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ABSTRACT CCS CONCEPTS

Current methods for defining SARS-CoV-2 lineages ignore the vast
majority of the SARS-CoV-2 genome. We develop and apply an
exhaustive vector comparison method that directly compares all
known SARS-CoV-2 genome sequences to produce novel lineage
classifications. We utilize data-driven models that (i) accurately
capture the complex interactions across the set of all known SARS-
CoV-2 genomes, (ii) scale to leadership-class computing systems,
and (iii) enable tracking how such strains evolve geospatially over
time. We show that during the height of the original Omicron surge,
countries across Europe, Asia, and the Americas had a spatially
asynchronous distribution of Omicron sub-strains. Moreover, neigh-
boring countries were often dominated by either different clusters
of the same variant or different variants altogether throughout the
pandemic. Analyses of this kind may suggest a different pattern of
epidemiological risk than was understood from conventional data,
as well as produce actionable insights and transform our ability to
prepare for and respond to current and future biological threats.
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1 INTRODUCTION

The ongoing COVID-19 pandemic continues to cause considerable
mortality worldwide. Mutations in the SARS-CoV-2 genome have
been observed throughout the course of the pandemic, and mul-
tiple variants (strains) of concern have been identified, some of
which exhibit more efficient transmission and higher pathogenicity
compared to others. Global efforts in data collection have resulted
in more than 15 million geospatially and temporally tagged SARS-
CoV-2 genome sequences that have been uploaded to the Global
Initiative on Sharing Avian Influenza Data (GISAID) database [8].

Current strategies for classifying genetic lineages of SARS-CoV-
2 use the Phylogenetic Assignment of Named Global Outbreak
Lineages (PANGO lineage) algorithm [1, 15, 16], which depends
on manually curated lineage designations based on a relatively
small set of mutations, which may ignore important mechanisms
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that contribute to infectivity and mortality. Thus, there exists a
need to develop a suite of flexible models that leverages the set
of all available SARS-CoV-2 sequences to derive whole-genome
classifications in a data-driven approach.

To address these challenges, we apply a novel binary encoding to
the set of SARS-CoV-2 genome vectors in order to enable efficient
all-against-all exhaustive vector comparisons to the population.
We leverage the publicly available Combinatorial Metrics (CoMet)
codebase, previously used in comparative genomics studies [10, 11],
with a modified binary vector similarity metric to compare each
SARS-CoV-2 genome vector against all others. We store the re-
sults of these comparisons as a sparse network, in which nodes are
genome sequences and edges are defined by sequence similarity
(i.e., an edge between two genomes exists if their sequences ex-
ceed a similarity threshold). These methods scale to leadership-class
computing systems and are demonstrated using the Oak Ridge Lead-
ership Computing Facility (OLCF) supercompter, Summit. Then, to
discover novel data-driven SARS-CoV-2 lineages, we apply Markov
clustering, an unsupervised graph clustering algorithm, to the se-
quence similarity network to group sets of genomes according to
their sequence similarity.

2 BACKGROUND

2.1 SARS-CoV-2 genome sequences

GISAID is a global database for genome sequences established
in 2008 that provides open access to genomic data of influenza
viruses [8]. In light of the COVID-19 pandemic, it was co-opted to
store SARS-CoV-2 sequences and has become the world’s largest
such repository, holding more than 15.49 million SARS-CoV-2 sam-
ples as of May 2023. While GISAID accepts submissions from any-
where, African, Asian, and South American countries generally
sequence and deposit an order of magnitude fewer positive COVID-
19 samples compared to European, North American, and Oceania
countries [12]. Additionally, both testing rates and subsequent se-
quencing rates per positive test vary considerably from country
to country and over time [9]. Most SARS-CoV-2 sequences in the
database also contain associated metadata that provides sample
collection date and location, as well as a World Health Organization
(WHO) variant classification (e.g., Alpha and Delta variants). In this
work, we include the 11 million SARS-CoV-2 sequences available
through June 2, 2022.

2.2 Vector comparison and network analysis

The CoMet application leverages ultra-low precision to exhaustively
compare vectors at extreme speed and efficiency, which requires
that input vectors (i.e., SARS-CoV-2 genome sequences) are en-
coded in binary format. There is no standard for the binarization
process, and each dataset and application requires its own formula-
tion based on the goals of the vector comparison and downstream
analyses. Previous studies have used the CoMet application to con-
duct exhaustive vector comparisons for genomic and environmental
applications [10, 11, 13]. In particular, CoMet has been optimized to
run efficiently on the Oak Ridge Leadership Computing Facility’s
(OLCF) leadership-class systems, including the Summit supercom-
puter and the OLCF’s new exascale supercomputer, Frontier, as
well as the JUWELS Booster at Jiillich Supercomputing Centre and
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Perlmutter at the National Energy Research Scientific Computing
Center (NERSC). All implementations leverage GPU-accelerated
computing and massive parallelism to enable large-scale vector
comparisons at extreme scales. CoMet exploits these features to
compute similarities between pairs or triplets of binary vectors at
record-breaking (exascale) speeds [10, 11, 13], which enables direct
comparisons across millions of samples. To enable these acceler-
ations for studying SARS-CoV-2 genomes, we specify our vector
binarization scheme in Section 3.2. Here, our all-against-all com-
parison of SARS-CoV-2 genomes results in approximately 3 x 1013
vector comparisons.

The CoMet application supports a number of binary similarity
metrics (Duo, CCC, etc.) [5, 6], and the choice of metric and metric
parameterization, in tandem with the vector binarization scheme,
are important considerations. In this work, we modify the Duo
metric to compute the binary set similarity between any two se-
quences [5]. Duo is a similarity metric that is used to compute the
frequency of co-occurring binary elements in each vector pair. Duo
is used to group matrix values into high (pairs of 1’s), low (pairs of
0’s), and anti-correlated (pairs of 10 or 01) categories, which can be
modified depending on the domain application. The Duo metric is
represented by the equation

Duo;j = mD;;(1 - qfi)(1 - qfj) 1)

where i and j are binary vectors, D computes the frequency of a
specified binary relationship (i.e., 11, 10, 01, or 00) between i and
J, f computes the frequency of binary elements in vector i or j,
and m = 4 and q = 2/3 are scaling constants. In practice, the more
elements that exhibit the specified relationship in a pair of vectors,
the higher the Duo score. This metric results in four values for each
pair of input vectors based on the different bit comparisons: high-
high, high-low, low-high, and low-low, with each value computing
the frequency of all such comparisons across the two vectors. A sim-
ilarity threshold is then used to store pairs of vectors only if their
Duo score exceeds the set threshold. This threshold is determined
by accounting for both storage space constraints of the filesystem
of the supercomputer being used as well as post-processing and
downstream computational requirements. In large comparisons,
the full (non-thresholded) output would require petabytes of stor-
age as well as tens of thousands of node-hours of post-processing
time. Thus, thresholds are applied and a sparse network structure
emerges, in which nodes are represented by vectors and edges are
defined between pairs of nodes if their Duo similarity exceeds the
threshold.

To group sets of nodes into mechanistically similar clusters,
we apply the high-performance Markov clustering (HipMCL) al-
gorithm for large-scale unsupervised network clustering [2, 7].
Similar to CoMet, the open-source HipMCL application leverages
massive parallelism for 1000-fold faster graph clustering compared
to the original Markov Clustering algorithm, and has been success-
fully applied on networks with millions of nodes and billions of
edges on the Summit supercomputer [2]. By applying HipMCL to
the sequence similarity networks in this work, novel clusters (lin-
eage classifications) of SARS-CoV-2 genomes emerge that leverage
whole-genome sequence similarity and provide new insights into
the spatiotemporal dynamics and epidemiological implications of
the evolving COVID-19 pandemic.
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2.3 Summit supercomputer

The Summit supercomputer contains 4,608 compute nodes each
consisting of 2 IBM POWER9 CPUs, 6 NVIDIA Volta V100 GPUs,
and 512GB of DDR4 RAM + 96GB of HBM2 DRAM. The 22-core
POWERY CPU has a 3.2GHz base frequency with 3.8GHz turbo,
90 Watt TDP, 32KB L1 cache, 512KB L2 cache/core, and 10MB L3
cache/core. The NVIDIA Volta V100 GPU has 640 Tensor Cores and
5,120 NVIDIA CUDA cores, 1134 GB/sec memory bandwidth, 8.2
TFLOPS at double precision, 16.4 TFLOPS at single precision, and
130 TFLOPS of Tensor Performance. Each Summit compute node
achieves 42 teraflops of performance, totalling 200 petaflops of peak
performance.

3 METHODS

3.1 Data pre-processing

All sequences available on the GISAID platform through June 2nd,
2022 were acquired using GISAID’s ‘high coverage’ (< 1% unas-
signed nucleotides) and ‘collection date compl’ (has a sam-
ple collection date) filters, resulting in approximately 11 million
SARS-CoV-2 sequences. Further, GISAID’s metadata was used to
exclude sequences with non-human hosts and any sequences with
missing collection dates and locations. Each sequence was then
aligned to the Wuhan reference SARS-CoV-2 genome (NCBI RefSeq
NC_045512.2) with the Multiple Sequence Alignment using Fast
Fourier Transform (MAFFT) software package (version 7) with set-
tings —auto (selects an appropriate strategy from L-INS-i, FFT-NS-i,
or FFT-NS-2 algorithms, according to data size), —addfragments
(adds unaligned fragmentary sequence(s) into an existing align-
ment), and —~keeplength (keeps alignment length unchanged).

After alignment and to account for missing data and sequencing
errors, any genome sequences that contained invalid nucleotide
codes, greater than 1000 deletions, or greater than 1% unassigned
nucleotides (nucleotide code ‘N’) were removed from considera-
tion. Additionally, nucleotides to the left of the first Artic primer
overlap position and to the right of the last Artic primer overlap
position were deleted from all genome vectors, as they contained
a disproportionately high amount of Ns compared to the rest of
the genomes. Following this, the total number of mutations to each
of ‘A’, ‘C’, ‘G’, ‘T’, and -’ (i.e., deletion) were summed across all
sequences at each nucleotide position in the genome. To remove
non-mutating nucleotides, any nucleotide position that did not have
at least one of the five mutation counts greater than 100 was omit-
ted from all sequences. Additionally, all nucleotide codes other than
‘A, °C’, ‘G, ‘T, and -’ (e.g., R’) were treated as missing values by
converting the nucleotide to ‘N’. Finally, any remaining nucleotides
that did not pass the mutation filter were assigned the reference
genome value at the corresponding position. In summary, these
filtering steps resulted in 7,722,980 SARS-CoV-2 sequence vectors
with 21,433 nucleotides each. All pre-processing steps were imple-
mented using Python (version 3.9.2), in scripts that are publicly
available at https://github.com/jeanmerlet/covid_comet.

3.2 Binary vector comparison

To prepare each sequence for exhaustive vector comparison with
ultralow precision, each vector is converted to binary using the

following strategy. Nucleotides corresponding to ‘A’, ‘C’, ‘G’, ‘T’,
and ‘- are replaced with one-hot vectors with five bits. For example,
‘A’ corresponds to the vector ‘10000’, ‘C’ corresponds to ‘01000’
and ‘-’ to ‘00001’. Missing values (i.e., ‘N’) are replaced by vectors
of all zero: ‘00000’. This process increases the genome vector length
from 21,433 nucleotides to 21, 433 X 5 = 107, 165 bits.

To compare binary vectors, we modify the Duo metric described
in Equation 1 to account for the novel binarization scheme. In this
case, two genome sequences are similar if they share nucleotides
in corresponding positions (e.g., A’s that line up with A’s, C’s that
line up with C’s, etc.). In the case of one-hot representations, two
nucleotides are the same if they share a 1 in the same position. Thus,
we modify Equation 1 by (i) setting g = 0 in order to disable the
frequency terms, f; and f}, and (ii) to only consider the ‘high-high’
correlation. In other words, this reformulated Duo metric measures
the frequency of co-occurrences of 1’s between any two SARS-CoV-
2 binary vectors, thereby measuring the co-occurrences of similar
nucleotides. Thus, this score increases with the number of shared
nucleotides between vectors i and j, and decreases with the number
of mutations.

Exhaustive vector comparisons were computed using CoMet
compiled with software versions GCC 6.4.0, Spectrum MPI 10.3.1.2-
20200121, and CUDA 10.1.243. The full computational run was
launched on the Summit supercomputer with IBM’s Job Step Man-
ager (JSM) software, which provides the ‘jsrun’ tool using six MPI
ranks per node, with each MPI rank allocated 1 NVIDIA V100 GPU
and 7 POWERY CPU cores mapped via OpenMP threads. The fol-
lowing environment variables were set prior to the CoMet run:

e OMP_NUM_THREADS=7

e PAMI_IBV_ENABLE_DCT=1

e PAMI_ENABLE_STRIPING=1

e PAMI_IBV_ADAPTER_AFFINITY=0
e PAMI_IBV_QP_SERVICE_LEVEL=8
e PAMI_IBV_ENABLE_OOO_AR=1

The CoMet vector comparisons were thresholded at 0.19991
(i.e., ~99.9% of the maximum theoretical score, 0.2) in order to
retain the top ~0.1% of most similar vector pairs. This process
resulted in a sparse sequence-to-sequence similarity network con-
taining 5,290,386 sequences (nodes) and 777,928,464,646 sequence
pairs (edges). Thus, on average, each sequence shares an edge with
~147,000 other nodes in the network based on vector comparisons
that utilize the entire SARS-CoV-2 genome.

3.3 Unsupervised network clustering

The network representation described above is useful for multi-
ple downstream scientific tasks. In this work, we applied Markov
clustering to group sets of SARS-CoV-2 sequences into novel, data-
driven lineages. Clustering was performed using HipMCL [2], which
iterates between two matrix operations: expansion and inflation.
The expansion step simulates a random walk and effectively spreads
flow across the similarity network, while the inflation step con-
tracts the flow [17]. Oscillating between these two steps increases
edge weights between nodes of the same cluster and decreases edge
weights to nodes of different clusters. Importantly, unlike alter-
native clustering methods (e.g., k-means), the number of genome
clusters is not pre-defined, but rather emerges based on the graph
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topology and parameterization of the MCL algorithm. The ‘inflation
rate’ is the primary hyperparameter used to control the granularity
of the emergent lineages, in which a lower inflation rate results in
fewer, larger clusters, and higher values produce multiple, smaller
clusters. Note that inflation rate can only control cluster granular-
ity to a point, while the underlying graph topology has a strong
influence on the outcome. For example, a fully-connected graph
will produce one cluster regardless of inflation rate. In this work,
we considered a range of inflation values: 1.2, 1.5, 2.0, 4.0, and 8.0,
which produced up to 80,000 novel lineages. We chose to focus on
inflation 1.2 (which produced the smallest number of clusters) for
further downstream analyses. Markov clustering at this inflation
yielded 22,040 clusters, with the top 20 largest clusters containing
26% of all edges in the underlying sequence-to-sequence similarity
network.

The resulting clusters were visualized using a number of geospa-
tial and temporal views. Using the GISAID metadata for each se-
quence, we assigned sequences to dates and locations. For dates,
any sequence with only the month and year of collection was au-
tomatically assigned the 15th day of the month. For locations, we
extracted both the country and continent of collection. Any se-
quences missing such date or location information were ignored
in the visualization. Further, we used the PANGO lineage labels
of each sequence to map them to the corresponding World Health
Organization (WHO) variant, or “Other” if there was no corre-
sponding WHO variant (e.g., “AY.1” was mapped to “Delta”). Then,
for each cluster, we assigned a WHO variant label if there was a
clear majority variant (e.g., > 90% of the sequences within that
cluster) and “Other” otherwise. While sequence metadata for the
clusters mapped to 1,712 different PANGO lineages, each of the
1,000 largest clusters was composed of 99.9% sequences from a
single WHO variant after mapping PANGO lineages to WHO vari-
ants. As there are only a handful of WHO variants, but more than
20,000 clusters, many clusters were classified to the same WHO
variant. Importantly, although multiple clusters may belong to the
same WHO variant, these clusters consisted of different sets of
mutations, and hence were kept separate in our analysis. We then
chose the top four largest clusters belonging to each of the three
largest strains through June 2022: “Alpha”, “Delta”, “Omicron”, and
“Other”, resulting in a total of 16 data-driven lineages (i.e., 4 clusters
X 4 WHO variants). The WHO clusters with majority variants not
included in visualizations (e.g. Mu) comprised a small subset of all
sequences (2.7% of sequences) and will be considered in future work.
To construct global spatiotemporal views, each country is chosen
to display a unique color corresponding to the cluster from the set
of top 16 clusters with the most sequences at that time point. While
the light blue cluster (variant) in “Other” contains Wuhan-1, it also
contains other SARS-CoV-2 sub-strains of Wuhan-1 that are close
to but not completely identical to Wuhan-1. Finally, we applied a
7-day moving average to each time series in order to smooth the
noisy signal and improve the quality of the visualizations. Using
these methods, we identified novel subgroupings of the larger WHO
variants and subsequently tracked the evolution and spread of these
subgroups over time and space.
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Figure 1: Longitudinal view of the top four SARS-CoV-2 clus-
ters for WHO variants, Alpha, Delta, Omicron, and “Other”
over the first ~2.5 years of the Covid-19 pandemic. Each color
and subplot refers to a different WHO variant. The different
hues of each color represent the four largest data-driven clus-
ters (i-e., SARS-CoV-2 lineages) corresponding to the WHO
variant.

4 RESULTS AND DISCUSSION

Using the set of 22,040 clusters based on exhaustive whole-genome
sequence comparisons discussed in Section 3.3, we show spatial
and temporal views of the top 16 novel data-driven lineage across
countries and continents. First, we visualize the top 16 data-driven
clusters (i.e., novel SARS-CoV-2 lineages) over time in a split view
by WHO variant in Figure 1.

This view enables tracking the emergence and disappearance of
various subclusters over time, and demonstrates that each WHO
variant generally appears and disappears as a group, apart from the
miscellaneous “Other” category, which appears consistently over
the time course in the form of various subvariants. Note that the
time between sample collection and availability on GISAID varies
from days to several weeks, by which we observe a sharp decrease
in the number of sampled sequences at the end of the time series (i.e.,
when the GISAID data was accessed). This decrease therefore does
not indicate a drop in the number of genomes sequenced, but rather
that the sequences had not all been uploaded to GISAID. The SARS-
CoV-2 genome sequences in these clusters included metadata tags
for 1,712 unique PANGO lineages, which were mapped to named
WHO variants or “Other”, based on the WHO variant definitions.
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While we are only displaying the 4 largest clusters for each of the
major WHO variants, there are 20,856 clusters mapping to these
4 WHO variants (Alpha, Delta, Omicron, and Other), and each of
these clusters consists of a separate set of mutations from the others.
Thus our methods result in significantly higher resolution of variant
classification than WHO variants or PANGO lineages. Fewer than
5% of sequences (i.e., 1,184 clusters) corresponded to a WHO variant
other than the four considered here, whereas Alpha, Delta, Omicron,
and Other each accounted for 2,022, 11,301, 2,396, and 5,137 of the
clusters, respectively. Note that the vertical axis in these figures
corresponds to the number of daily samples sequenced, and does
not necessarily correspond to the number of cases of any particular
variant at any particular time.

We adopt an alternative spatiotemporal view in Figure 2, which
considers the dynamics of the top clusters across country, conti-
nent, and sample collection date. The full animated view of these
snapshots is available at https://github.com/pasc-2023-anonymous/
pasc_2023_anonymous/blob/main/maps.gif.

Note that the other continents (i.e., South America, Africa, Asia,
and Oceania) are excluded from Figure 2c due to very small numbers
of sampled sequences. The geospatial views in Figures 2a and 2b
show that different subclusters of the larger WHO variants affected
different countries and continents at different times. The continental
time series view in Figure 2c confirms this by demonstrating that
different subclusters dominate the samples being sequenced in
North America and Europe at different times.

Miscellaneous COVID-19 lineages dominate the beginning of
the pandemic (January 2020), but almost entirely disappear with
the arrival of Alpha in December 2020 (1). We did not find that the
geographic proximity of two countries guaranteed the same cluster,
PANGO lineage, or WHO variant. Instead, neighboring countries
were often occupied by different clusters of the same variant or
entirely different WHO variants. At the peak of the number of se-
quenced Alpha SARS-CoV-2 samples uploaded to GISAID on April
17, 2021, Canada and much of South America were dominated by
the Alpha variant, while the USA and Mexico had majorities of
different clusters of Alpha sequences (see Figure 2a). Even after
the Omicron variant had almost entirely taken over globally, e.g.,
during the height of the original Omicron surge on February 19,
2022, Europe and Asia reported sequences of four different sub-
strains (clusters) of Omicron. On the other hand, the United States
and South America were reporting the same Omicron cluster, yet a
different one compared to the rest of the world (see Figure 2b). Note
that sequencing enrichment optimization may play a role in differ-
ences between observed geographical variants. The instance from
December to February of different Omicron subvariants in Europe
and North America, and a stark gap between Delta and Omicron
sequences in Europe (see Figure 2b), may have been exacerbated
by short successive changes in the oligo primer pool at that time.
In particular, the ARTIC primer sets transitioned from V3 to V4 in
January of 2022, but V4 was plagued by amplicon drop offs, and
was not optimized until later that February to V4.1 [14].

Our novel lineage classification method demonstrates that an all-
against-all, whole-genome vector comparison applied to millions
of SARS-CoV-2 sequences can yield tens-of-thousands of novel
data-driven clusters, each composed of closely genetically-related
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Figure 2: Longitudinal views of the top SARS-CoV-2 strains
by continent during the first ~2.5 years of the COVID-19 pan-
demic. Each color refers to a different WHO variant, and the
different hues of each color represent the four largest data-
driven clusters (i.e., SARS-CoV-2 lineages) corresponding to
the WHO variant. (a) shows a snapshot of the distribution
of clusters on April 17, 2021, during the peak of the Alpha
variant. (b) shows a snapshot of the distribution of clusters
on February 19, 2022, during the initial peak of the Omicron
variant. (c) shows a similar time series view compared to Fig-
ure 1, but split by continent rather than WHO variant. The
y-axis represents the cumulative sum of sequenced samples
at daily resolution.
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sequences. The PANGO lineage designation system relies on phy-
logenetic trees (which, by definition, exclude recombination) and
hand-curation to classify the several million sequence samples
considered in this work into 1,380 different lineages, while the
WHO variant naming scheme classifies them into a small handful
of named variants. Both of these classification systems focus on a
subset of hand-picked mutations to make their assignments. Impor-
tantly, unlike previous classification paradigms that rely on such
heuristics, our methodology leverages the entirety of the SARS-
CoV-2 genome in a network context to produce novel lineages in an
unbiased data-driven way, which results in 22,040 distinct clusters
(SARS-CoV-2 lineages). Further, the use of unsupervised Markov
clustering does not assume a set number of lineages a priori, but
rather produces clusters based on the topology of the emergent
sequence-to-sequence similarity network, which is only possible
to derive using extremely efficient exhaustive vector comparisons
on leadership-class HPC systems.

4.1 Limitations

While the scale of the available SARS-CoV-2 sequences on GISAID
is unprecedented, the available data come with several caveats.
Metadata is available for every uploaded sequence, but it is often
incomplete. For example, of the 11M sequences, 7M mark gender
as unknown, with the rest composed of slightly more women than
men (2.13M women and 1.98M men). Other notable categories with
significant amounts of missing or unknown data are patient age,
geographical origin of the sample, and sample collection date. As a
result of this missing metadata, any sequence analyses requiring
associated metadata (e.g. sample collection date and location for
spatiotemporal analyses) must necessarily exclude these sequences,
reducing the number of overall usable sequences.

Another major consideration when interpreting results stems
from the disparity between infection rates and sequencing rates
throughout countries globally. These differences can arise for var-
ious reasons, such as income disparity (78% of high-income but
only 42% of low-income countries sequenced > 0.5% of COVID-19
cases) [3] or unwillingness to share sequencing data (37% of coun-
tries submitted less than half of their sequences to public databases
when sequencing variants of concern) [4]. Moreover, sequencing
rates overall are vastly lower than infection rates, with only 6.8%
of countries sequencing > 5% of their total confirmed cases [3].
Lastly, our current spatiotemporal visualizations do not account
for population density. One should keep these geospatial and socio-
economic sequencing disparities in mind when interpreting results
involving comparisons such as differences between countries or
populations.

4.2 Performance comparison

CoMet has been leveraged for multiple large-scale exhaustive vector
comparisons with applications ranging from genomics to environ-
mental modeling [10, 11, 13]. However, these applications differ
significantly from our use case, including different data modalities,
binarization scheme, choice of similarity metric, number of vectors,
and vector length. As such, it can be difficult to draw meaningful
performance comparisons between these use cases. In an earlier
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version of this work, we reported on the set of 4 million avail-
able SARS-CoV-2 sequences that were available through September,
2021. In this work, we have completed our analysis on an expanded
set of 11 million SARS-CoV-2 sequences, and we now present a
performance comparison between these two instances. The first
and second runs are labeled Sept. 2021 and June 2022, respectively,
in reference to the latest month of sequence collection time (see
Table 1).

Table 1: SARS-CoV-2 CoMet run comparison.

# Vectors | # Elements | # Nodes | Node hours
2,978,754 73,965 150 136.0
7,722,980 107,165 840 631.2

Sept. 2021
June 2022

Our expanded set of SARS-CoV-2 vectors contained approxi-
mately 3 times as many sequences as an earlier version of this work
that included 4 million genome sequences. After pre-processing
and thresholding, there were 2.65 times more input vectors in the
second run, although the vectors were longer. The increased vector
length is due to our removal of any nucleotide position that did
not have at least one of the five mutation counts greater than 100
across all the sequences (see Section 3.1), which increased when we
increased the number of sequences from 4 to 11 million. Note that
the number of sequences in Table 2 is lower than the number of
vectors in Table 1, as we thresholded the CoMet outputs to a subset
of highly significant edges (top ~5% of comparisons) in order to
generate a manageable volume of data for downstream analyses.
Despite this thresholding, the September and June runs generated
269GB and 12TB of output data, respectively.

Table 2: SARS-CoV-2 HipMCL run comparison.

# Sequences | # Edges (top %) | # Nodes
Sept. 2021 2.07M 112.47B (5.20%) 49
June 2022 5.29M 777.92B (5.56%) | 40

The updated CoMet run required 4.63 times more total hours of
computational time. However, while compute time scaled similarly
to the increased number of vectors, the time increase was mainly
due to the write time required to output the much larger set of
CoMet results. Since we chose to save the top ~5% most variable
edges for both runs, the number of edges in the second run was
proportionally much higher than in the original.

4.3 Conclusion

In this work, we performed an all-against-all whole-genome vector
comparison of every SARS-CoV-2 sequence available on GISAID
through September 2022. Although we are only visualizing a small
number of the most prevalent strains in this manuscript, this work-
flow has produced the genome-driven identification of more than
22,000 strains or haplotypes, for each of which we have geospa-
tial and temporal trajectories spanning the COVID-19 pandemic.
Our identification of the trend for dominant SARS-CoV-2 strains
to be spatially asynchronous suggests a possibly different pattern
of epidemiological risk than has been understood thus far. These
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will be fascinating resources for future work that focuses on the
evolution of the virus over the course of the pandemic and to aid
in detecting possible recombination events. Furthermore, this work
will help in future analyses intended to identify epistatic relation-
ships in strains that have evolved over the course of the pandemic.
These geospatially and temporally resolved haplotypes will also
enable the use of explainable-Al approaches to find whether there
are associations between sets of mutations and local environmen-
tal variables (e.g. climatic and socio-demographic features) and/or
whether they affect mortality rates.
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