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ABSTRACT

In this work we identify changes in high-resolution zones across the
globe linked by environmental similarity that have implications for
agriculture, bioenergy, and zoonosis. We refine exhaustive vector
comparison methods with improved similarity metrics as well as
provide multiple methods of amalgamation across 744 months of
climatic data. The results of the vector comparison are captured
as networks which are analyzed using static and longitudinal com-
parison methods to reveal locations around the globe experiencing
dramatic changes in abiotic stress. Specifically we (i) incorporate up-
dated similarity scores and provide a comparison between similarity
metrics, (ii) implement a new feature for resource optimization, (iii)
compare an agglomerative view to a longitudinal view, (iv) compare
across 2-way and 3-way vector comparisons, (v) implement a new
form of analysis, and (vi) demonstrate biological applications and
discuss implications across a diverse set of species distributions by
detecting changes that affect their habitats. Species of interest are
related to agriculture (e.g., coffee, wine, chocolate), bioenergy (e.g.,
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poplar, switchgrass, pennycress), as well as those living in zones
of concern for zoonotic spillover that may lead to pandemics (e.g.,
eucalyptus, flying foxes).
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1 INTRODUCTION

Plant and animal species are under selective pressure to evolve and
adapt to their natural habitats in order to maximize their chances
of reproduction, which can lead to a dependence on particular
environmental and climatic trends that constrain their geospatial
distributions. However, land-use change and a rapidly changing
climate are putting unprecedented pressure on such species, with
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potentially devastating consequences across agriculture, bioenergy,
and the potential for pandemics. It is therefore important to iden-
tify geospatial zones linked by environmental similarity that are
suitable for particular species of importance as well as to quantify
the amount of change each area is experiencing. Such analyses not
only identify potentially suitable areas not currently in use, but
also detect the level of abiotic stress that relevant species may be
experiencing in each habitat as the environment is changing.

One of the earliest methodologies of climatic clustering is the
Koppen-Geiger method [18]. While an influential method, it relies
heuristic decision rules based on only two source variables (temper-
ature and precipitation) leading to low-precision of the resulting
clusters. More recent related work present unsupervised classifica-
tion methodologies as an improvement to Képpen-Geiger such as
using k-means and PCA, or hierarchical clustering [21, 24, 30, 31]. In
contrast to related work, the methodology used here incorporates 14
different climatic variables to leverage a richer feature space across
a dense global coordinate grid. Furthermore, our methods are exact
in nature by performing exhaustive all-to-all comparisons com-
pared to other related unsupervised methods whose effectiveness
can rely on parameter optimization. Finally, we provide longitudinal
views in addition to static views of clustering.

In this work, we leverage and enhance a high-performance com-
puting methodology to detect global regions correlated by envi-
ronmental features from longitudinal and agglomerative perspec-
tives [19]. We refine a number of technical aspects of the existing
approach, resulting in improvements that increase the computa-
tional efficiency, remove bias against extreme climates, and mea-
sure levels of abiotic stress. Where previous methods considered
up to 500,000 geolocations, our work is applied to more than 8.8
million points of dry land in a uniform grid across the globe. We
demonstrate the applicability of the resulting similarity networks to
species distribution models in agriculture (e.g., coffee, wine, choco-
late), bioenergy (e.g., poplar, switchgrass, pennycress), as well as
those living in zones of concern for zoonotic spillover that may
lead to pandemics (e.g., eucalyptus, flying foxes).

In the following sections we first present background informa-
tion on the vector similarity tool, CoMet, in Section 2. Then, in
Section 3, we present our methodology, highlighting the advance-
ments we have made to the workflow. In Section 4, we present
results (i) comparing methods of measuring similarity, (ii) com-
paring an agglomerative perspective over 62 years versus yearly
windows in a longitudinal format, (iii) comparing a 2-way versus
3-way perspective localized in Eastern Australia, and (iv) on biolog-
ically relevant species distributions. We conclude with a discussion
in Section 5.

2 BACKGROUND
2.1 CoMet

In order to exhaustively compute similarity metrics at-scale, we
leverage the Combinatorial Metrics (CoMet) library [14, 15] on
high-performance computing (HPC) systems including the Oak
Ridge Leadership Computing Facility (OLCF)’s Summit supercom-
puter. The CoMet library is a data analytics application that per-
forms ultra-low precision mathematics by converting raw feature
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data to binary, thereby enabling 1-bit general matrix-matrix multi-
plications. CoMet enables efficient vector similarity metric compu-
tations and has demonstrated up to 98% weak scaling efficiency on
leadership-class systems such as Summit. CoMet was also the first
to exceed the ExaOp/s barrier (10'® operations per second) with a
production application using mixed precision calculations [16].
As a measure of similarity between vectors, we use the Duo met-
ric within CoMet [8]. The binary formatting of feature information
translates into a High (1) feature value or a Low (0) feature value.
In a 2-way comparison, this results in four possible categories of re-
lationships: High-High (1, 1), High-Low (1, 0), Low-High (0, 1), and
Low-Low (0, 0). We shorten these to HH, HL, LH, and LL moving
forward. The Duo metric between two vectors i and j is defined as:
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where r is the given correlation relationship, g is a scaling factor,
and Dj j is the proportion of vectors with the given relationship r:
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where 1 represents the indicator function which returns 1 when
the condition is met (vector i at position n is equal to r; and vector
Jj at position n is equal to rz), and 0 otherwise. The summation in
D; j(r) represents the total number of positions between the two
vectors i and j in which the relation r is found. This summation
is then divided by the total vector length to result in a proportion.
The Duo metric also includes two frequency terms, f; and fj, that
account for the frequency of each value character {0,1} within each
input vector. We will refer to these terms again in Section 3. The
frequency terms are defined as:
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where N is the number of vectors, and r = [ry, r2] is the correlation
relationship. Note here that the indicator function 1 only checks
for the corresponding relation value of interest (r) in the vector
of interest (i in f; and j in f), returning 1 if they are equal and 0
otherwise. The HH and LL metrics represent positive correlations,
and the HL and LH metrics represent anti-correlations. As our ap-
plication is interested in defining correlated regions of geolocations,
our derived correlation metric is the sum of positive correlations,
HH+LL, which has not previously been considered.

The same Duo metric can be extended for use in 3-way vector
comparisons (i.e., comparing all unique vector triplets instead of
unique vector pairs). This extension results in eight possible cat-
egories of relationships: HHH, HHL, LHH, HLH, HLL, LLH, LHL,
and LLL where the final correlation metric of interest in this work
is the sum HHH+LLL, similarly a new consideration. We perform
and compare both 2-way and 3-way Duo calculations in this work.
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3 METHODS

Related work by Lagergren et al. [19] presents a methodology to uti-
lize CoMet for climatic clustering. We follow a similar core method-
ology, however, we introduce several novel modifications. Next,
we outline our methodology while highlighting our algorithmic
refinements. Specific modifications we present are: (i) updating
the vector similarity (correlation) metric to eliminate bias towards
extreme conditions, (ii) implementing a histogram method within
CoMet to eliminate the need for “test” runs to determine correlation
threshold, and (iii) presenting a new analysis method highlighting
absolute change among vectors in comparison to relativistic in re-
lated work. We detail each of these contributions in the following
sections.

3.1 Vector Generation

CoMet utilizes ultra-low precision matrix-multiplications in order
to scale to high-throughput functionality. To leverage such capabil-
ity, the continuous-valued vector inputs are converted into a binary
vector format. In this work, each vector represents one geolocation
(i.e., point of dry land), and the elements comprising each vector
are a representation of environmental features at that location.

To obtain these features, we extracted source data from the Terr-
aClimate database [3]. This resource contains monthly observation
data from January 1958 to December 2019, resulting in a total of
744 months of data across 14 environmental features: maximum
temperature, minimum temperature, vapor pressure, precipitation
accumulation, downward surface shortwave radiation, wind-speed,
reference evapotranspiration (ASCE Penman-Montieth), runoff, ac-
tual evapotranspiration, climate water deficit, soil moisture, snow
water equivalent, palmer drought severity index, and vapor pres-
sure deficit. Following [19], to reduce correlations between climatic
features, we replace maximum temperature with temperature range
(i.e., trange = tmax — tmin), which makes use of the same informa-
tion but reduces the correlation between minimum and maximum
temperature.

Raw data from TerraClimate are in integer and float formats. For
maximum computational efficiency within CoMet, these are con-
verted into a binary representation. For each climatic variable, we
use a uniform quantile transformation (i.e., a transformation from
continuous to categorical distributions) to convert the continuous-
valued climate data into n categorical bins such that each bin con-
tains the approximately same number of instances. This ensures
extreme outliers are not disproportionately scaled in the vector
comparison. Next, each bin is given a binary assignment of size
m = n—1 such that for bin number k, the assignment is om-—k+lgk=1
For example, for m = 5, the assignment to bin 3 corresponds to the
binary vector 00011. Since CoMet performs bit-wise comparisons,
this ensures that correlations between bins are scaled appropriately.
In this work, we choose m = 50 for optimal HPC performance.

To define the vectors, we uniformly sample geolocations from
TerraClimate by taking equally spaced longitude and latitude steps
and remove any ocean and Antarctic coordinates, resulting in a
set of dry-land locations. We consider two geographic perspectives
in this work: (i) a global view with a total of 8,834,910 dry-land
geolocations, and (ii) a regional view of Eastern Australia with
a total of 153,149 dry-land geolocations. The global perspective
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provides an order of magnitude finer resolution compared to the
500,517 geolocations in related work [19]. We utilize the Eastern
Australia perspective as a comparison of 2-way and 3-way metrics
in an area of high concern for zoonotic spillover events for Hendra
virus, which has a 75% fatality rate in horses and a 57% fatality rate
in humans [11, 20].

In addition to static views of historic climate patterns, we also
provide several longitudinal perspectives. We first take a monthly
mean perspective, in which all 62 years of data for each month
are averaged into a single feature value. As we have 12 months,
14 feature variables, and a binary assignment size of 50 for each
feature, this results in vectors of length 12 X 14 X 50 = 8400 for
each geolocation. We also take a yearly perspective, where each
comparison contains all 12 months over a single year, and repeat
this for all 62 years of available data. Similarly, this results in 62
vectors each of length 8400. The first approach provides an agglom-
erative view across all 62 years of data, while the second provides
a longitudinal view at yearly resolution.

3.2 Correlation Metric

The Duo metric in Equation 2 contains two terms for capturing fre-
quency effects: f; and f;. These terms are beneficial for penalizing
extremely rare cases in genomics studies, where cases of rare alleles
can skew the resulting correlations. However, in our application,
the effect of these terms causes extreme climate conditions (e.g.,
near the North Pole) to be filtered out, which is an undesirable con-
sequence. To counteract this, in this work we present a modification
to the Duo metric by setting the scaling factor 1/q = 0, effectively
canceling out the frequency terms. This modification of the scaling
factor, g, results in the Duo metric being mathematically equivalent
to the Serensen-Dice coefficient, a set similarity metric that is not
biased by the frequency of elements in a given vector [10, 26].

The effect of this modification is visualized in Figure 1. In par-
ticular, Figure 1a compares the Duo scores between the different
correlation relationships with the default scaling factor 1 = %
If we observe the lower-left corner of the LL plot (left) and the
upper-right corner of the HH plot (middle), we see that the result-
ing Duo correlation is lower, despite the large amount of agreement
between the vectors being compared. In the combined plot HH+LL
(right), we can observe that if a feature vector has a majority High
(1) values or majority Low (0) values, then the correlation is lower
compared to a feature vector with an equal number of High and
Low values (middle of the plot). However, if we modify the scal-
ing factor (Figure 1b), we observe that the correlations for HH+LL
(right) are equally high regardless of the frequency of High or Low
terms. Thus in this work we both implement the modified Duo
metric and capture HH+LL relationships.

3.3 Correlation Thresholding

Writing every relationship between elements to disk is not practical
for large scale applications. If we stored all relationships in our
8.8M vector application, the output would require more than 4PB
of storage in binary form, and more than 37PB in plain text. In
practice, a threshold is defined in which all correlations larger than
the set threshold are stored. An ideal CoMet run is sizable enough
to capture rich information (e.g. as many edges as possible to create
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n HH HH + LL
0 0 50

(a) Original Duo scaling factor 1/q = 3/2

w HH HH + LL
50 50 40

(b) Modified Duo scaling factor 1/q = 0

Figure 1: Uniform score distribution of the Duo metric with
varying scaling parameter, q. The horizontal and vertical axes
represent the binary assignment of two vectors, i and j, where
the ticks represent the count of 1’s in our binary encoding
scheme. Thus, vectors i and j are exactly equal along the
diagonal, and differ off of the diagonal. The origin represents
vectors of all zeros while the upper right corner represents
vectors of all ones. The color map represents the strength of
the Duo score, ranging from low correlation in blue to a high
correlation in red.

the largest network) while avoiding an edge count that is too large
for clustering (a limitation of clustering tools). Thresholding is
performed at the tails of a distribution of similarity scores (edges).
As it is often the case that small adjustments in a chosen CoMet
threshold result in significant changes in the edge count, it can be
non-trivial to identify an ideal threshold.

An additional contribution of this work is the implementation
of new CoMet functionality that generates a distribution of all cor-
relation metric values prior to generating output files, the writing
of which can consume a significant amount of both compute (thou-
sands of node hours) and storage (hundreds of terabytes) resources.
By selecting the histogram method, CoMet will run the specified
metric and store the distribution of scores of each relation type
into user-defined bins without storing each resulting score. This
allows users to observe the distribution and better inform selection
of a similarity threshold value to use when filtering which metrics
to store. Using the histogram feature, a user can know a priori,
how many metrics will be saved for a particular threshold and rela-
tion type. This new methodology saves computational resources
by eliminating the need to execute scaled “trial” runs with metric
output enabled and varying thresholds. It also prevents the need to
re-run CoMet if an incorrect threshold was chosen.

As an example of the implication of this new capability, consider
the global scale run in this work containing 8.8M vectors. One run
of CoMet utilizes 684 node hours. Raw output from CoMet is in
binary form and must be post-processed back into plain text. That
utilizes another 662 node hours for a total of 1,346 node hours.
Using the previous CoMet workflow, if the incorrect threshold was
chosen, a full CoMet run would have to be re-executed resulting in
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doubling the node hour usage to more than 2,692 node hours. It is
possible this would be to be repeated additional times until the ideal
sized output was confirmed. Smaller scaling runs may also be used,
but similarly if the target output size is not achieved these runs
will have to be repeated. With the new histogram method, CoMet
only needs to be run once with minimal I/O using 252 node hours.
With the resulting output, the user can know the exact threshold
needed to fit any target output desired. If this target changes in
the future, the same output can be used to select a new threshold.
The storage needs of a CoMet run depend on the target output
size. In this example the output was 888GB in binary and 7.6TB in
plain text. Thus for any repeated run this storage could be roughly
doubled for every run executed. In contrast, the histogram output
is 48K of plain text.

Figure 2 illustrates the resulting histogram from a 2-way global-
scale CoMet run. Using the score distribution, we observed that a
threshold of 0.964 will result in storing approximately 0.1% of all
metrics, which is equivalent to 36,712,590,809 edges that are then
used for downstream network analysis. We provide these additions
to CoMet at https://github.com/wdj/comet.

lell Histogram for 8.8M Global Monthly Averags
m LL+HH
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Figure 2: Example histogram for the 8.8M Global Monthly
Mean Dataset. The vertical axis represents the number of
edges while the horizontal axis represents the correlation
metric. The black vertical lines, going from left to right, rep-
resent thresholds that would yield 1%, 0.1%, and 0.01% of the
total edges, respectively.

3.4 Vector Comparisons in CoMet

Once a threshold is selected, we use CoMet to conduct an exhaustive
vector comparison and generate vector pairs (or triplets in the case
of 3-way) that have a similarity score that exceeds the chosen
threshold. Given that we are interested in the HH+LL metric as
part of this work, we also implemented additional tools that merge
CoMet outputs, which by default reports two metrics (HH and
LL) separately for each vector pair, into vector pairs with only the
combined HH+LL score.

In order to scale to the number of vector comparisons targeted
in this work, we performed experiments on the Summit supercom-
puter, which resides within the Oak Ridge Leadership Computing
Facility (OLCF). Summit is an IBM AC922 system with over 4,600
compute nodes connected via EDR InfiniBand network. Each com-
pute node has two 22-core IBM POWERSY processors, 512GB of
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memory, and six NVIDIA V100 GPUs [1]. Summit has a theoretical
peak performance of approximately 200 petaFLOPS and is currently
the fifth fastest supercomputer in the world [2]. To demonstrate
the computational load required of the applications presented in
this work, the total node hour usage for the global monthly mean
perspective was 1,973 node hours as well as 15.6 TB of storage. To
compute the global yearly resolution, the total usage was 113,865
node hours and 1.3 PB of storage.

3.5 Analysis

We perform three kinds of downstream analysis in this work: net-
work clustering, Correlations-of-Correlations, and species distribu-
tion modeling.

To perform clustering on the resulting correlation vector pairs, a
network is constructed in which nodes are geolocations, and edges
represent pairs or triplets of geolocations whose similarity exceeded
the chosen threshold. We then use high performance Markov Clus-
tering (HipMCL), an HPC application for unsupervised network
clustering that implements an efficient, distributed GPU-accelerated
Markov clustering algorithm, to generate high-resolution clusters
defining climatic zones with similar characteristics [4].

The original pipeline in related work [19] uses a method termed
Correlations-of-Correlations (Cor-Cor), which utilizes a time series
of global networks resulting from CoMet analysis of different time
windows. Cor-Cor compares the vector in the adjacency matrix of
each geolocation in a each time window to the vector of that same
geolocation from the adjacency matrix in the first time window.
This provides a view of relativistic change, i.e., how much the rela-
tionship of a geolocation to all other geolocations is changing over
time. In this paper, we alter the Cor-Cor algorithm to compare the
change in environment with respect to its own positional histori-
cal record, irrespective of other geolocations. Thus, we present an
“Absolute” Cor-Cor metric as an additional view to compare with
the original “Relative” interpretation. In particular, the binarization
strategy described in Section 3.1 is applied to geolocations in each
one-year time-window from 1958 to 2019. Then, the “Absolute” Cor-
Cor computation is performed by computing the Serensen-Dice
coeflicient between geolocations in different time-windows. For
example, we construct a cumulative view by comparing each time
window from 1959 to 2019 to the original time window from 1958 in
order to measure cumulative environmental change over the time
period. These values serve as a proxy for abiotic stress in plants,
since it is not only important to identify zones (i.e., clusters) where
species can thrive, but also to measure how much each zone is
changing over time.

To measure the probability that various plant species may thrive
in the identified climatic zones, we overlay our resulting clusters
with several species distribution model outputs that describe poten-
tial habitable space of three bioenergy crops (pennycress, poplar,
switchgrass), three species of agricultural crops (coffee, wine, and
chocolate), and three pandemic-associated crop species of eucalyp-
tus. Each species distribution model is generated using the statistical
machine-learning Maximum Entropy (Maxent) model [23]. Maxent
uses species occurrence data from geolocations across the globe
combined with environmental data to generate a predicted prob-
ability distribution for a particular species [12]. In particular, the
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framework uses presence-only geolocations to extract biologically
relevant climate patterns in order to build distributions in covariate
space. Since the partitioned geography is constrained, so are the
climate variables used to build null and predicted distributions. Ran-
dom sampling of the provided geography is used to build a null dis-
tribution for probability comparisons. Through an iterative process,
Maxent tests each provided environmental variables to determine
their individual contribution to the final predictive model. In this
work, we used standard thresholds for Maxent parameters with (i)
multi-threading for accelerated time to completion, (ii) iterations set
to 1000 (from 500) to increase accuracy of final models (since global
models randomly sample broader climate diversity to create null
distributions), (iii) 11 independent model replications (which are
merged to create final models, i.e., 11,000 total iterations), (iv) “Equal
Training Specificity and Sensitivity” to limit null distributions from
oversaturation of sensitivity-specificity overlap, and (v) increase
the random test percentage to 33%. An independent climatic data
repository, Bioclim, was used as a source of environmental input
data, which contains 19 climate variables of biologically relevant
measures and combinations of temperature and precipitation [22].
Elevation was also included as an additional input feature. Sample
locations were sourced from the global species archive, Global Bio-
diversity Information Facility (GBIF). Individual lists of coordinates
were then filtered to be no closer than 10km from each other to
correct for dosage effects to over-observed geography.

In each of the Cor-Cor and species distribution results, we ag-
gregate the corresponding values within each climatic cluster so
that each cluster represents an average view of the described phe-
nomena.

4 RESULTS

4.1 Duo vs Serensen-Dice

In Section 3, we highlighted that one of the major refinements in
this work is the removal of the frequency terms in Equations 3a
and 3b to eliminate bias against extreme environmental conditions.
To demonstrate its practical effect, we present a comparison of the
original Duo metric which includes all types of relationships to the
modified Serensen-Dice metric with HH+LL. Both runs have been
thresholded to retain approximately the same number of edges
in the resulting network (37,522,455,884 for the Duo metric and
36,712,590,809 for the Serensen-Dice metric).

Despite the two climatic similarity networks containing approx-
imately equal numbers of edges, the resulting clusters are dramati-
cally different. In particular, the effects of the original Duo metric
penalizing extreme climatic values (e.g., in polar and equatorial
regions) can be seen in the number of missing geolocations in Fig-
ure 3a, compared to the Sgrensen-Dice metric in Figure 3b, which
retains nearly all of the geolocations.

4.2 Longitudinal Perspectives

In addition to the agglomerative view in Figure 3b, we also apply
two variants of the Cor-Cor algorithm for a longitudinal perspec-
tive on the 8.8M Global Monthly Mean Dataset. The Absolute Cor-
Cor analysis enables the identification of absolute environmental
change over the time course. We compare this to the original Rel-
ative Cor-Cor method. Both results can be seen in Figure 4. Both
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(b) Serensen-Dice Metric

Figure 3: Comparison of climatic clusters emerging from dif-
ferent binary vector similarity metrics applied to the 8.8M
Global Monthly Mean Dataset. The clustering in (a) and (b)
represent the HipMCL clusters that arise from the CoMet
similarity network using the original Duo metric and the
Serensen-Dice metric, respectively. Different colors repre-
sent different climatic clusters linked by environmental sim-
ilarity. Grey color indicates geolocations that were dropped
due to frequency effects of the original Duo metric. Note
that we are limited in the number of colors provided by our
chosen visualization package (matplotlib) to 113 total colors
(with greyscale and extremely bright colors removed). Thus,
it is possible that distinct groups with the same color may cor-
respond to the same climatype cluster, however, we find this
is an infrequent occurrence. Therefore, in general, clusters
that share the same color are distinct. We show the colored
version in this paper for easier viewing, but also provide the
cluster boundary maps on our supplementary site.

Cor-Cor metrics were calculated at yearly resolution. We comment
that the computational time required to compute Relative Cor-
Cor is non-trivial compared to Absolute Cor-Cor. The Absolute
Cor-Cor results highlight the geolocations that have experienced
significant environmental changes compared to themselves over
the time course, which serves as a proxy for shifts in abiotic stress
in this work. In particular, this analysis reveals larger climatic shifts
in central North America and Europe, southern Africa and South
America, as well as Fast Australia. Absolute Cor-Cor is a differ-
ent view of change than that considered in the Relative Cor-Cor
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method which is focusing on how a geolcations environmental re-
lationships with other other geolocations are changing and is thus
an indication of how climatype zones (i.e., the underlying network
topologies) are changing.

(a) Relative Correlations-of-Correlations Cumulative

(b) Absolute Correlations-of-Correlations Cumulative

Figure 4: Comparison of two Correlations-of-Correlations
Cumulative methodologies (Relative and Absolute). In the
color scheme, dark color indicates areas experiencing a small
amount of environmental change while bright color indicates
larger levels of change.

We also present a longitudinal perspective of the resulting CoMet
clusters over each individual one-year time-window. This per-
spective enables the observation of historical climatic effects and
changes in climatic relationships over time. We show a sample of
two years of clusters in Figure 5. All 62 years worth of clusters and
boundaries as well as a video composition can be found at https:
//github.com/mikacashman/PASC23_Climatypes_SupResources.

These longitudinal perspectives provide a rich analysis on how
geolocations are changing over time which may contribute to in-
creased levels of abiotic stress in the context of a changing climate.

4.3 2-way vs 3-way in Eastern Australia

In order to compare 2-way to 3-way vector comparisons, we re-
strict the region of interest to Eastern Australia for a more focused
perspective. The Eastern Australia data set consists of 153,149 ge-
olocations, each including the 14 climatic variables extracted from
TerraClimate as described in Section 3. The network resulting from
the 2-way vector comparison of this subset was clustered using
HipMCL. The results from using an inflation value of 2 can be seen
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(b) 2019

Figure 5: Sample of Yearly Vector Clusters. Showing the first
year (1958) and the last year (2019). Full set of clusters (col-
ored and boundaries) can be found on our supplementary
site https://github.com/mikacashman/PASC23_Climatypes_
SupResources.

in Figure 6a resulting in a total of 125 clusters. In contrast, the net-
work resulting from the 3-way vector comparison using the same
inflation value results in a total of 86 clusters as shown in Figure 6b.
We can observe a difference in the number of total clusters and
cluster sizes in different geographic regions. We further found the
number of edges and nodes as well as edge density and inflation
can play a role in resulting clusters, but find more analysis into
each factor warrants future work. We utilize these clusters further
in Section 4.4.

4.4 Species Distributions

In this work, we focused on species distributions in three distinct
application categories to highlight a diverse set of use cases that the
refined methodology described here enables. The three biological
applications we focus on are: (i) bioenergy, (ii) agriculture, and (iii)
zoonotic spillover.

Understanding the climate zones that are currently compatible
with bioenergy deployment is important for the commercialization
of viable bioenergy feedstocks as well as providing climatype targets
for genome optimization and selection as well as breeding efforts
that could develop bioenergy feedstock lines that will thrive in
specific regions/climatype zones.

PASC ’23, June 26-28, 2023, Davos, Switzerland

(a) Cluster Results at 2-way  (b) Cluster Results at 3-way
Figure 6: Agglomerative Eastern Australia (a) 2-way
with 113,686,591 edges and 125 cluster (b) 3-way with
57,151,731,825 edges and 86 clusters.

Thlaspi arvense (also referred to as pennycress) is an emerging
covercrop and a bioenergy feedstock for sustainable aviation fuel.
As such, it is compatible with, and can be used on the same land
used for annual row crop food agriculture. In addition, as it helps to
prevent soil erosion and nutrient runoff, it has impacts on increas-
ing carbon sequestration, preventing nutrification of water systems
and thus contributes to the overall sustainability profile of row crop
agriculture. In Figure 7a, we show an overlay of the pennycress
species distribution over the agglomerative global mean set of clus-
ters. Note, this species is used across continents and finding similar
cliamtypes across geography is crucial to find optimal varieties for
precision breeding. These overlays are created by taking the mean
over a fixed sample size of probability scores for each cluster.

Many existing energy systems will likely rely on combustion
based fuels, but the need for carbon neutral sources of combustible
material will be needed to mitigate global changes to climate [9, 28].
Switchgrass is one of the leading biofuel feedstocks invested in
by commercial entities as well as the United States Department of
Energy to create heating fuel for homes or jet fuel for air travel.
Switchgrass is a warm-season broadly adapted C4 grass species
with growing regions that could fill in many current agricultural
gaps in the central to central eastern North American Continent
primarily in the United States [13, 17]. Switchgrass is a perennial
crop plant, thus replanting events are uncommon. Switchgrass has a
manageable genome size at 1.13Mb, allotetraploid composition, the
genome is near fully sequenced with genome annotations of both
subgenomes [6]. Substantial meta data is available and could con-
nect omic layers to genomic features, as well as ample geographic
sampling of genotypes that can be used for experimentation rang-
ing from south east Canada to north east Mexico. Results for the
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switchgrass species Panicum virgatum overlaid with global clusters
can be seen in Figure 7b.

Populus trichocarpa (native to northwestern North America) and
Populus deltoides (native to eastern North America), more com-
monly known as poplar, are fast growing high biomass yielding
tree species with great potential to create bioenergy products [29].
A future bioenergy industry will need to expand its agricultural
range beyond current growing regions and/or improve agricultural
yield in current marginal landscapes [25]. Populus species often
can be cut back to ground level for harvesting and regenerate trees
from existing ground tissue and root systems, thus minimizing the
need for replanting [29]. Populus trichocarpa is also one of the most
studied model organisms for trees and has four version updates
of its genome at approximately 380Mb, full genome annotation, as
well as substantial amounts of biological omics data, phenotype
data, and meta-data to improve breeding [7, 29]. Figure 7c displays
results for Populus trichocarpa overlaid with global clusters.

For the agriculture of perennial crops, this climatype cluster-
ing methodology can be used to identify potential alternate cli-
matic zones well suited for specific crops. In this work, we studied
species distributions for Coffea arabica (coffee), Theobroma cacao
(chocolate), and Vitis vinifera (grape vine) as shown in Figures 8a-
8c. Each of these species origins are different than there current
trans-continental range. Much of the initial legwork to grow these
species interanationally is finished, but cultivar sub-varieties are
not well developed. By examining yield differences of agricultural
cultivars means changing crop varieties to optimal performance
based on the same or similar climatypes could increase overall
farm yield, aiding local farmers and improving global food secu-
rities. Overall, understanding the changes that regions targeted
for both bioenergy and food agriculture are undergoing is crucial
for breeding/bioengineering of cultivars that will have resilience
to increasing levels of environmental variation and abiotic stress.
Failure to do so will lead to increasing levels of crop failures with
the associated negative impacts on economic, food, and energy
security. Similarly, the ability to observe climatic trends using these
methods may help to predict future ranges which could accommo-
date bioenergy and food agriculture, as well as provide dynamic
ranges of climate conditions for regional crop optimization.

Furthermore, this climatype methodology can be used to iden-
tify regions with pathogen reservoir species whose food supply
is significantly impacted by climatic changes and could result in
zoonotic spillover events. In this work, we focused the study of
potential zoonotic spillover to the Eastern Australia region and
eucalyptus species. Here we focus on three species of eucalyptus
trees (Eucalyptus robusta, Eucalyptus tereticornis, Melaleuca quin-
quenervia) which are among the main food supplies for flying foxes,
and climatic changes to flying fox habitats can encourage migration
to more populated areas thus increasing the risk of spillover [11].
Furthermore, the concomitant nutritional stress on flying foxes
causes them to shed higher levels of Hendra virus, again increasing
the likelihood of a zoonotic spillover event [5]. Figure 9 shows the
three species distributions over the eastern Australia 2-way clusters.
These results demonstrate that there are specific environmental
regions in Eastern Australia where each Eucalytptus species tends
to thrive, in which the areas of lighter green could be of higher

Cashman et al.

(c) Populus trichocarpa (poplar)

Figure 7: Species distributions for three species related to
bioenergy: (a) pennycress, (b) switchgrass, and (c) poplar.
Probability models are overlaid with the resulting agglomer-
ative CoMet clusters.

importance for abiotic stress monitoring and modeling. These dis-
tributions can be examined in conjunction with distributions of
the flying fox species, as these Eucalytptus species are linked to a
primary food source for flying foxes. This could in turn stress these
bats and drive potential spillover events, as described in [11]. The
black flying fox is the reservoir of Hendra virus variant 1 and thus
it is important for pandemic prevention to study the relationship
between Eucalyptus species and flying foxes. The coastal regions
are shown to have the highest distribution of flying foxes [27].
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(a) Theobroma cacao (Chocolate)
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(c) Vitis vinifera (Grape Vine)

Figure 8: Species distributions for three species related to
agriculture: (a) chocolate, (b) coffee, and (c) grape vine. Prob-
ability models are overlaid with the resulting agglomerative
CoMet clusters.

5 CONCLUSIONS AND FUTURE WORK

The methodology originally described in [19] introduced a novel
way to identify climatype networks using the Duo similarity metric
in the CoMet software package. The refinements presented here
to the correlation metric, methodology of determining an ideal
threshold, and new analysis method not only allow us to save on
computational time and storage resources, but further allow us
to more accurately identify similarities when using climatic data
by customizing the correlation metric and relationship types to
match our application. These refinements were implemented with
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. 5

(a) Eucalyptus
robusta

(b) Eucalyptus
tereticornis

(c) Melaleuca
quinquenervia

Figure 9: Species distributions for three species of Eucalyptus
related to zoonotic spillover. Probability models are overlaid
with the resulting 2-way CoMet clusters in eastern Australia.

modularity so they may be applied to future applications that may
require alternative metrics or relationships to be captured.

In this work we demonstrated the modified Duo metric is better
suited in the climatype identification context by showcasing three
distinct biological applications that can leverage the insights that
emerge from climatype networks and Cor-Cor analysis presented.

For example, Figure 10 narrows in on the major regions of growth
for the bioenergy crop pennycress. We compare these regions with
Cor-Cor results demonstrating the risk of the effect of changing
climate has on this crop. In the comparison, we can see an indi-
cation that the potential for a shift in optimal geographic growth
areas for Pennycress, from Western to Eastern Europe, and from
northern longitudinal to more central North American regions.
Similar analyses can be done in the primary locations in each of
the species distributions. In future work, species-specific analyses
of these indicators of abiotic stress can be conducted to assess what
variables are the primary drivers of environmental change. These
indicators could then be combined with other known drivers of
pandemics, such as loss and fragmentation of habitats, in order to
refine pandemic risk assessment.
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(c) Pennycress in NA

(d) Cor-Cor in NA

Figure 10: Regional comparison of the species distribution
of the bioenergy crop Pennycress to Cor-Cor.
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