 3351-3367 (2015).
- 2 Brandenberg, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. *Curr. Opin. Biotechnol.* **47**, 102-111 (2017).
- 3 Leveson-Gower, R. B., Mayer, C. & Roelfes, G. The importance of catalytic promiscuity for enzyme design and evolution. *Nat. Rev. Chem.* **3**, 687-705 (2019).
- 4 Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. *Nat. Catal.* **3**, 203-213 (2020).
- 5 Klaus, C. & Hammer, S. C. New catalytic reactions by enzyme engineering. *Trends Chem.* **4**, 363-366 (2022).
- 6 Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. *Science* **374**, 1612-1616 (2021).
- 7 Fu, Y. *et al.* Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity. *J. Am. Chem. Soc.* **144**, 13344-13355 (2022).
- 8 Fu, W. *et al.* Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis. *Nat. Catal.* **6**, 628-636 (2023).
- 9 Rui, J. *et al.* Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp³)–H azidation. *Science* **376**, 869-874 (2022).
- 10 Ren, X. & Fasan, R. Engineered and artificial metalloenzymes for selective C–H functionalization. *Curr. Opin. Green Sustain. Chem.* **31**, 100494 (2021).

425 11 Emmanuel, M. A. *et al.* Photobiocatalytic Strategies for Organic Synthesis. *Chem. Rev.* **123**,
426 5459-5520 (2023).

427 12 Harrison, W., Huang, X. & Zhao, H. Photobiocatalysis for Abiological Transformations.
428 *Acc. Chem. Res.* **55**, 1087-1096 (2022).

429 13 Cheng, L. *et al.* Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal
430 radical biocatalysis. *Science* **381**, 444-451 (2023).

431 14 Wang, J. *et al.* Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced
432 to the Market in the Last Decade (2001–2011). *Chem. Rev.* **114**, 2432-2506 (2014).

433 15 Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications
434 of Fluorine in Medicinal Chemistry. *J. Med. Chem.* **58**, 8315-8359 (2015).

435 16 Zhou, Y. *et al.* Next Generation of Fluorine-Containing Pharmaceuticals, Compounds
436 Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural
437 Trends and Therapeutic Areas. *Chem. Rev.* **116**, 422-518 (2016).

438 17 Ogawa, Y., Tokunaga, E., Kobayashi, O., Hirai, K. & Shibata, N. Current Contributions of
439 Organofluorine Compounds to the Agrochemical Industry. *iScience* **23**, 101467 (2020).

440 18 Inoue, M., Sumii, Y. & Shibata, N. Contribution of Organofluorine Compounds to
441 Pharmaceuticals. *ACS Omega* **5**, 10633-10640 (2020).

442 19 Wu, L., Maglangit, F. & Deng, H. Fluorine biocatalysis. *Curr. Opin. Chem. Biol.* **55**, 119-
443 126 (2020).

444 20 Walker, M. C. & Chang, M. C. Y. Natural and engineered biosynthesis of fluorinated
445 natural products. *Chem. Soc. Rev.* **43**, 6527-6536 (2014).

446 21 Walker, M., C. *et al.* Expanding the Fluorine Chemistry of Living Systems Using
447 Engineered Polyketide Synthase Pathways. *Science* **341**, 1089-1094 (2013).

448 22 Sirirungruang, S. *et al.* Engineering site-selective incorporation of fluorine into polyketides.
449 *Nat. Chem. Biol.* **18**, 886-893 (2022).

450 23 Rittner, A. *et al.* Chemoenzymatic synthesis of fluorinated polyketides. *Nat. Chem.* **14**,
451 1000-1006 (2022).

452 24 Szpera, R., Moseley, D. F. J., Smith, L. B., Sterling, A. J. & Gouverneur, V. The
453 Fluorination of C–H Bonds: Developments and Perspectives. *Angew. Chem. Int. Ed.* **58**, 14824-
454 14848 (2019).

455 25 Leibler, I. N.-M., Gandhi, S. S., Tekle-Smith, M. A. & Doyle, A. G. Strategies for
456 Nucleophilic C(sp³)–(Radio)Fluorination. *J. Am. Chem. Soc.* **145**, 9928-9950 (2023).

457 26 Huang, X. *et al.* Late Stage Benzylic C–H Fluorination with [¹⁸F]Fluoride for PET Imaging.
458 *J. Am. Chem. Soc.* **136**, 6842-6845 (2014).

459 27 Park, H., Verma, P., Hong, K. & Yu, J.-Q. Controlling Pd(iv) reductive elimination
460 pathways enables Pd(II)-catalysed enantioselective C(sp³)–H fluorination. *Nat. Chem.* **10**, 755-
461 762 (2018).

462 28 Britton, R. *et al.* Contemporary synthetic strategies in organofluorine chemistry. *Nature
463 Reviews Methods Primers* **1**, 47 (2021).

464 29 O'Hagan, D. & Young, R. J. Future challenges and opportunities with fluorine in drugs?
465 *Med. Chem. Res.* **32**, 1231-1234 (2023).

466 30 O'Hagan, D. & Deng, H. Enzymatic Fluorination and Biotechnological Developments of
467 the Fluorinase. *Chem. Rev.* **115**, 634-649 (2015).

468 31 Vaillancourt, F. H., Yeh, E., Vosburg, D. A., Garneau-Tsodikova, S. & Walsh, C. T. Nature's
469 Inventory of Halogenation Catalysts: Oxidative Strategies Predominate. *Chem. Rev.* **106**, 3364-
470 3378 (2006).

471 32 Agarwal, V. *et al.* Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and
472 Mechanistically Diverse. *Chem. Rev.* **117**, 5619-5674 (2017).

473 33 Crowe, C. *et al.* Halogenases: a palette of emerging opportunities for synthetic biology—
474 synthetic chemistry and C–H functionalisation. *Chem. Soc. Rev.* **50**, 9443-9481 (2021).

475 34 Papadopoulou, A., Meyer, F. & Buller, R. M. Engineering Fe(II)/ α -Ketoglutarate-
476 Dependent Halogenases and Desaturases. *Biochemistry* **62**, 229-240 (2023).

477 35 Hayashi, T. *et al.* Evolved Aliphatic Halogenases Enable Regiocomplementary C–H
478 Functionalization of a Pharmaceutically Relevant Compound. *Angew. Chem. Int. Ed.* **58**, 18535-
479 18539 (2019).

480 36 Vaillancourt, F. H., Vosburg, D. A. & Walsh, C. T. Dichlorination and Bromination of a
481 Threonyl-S-Carrier Protein by the Non-heme FeII Halogenase SyrB2. *ChemBioChem* **7**, 748-752
482 (2006).

483 37 Matthews, M. L. *et al.* Direct nitration and azidation of aliphatic carbons by an iron-
484 dependent halogenase. *Nat. Chem. Biol.* **10**, 209-215 (2014).

485 38 Gomez, C. A., Mondal, D., Du, Q., Chan, N. & Lewis, J. C. Directed Evolution of an
486 Iron(II)- and α -Ketoglutarate-Dependent Dioxygenase for Site-Selective Azidation of Unactivated
487 Aliphatic C–H Bonds. *Angew. Chem. Int. Ed.* **n/a**, e202301370 (2023).

488 39 Chan, N. H. *et al.* Non-Native Anionic Ligand Binding and Reactivity in Engineered
489 Variants of the Fe(II)- and α -Ketoglutarate-Dependent Oxygenase, SadA. *Inorg. Chem.* **61**, 14477-
490 14485 (2022).

491 40 Zhan, C.-G. & Dixon, D. A. Hydration of the Fluoride Anion: Structures and Absolute
492 Hydration Free Energy from First-Principles Electronic Structure Calculations. *J. Phys. Chem. A*
493 **108**, 2020-2029 (2004).

494 41 Groendyke, B. J., AbuSalim, D. I. & Cook, S. P. Iron-Catalyzed, Fluoroamide-Directed C–
495 H Fluorination. *J. Am. Chem. Soc.* **138**, 12771-12774 (2016).

496 42 Pinter, E. N., Bingham, J. E., AbuSalim, D. I. & Cook, S. P. N-Directed fluorination of
497 unactivated Csp^3 –H bonds. *Chem. Sci.* **11**, 1102-1106 (2020).

498 43 Ge, W. *et al.* Isopenicillin N Synthase Mediates Thiolate Oxidation to Sulfenate in a
499 Depsipeptide Substrate Analogue: Implications for Oxygen Binding and a Link to Nitrile
500 Hydratase? *J. Am. Chem. Soc.* **130**, 10096-10102 (2008).

501 44 Wilmouth, R. C. *et al.* Structure and Mechanism of Anthocyanidin Synthase from
502 *Arabidopsis thaliana*. *Structure* **10**, 93-103 (2002).

503 45 Gopal, B., Madan, L. L., Betz, S. F. & Kossiakoff, A. A. The Crystal Structure of a
504 Quercetin 2,3-Dioxygenase from *Bacillus subtilis* Suggests Modulation of Enzyme Activity by a
505 Change in the Metal Ion at the Active Site(s). *Biochemistry* **44**, 193-201 (2005).

506 46 Zhang, Z., Ren, J.-S., Clifton, I. J. & Schofield, C. J. Crystal Structure and Mechanistic
507 Implications of 1-Aminocyclopropane-1-Carboxylic Acid Oxidase—The Ethylene-Forming
508 Enzyme. *Chem. Biol.* **11**, 1383-1394 (2004).

509 47 Houben, M. & Van de Poel, B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO):
510 The Enzyme That Makes the Plant Hormone Ethylene. *Front. Plant Sci.* **10** (2019).

511 48 Vaillancourt, F. H., Yin, J. & Walsh, C. T. SyrB2 in syringomycin E biosynthesis is a
512 nonheme Fe^{II} α -ketoglutarate- and O₂-dependent halogenase. *Proc. Natl. Acad. Sci. USA* **102**,
513 10111-10116 (2005).

514 49 Blasiak, L. C., Vaillancourt, F. H., Walsh, C. T. & Drennan, C. L. Crystal structure of the
515 non-haem iron halogenase SyrB2 in syringomycin biosynthesis. *Nature* **440**, 368-371 (2006).

516 50 Mitchell, A. J. *et al.* Structural basis for halogenation by iron- and 2-oxo-glutarate-
517 dependent enzyme WelO5. *Nat. Chem. Biol.* **12**, 636-640 (2016).

518 51 Liu, X. in *Methods Enzymol.* Vol. 604 (ed Bradley S. Moore) 389-404 (Academic Press,
519 2018).

520 52 Voss, M. *et al.* Enzyme Engineering Enables Inversion of Substrate Stereopreference of the
521 Halogenase WelO5*. *ChemCatChem* **14**, e202201115 (2022).

522 53 Büchler, J. *et al.* Algorithm-aided engineering of aliphatic halogenase WelO5* for the
523 asymmetric late-stage functionalization of soraphens. *Nat. Comm.* **13**, 371 (2022).

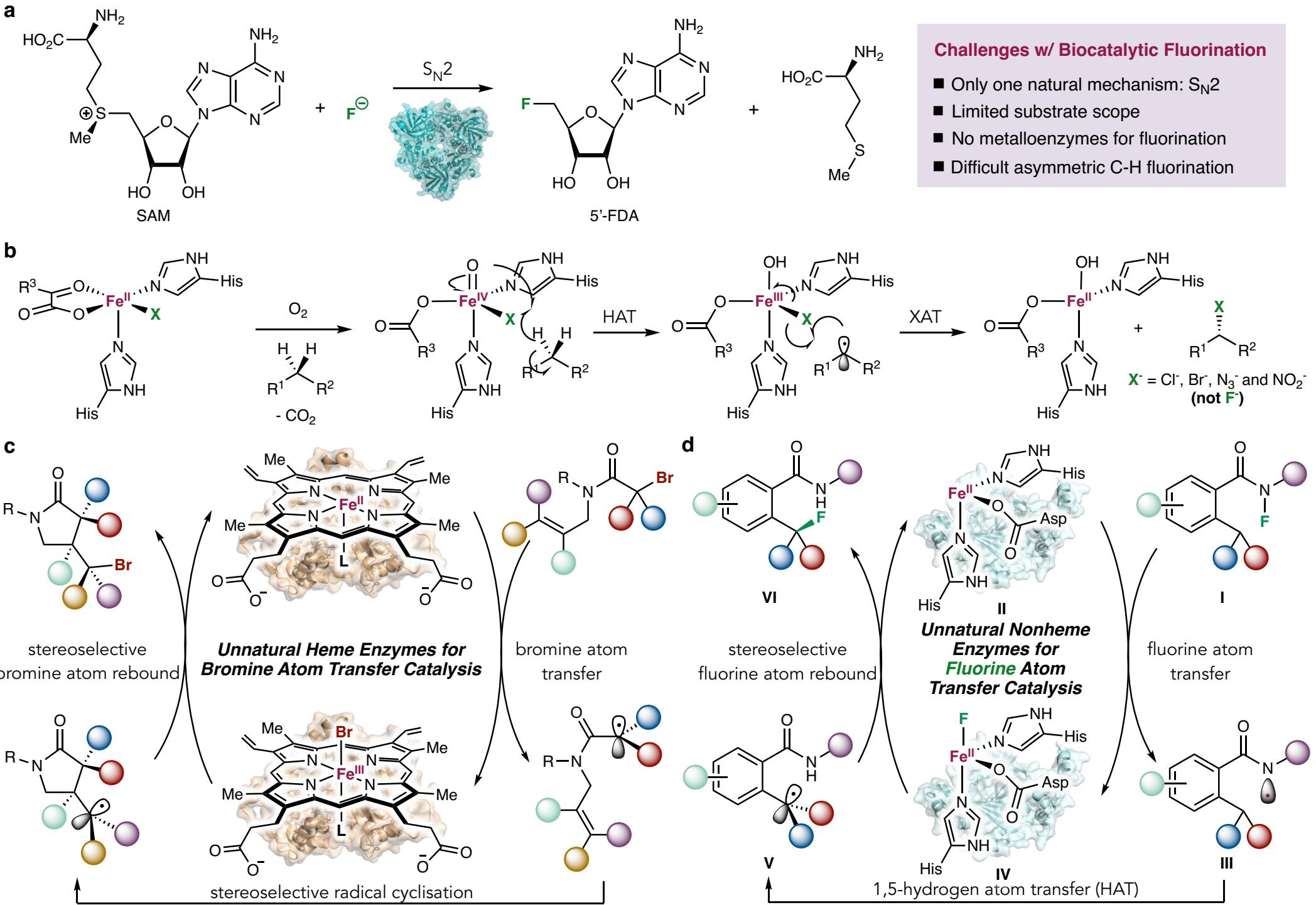
524 54 Duewel, S. *et al.* Directed Evolution of an FeII-Dependent Halogenase for Asymmetric
525 C(sp³)-H Chlorination. *ACS Catal.* **10**, 1272-1277 (2020).

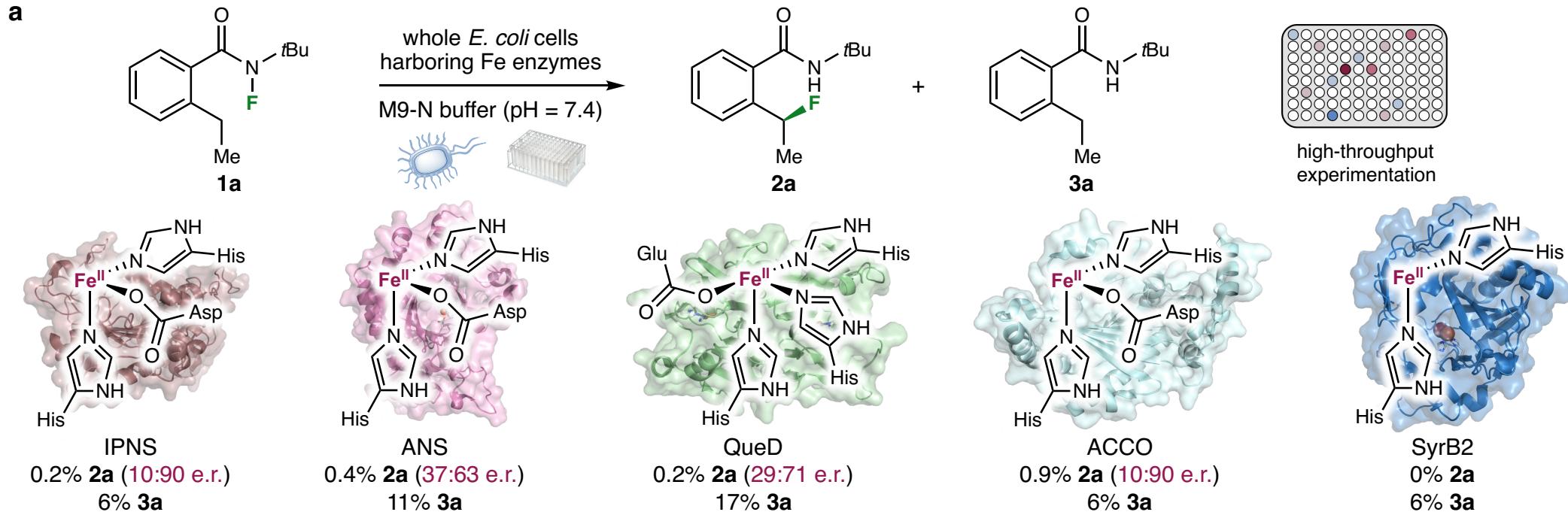
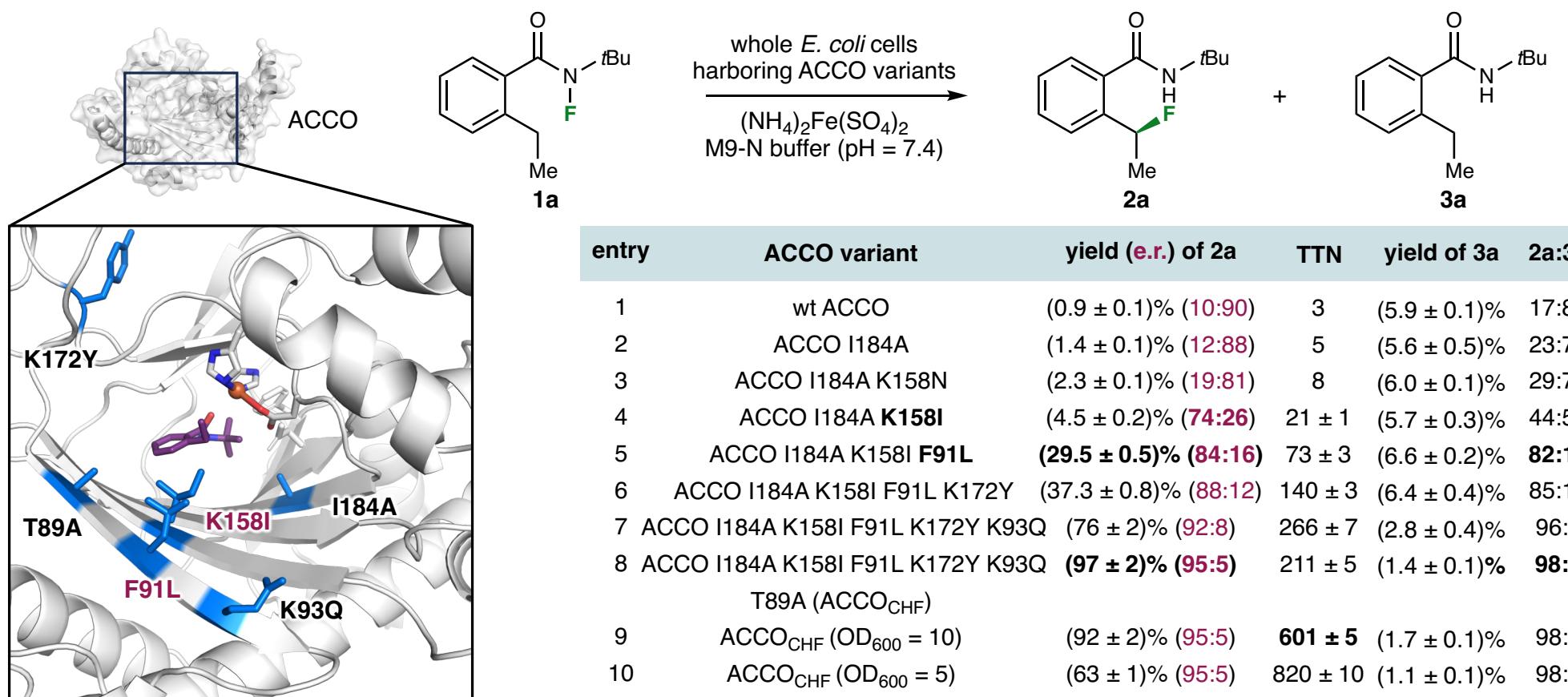
526 55 Hillwig, M. L. & Liu, X. A new family of iron-dependent halogenases acts on freestanding
527 substrates. *Nat. Chem. Biol.* **10**, 921-923 (2014).

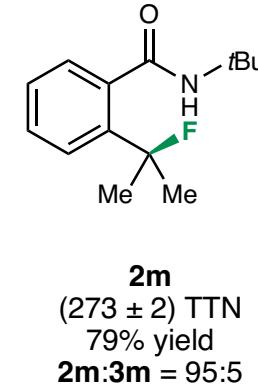
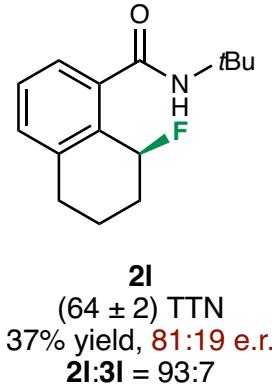
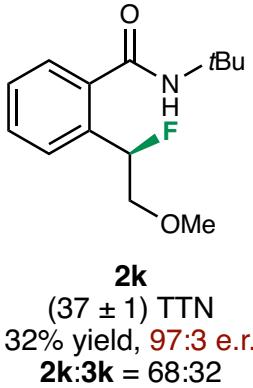
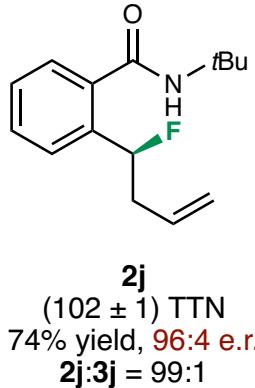
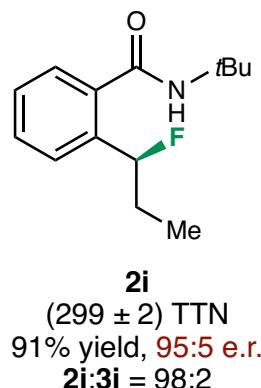
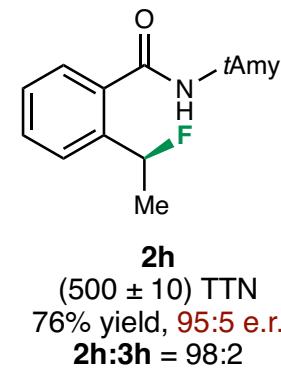
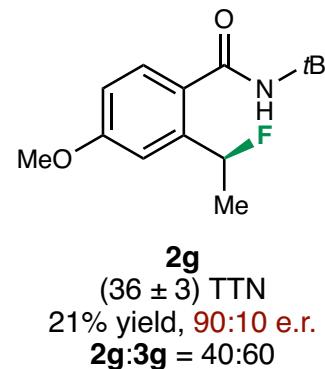
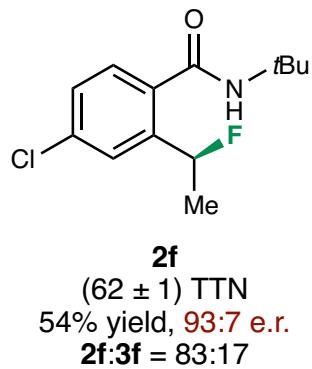
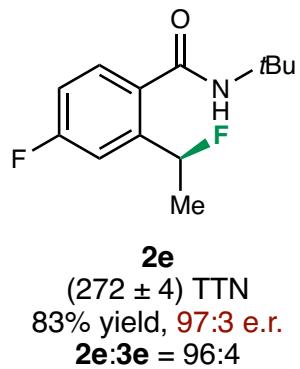
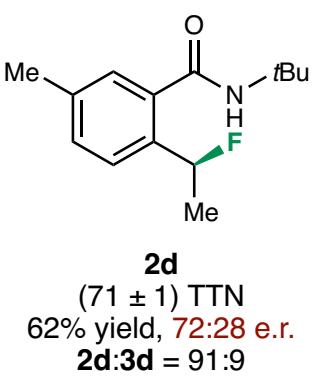
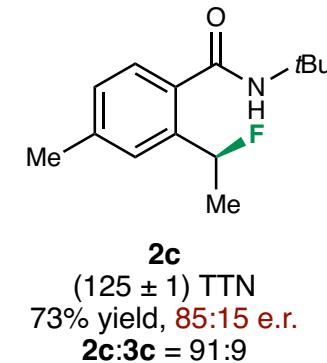
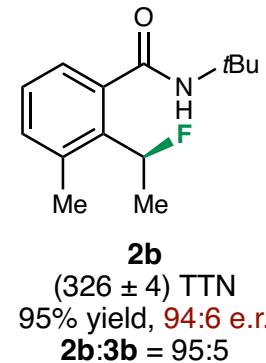
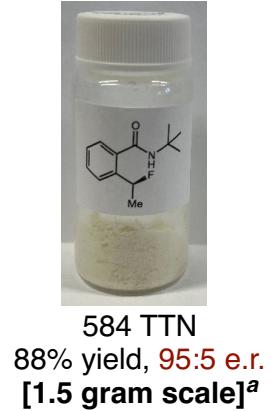
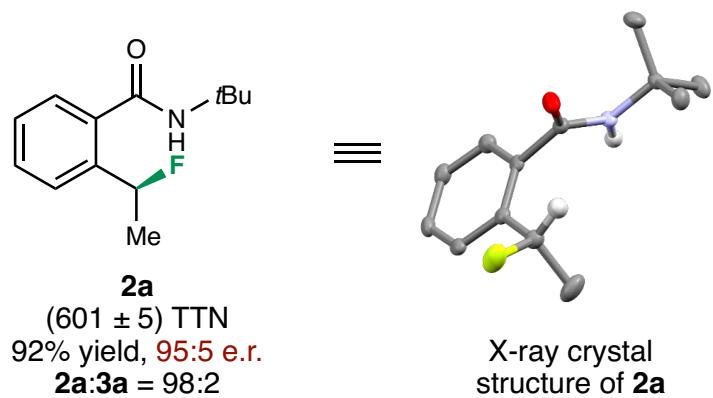
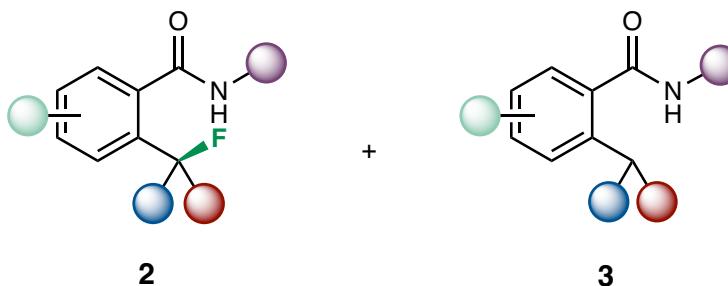
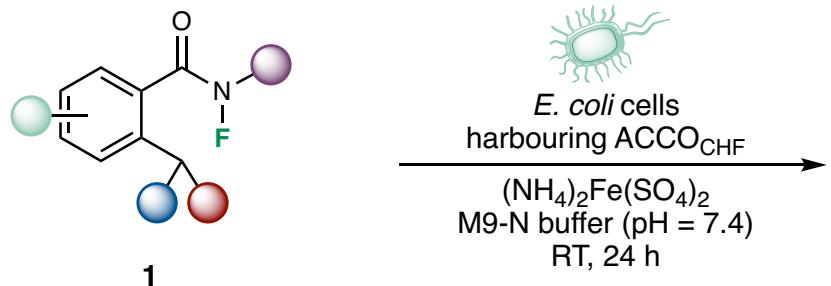
528 56 Marchand, J. A. *et al.* Discovery of a pathway for terminal-alkyne amino acid biosynthesis.
529 *Nature* **567**, 420-424 (2019).

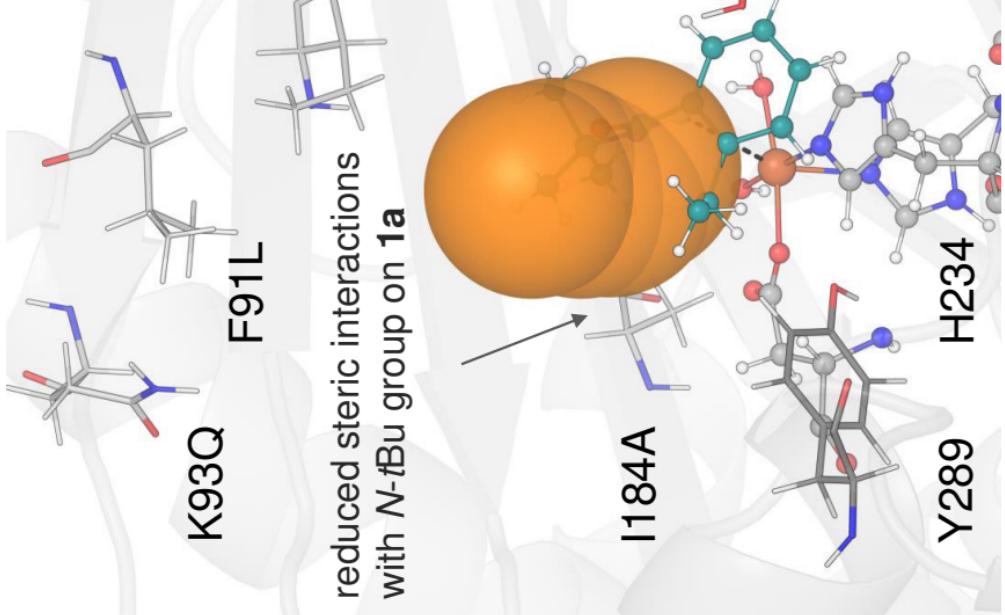
530 57 Neugebauer, M. E. *et al.* A family of radical halogenases for the engineering of amino-
531 acid-based products. *Nat. Chem. Biol.* **15**, 1009-1016 (2019).

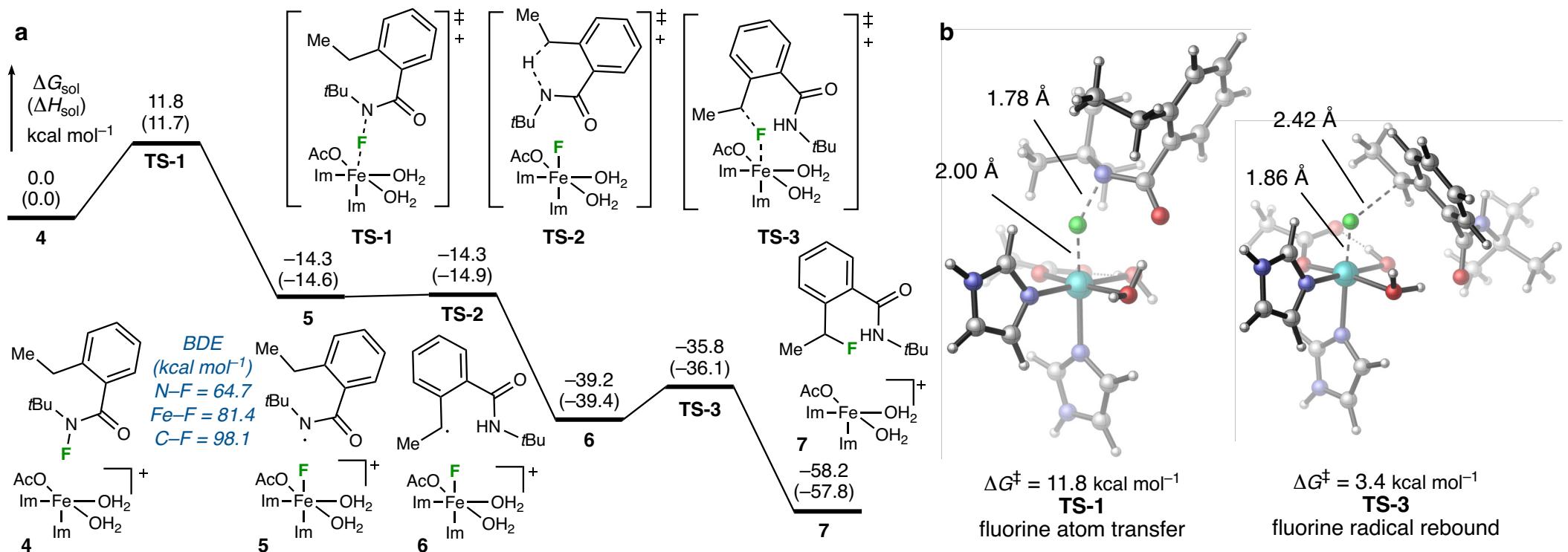
532 58 Neugebauer, M. E. *et al.* Reaction pathway engineering converts a radical hydroxylase into
533 a halogenase. *Nat. Chem. Biol.* **18**, 171-179 (2022).

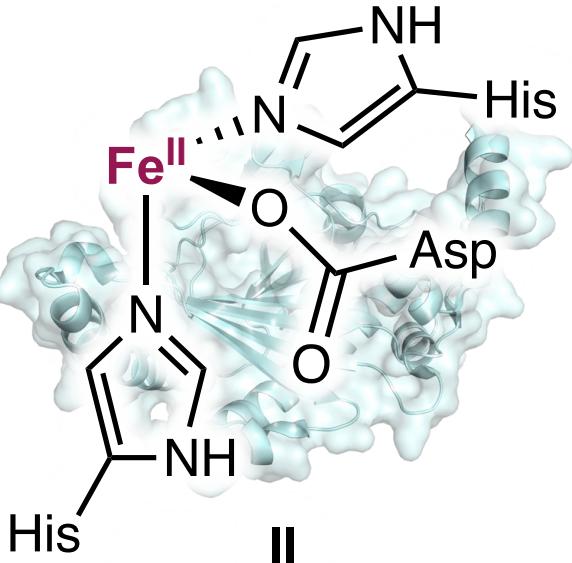

534 59 Knorrscmidt, A. *et al.* Accessing Chemo- and Regioselective Benzylic and Aromatic
535 Oxidations by Protein Engineering of an Unspecific Peroxygenase. *ACS Catal.* **11**, 7327-7338
536 (2021).



537 60 Usharani, D., Janardanan, D. & Shaik, S. Does the TauD enzyme always hydroxylate
538 alkanes, while an analogous synthetic non-heme reagent always desaturates them? *J. Am. Chem.
539 Soc.* **133**, 176-179 (2011).

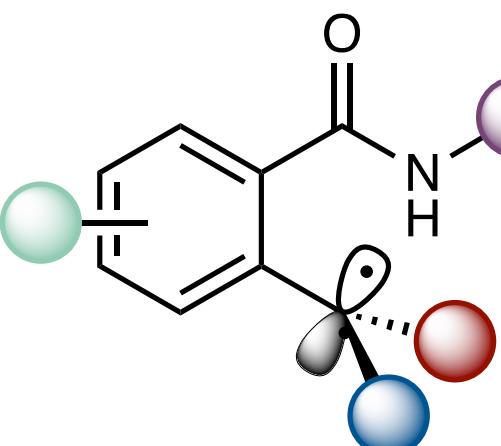
















540 61 Lanzalaco, S. *et al.* Atom Transfer Radical Polymerization with Different Halides (F, Cl,
541 Br, and I): Is the Process “Living” in the Presence of Fluorinated Initiators? *Macromolecules* **50**,
542 192-202 (2017).

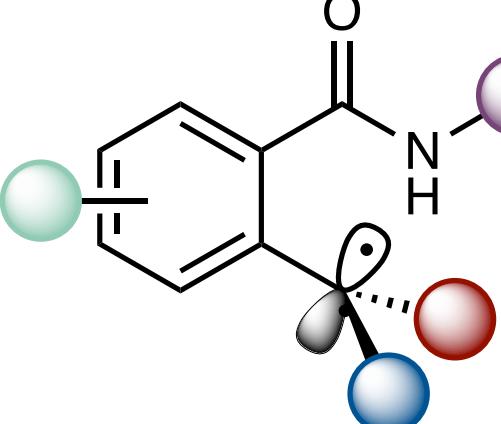


543 62 Aoto, Y. A., de Lima Batista, A. P., Kohn, A. & de Oliveira-Filho, A. G. S. How To Arrive
544 at Accurate Benchmark Values for Transition Metal Compounds: Computation or Experiment? *J.
545 Chem Theory Comput* **13**, 5291-5316 (2017).


546

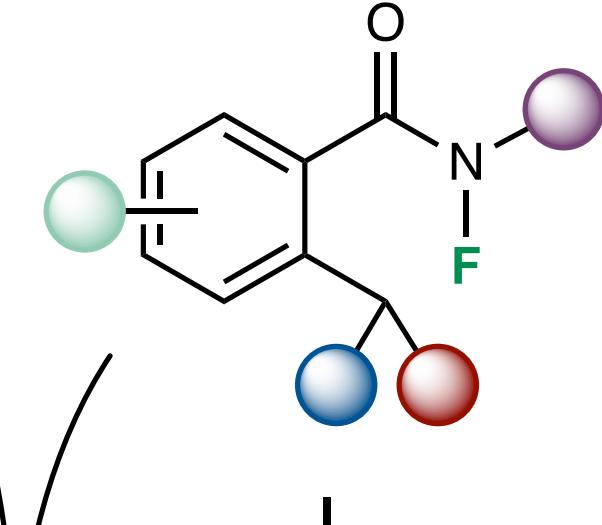


a**b**

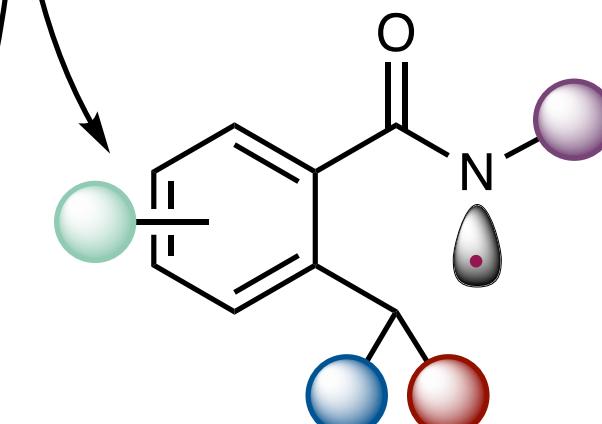




***Unnatural Nonheme
Enzymes for
Fluorine Atom
Transfer Catalysis***


stereoselective
fluorine atom rebound

V


↑

1,5-hydrogen atom transfer (HAT)

I

fluorine atom
transfer

III

↓