QUASIREGULAR VALUES AND RICKMAN’S PICARD
THEOREM

ILMARI KANGASNIEMI AND JANI ONNINEN

ABSTRACT. We prove a far-reaching generalization of Rickman’s Picard
theorem for a surprisingly large class of mappings, based on the recently
developed theory of quasiregular values. Our results are new even in the
planar case.

1. INTRODUCTION

Geometric Function Theory (GFT) is largely concerned with generaliza-
tions of the theory of holomorphic functions of one complex variable. A
widely studied example is the theory of quasiregular maps, which provides
such a generalization for spaces of real dimension n > 2. We recall that, given
a domain 2 C R™ and a constant K > 1, a K-quasiregular map f: Q — R"
is a continuous map in the Sobolev space I/Vlicn (€, R™) which satisfies the
distortion inequality

(1.1) [Df(x)[" < KJy(x)

for almost every (a.e.) x € Q. Here, |Df(x)| is the operator norm of the
weak derivative of f at z, and Jy denotes the Jacobian determinant of f.

A significant achievement in the theory of higher-dimensional quasiregular
maps is the extension of the classical Picard theorem to n real dimensions.
This highly non-trivial result is due to Rickman [43].

Theorem 1.1 (Rickman’s Picard Theorem). For every K > 1 and n > 2,
there ezists a positive integer ¢ = q(n, K) € Z~q such that if f: R" — R" is
K -quasiregular and R™\ f(R™) has cardinality at most q, then f is constant.

Rickman’s theorem leaves an impression that the global distortion control
of quasiregular mappings is necessary for the bound on the number of omitted
points. However, in this article, we show that the distortion bound only needs
to hold in an asymptotic sense when f is near the omitted points, and can
in fact be replaced with an appropriate Sobolev norm estimate elsewhere.
Our result is formulated using a recently developed theory of quasiregular
values [29]. In particular, supposing that yp € R™ and that €2 is a domain in
R™ with n > 2, amap f: Q@ — R" in the Sobolev space VVll’"(Q,]R”) has a
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(K, X)-quasiregular value at yo if it satisfies the inequality
(1.2) [Df(x)[" < KJg(x) + | f(2) — yol" X(2)

for a.e. x € Q, where K > 1 is a constant as in (1.1) and ¥ is a nonnega-
tive function on 2. Note that results on mappings with quasiregular values
typically assume a sufficient degree of LP-regularity for X.

Notably, (1.2) only provides control on the distortion of a mapping f as
f(x) equals or asymptotically approaches yo. Away from vy, these maps
behave similarly to an arbitrary Sobolev map. For instance, a non-constant
map f satisfying (1.2) may for instance have a Jacobian that changes sign,
an entirely 1-dimensional image, or a bounded image even when f is defined
in all of R”. In addition, a map f satisfying (1.2) needs not be locally
quasiregular even in any neighborhood of a point zg € f~{yo}; in fact, it
is possible that every neighborhood of such a point meets a region where
J < 0.

In spite of these vast differences, Rickman’s Picard theorem still general-
izes to the theory of quasiregular values in the following form.

Theorem 1.2. Let K > 1 and ¥ € L**(R") N L'=¢(R") for some ¢ > 0.
Then there exists a positive integer ¢ = q(n, K) € Zsqo such that no con-
tinuous map [ € VV&)’:(R”,R") has a (K, X)-quasiregular value at q distinct
points yi,...,yq € Of(R™).

While the standard Rickman’s Picard theorem concerns omitted points
yi ¢ f(R™), Theorem 1.2 reveals that at this generality, Rickman’s Picard
Theorem is in fact a result on points y; in the boundary Jf(R"™). In-
deed, a version of Theorem 1.2 that instead assumes yi,...,y, ¢ f(R")
is immediately shown to be false by any smooth compactly supported map
f € C°(R™,R™). Regardless of this difference in statements, the standard
Rickman’s Picard theorem follows almost immediately from the case ¥ = 0
of Theorem 1.2; see Remark 7.4.

The integrability assumptions on ¥ in Theorem 1.2 are sharp on the LP-
scale. Indeed, we show in Section 9 that neither = € LLT¥(R") N LY(R™) N
L'7¢(R™) nor ¥ € L'*5(R") N LY(R") is sufficient for the result. The con-
structed maps even satisfy (1.2) with K = 1. We however expect a logarith-
mic Orlicz-type sharpening of the integrability assumptions to be possible,
though we elect not to pursue log-scale results in this work unless explicitly
required by an argument.

1.1. Background on quasiregular maps and the Picard theorem.
The classical Picard theorem states that if f: C — C is an entire holomorphic
function, then either f is constant or C\ f(C) contains at most one point. The
Picard theorem is among the most striking and universally known results in
complex analysis, with numerous different proofs discovered over the years;
see e.g. [2, 7, 8, 15, 21, 31, 47, 52].

The theory of quasiregular maps originates from the planar setting, with
roots in the work of Grotzsch [18] and Ahlfors [1]. More specifically, when
n = 2, the distortion inequality (1.1) can be rewritten as a linear Beltrami
equation

(1.3) fz=nf
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where f,, fz are the (weak) Wirtinger derivatives of f and p € L*(Q,C)
satisfies ||p| ;o < k <1 with k = (K —1)/(K +1). If K =1, then (1.3)
reduces to the Cauchy—Riemann system fz = 0; indeed, a planar map is 1-
quasiregular exactly if it is holomorphic. Moreover, homeomorphic solutions
of (1.1) or (1.3) are called K-quasiconformal, and we also have that a map
is 1-quasiconformal exactly if it is a conformal transformation.

In addition to this link to holomorphic maps, planar quasiregular maps
satisfy the Stoilow factorization theorem, which states that a quasiregular
map f: Q — C is of the form f = h o g where g: 2 — € is quasiconfor-
mal and h: © — C is holomorphic, see e.g. [4, Chapter 5.5]. The Stoilow
factorization theorem immediately generalizes the topological properties of
holomorphic maps to planar quasiregular maps, such as the open mapping
theorem, Liouville’s theorem, and even the Picard theorem.

The higher-dimensional version of the theory began with the study of
n-dimensional quasiconformal mappings by e.g. Sabat [46], Vaiisild [49],
Gehring [16], and Zoric¢ [53]. Afterwards, the theory of n-dimensional quasi-
regular mappings was originated by Reshetnyak [38, 41, 40, 39|, with sig-
nificant early contributions by Martio, Rickman, and Véiséld (33, 34, 35].
The theory is by now a central topic in modern analysis, with important
connections to partial differential equations, complex dynamics, differential
geometry and the calculus of variations; see the textbooks of Véisila [50],
Rickman [45], Reshetnyak [42], and Iwaniec and Martin [27].

Unlike in the planar case, one cannot reduce the topological properties of
higher dimensional quasiregular maps to a better understood class of map-
pings. Indeed, the best known Stoilow-type theorem in higher dimensions
[32] still has a relatively irregular non-injective component. Nevertheless,
many topological properties of holomorphic maps have non-trivial extensions
to spatial quasiregular mappings as well. For instance, the open mapping
theorem generalizes to Reshetnyak’s theorem [41, 40], which states that if
f:Q — R" is a non-constant quasiregular map, then f is an open, discrete
map with positive local index i(z, f) at every z € Q.

Rickman’s Picard theorem, stated in Theorem 1.1, is perhaps the most
clear demonstration of the similarities between the theory of higher dimen-
sional quasiregular maps and single-variable complex analysis. Consequently,
it has become one of the most widely studied results in quasiregular analy-
sis. For instance, a version of Rickman’s Picard Theorem has been shown for
quasiregular maps f: R” — M into an oriented Riemannian n-manifold M
by Holopainen and Rickman [23, 24]. A version of the theorem has also been
shown by Rajala [37] in the case where f is a mapping of finite distortion,
i.e. a mapping satisfying (1.1) with a non-constant K.

When n = 2, the Stoilow factorization approach yields that the constant
¢(2, K) in Rickman’s Picard theorem is equal to 2, and is thus in fact inde-
pendent on K. It was conjectured for some time that one could also have
q(n, K) =2for alln > 2 and K > 1. However, counterexamples by Rickman
[44] in the case n = 3, and by Drasin and Pankka [10] in the case n > 4,
show that for a fixed n > 2 one has ¢(n, K) — oo as K — oc.
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1.2. The theory of quasiregular values. Various generalizations of (1.1)
and (1.3) occur in the study of complex analysis. For instance, the condition

(1.4) IDf> < KJ; +C,

where K > 1 and C' > 0 are constants, arises naturally in the theory of
elliptic PDEs [17, Chapter 12]. The Hoélder regularity of planar domain
solutions of (1.4) has been shown by Nirenberg [36], Finn and Serrin [13],
and Hartman [20]. Similar ideas also play a key role in the work of Simon [48],
where he obtains Holder estimates for solutions of (1.4) between surfaces,
and applies them to the study of equations of mean curvature type.

The theory of quasiregular values stems from another similar generaliza-
tion of (1.1) and (1.3), namely

(15) f==pf-+ Af.
where [|u];« < 1 and A € L2T5(Q,C) for some ¢ > 0. In particular, (1.5)

corresponds to the case n = 2,yp = 0 of the definition (1.2) of quasiregular
values. Much of the initial theory on solutions of (1.5) was developed by
Vekua [51]. One of the standout applications for (1.5) arose when Astala
and Paivérinta used it in their solution to the planar Calder6n problem [5].
The solutions of (1.5) play a key part of various other uniqueness theorems
as well; we refer to the book of Astala, Iwaniec and Martin [4] for details.

Astala and Péivérinta relied on two results for entire solutions of (1.5),
which were essentially modeled on Liouville’s theorem and the argument
principle; see [5, Proposition 3.3] and [4, Sect. 8.5 and 18.5]. The original
key idea behind the planar results is that any solution f of (1.5) is of the form
f = ge’, where g is quasiregular and 6: Q — C is a solution of fz = uf. + A.
Since the existence theory of Beltrami equations and the aforementioned
decomposition f = ge? lack higher-dimensional counterparts, this planar ap-
proach fails to generalize to the n-dimensional setting. Nevertheless, we have
recently in [28, 29, 30| managed to obtain higher-dimensional counterparts
to the planar results used by Astala and Péivérinta. The Liouville-type the-
orem in particular answers the Astala—Iwaniec—Martin uniqueness question
from [4, Sect. 8.5]; see [28, Theorem 1.3] and the correction [30].

The higher-dimensional results opened up an entirely new direction of
study in GFT, as they led us to introduce the notion of quasiregular values
in [29]. The term “quasiregular value” is partially motivated by the single-
value versions of various foundational results of quasiregular maps that follow
from (1.2). The other main motivation for the term is the fact that K-
quasiregularity of a map f € VV&)C”(Q,R") can be fully characterized by f
having a (K, ¥, )-quasiregular value with 3, € L%OtE(Q) at every y € R"; see
|29, Theorem 1.3].

The following theorem lists the two most notable current results of quasi-
regular values, which are the single-value versions of Liouville’s theorem and
Reshetnyak’s theorem. They were shown in [28] and [29], respectively, and
are key components behind the higher-dimensional versions of the planar
results for solutions of (1.5). The addition of Theorem 1.2 to this growing
list of results furthers the evidence that quasiregular values have a rich theory
comparable to that of quasiregular mappings.
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Theorem 1.3 ([28, Theorem 1.2] and [29, Theorem 1.2]). Let Q@ C R™ be
a domain, let € > 0, and let f € Wl’n(Q,R") be a continuous map with

loc

a (K, X)-quasiregular value at yo € R™, where K > 1 and 3: Q — [0,00).
Then the following results hold:

(i) (Liowville’s theorem) If Q = R", & € L, 7¢(R™) N LY(R"), and f is
bounded, then either f =yo or yo ¢ f(R™).

(i) (Reshetnyak’s theorem) If ¥ € Lllota(Q) and if f is not the constant
function f = yo, then f~yo} is discrete, the local index i(x, f) is
positive at every x € f~Hyo}, and f maps every neighborhood U C Q

of a point of f~{yo} to a neighborhood f(U) of yo-
We note that by [28, Theorem 1.1], solutions f € W2"(Q,R™) of (1.2)

loc
always have a continuous representative if ¥ € Lllots(Q) for some € > 0;
see also [9] which explores how much these assumptions can be relaxed for
continuity to remain true. Hence, the continuity assumption in our results
only amounts to making sure that our chosen representative of the Sobolev

map is the continuous one.

1.3. Other versions of Theorem 1.2. Besides the standard formulation
for quasiregular mappings f: R™ — R™, Rickman’s Picard theorem is often
also equivalently formulated for quasiregular mappings f: R” — S™. In our
setting, we similarly obtain a version of Theorem 1.2 for mappings f: R" —
S™ with little extra effort, though it requires formulating a spherical version
of (1.2). Given Q CR", K >0, yo € S”, and ¥ € L. 5(Q2) with ¢ > 0 and
¥ > 0, we say that a continuous mapping h € W1"(Q,S") has a (K,X)-
quasireqular value with respect to the spherical metric at wg € S™ if f satisfies

(1.6) |Dh(z)|" < KJp(z) + o™ (h(x),wo)X(z)

at a.e. z € (), where o(-,-) denotes the spherical distance on S", and |Dh(z)|
and Jp,(x) are defined using the standard Riemannian metric and orientation
on S"”. With this definition, the resulting version of Theorem 1.2 is as follows.

Theorem 1.4. Let K > 1 and ¥ € L**¢(R") N L'=¢(R") for some ¢ > 0.
Then there exists a positive integer ¢ = q(n, K) € Zsq such that no contin-
1n

uous map h € W' '(R",S") has a (K, X)-quasiregular value with respect to
the spherical metric at q distinct points wy, . ..,w, € Oh(R™).

We remark that if we identify S™ with R™ U {oco} via the stereographic
projection, then a map f: R" — R"™ has a quasiregular value with respect
to the Euclidean metric at yg € R” if and only if f has a quasiregular value
with respect to the spherical metric at both yy and co. Hence, (1.6) is in
some sense a weaker assumption than (1.2). The comparison between these
two definitions is discussed in greater detail in Section 3.

While the assumption ¥ € L¢(R™) N L!7¢(R") in Theorems 1.2 and 1.4
is sharp, the proof we use does yield us some additional information even
under a weaker assumption of ¥ € L'(R") N L1T#(R™). This result is more

loc
elegantly stated using spherical quasiregular values.

Theorem 1.5. Let K > 1 and ¥ € L'(R")NLLTF(R") for some e > 0. Then
there exists a positive integer ¢ = q(n, K) € Z~o with the following property:
if a continuous map h € Wl’"(R”,S”) has a (K,X)-quasireqular value with

loc
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respect to the spherical metric at q distinct points wy, ..., wq € Oh(R™), then
|Dh| € L™(R™).

1.4. The planar case. In the case n = 2, similarly to the standard Picard
theorem, our main results end up having ¢(2, K) = 2 for maps f: C — C,
and ¢(2, K) = 3 for maps h: C — S%. Even this planar version of Theorem
1.2 and Theorem 1.4 is new.

Theorem 1.6. Let K > 1 and ¥ € L'*¢(C)NL'~¢(C) for some e > 0. Then

. 1,2
no continuous map f € W,

distinct points z1, z2 € Of(C). Similarly, no continuous map h € Wl’Q(C, S?)

loc
has a (K, Y)-quasiregular value with respect to the spherical metric at three

distinct points wy, we, w3 € Oh(C).

(C,C) has a (K,X)-quasiregular value at two

We prove Theorem 1.6 by reducing it to Theorem 1.2. The version of
the argument for quasiregular maps is incredibly simple: If f: C — C is a
K-quasiregular map omitting two distinct points z1,29 € C, then the lift
~v: C — C of f in the exponential map z — z1 + €* is a K-quasiregular map
that omits the infinitely many values of log(z2 — z1), which is impossible
by Rickman’s Picard Theorem. Attempting the same idea for maps with
quasiregular values using Theorem 1.2 is less straightforward, but we are
ultimately able to construct a proof around this fundamental idea through
use of the decomposition f = ge? and existing results on quasiregular values;
see Section 8 for details.

1.5. Main ideas of the proof. While the classical Picard theorem has nu-
merous proofs, only a few of them have been successfully generalized to a
proof of the n-dimensional Rickman’s Picard Theorem. The original proof
by Rickman [43] uses path lifting and conformal modulus techniques in or-
der to estimate spherical averages of the multiplicity function of f. Later,
work by Eremenko and Lewis [11, 31| resulted in an alternate proof using
Harnack inequalities of A-harmonic maps. Both of these approaches run
into significant obstacles in our setting, as solutions of (1.2) currently lack
counterparts to e.g. conformal modulus estimates and the natural conformal
structure G¢(z) = J?/n(a:)[DTf(ac)Df(:Jc)]*1 of f.

Recently, however, a third method of proof has been discovered by Bonk
and Poggi-Corradini [6], which is closer to being applicable in our situation.
Motivated by the Ahlfors—Shimizu value distribution theory of holomorphic
functions, they study the pull-back vo f of a subharmonic logarithmic singu-
larity function v: S™\ {zo} — [0, 00), where the spherical n-Laplacian of v is
identically 1. They are then able to leverage the preservation of the spherical
measure under isometric rotations of S to obtain growth rate estimates for
the measure p = f* volgn, from which the result follows via ideas reminiscent
of the ones used in Rickman’s original argument.

We prove Theorem 1.2 by adopting the structure of the proof of Bonk
and Poggi-Corradini, but with key developments to the proof in multiple
places where its current form is insufficient for us. Notably, in order to
avoid use of the conformal structure Gy, we completely eliminate the use
of A-subharmonic theory in our proof, and we instead obtain the required
growth estimates by directly using (1.2) and the properties of the logarithmic
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singularity function. Issues caused by the extra term in (1.2) and the fact
that y is a signed measure are eliminated by the global L!-integrability of
3.

The greatest challenges in our setting are tied to replacing the use of
[6, Lemma 4.4], which yields that if f: R” — R"™ is a non-constant entire
quasiregular map and r > 0, then every component of the set {|f| > r} is
unbounded. In our case, this is not true; instead, we essentially obtain control
on the total A¢-measure of any bounded components of {|f| > r}. One of our
primary tools in addressing this problem is to introduce a “pseudosupremum”
based on unbounded components of pre-images. Indeed, when the growth
estimates for Ay are formulated in terms of this pseudosupremum, they can
be combined in a similar manner as in the case of quasiregular maps.

However, the pseudosupremum does not solve the second major challenge
surrounding [6, Lemma 4.4], which is the problem of showing that mappings
with multiple quasiregular values in 0f(R") satisfy A¢(R™) = co. We note
that Theorem 1.5 is obtained by essentially ignoring this issue and instead
assuming a-priori that A¢(R™) = oco. For non-constant quasiregular maps
f:R" = 8"\ {x1,22}, the fact that A¢(R") = oo follows easily; see for
example [45, Lemma IV.2.7] or [6, p. 631]. In our setting, however, this
step becomes nontrivial, involving challenges somewhat similar to the ones
encountered in the study of the Astala—Iwaniec—Martin uniqueness question.
In particular, the part about excluding the case Af(R™) < oo is the only
part of the proof where the precise integrability assumptions of Theorems
1.2 and 1.4 become relevant.

1.6. The structure of this paper. In Section 2, we recall some prelimi-
nary information on Sobolev differential forms that is used in our computa-
tions. Section 3 is a discussion on the connections between the Euclidean and
spherical definitions of quasiregular values. In Section 4, we discuss spherical
logarithms of maps with quasiregular values, and prove a boundedness result
that is used later in the proof of Theorems 1.2 and 1.4. Section 5 is then
dedicated to proving the relevant Caccioppoli-type estimates that are used
in the proofs of the main results.

With these preliminaries complete, we then prove Theorem 1.5 in Sec-
tion 6. The proof of Theorems 1.2 and 1.4 is then completed in Section 7,
with an entire section dedicated to dealing with the special case Af(R") < oco.
In Section 8, we prove the sharp planar result given in Theorem 1.6 by using
Theorem 1.2. Finally, in Section 9, we provide counterexamples which show
the sharpness of the assumptions of Theorem 1.2.

1.7. Acknowledgments. We thank Pekka Pankka for several helpful com-
ments and ingights on the paper. We also thank the anonymous referee for
numerous suggested improvements that ended up significantly improving the
presentation of the paper.

2. PRELIMINARIES ON SOBOLEV DIFFERENTIAL FORMS

Throughout this paper, we use C(a1, ag, ..., an) to denote a positive con-
stant that depends on the parameters a;. The value of C(ay,aq, ..., ay,) may
change in each estimate even if the parameters remain the same. We also use
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the shorthand A; <4, .49....a,, A2 which stands for A; < C(aq,ag, ..., am)As,
where we always list the dependencies of the constant on the <-symbol.
The shorthand A1 24, 4.....am A2 is defined similarly. Additionally, if B =
B"(x,r) C R™ is a Euclidean ball and ¢ € (0, 00), then we use ¢B to denote
the ball B"(z, cr).

Let U be an open subset of R". We use LP(A*T*U), LP (AFT*U),
WhP(ART*U), WEP(AFT*U), and CHAFT*U) to denote differential k-forms
w = Y";wrdzy on U for which wy are in LP(U), LF. (U), WhP(U), WoP(U),
or CY(U), respectively. We also use the subscript 0 to denote spaces of dif-
ferential forms or real-valued functions with compact supports; for instance,
C35°(U) denotes the space of compactly supported smooth real-valued func-
tions on U.

Given a differential form w: U — AFT*R"™, we use w, € AFTR" to denote
the value of w at z. We use |w,| for the norm of w,, which is the I>-norm on
the coefficients of w, with respect to the standard basis; in particular |w| is
a function U — [0, 00). Recall that w1 A ws| < C(n) w1 |wa|. If either wy or
wo is a wedge product of 1-forms, then one in fact has w1 A wa| < |wi| |wal.
We also use xw to denote the Hodge star of a differential k-form w.

If we LL _(AFT*U), then dw € L (AF1T*U) is a weak differential of w

. loc loc
if

/dw/\n:(—l)k+1/w/\dn
U U

for every n € Cg°(A""F=1T*U). We denote the space of w € LV (A*T*U)
with a weak differential dw € L% _(AMH1T*U) by WP4(AFT*U), with the ab-
breviation WP (AFT*U) = WEPP(AFT*U). We also define versions of these
spaces with global integrability, denoted W4P4(AFT*U) and WP (ART*U),
as well as versions for forms with compact supports, denoted Wg P ’q(/\kT* U)
and WP (AFT*U). Recall that WP (AFT*U) € WEP(AFT*U), along with
the similar inclusions WEP(AFT*U) ¢ WEP(ART*U) and Wol’p(/\kT*U) C
WP (ART*U), where the weak differential of an element of W,oP(ART*U) is
obtained component-wise by the rule d(fdz;, Adxi, A---ANdz;, ) = df Adxi, A
dziy N A dl‘ik.

If wy € WP (APT*U) and wy € WLH(AIT*U) with p~! +¢7' = 77! <
1, then standard product rules of Sobolev functions yield that w; A wy €

WET(ARHT*U), and

loc
(2.1) d(wi A wa) = dwy Aws + (—1)Fw; A dws.

By a convolution approximation argument, we have that (2.1) also holds if
one instead assumes that w; € Wl‘éf“ql(/\kT*U) and wy € ngQm(/\lT*U)
with pl_l +p2_1 =771 <1 and 1[113@((101_1 + q2_1,p2_1 + ql_l) =51 <1, in
which case w1 A wy € WEPS(AFHT*U). Moreover, if w € Wi (A"1T*U),
then a convolution-based argument similarly yields

(2.2) /U dw = 0,
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We also note that if w € T/Vlfl)’cl(/\kT*U), then dw € VVlil)’Cl(/\kHT*U) with
ddw = 0.
If w € C(AFT*V), i.e. if the coefficients wy of w are continuous, and if f €

Wl’n(U, R™), then the pull-back f*w is well-defined and lies in L”/k(/\kT*U).

loc loc
We recall that in this case, we have the estimate

(2.3) |frw| < (Jwlo f) DS

Indeed, if w = @dz;; A --- Adx;,, then [f*w| = |(@o fdfi, A+ Adfy, | <
(J¢|o f)|Df|¥, and the result for general w then follows by the Pythagorean
theorem.

Moreover, if w € C§(AFT*V) and f € WL (U, R™), the chain rule of C{-

functions and I/Vllo’?—functions then yields that f*w € I/Vl((i)f/k’n/(kﬂ)(/\kT* U)
and df*w = f*dw; see e.g. the proof of [28, Lemma 2.2]. If f is additionally
continuous, then the assumption w € C§(A*T*V) can be weakened to w €
CH(AFT*V') by using smooth cutoff functions.

In what follows, we also use a chain rule for f € C(U,V) N W.-"(U,R")

loc

and w € C(AFT*V) N VVl})fo(/\kT*V). Note that this assumption on w is
equivalent with the coefficients w; being locally Lipschitz. At this level of
generality, caution is required with the use of chain rules; for instance, the
weak differential dw is only unique up to a null-set under these assumptions,
and changing dw in a null-set could change f*dw in a set of positive measure,
making f*dw ill-defined. However, these assumptions are still sufficient to
obtain weak differentiability of f*w. We record the precise statement we use
in the following Lemma, which follows in a straightforward manner from the
chain rule for Lipschitz and Sobolev maps; see e.g. Ambrosio and Dal Maso
[3, Corollary 3.2].

Lemma 2.1. Let U,V C R" be open sets, let f € C(U, V)ﬂVVli’?(U, R™), and
let w € C(AMT*V) N WEX(ART*V) for k € {0,...,n — 1}; i.e., we assume

loc

that w has locally Lipschitz coefficients. Then f*w € I/Vlcé’:/k’n/(kﬂ)(/\kT* U).
In particular, combining Lemma 2.1 with (2.1) unlocks the following tool.

Corollary 2.2. Let U,V C R" be open sets, let f € C(U,V)N VVli’f(U, R™),
letw; € C(ANRT*VINWLE(APT*V), and let wy € C(ANT*V)NW,S(AT*V),

with k,l € Z>o, k+1<n—1. Then

f*(wl A w2) c ‘/I/lcol’cm’lﬂ»url (/\k+lT*U),
with
df*(w1 A CUQ) = (df*wl) N wo + (—l)kf*wl A (df*WQ).

3. QUASIREGULAR VALUES AND MAPS INTO SPHERES

Let e; denote the standard basis vectors of R™, let (-,-) denote the Eu-
clidean inner product on R", and let |-| denote the Euclidean norm. The
n-dimensional unit sphere S consists of all w € R"*! with |w| = 1. Recall
that on R, the inverse s,,: R™ — S™\ {—e;} of the stereographic projection
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is defined by
1

sn(z) = T’x‘g

<1 - |$|2 ,2w1, 279, . .. ,Zmn) .
The map s, is then extended to R™ U {oco} by setting s, (c0) = —ey.

We recall that the spherical distance o on S™ is given by o(wi,ws) =
arccos (wy, we) for wy,we € S™, using the inclusion of S™ into R+ We also
define the spherical distance on the space R™ U {co} by setting o(x1,x2) =
o(sn(z1), sn(x2)) for x1,29 € R™ U {oo}. Via an elementary computation,
one sees for x1,xo € R™ that

2 |33‘1 — l‘2|2
(1+ [21]%) (1 + [21?)

cos(o(x1,x2)) = (sp(x1), Sp(x2)) =1 —

In particular,

(3.1) sin o1, v2) = 21 = 2| for x1, 29 € R™.

2 0 m P e

By letting zo tend to infinity in (3.1), we also see that

(3.2) sin o(r1, ) = ! for x; € R".

2 \/1—|—|x1\2

We equip S™ with the standard Riemannian metric that arises from the
inclusion to R™*!, and orient S™ so that its volume form volg. is given
by the restriction of the n-form xd(27!|z|*) € C°(A"T*R"1). When S"
is equipped with this metric and volume form, the map s,: R" — S™ is
conformal; more precisely,

(3.3) [Dsn(x)|" = Js, (z) =

27L
(1+ |z)"
for every z € R™. Moreover, given a set U C R™ U {oco}, we denote its
spherical measure by vols» (U). By (3.3) , we see that

(3.4) volgn (U) = /U m

Suppose then that f € VV&;?(R”,R”). We define a measurable map
h: R — S"™ by h = s, 0 f. Since s,: R® — R™! is a smooth Lipschitz
map, it follows that h € WL (R", R*") and Dh(z) = Ds,(f(z))Df(z)
for a.e. # € R". In particular, the image of Dh(x) lies in Tj,,)S™ for a.e.
x, and hence Dh can be understood as a measurable map TR" — TS".
Consequently, we obtain a Jacobian of h by Jp vol, = h*volgr. Since s, is

conformal, we obtain by (3.3) that
27 D[ o ]

3.5 phr =121 g, =
(3:5) [Dhi o+ " "R

a.e. in R™.

We then prove comparison results for the two definitions of quasiregular
values given in (1.2) and (1.6). We begin with a spherical interpretation of
Fuclidean quasiregular values.
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Lemma 3.1. Let f € WE"(Q,R™) with Q@ € R*. Let h = s, 0 f, let
wo = Sn(yo) for some yo € R", let K € R, and let ¥: Q — [0,00) b
measurable. Then the following conditions are equivalent up to an ea:tm

constant factor C' = C(n,yg) on X:

(1) f has a (K, X)-quasiregular value at yo;

(2) h has a (K, X)-quasiregular value with respect to the spherical metric
at both wy and sy (c0);

(8) h satisfies

|Dh|" < K Jp, + 0" (h,wo)o" (h, s,(00))
a.e. in ).

Proof. We first show the (almost) equivalence of (1) and (3). We multiply
(1.2) on both sides by 27(1 + |f|*)~" and use (3.5), obtaining that (1.2) is
equivalent to

lf = y02| -

(1+1/F)

Now, using (3.1) and (3.2), we observe that

‘f_y()z’ _ ’f Z/O‘ /1+ |y0’2
1+ |f]

\/(1+\f\ )(1+ [yol*) \/1+\f|
am%>.0%WXGmdwwgl.

= sin - sin
2

2 2

Thus, (1.2) is equivalent to
2" sin™ (27 o (f, yo)) sin” (27 o (f, 0)) 5
sin” (2710 (yo, 00))
Since (2/m)t < sin(t) < t whenever t € [0,7/2], the previous equation is
equivalent to the one in part (3), up to a multiplicative constant on X.

It remains to show the (almost) equivalence of (2) and (3). Since o(-,-) is
bounded from above by 7, it is clear from the definition of spherical quasireg-
ular values in (1.6) that (3) implies (2) up to an extra factor of 7™ on X.
For the other diection, we use the fact that for any distinct wy,ws € S™, the
function w + min(o~(w,wy), 0" (w,ws)) is continuous and has a maxi-
mum value of 2/0(wy,wz). Thus, if (2) holds, then we have the estimate

|Dh|" < KJj, + min (o™ (h,wo), 0™ (h, sp(0))) %

= KJp +min(c~"(h, sp(00)), 0" (h,wo)) o™ (h, wo)o" (h, sp(00))E
< KJy 4 O, y0)o™ (b, )™ (. 50(00))

a.e. on (), completing the proof. O

|DR|" < KJ, + 2"

|DR|" < KJ, +

Next, we give a Euclidean interpretation of spherical quasiregular values.

Lemma 3.2. Let f € W,2'(Q,R") with @ C R*. Let h = s, o0 f, let
wo = sp(yo) for some yo € R™, let K € R, and let ¥: Q — [0,00) be
measurable. Then the following conditions are equivalent up to an extra

constant factor C' = C(n,yp) on X:
(1) h has a (K, X)-quasireqular value at wy;
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(2) f satisfies
DS < KJp+1f —yol" (L+1£1°)*S
a.e. in §Q.
Similarly, the following conditions are equivalent up to an extra constant
factor C' = C(n) on X:
(1’) h has a (K, X)-quasiregular value at s,(00);
(2°) f satisfies
IDf" < KJp+ (1+|f?)°%
a.e. in Q.

Proof. For the first equivalence, similarly as in the proof of Lemma 3.1, we
may use (3.1), (3.2), and (3.5) to show that condition (2) is equivalent to

2" sin" (27 o (h, w))
sin™ (27 1o (wp, s,,(00)))
Since this is equivalent to (1.6) up to a multiplicative constant on X, the

claim follows. The proof of the second equivalence is analogous, as (3.2) and
(3.5) yield that condition (2’) is equivalent to

IDh|" < K Jj, + 2" sin” (U(}”M> 5.

|Dh|™ < KJ), + 5.

2
(]

We end this section by pointing out that the single-point Liouville’s theo-
rem and Reshetnyak’s theorem for Euclidean quasiregular values imply cor-
responding results for spherical quasiregular values.

Proposition 3.3. Let Q C R™ be a domain, lete > 0, and let h € VVI})?(Q,S”)
be a continuous map with a quasireqular value with respect to the spherical
metric at wg € S™, for given choices of K > 1 and X: Q — [0,00). Then the
following results hold.

(i) (Reshetnyak’s theorem) If ¥ € Lllota(ﬂ) and if h is not the constant
function h = wo, then h™ {wo} is discrete, the local index i(x,h)
is positive at every x € h™{wg}, and h maps every neighborhood
U C Q of a point of f~H{wo} to a neighborhood h(U) of wy.

(ii) (Liowville’s theorem) If Q = R", ¥ € Lit¢(R") n LY(R"), and

h(R™) £ S™, then either h = wo or wy ¢ h(R™).

Proof. Suppose first that the assumptions of (i) hold. If we post-compose h
with an isometric rotation R: S — S", it follows that R o h has a (K, X)-
quasiregular value with respect to the spherical metric at R(wg). Thus, we
may assume that wg # 0o. Let ygp € R™ be the point for which s, (yo) = wo.

We fix an open neighborhood U of wg for which co ¢ U. Now, in the
set Q' = h~'U, there is a bounded, continuous f € VV&;:(Q’,R") such that
h = s, o f. By Lemma 3.2, f has a (K, YX')-quasiregular value at yo, where
> = C(n,yo)(1+|f*)"/28. Since f is bounded, we have that ¥/ € Lite(q).
Now, the Euclidean result (Theorem 1.3 (ii)) yields the claim for h|q/. Since
Y is the pre-image of a neighborhood of wg under h, this in fact implies the

result for h.
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Suppose then that the assumptions of (ii) hold. If wy € S™\ h(R™), then
clearly wg ¢ h(R™) and the claim holds. Otherwise, by post-composing with
an isometric rotation, we may this time assume that s, (c0) € S™\ h(R") and
that wy = sp(yo) for some yg € R™. Consequently, we obtain a bounded,
continuous map f € VV&’?(R”,R”) satisfying h = s, o f. Lemma 3.2 again
yields that f has a (K, Y')-quasiregular value at the point yy, where ¥/ =
C(n,y0)(1+|f>)"/?%. Since f is bounded, we have 3’ € L'(R")N L (R™),
and hence the corresponding Euclidean result (Theorem 1.3 (i)) implies that

either wy ¢ h(R™) or h = wy. O

4. OMITTED QUASIREGULAR VALUES AND THE SPHERICAL LOGARITHM

In this section, we cover a key boundedness result for mappings f €
VV&:(Q, R™) N C(Q2,R™) which have a (K, ¥)-quasiregular value at an omit-

ted point yo € R™\ f(2). This result is used near the end of the proof of
Theorems 1.2 and 1.4.

4.1. The spherical logarithm. The main result of this section is formu-
lated and proven in terms of the spherical logarithm, a key tool in studying
maps with an omitted quasiregular value. The first application of the spher-
ical logarithm to the theory of quasiregular values was in the solution of the
Astala-Iwaniec-Martin -question; see |28, Section 7| and the correction [30].

Definition 4.1. Let Q@ C R™ be an open domain. Suppose that a map

feC(Q,R) ﬂWI})’f(Q,R”) has a (K, X)-quasiregular value at yo € R™ with

K >1and ¥: Q — [0,00) measurable. Suppose also that yo ¢ f(R™). Then

the spherical logarithm of f centered at yo is the map

(4.1)

G = (Ggr,Gsn1): Q 5> Rx S Ga) = <log () — ol M) .

£ (@) = wol

In particular, the spherical logarithm is of the form G = ©,, o f, where

Oy R"\ {yo} = R x S"7! is the conformal diffeomorphism defined by

Y—Y%
Oyo(y) = <log [y — ol !y—ya!)

for y € R™\ {yo}.
Suppose then that f € C(,R")N Wl’n(Q,R") has a (K, X)-quasiregular

value at an omitted point yy € R", and i(()e(‘é G be the spherical logarithm of f
centered at yp. Since both f and ©,, are continuous, G is also continuous.
If we embed R x S*! isometrically to R"*!, we see by a chain rule that
G e Wllo’:(R”,R”H). Moreover, if we equip R x S"~! with the standard
orientation, then G has a valid Jacobian Jg defined a.e. in R™ by

Jovol, = dGg A Gy volgn1 = dGg A G 1 xd (271 z]?),

where the Hodge star is taken in the Euclidean space R” containing S*.

The main use of the spherical logarithm is that it transforms the definition
(1.2) of quasiregular values into a version without the coefficient |f — yo|".
The following lemma, sums up this property; its proof is a straightforward
computation that is covered in [28, Lemma 7.1].
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Lemma 4.2. Let 2 C R™ be an open domain. Suppose that a map f €
C(,R™) N VV&)’:(Q,R") has a (K,X)-quasiregular value at yo € R™ with
K >1and ¥: Q — [0,00) measurable. Suppose that yo ¢ f(R™), and let G
be the spherical logarithm of f centered at yg. Then

|Df] Jf

4.2 DG| = , Jog=—""m,
(42) DG |f = vol “T 1 =l

and therefore
(4.3) IDG|" < KJg + X.

4.2. The boundedness result. We then state our boundedness result for
the spherical logarithm. The result is closely connected to the solution of
the Astala—Iwaniec-Martin question in [28, 30|, and its proof is similarly
technical.

Proposition 4.3. Suppose that G: R™ — R x S*~! is continuous, that G €
VV&J’:(R”,RXS”_l), and that |DG| € L™(R™). If G satisfies (4.3) with ¥ > 0
and ¥ € L*~¢(R™")N L*E(R™) for some € € (0,1), then the R-component Gg
of G is bounded.

In particular, Proposition 4.3 has the following immediate corollary.

Corollary 4.4. Let f € C(R”,R”)ﬂﬂﬁi’f(R”,R") have a (K, X)-quasiregular
value at yo € R™ with K > 1 and ¥ € L'=5(R") N L'*¢(R") with ¢ > 0.
Suppose that yo ¢ f(R™) and |Df|/|f —yo| € L™(R™). Then f is bounded
and dist(yo, f(R™)) > 0.

Proof. If G is the spherical logarithm of f centered at yg, then G satisfies
(4.3), and (4.2) yields that |DG| = |Df|/|f — yo| € L™(R™). Thus, Proposi-
tion 4.3 yields that Gg = log|f — yo| is bounded, and the claim follows. [

The first step in the proof of Proposition 4.3 is a higher integrability
result for |[DG|. The argument is a standard proof based on reverse Holder
inequalities, and has already been recounted in e.g. [29, Lemma 6.1] and |9,
Section 2.1] in similar situations. Regardless, we state the result and recall
the short proof, as the previous statements do not cover the case where the
target of G is R x S*~1.

Lemma 4.5. Suppose that G: R® — R x S* ! is continuous, that G €
VV&)’?(R”,RXS”*), and that |DG| € L™(R™). If G satisfies (4.3) with X >0

and ¥ € LY(R™)N LT (R™) for some € > 0, then there exists €' € (0,¢) such

that
/ |DG|(1+€')n Sn,K/ yite ~ oo
Rn Rn

Proof. Let @) be a cube in R™ with side length . We select a cutoff function
n € C®(R™,[0,1]) satisfying n|g = 1, sptn C 2Q, and ||Vl e Sn 771,
where we interpret 2() as the cube with the same center as ) but doubled
side length. First, (4.3) yields

/ n" |DG" < K n"Ja —i—/ n"y.
n Rn n
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We then use a Caccioppoli-type inequality for functions R” — R x M, where
M is an oriented Riemannian (n — 1)-manifold without boundary; see [28,
Lemma 2.3]. That is, if Gg is the R-coordinate function of G, we obtain

/ J < n / 7L |DG" |V |Gk —

for every ¢ € R. By combining these estimates, using Holder’s inequality,
dividing by r", and applying the assumptions on 7, we obtain

1 n2-1
][ |DG|" <, Kr™! (][ |Gr — c|"2) <][ ]DG]nH) —i—]l X.
Q 2Q 2Q 2Q

We then use the Sobolev-Poincaré inequality on the first integral to obtain

n+1

2 'ni2 n2 'ni2 n2 n2
r! <][ |Gr — | > <n <][ \DGR|7L+1> < <][ ]DG|n+1> ,
2Q 2Q 2Q

where ¢ = (GRr)2¢- In conclusion, we obtain a reverse Holder inequality

n+1

n2 n
][ IDG|" <, K <][ yDG|n+1> +][ 5.
Q 2Q 2Q

As this holds for all cubes @, we may hence use Gehring’s lemma (see e.g.
[26, Lemma 3.2]), obtaining that for some &’ € (0,¢) we have the estimate

/ DG <k / o < oo,
Rn n
U

The second step is a corresponding lower integrability result. For this, we
use the corrected version of [28, Lemma 7.2] proven in [30]. This logarith-
mic lower integrability result builds upon ideas from [12]. As the proof is
relatively complicated, we refer the reader to [30] for details.

Lemma 4.6 ([30, Lemma 7.2 (revised)]). Suppose that G: R"® — R x S*~!
s continuous and non-constant, that G € VV&)’:(R”,R x S* 1), and that

|DG| € L™(R"). If G satisfies (4.3) with ¥ >0 and ¥ € L*(R™) N L'=¢(R")
for some ¢ € (0,1), then

1
DG|" log" 1+><oo,
[ 1pe g< AM(DC)

where M stands for the (centered) Hardy-Littlewood mazimal function.

With Lemmas 4.5 and 4.6 recorded, we are ready to prove Proposition
4.3.

Proof of Proposition 4.3. We may assume that G is non-constant. By Lemma
4.5 we have |DG| € L™*<'(R") for some &’ > 0, and by Lemma 4.6, we have
|DG|log(1 + M~(|DG|)) € L™(R™).

We fix xzyp € R", with the aim of estimating |Ggr(zo) — Gr(0)|. We base
the proof on a standard chain of balls -argument used in e.g. [19]. In
particular, for all i € Z, we let r; = |zo|271=2, and fix balls B;, where
B; = B (271111 zq, 1) for i < 0 and B; = B™((1 — 2711=1)zq,7;) for i > 0.
See Figure 1 for an illustration.
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FIGURE 1. The chain of balls B; from 0 to xg.

The balls form a chain where the center of B; is on the boundary of
Bi_gen(iy for i # 0. Moreover, no point in R" is contained in more than two
balls B;, and the overlap of consecutive balls B; N B;_.,(;) contains a ball B!
with radius 7} = r;/2. By continuity, we also have that the integral averages
(Gr) B, converge to Gr(0) as ¢ — —oo, and to Gr(zg) as i — oco.

We thus obtain a telescopic sum estimate

Gr(z0) — Gr(0)| < > [(Gr)B.yy — (GR)B,|-

i=—00

We show here the estimate for the upper end ¢ > 0 of the series, as the
estimate for the lower end ¢ < 0 is analogous. By taking advantage of
the ball B, , contained in B; N B;;1 and by using the Sobolev-Poincaré
inequality, we obtain

‘ (GR)BiJrl - (GR)Bi

< |[(Gr)p:,, — (Gr)B,| +|(GRr)p,, — (GR)B |

< ][ G — (Gr)s| + ][ G — (Ga)p,., |
B! Bl,,

i1 it
< 4"][ |Gr — (Gr)B;| + 2"][ |Gr — (GR) B, |
B; Bit1

Sn Ti][ |DG‘+T¢+1][ |DG|
B; Bit1

Thus,

o oo
S [(GRas — (Gal S0 > [ e,
=0 i=0 B;

Since r; is decreasing with respect to ¢ when ¢ > 0 and tends to zero as
t — 00, there exists an index ¢y € Z>o such that r; < 2 when ¢ > ig, and
r; > 2 when 0 < ¢ < ig. Thus, the end of the series can now be estimated
using Holder’s inequality, yielding

o0 oo !y ’ ﬁ
S [ pel £, 3o en ([ per)”
B; B;

=10 1=10
el N o <
— Z ,,,.in+s (/ |DG’TL+E > S HDG||L7L+EI Z ,r.in+s
i=i B; i=i
0 0

EI

Sner IDG e 7y < 2|IDGl e

%0
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In particular, this upper bound for the end of the series is finite by Lemma
4.5. The upper bound is also independent on z.

For the beginning part 0 < ¢ < g, we use the following elementary in-
equality: if @1, ®s are positive-valued real functions on an interval I C R
with ®; increasing and ®, decreasing, then

®1(a) Da(a) ®i(a) Po(a)
e GG ) R R 0
for all a,b € I. We use this with I = (0 ), ®1(t) = t"1 Dy(t) =

log(1 +t7 1), a = M(|DG|)(z), and b = 12 for some 0 < i < ip. We
obtain

log (1 —I—I/M(\DG])).

n—1
1<r 2 M"Y|DG|) +
- ( ) log (1 + \/7“7)

(2

We observe that log(1 + /r;) > log(y/ri) = log(r;)/2. Moreover, since
0 < i < ip, we have r; > 2, and consequently log(r;) > 0. Hence, we
conclude that, for 0 < ¢ < iy, we have

n—1 2 1
1<r.2 M™ YD — 1 1+ ———
ST (12D + 10t °g< +M(\DGD)’

and in particular,

Z() 1 i0—1 n—1
(4.4) ry U/ DG < T / |DG| M™ (| DG))
1= O 1=0 B;

i0—1
1
2 DG|1 1+ —1.
- Z - nogm/&.’ 'Og( +M<|DG|>)

We then utilize the fact that i is the first index for which r; < 2, from
which it follows that r; > 207" when 0 < ¢ < 9. Thus, we may estimate the
first sum on the right hand side of (4.4) by

10—1

Zr /IDGIM"1|DG\ </ M |DG|>ZQ_-

which is again a finite upper bound independent on xg due to the Hardy-
Littlewood maximal inequality. For the other sum on the right hand side of
(4.4), we use both the integral and sum versions of Holder’s inequality, the
fact that no point of R™ is contatined in more than two balls B;, and the



18 [. KANGASNIEMI AND J. ONNINEN

above estimate r; > 207% in order to obtain
io—1
1 1
—_— DG|log [1+ —i——~
; ri' " log(rs) /Bi‘ | g( M(\DG!)>

i9—1

n—1

Sty nyom 1 "
(Z lognnl(m)> (; /Bi|DG‘ tog <1+M(‘DGD>>

1=0

IN

n—1

This upper bound is finite by Lemma 4.6. It is also independent of xy. Thus,
combining our estimates, we have an zg-independent upper bound for the
upper end ¢ > 0 of the telescopic sum of integral averages. An identical
argument proves a similar bound for the lower end ¢ < 0, completing the
proof. O

5. THE LOGARITHMIC POTENTIAL AND CACCIOPPOLI INEQUALITIES

In this section, we prove the Caccioppoli-type inequalities used in the
proof. In particular, we prove counterparts to [6, Lemmas 4.2 and 5.4]
where we assume (1.2) instead of full quasiregularity. Since our setting
still allows for large sets where J¢(z) = 0 and Df(x) is non-invertible,
we lack a good counterpart for the induced conformal structure Gy(x) =

J;2/n(x)[DTf(x) Df(x)]~! associated to f. Thus, instead of using .A-sub-
harmonic theory as in the original proofs, we rely on more direct computa-

tions.

5.1. The logarithmic potential. We begin by recalling the logarithmic
potential function from [6, Section 3|. We first define a function S: [0, c0) —
[0,1) by

volgn (B™(0, 7))

(5.1) S(r)= volgn (R")

By using (3.4), one can see that

S(r) = 2" volgn—1 (R" 1) / = de
= volgn(Rn) 0 (1+t2)n

In particular,

n)rn=!
6:2) $0) = Py

and we obtain the following estimates describing the asymptotic behavior of
S(r) and S'(r) for large and small r:

(53) S(’f’) Sn min(rn7 1)7 SI(T) Sﬂl min(rn_ly T_(n+l)).
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Next, we define a function H: [0,00) — [0, 00) by

(5.4) Hr) = /0 S“t(t)dt.

Consequently, we have

(5.5) (=30,

and by applying (5.3), we get the estimates
(5.6) H(r) <, min (rﬁ, 1+ |10g(7")\) , H'(r) <, min (rﬁJfl) :

The logarithmic potential vgn : R™ — [0, 00) at infinity is then defined on
R"™ by

(5.7) vgn () = H(|x]).

Since vrn is a real-valued radial function, we have

x
(5.8) Vougn (z) = H’(\$|)m and |Vogn (x)| = H'(z]).
Moreover, recall that if v € C'(R") is a function such that |Vo|[" * Vo €
C1(R™,R"™), then the n-Laplacian A,v of v is defined by

Anv =V - (|Vo|[" 2 Vo).
We note that the n-Laplacian satisfies the identity
(Anw) vol, = d(|dv|™ % xdv).

We record that the n-Laplacian of vgn is in fact exactly the density of the
spherical volume; we refer to [6, Lemma 3.1] for the proof.

Lemma 5.1. We have vgn € CL(R™), |Voge|" " ? Vogn € CHR",R™), and

2n
7 = Js, ().

Bt ) = )

5.2. Quasiregular values and superlevel sets. The study of sublevel
and superlevel sets of the form {|f — yo| > L} and {|f — yo| < L} has been
perhaps the most fundamental tool in the developement of the prior theory
on quasiregular values; see in particular [28, Section 5| and [29, Section 4].
Such sublevel and superlevel sets also play a key role in this paper. Indeed,
we prove a counterpart to |6, Lemma 4.4|, which essentially yields that su-
perlevel sets {|f| > L} of an entire quasiregular function f have no bounded
components. As stated in the introduction, superlevel set methods do not
fully eliminate the existence of bounded components of {|f| > L} in our case,
which ends up causing significant complications during the proof. However,
we do get a type of control on the total size of the bounded components of
{1/ > L}

In particular, our main counterpart to [6, Lemma 4.4] is the following gen-
eral result, which is similar in spirit to [28, Lemma 5.3] and [29, Lemma 4.3].
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Lemma 5.2. Let yg € R™ and r > 0. Suppose that f € W'I})’:(R",R") 18
continuous and satisfies an estimate of the form

(5.9) IDfI" < KJ; + 5,
where we assume K € R, £ >0, and ¥ € L} (R™). Let U be a bounded com-

loc

ponent of f~1(R™"\B"(yq,r)). Then for any continuous function ®: [r,00) —
[0,00), we have

[ o =whipsr < [ (s - whs.
U U

Proof. Since U is bounded and since f is continuous, f(U) is compact, and
hence there exists y; € R™\ (B"(yo,7)U f(U)). By the boundedness of U and
the continuity of f and ®, we also have that the functions ®(|f — yo|) [Df|"
and ®(|f — yo|)X are integrable over U. By a Sobolev change of variables,
see e.g. [14, Theorem 5.27|, we have

/ S(f - yol) Iy = /  (ly — yol) deg(f. . U) volu(y).
U R7\B" (yo,r)

However, since U is a connected component of f~1(R™ \ B"(yo, 7)), we have
f(OU) C OB™(yo,r). Thus, since R™ \ B"(yp,r) is connected, we have
deg(f,y,U) = deg(f,y1,U) = 0 for every y € R™ \ B"(yo,r); see for in-
stance [14, Theorem 2.1 and Theorem 2.3 (3)]. In conclusion,

/ (1 — yol)J; = 0.
U

Consequently, the desired estimate follows by multiplying (5.9) by ®(|f — vo|)
and by integrating both sides over U. U

5.3. Pull-backs of the spherical volume. Let K > 1 and ¥ € L!(R"),
and suppose that f € WI})’:(R”,R") is a continuous map for which s, o
f has a (K,X)-quasiregular value with respect to the spherical metric at
Sn(00). Note that by Lemma 3.1, this assumption is true if f has a (K, X)-
quasiregular value at a point yg € R", up to an additional multiplicative

constant C' = C'(n,yp) on 3. By Lemma 3.2, the map f satisfies
(5.10) IDfI" < KJp+C(n)(1+|f?)? %

a.e. in R™.

We use the notation X(F) to denote the integral of ¥ over a measurable set
E C R™. Moreover, we use JJT and JJT to denote the positive and negative
parts of the Jacobian of f, which are given by J]T(a;) = max(0, J¢(z)) and
J]?H(%:z) = max(0, —Jf(x)) for a.e. z € R". In particular, J; = J;r —J; ae.
in R™.

We then let A;{ and AJI denote the positive and negative parts of the
pull-back of the spherical volume under f. That is, if £ C R" is Lebesgue
measurable, then A?(E) and A} (E) are defined by

2nJ+ 2" J
(5.11) A,T(E)Z/Em and A;(E):/E(Hlfjcf)”'
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Both A;f and AJT are measures on R"™. We observe the following fact about
Ay
Lemma 5.3. Let f € VVli’Cn(R”,]R”) be a non-constant continuous function

that satisfies (5.10), where K > 1 and ¥ € LY(R™) with ¥ > 0. Then for
every measurable E C R™, we have

A7 (B) Sn S(B) < oo

Proof. The equation (5.10) can be rewritten as

IDfI" + KJ; < KJf +C(n)(1+ |f[*)"/?S.
Since J]T vanishes when JJ? is non-zero, we hence obtain
(5.12) Jp S KN+ |25,
In particular, using K~ < 1, (5.12) yields the estimate

2n J on
A;B)=| —1L < [ — 2 _»< NE).
1) [E(1+|f|2)”” /EK(I—Hf|2)2 )

O

In particular, for a map f € Wli’cn(]R”,R”) N C(R™,R™) satisfying (5.10)
with K > 1 and ¥ € L'(R"), the quantity A} (E) — A (E) is well-defined
for every measurable £ C R", since Lemma, 5.3 eliminates the possibility
of the expression evaluating to co — co. Thus, we may define Af(E) =
A}L (E) — A} (E) for every measurable E2 C R", obtaining a signed measure
Ay on R". The measure Ay is the pull-back of the spherical volume under
f, and is given by

2" Jy
(5.13) Af(E) = / —_—
T e 1P
for every measurable £ C R™. We also use |A| to denote the total variation
measure of Ay, which is naturally given by

\Afr<E>=A¢<E>+A;<E>=Lm

for every measurable £ C R"”

5.4. Measure estimates and Caccioppoli-type inequalities. With the
measure Ay defined, we then proceed to obtain various estimates for Ay. We
start with a technical Caccioppoli-type estimate that sees multiple uses in
the proofs.

Lemma 5.4. Let f € VV;’:(R”,R”) be a non-constant continuous function

that satisfies (5.10), where K > 1, ¥ > 0, and ¥ € L*(R™) N L{t5(R") for
some € > 0. Then for every L > 0 and n € C§°(R"™) with n > 0, we have

/ 7" (dves "o ) IDS" S0 KL [ dn|”
{’U]Rn Of<L} {’URn Of<L}

—i—KL/ n"d|Af\+/ n"3.
{’U]Rnof<L} {’URnOf<L}
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Proof. For brevity, we denote vy, = min(vgn, L), u = vgn o f, and uyp =
min(u, L) = vy, o f. We may assume L > 0, as the case L = 0 is trivial due
to {u < L} being empty in this case.

We first observe that (|dvgn|o f)(1+|f]*)/2 = H'(|f])(1+|f]*)/2 < C(n)
by (5.6) and (5.8). We combine this with (5.10) to obtain

5.14 "(ldvrn|" o f) |Df["

(5.14) /{KL}n (|dvge|" o £) | DS

<K / 0" (|dvgn|" o f)J; + C(n) / 0" (Jdves|" o £) (L + | f1%) 22
{u<L} {u<L}

<k [ g (dvse]" voly) + Cln) / 7.
{u<L} {u<L}

Let then Xy, .7y be the characteristic function of {u < L}. We claim that
(5.15) Xiuery f(|dvrn ™ vol,) = duy, A f*(|dvgn|" ™ xduvgn)

a.e.in R™. Indeed, dur, vanishes a.e. in the set {u > L}; see e.g. [22, Corollary
1.21]. In {u < L}, we may compute as follows:

dup A f*(|dvgn |2 xdvgn) = f*dvgn A f*(|dvgn|"2 *dvgn)
= f*(|dvgn|""? dvgn A *dvgn) = f*(|dvgn|" vol,).

Since the (n — 1)-form (v, — L) |dvgn|™ % xdvgn has Lipschitz coefficients,
we have f*((vg, — L) |dvgn |2 xdvgn) € W 7D (An=17*R") by Lemma
2.1. Thus, by Corollary 2.2,

df*((vr, — L) |dvgn|" ™2 xdvgn)
= dug, A f*(|dogn|" " xdvgn) + (ur, — L)df*(|dvgn|" 2 *dvgn ).

Now, by using (2.2), we may compute that
/Rn ndur, A f*(|dvgn "2 *dugn)
= / df*((op = L) |dvgn |2 dugn)
(5.16) — /n 0" (ug, — L)df* (|dvgn | *dvgn)
_ /R " A £ (o, — L) |dvgn|™ s dvge)
N /]R 0" (ug — L)df*(|dvgn|" "2 xdvgn).

By Lemma 5.1, we have that |dvgs|" % xdvgs is a Cl-smooth form, and
consequently
(5.17) df* (|dvgn "2 xdvgn) = f*d(|dvgn|""? xdvgn) = f*s¥ volgn
in the weak sense. On the other hand, by using (2.3), we obtain
(5.18) | f*((v — L) |dv|" ?*duvgn)| < ug, — L| (|dvgn """ o f) [ D"
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By combining (5.15), (5.16), (5.17) and (5.18), we obtain the estimate
K 0 f* (|dogn | vol,) = K | n"dug, A f*(Jdogn |2 xdv)
{u<L} R™

< K/ |dn"| ’f*((vL—L) |dvgn "2 *dan)’—kK/ lur, — L|n™ | f*s;, volgn|
R" Rn
< KH/R lur, — L| |dn| (1(|dvga] o £) [Df)" " + K/R " lur = LI d|Ag].

Moreover, since ur, — L = 0 in {u > L}, and since |uy, — L| < L, we obtain

(5.19) K n" f*(|dvgn|" vol,,)
{u<L}

<Kin [ il (nlduge 0 DA A KL [ )
{u<L} {u<L}

We recall Young’s inequality, which states that ab < a? /p+b?/q for a,b > 0
and p,q > 1 with p~! + ¢~! = 1. We estimate the first term of the right
hand side of (5.19) by Young’s inequality, resulting in

(5.20) KLn /{ _,, il alldesel o £ 1D

n—1

<KnLnnn—1/ |d,,7’n+
{u<L} n

/ 7" (jdvzs|" o £) [DFI".
{u<L}

We note that since |dvgn | is bounded by (5.6) and (5.8), n"(|dvgn|" o f) |Df]"
has finite integral over R™. We chain (5.14), (5.19), and (5.20) together, and
absorb the integral of n"(|dvgn|" o f)|Df|" from the right side of (5.20) to
the left side of (5.14). The claim follows. O

The most immediate consequence of Lemma 5.4 is the following corollary,
which is our counterpart to [6, Lemma 5.4].

Corollary 5.5. Let f € VV&)’?(]R”, R™) be a non-constant continuous function
that satisfies (5.10), where K > 1, £ >0, and ¥ € L*(R™) N LT (R™) for

loc

some € > 0. Then for every open ball B C R™ and every L > 0, we have
/ |d(vgn o )" <o K"L" + KL|Af|(2B) + S(R).
Bn{vgnof<L}

Proof. Let B = B"(xg,r) with zp € R™ and r > 0. We fix a cutoff function
n € C°(R™, [0, 1]) satisfying n =1 on B, sptn C 2B, and ||dn| ;0 < 2r '
Since v is C*, the chain rule of C'' and Sobolev functions yields that

|du| = |df*v| = | f*dv| < (Jdv|o f)[Df].

Hence,

/ dul" < / 7" (1do]" o £) I DSI"
Bn{u<L} {u<L}
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We now use Lemma 5.4, obtaining

/ 0" (|dv[" o f) | DSI"
{u<L}

<, K”L"/ dnl™ + KL/ 0" Ay +/ s
{u<L} {u<L} {u<L}
< K"L"||dn|[}, + KL|Af(2B) + S(®R").
Since
[dnl|7n < lldnl|7e vola(sptn) < (2r~")" vol,(2B) < C(n),
the claim follows. O

5.5. Pseudosupremum of the induced potential. Besides Corollary 5.5,
we also use a counterpart to [6, Lemma 4.2|, which in the quasiregular setting
yields A¢(B) Sy i supap(vrn o f)"~1 for every ball B C R™. An estimate
based on supyp(vgn o f)" ! is however insufficient for us, since the function
vrn o f need not have the property that every component of {vgn o f > t}
is unbounded for every ¢ > 0. To compensate for this, we define a pseudo-

supremum of a continuous function ¢: R™ — [0, 00) as follows.

Definition 5.6. Let ¢: R™ — [0,00) be continuous, and let £ C R™. The
pseudosupremum supg ¢ of ¢ over E is defined by

stup ¢ = sup{t € R : E meets an unbounded component of ¢~ *(t,00)}.
E

Remark 5.7. The definition of the pseudosupremum is similar in spirit to
that of the classical essential supremum used e.g. in the definition of L*°-
spaces. Recall that if p: R” — R is a measurable function and if £ C R" ig
measurable, then the essential supremum of ¢ over E is given by

esssup p = sup{t € R: E N (t,00) has positive measure}.
E

For bounded E, we clearly have 0 < supp ¢ < supp¢ < oo for every
continuous ¢: R™ — [0,00). Moreover, if E1 C E», then supg, ¢ < supg, ¢.
We also note that (supg )P = supg(¢P) for p > 0, allowing us to ignore this
distinction in our notation.

By combining the pseudosupremum with Lemma 5.2, we obtain a key
lemma which, given a ball B C R" and an entire map f with a quasiregular
value, essentially grants us strong control over the L™-norm of V(vgn o f) on
the set {x € B : vgn o f(x) > supg(vgn o f)}.

Lemma 5.8. Let f € VVl(l)’:(]R”,R”) be a non-constant continuous function

that satisfies (5.10), where K > 1, ¥ >0, and ¥ € L*(R") N LllotE(R”) for

some € > 0. Then for every open ball B C R", every n € C§°(B) withn > 0,
and every L > supg u, we have

/ 0" (|dvge ™ o £) DS S 1]l oo SR?).
{U]RnOfZL}

Proof. We denote u = wvgn o f for brevity, and let U = {u > L}. By
definition, B meets only bounded components of U; denote the union of
these components of U that meet B by Up. Now, recalling that sptn C B,



QUASIREGULAR VALUES AND RICKMAN’S PICARD THEOREM 25

that |dvgn| o f = H'(|f|) by (5.8), and that f satisfies (5.10), we may use
Lemma 5.2 with ¥ = C(n)(1 + |f|*)™2%, ®(t) = [H'(t)]", and yo = 0 to
obtain the estimate

/ 7" ((dvga | o £) |1DAI™ < |17l 1o / (|dvg" o £) |DfI"
{u>L}

Ug

Sn IInIILoo/ (ldvgn|" o £) (1 + | £?) 2 5.

Ug

Since also Jy = 0 a.e. in {u = L} due to image of this set under f having zero
Hausdorff n-measure, we also have |[Df|" <, (1 + |f[*)"/2% a.e. in {u = L}
by (5.10). Hence, we may improve the previous estimate to

[ el ) 1DA S il [ (g "o £) (14| F2) B .
{u>L}

UspU{u=L

Since (|dvgn|o f)(1+|f]*)'/2 < C(n) by (5.6) and (5.8), we obtain the desired

estimate
/{ - 0" (|dvgn | o ) [DFI" Sn lInllpoe E(Uap U{u = L}) < [0l g Z(R™).
O

With this, we prove our counterpart to [6, Lemma 4.2].

Lemma 5.9. Let f € VVI})’CTL(]R",R”) be a non-constant continuous function
that satisfies (5.10), where K > 1, ¥ > 0, and ¥ € L*(R") N L5 (R™) for
some € > 0. Then for every open ball B C R™, we have

n—1
n

| Ag| (B) Sn K" SUp (v © AP C) (SR + [BR™)] ).

Proof. Let B be an open ball with radius » > 0. We fix a cutoff function n €
C§°(R™, [0,1]) satisfying n =1 on B, sptn C 2B, and ||dn(z)| ;e < 2r~ L
We first estimate that

A< [ radgl< [ oraag 24708

By Lemma 5.3, we have AJ?(2B) <, X(B), and by Lemma 5.1, we have

d(|dvgn|" "% xdvgn) = s* volgn. Hence, we obtain

/ n”dAf:/ nnf*SZVOISn:/ 0" £ d(|dvogn |2 *dvgn)

_ / 7df* (| dvge "2 wdvge) < / 7 | |f* (|dvgn |2 % dvge )|,
n ]Rn

where d and f* commute since the form |dvgn|" % xdvgn is C'-smooth. Fur-

thermore, we may estimate using (2.3) that

|f* (Jdvgn "~ xdo)| < D" (Jdvgn "~ o f).
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Consequently by Hoélder’s inequality,

/R 7 Ldn] (| dvge "2 xdvgen)|
n—1

< </]Rn |dny">i </Rn " (|dvgn|™ o f) \Df|n) 5

Since sptn C 2B, we have by our estimate |dn|" < 4" that ||dn|;. <
C(n). In conclusion,

1) 1Al (B) < [ rdiayl

n—1

o ([ e o) ipar) © + cmmn)

We then proceed to estimate the integral in (5.21). Let L > supyg(vgnof).
By Lemma 5.8, we obtain

/ 7" (Jdvza|" o £) DS Su S(R).
{URnOfZL}

In the remaining set {vgn o f > L} we use Lemma 5.4, which, recalling that
ldn||.» < C(n), yields the estimate

6:2) [ (dvenl"o 1) DS
<, KL +KL/ 0 d|As| + C(n)S(R™).
Rn

Next, chaining together (5.21) and (5.22) and using the elementary in-
equality (a + b)P <p, a” + b for a,b,p > 0, we obtain

n—1

n

629 [ araia g, ke e ws ([ da)
+C(n) (E(R”) + [E(R”)]"T_l) .

We then apply Young’s inequality to obtain

n—1
- : = CmPET L -1 [
cown® ([ raa) " < C0 S [ g

n

where the last integral is finite and can hence be absorbed to the left side of
(5.23). In conclusion, we obtain

[Afl (B) < /Rn 0" d|Ag| Sn KL 4 C(n) (E(]R”) + [z(R“)]"zl) ,

Since L > supyp(vrn o f) is arbitrary, the claim follows. O
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5.6. Existence of unbounded components. To finish this section, we
show that if [Af|(R™) = oo, then supgn(vr» o f) = co. The result is a
relatively immediate consequence of Lemma 5.9.

Lemma 5.10. Let f € VV&)’?(R”,R”) be a non-constant, unbounded, con-
tinuous function that satisfies (5.10), where K > 1, ¥ > 0, and ¥ €
LY(R™) N L5 (R™) for some e > 0. Then for every t > 0, there ewists
s = s(n, K, X(R"),t) > 0 such that if |Af|(B) > s for some ball B C R",
then 2B meets an unbounded component of (vgn o f)~1(t,00). In particu-
lar, if |Af|(R") = oo, then for every t > 0 the set (vgn o f)71(t,00) has an
unbounded component.

Proof. Let B be a ball, and let ¢ > 0 be such that 2B meets no unbounded
component of (vgn o f)71(t,00). Then supyg(vrn o f) < t, and Lemma 5.9
n—1

yields

A (B) < C(n)K" 't + C(n) (S(R™) + [E(R™)] ).
Hence, we may set s(n, K, X(R"™),t) to be bigger than the right hand side of
the above estimate, and the claim follows. O

6. THE PROOF OF THEOREM 1.5

Following the proofs of the Caccioppoli-type estimates in Section 5, we
then proceed to show that the Picard theorem for quasiregular values is true
when |Af|(R") = oo, assuming ¥ € L'(R™) N Li-5(R™). For this part of the
result, we follow the proof of Bonk and Poggi-Corradini from [6] relatively
closely, with the main difference being our use of the pseudosupremum sup
instead of the usual maximum.

We begin by recalling a key tool in the proof that is colloquially referred
to as Rickman’s hunting lemma. For further details including the proof of

the lemma, we refer to [6, Lemma 2.1 and p. 627].

Lemma 6.1 (Rickman’s Hunting Lemma). Let p be a (non-negative) Borel
measure on R™ such that n(R™) = oo, u(B) < oo for every ball B C R"™, and
i has no atoms. Then there exists a constant D = D(n) > 1 and a sequence
of balls Bj, j € Zsq such that n(8B;) < Du(Bj) and lim;_,o p(Bj) = oo.

We also recall a lemma on conformal capacity that is essentially similar
to [6, Lemma 5.3] but phrased in a more abstract way; this more general
formulation will become relevant in the next section. Recall that if £, F' are
compact and mutually disjoint subsets of R™, then the (conformal) capacity
of the condenser (F, F') is defined by

61)  Cop(e,F)=int { [ Janl" s n € G @M.l > Lalr <0}
Rn

By a standard convolution approximation argument, an equivalent defini-
tion is obtained if the assumption n € C§°(R"™) in (6.1) is replaced by
n e Wy (R") N C(R™). We call a function n € W,"(R") N C(R") with
nlg > 1 and n|r < 0 admissible for the condenser (E, F).

Lemma 6.2. Let ¢ > 2. For each k € {1,...,q}, let Ex and Fy be closed
subsets of R™ such that E, N Fy, = 0 for every k and F; U F}, = R™ whenever
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I # k. Suppose that B = B"(xg,r) meets an unbounded component of Ej, for
every k € {1,...,q}. Let t > 1, and define

(6.2) Eyy=EyN(tB\B),  Fy;=F,N(tB\B).

Then we have

q

> " Cap(Byt, Fit) Zn ¢ logt.

k=1
Proof. If | # k, we observe that since F; U F, = R"™ and E; N F; = (), we have
E; C R"\ F; C Fj. Consequently, B also meets an unbounded component
of Fy for every k € {1,...,q}. Due to our assumption that ¢ > 2, we may
fix 1 € {1,...,q} \ {k} and note that B meets an unbounded component of
E; C Fy. It follows that (9sB) N Ey, # 0 # (0sB) N Fy, for every s > 1, and
we may thus use a capacity estimate given e.g. in [6, Lemma 3.3| to conclude

that
rds

t

/1 [H=1((95B) \ (B U Fy))] 7

We note that the denominator H"1((9sB)\ (E;UFy)) in the above integral
is non-zero for every s > 1; indeed, (0sB) \ (Ey U F})) is an open subset of
O0sB, and (0sB) \ (Ey U F})) is non-empty since dsB is connected and FEj,
and Fj, are disjoint closed sets.

We then observe that the sets R™ \ (Ej U F}) are pairwise disjoint, since
(R™\ (Ex U Fg))N(R*"\ (B U F)) C R\ (F, U F}) = () whenever k # I.
Thus, the sets (0sB) \ (Ex U F},) are disjoint for every s > 1, and Holder’s
inequality for sums yields that

Cap(Ek,t, Fiet) Zn

(1" ((9sB) \ (Ey U FR)] ! .
— H—1((05B) \ (Ey U Fi))]»

MQ

n—1

< [H*Y(9sB)] " <Z ! ) o

=1 [P ((0sB) \ (Eg U Fy))] 1
Since [H"~1(0sB)]Y/™ <,, (rs)»~1D/" we hence obtain the desired estimate

q
S Cap(Bys. Fi) n/tz rds
1

= = (M1 ((0sB) \ (Ex U Fy)))7T

t gn-irds n
>n / arres gn-1logt.
1 rs

O

Now, we begin the proof of Theorem 1.5. We recall the statement for the
convenience of the reader.

Theorem 1.5. Let K > 1 and ¥ € L'(R")NLLTF(R") for some e > 0. Then
there exists a positive integer ¢ = q(n, K) € Z~o with the following property:
if a continuous map h € WI}):(R" S™) has a (K,X)-quasireqular value with

respect to the spherical metric at q distinct points wy, ..., wq € Oh(R™), then
|Dh| € L™(R™).
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Proof. Suppose that h € VVJ;?(R”,S”) is continuous and has a (K,X)-
quasiregular value with respect to the spherical metric at ¢ distinct points
wi,...,wg € Oh(R™), yet ||[Dh||;» = co. Our objective is hence to find an
upper bound on ¢ that only depends on n and K. We may assume g > 2.
Since wy € Oh(R™), by the single-value Reshetnyak’s theorem for spherical
quasiregular values given in Proposition 3.3 (i), we conclude that wy, ¢ h(R™).

For every point wy, we select a rotation Rp: S™ — S" that takes wg
to sp(00), and denote hy = Ry o h. Since Ry is an orientation-preserving
isometry of S™, it follows that hy has a (K, X)-quasiregular value with respect
to the spherical metric at s, (c0).

Consequently, we obtain maps fi € W/IIO’S(R",R”) satisfying hr = sy, o f&.

Notably, for every k € {1,...,q} and every measurable E C R", we have

Afk(E) :/ f;s;’; VOISn :/ hz Volgn :/ h*RZ VO]Sn :/ h* Volgn .
E E E E

That is, every Ay, is the same measure; we denote this signed measure by
p, with |p| denoting the total variation measure of p. Since ||[Dh| . = o0
and X(R") < oo, (1.6) yields that

@) 2w = [z ([ o -an [ 5) -

We also note that since every hy has a (K, X)-quasiregular value with respect
to the spherical metric at s,(00), we obtain that every fi satisfies (5.10) by
Lemma 3.2, allowing us to use the results of Section 5 on f.

We then let up = wvgn o fi for every k € {1,...,q}. We note that the
sets s,({00} U vga(t,00)) form a neighborhood basis of s, (cc0), where the
neighborhoods become smaller as ¢ > 0 increases. Hence, there exists Cy =
Co(n, wi,wa,...,we) > 0 such that for every t > Cj, the sets u;l(t, o0), k €
{1,...,q} are pairwise disjoint. Moreover, by Lemma 5.10, there exists Ay =
Ag(n, K, 5(R™), w1, ws, ..., wy) such that if B C R" is a ball with u(B) >
Ap, then 2B meets an unbounded component of each of the sets u,;l(3C'0, 00).

Since |p|(R™) = oo, we may also use Rickman’s Hunting Lemma 6.1 to
obtain a sequence (Bj) of balls in R™ for which lim;_,|u|(B;) = oo and
|u|(8B;) Sn |m|(Bj). Then there exists jo > 0 such that |u|(B;) > Ag
whenever j > jo. For all such j and for every k € {1,...,q}, we define

Lj,k = éﬁ'ﬁuk
J

We also define
E}, = uy '[2L,/3, 00), Fl = '[0, Lk /3],
and
Eljcg:Eim(TBj\QBj)? F/gg:Eim(rBj\?Bj)
We claim that for every j > jo, the sets Ei and Flg with k£ € {1,...q}
satisfy the assumptions of Lemma 6.2. Indeed, it is clear from the definition
that EY N F] = 0 for every k. Since u(B;) > Ao, 2B; meets an unbounded

component of u;1(3Co, 00), and hence Lj; > 3Cp > 0 for every k. Thus,
the sets R™ \ F} = u;*(L;1/3,00) are pairwise disjoint, and consequently
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F,‘g U Flj = R™ whenever k 7 [. Since 0 < Ljj = supyp, uj, we also have
that 2B; meets an unbounded component of every u; '(2L;/3,00), and

consequently 2B; also meets an unbounded component of every EY. Thus,
the assumptions of Lemma 6.2 are satisfied, and it follows that for every
7 > jo, we have

q
(6.3) Z Cap(E} o, [ 5) Zn g7
k=1

We are now ready to estimate q. Let j > jo. By using Lemma 5.9 on f,
we obtain

(6.4) |ul(Bj) Sn K" LY 4 C(n, B(R™).

for every k € {1,...,q}. Since lim; o |p|(B;) = co by our use of Rickman’s
Hunting Lemma, we conclude that

(6.5) lim min L;, = oo.
j—oo k

We may fix a function v¢; € C§°(8B;) for which ||V, < C(n) and
¥; =1 on a neighborhood of 4B;. Now, the function

3min(ug, Lj
nj = <L~ ’ )1>¢
7k

is admissible for the condenser (Ei 9 Fg2) It follows that

. . |VUk|n
Cap(Ely Flo) < [ 901" S I90,110 + | i
R ABjn{ur<Ljk} ik

We apply Corollary 5.5 to the last integral and use [|[V;{,;, Sn 1 < K™ to
obtain
K[pl(8B;) | Cln, S(E")

Cap(El}:,Q’ EI%Z) Sn 2K" + 71 o
5.k Jik

By (6.3), there always exists an index k = k(j,h) € {1,...,q} such that
Cap(Eiﬂ, E}%z) > C(n)q"/ (=Y. Hence, for this specific choice of k, we have

K|ul85;) | C(n, ERY))

n—1 n
Lj,k Lj,k

qﬁ Sn 2K™ +

We then apply the estimate |u|(8Bg) Sn |p|(Bk) and (6.4) to obtain

KC(n,X(R"))  C(n,X(R"))
Ln—l + L
5,k Jk

(6.6) g1 <, 3K™ +

for our specific choice of k = k(j,h). Finally, let j — oo in (6.6). It follows
from (6.5) that the terms involving L;; vanish at the limit, and we obtain
the desired

q< C(n)Kn(nfl)’
concluding the proof. O
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7. THE PROOF OF THEOREMS 1.2 AND 1.4

In order to prove Theorems 1.2 and 1.4, what remains is essentially to show
that, under the assumptions of Theorem 1.2, we have |A¢|(R") = co. As
stated in the introduction, this is a small step in the quasiregular version of
the proof [6, p.631], but grows into a significantly more complex undertaking
in our setting, involving e.g. the boundedness result shown in Proposition
4.3 and Corollary 4.4.

7.1. The two cases. The starting point of our argument is that if one does
not have A¢(R™) = oo, then one essentially obtains an L"-integrability con-
dition for Vlog | f|. This general idea of obtaining L"-regularity for Vlog | f|
when the behavior of f differs from that of a quasiregular map is frequent in
the proofs of other results on quasiregular values [28, 29]. This underlying
dichotomy is summarized in the following result.

Proposition 7.1. Let K > 1 and ¥ € LY(R™) N LLTE(R™) for some ¢ > 0.

loc
Suppose that [ € VV&’?(R”,R”) 1s an unbounded, continuous function such
that f has a (K, X)-quasiregular value at 0 and 0 ¢ f(R™). Then

D n
|A¢| (R") = o0 or /]R" |fJ’1 < o0.

We divide the proof into two cases. For this division, note that if s €
[0,00] and {|f| > s} has an unbounded component, then {|f| > s’} has an
unbounded component for all ' < s. Similarly, if s € [0,00] and {|f] < s}
has an unbounded component, then {|f| < s’} has an unbounded component
for all s > s. The first case is when there exists an overlap between the
region where {|f| > s} has an unbounded component and the region where

{|f| < s} has an unbounded component; see Figure 2 for an illustration.

Lemma 7.2. Let K > 1 and ¥ € LY(R™) N LLEE(R™) for some ¢ > 0.
Suppose that f € VVé’:(R”,R”) 15 an unbounded, continuous function such
that f has a (K, X)-quasireqular value at 0 and 0 ¢ f(R™). If there exist
0 < s1 < s2 < oo for which {|f| > sa} and {|f| < s1} both have an

unbounded component, then |As| (R™) = oo.

{If] > s} has an {If] > s} has only
unbounded component. S2 bounded components.
0 e e 00
Q- # 00
{If| < s} has only 51 {lf| < s} has an
bounded components. unbounded component.

FIGURE 2. The case covered in Lemma 7.2, where both {|f| > s2}
and {|f| < s1} have an unbounded component.

Proof. The argument is reminiscent of the proof that |[A¢|(R") = oo in
the quasiregular case. We begin by observing that, since f has a (K, X)-
quasiregular value at 0, we can use Lemmas 3.1 and 3.2 to conclude that f
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satisfies (5.10). Since f is also unbounded, we may hence use the results of
Section 5 on f. We divide the proof into two main cases.

We fix a ball B that meets the unbounded components of both {|f| > s2}
and {|f| < s1}. We choose values c¢1, ¢a, ¢3, ¢4 such that s1 < ¢ < g <3<
cqg < s2. Welet By = {|f| > cu}, Fi = {|f| < e3}, B2 = {|f] < ex1}, and
Fy = {|f| > c2}. Since we have {|f| > sa} C E; and {|f| < s1} C E», B
meets an unbounded component of E; and Es. Moreover, Ey N F} = 0 =
Ey N Fy and Fy U F = R™. Consequently the sets F; and F; satisfy the
conditions of Lemma 6.2 with ¢ = 2. Hence, if ¢ > 1, and E;;, F;; are as in
(6.2), we get

Cap(FE1t, F1t) + Cap(Eay, For) Zn logt.
Thus, for each t > 1, we have Cap(E14, F14) Zn logt or Cap(Ea¢, Fat) Zn
log t.

Consider first the case where one can find arbitrarily large values of ¢ such
that Cap(E14, Fit) Zn logt. We let w = v o f where v is as in (5.7), and
select a function ¢ € C3°(2tB, [0, 1]) with [|[V¢|/;» < C(n) and ¢y =1in a
neighborhood of ¢t B. Similarly to the beginning of the proof of Theorem 1.5,

we obtain that
B <min(u, H(cq)) — H(03)) "
H{(ca) — H(cs)
is admissible for the condenser (E1 ., F1;), where H is as in (5.4). We then
use Corollary 5.5 to obtain that

logt <, Cap(Ery, Fiyg) < / V|
Rn

1
<n H"(c3) |V }n +/ Vul®
(H(cq) — H(c3))™ ( () VYL 2tBN{u<H(cs)} Ve >

H"(c3)C(n) + K"H"(cq) + KH"(cq)|Af|(4tB) + X(R™)
~ (H(ca) = H(e))"
S C(n, K, C3,C4, E(Rn)) + C’(n, K, C3, C4)|Af’(4tB).
Letting t — oo, we conclude that [Af|(R™) = oco.

In the other case where Cap(E2+, Fot) 2y logt for arbitrarily large ¢, we
repeat the above proof with the function

~ ((H(cz) — min(u, H(cy))
= ( H(cz) — H(cy) >¢-

Indeed, this 7 is admissible for the condenser (E24, Fp), and provides an
analogous upper bound for log ¢ in terms of |Af| (4tB) by a similar proof. [

The other case in the proof of Proposition 7.1 is when there is no overlap
between the region where {|f| > s} has an unbounded component and the
region where {|f| < s} has an unbounded component, or alternatively when
this overlap is merely a single endpoint. See Figure 3 for an illustration.

Lemma 7.3. Let K > 1 and ¥ € LY(R™) N LXT5(R™) for some ¢ > 0.

loc

Suppose that [ € I/VI})’:(R",IR{”) 18 an unbounded, continuous function such

that f has a (K,X)-quasiregular value at 0 and 0 ¢ f(R™). If there exists
an so € [0,00] for which {|f| > s} has only bounded components whenever



QUASIREGULAR VALUES AND RICKMAN’S PICARD THEOREM 33

s > sg, and {|f| < s} has only bounded components whenever s < so, then
[FI7 DS € L (R™).

{If] > s} has an {If] > s} has only
unbounded component. S0 bounded components.
0 fommmmm e 00
Q- F 00
{If| < s} has only 50 {lf] < s} has an
bounded components. unbounded component.

FIGURE 3. The case covered in Lemma 7.3, where {|f| > s} has
only bounded components for s > sg, and {|f| < s} has only
bounded components for s < sg. Note that if the endpoints of the
regions coincide, this case also applies, with sy as the shared end-
point.

Proof. Let s > sg. Since f has a (K, X)-quasiregular value at 0 and since
{If] > s} has only bounded components, we may use Lemma 5.2 with ¥(¢) =
t=" and 3 = |f[" ¥ to conclude that

w<0 Y < Cn)Z(R™).
/{f|>s} P (n)/{|f>s} = Gl

Monotone convergence consequently yields that

[ B sey <o
(f1>s0} ]

We then consider the map f = ¢ o f, where ¢: R"\ {0} — R™\ {0} is
the conformal inversion across the unit (n — 1)-sphere. Then since we have

0 ¢ f(R™), we obtain that f € C(R",R") N W,."(R*,R") and 0 ¢ f(R").
By the conformality of ¢ and the fact that |¢(y)| = |y|~" and [Du(y)| = |y| 72,
we obtain that

IDF| _ (IDd o f)|Df| _ |DS]

|l i Ifl
It also follows that the map f also has a (K, X¥)-quasiregular value at 0, since
DA Ky | =
Vi Vi
Furthermore, for every § > sy ', we have that {|f| > 5} = {|f| < s~!} has

no unbounded components. Hence, similarly as before, we may use Lemma,
5.2 to obtain that

1DA" _ DI _ o -
/{|f<so} 1" /{|f|>s51} g SRR <o

IDf|" = = KJ; +|fI"S.

In conclusion,

/ % Sn B(R™) < oo.
(f1#s0) ]
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It remains to show that if 0 < sp < 0o, then the integral of |f|™" |Df|"
over {|f| = so} is finite. If sgp € {0,000}, then this set is empty. Otherwise,
for a.e. x € {|f| = so}, we may estimate as follows:

n n
DfE@I" _ DA _ K@)
|f (@) 50 50
Here, ¥ has finite integral over R", and J¢ = 0 a.e. in {|f| = so} due to the

set having an image with zero Hausdorff n-measure. The proof of the lemma
is hence complete. O

The proof of Proposition 7.1 is hence complete, since if the assumptions
of Proposition 7.1 are satisfied, then the assumptions of either Lemma 7.2
or Lemma 7.3 are satisfied.

7.2. Completing the proofs. It remains to complete the proofs of Theo-
rems 1.2 and 1.4. We start with Theorem 1.4, where we recall the statement
for the convenience of the reader.

Theorem 1.4. Let K > 1 and ¥ € L**¢(R") N L1=¢(R") for some ¢ > 0.
Then there exists a positive integer ¢ = q(n, K) € Zsq such that no contin-
uous map h € VV&’:(R",S") has a (K, X)-quasiregular value with respect to
the spherical metric at q distinct points wy, ..., w, € Oh(R™).

Proof. Suppose that h € VVI})!” (R™,S™) has a (K, X)-quasiregular value with
respect to the spherical metric at g distinct points wy, ..., w, € df(R™), with
q > 2. By Theorem 1.5, we must have either ¢ < go(n, K), or |Dh| € L"™(R").
Suppose then that we are in the latter case, with the aim of deriving a
contradiction. From this point onwards, we may ignore all of the spherical
quasiregular values w; except the first two, wy and ws.

By the single-point Reshetnyak’s theorem given in Proposition 3.3 (i),
we have wi,wy ¢ h(R™). By post-composing h with an isometric spherical
rotation, we may assume that wy = s,(00). In this case, we have an un-
bounded continuous map f € I/Vll’”(R”,R") such that h = s, o f. We let

oc B
y1 € R be the point for which $n(y1) = wy. It follows that f is unbounded,
that y; € 0f(R™), and that f has a (K, C(n)X)-quasiregular value at y; by

Lemma 3.1. The fact that |[Dh| € L™(R") also yields that

Af®) = [ 1< [ DAl <o,
RTL Rﬂ/

We then consider the map f = f — y;. It follows that f is a con-
tinuous, unbounded map in I/Vli’cn(]R",R”), that 0 ¢ f(R"), and that f
has a (K, C(n)X)-quasiregular value at 0. Moreover, since Jy = J; and
1+ |f? Zng L+ |f — Y1/, we obtain

2y 2" 5|
ARn:/gn / _ LAAR™ < oo,
f( ) re (L4 |f]2)" Y1 W (1+|f —11]?)" | f|( )

Thus, we may apply Proposition 7.1 on f, and conclude that \f|_1 |IDf| €
L™(R™).

However, since f omits 0 and ¥ € L'T¢(R") N L'7¢(R"), we may now
apply Corollary 4.4 to conclude that f is bounded. This is a contradiction,
since f is unbounded. The proof is hence complete. U
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Theorem 1.2 is then an immediate corollary of Theorem 1.4. We recall
the statement and give a short proof.

Theorem 1.2. Let K > 1 and ¥ € L**¢(R") N L1=¢(R") for some ¢ > 0.
Then there exists a positive integer ¢ = q(n, K) € Zsqo such that no con-
tinuous map f € VVI})’:(R",]R”) has a (K, X)-quasiregular value at q distinct

points yi,...,yq € Of(R™).

Proof. Suppose that f € Wﬁ})’:(R”,R") is continuous and has a (K, >)-
quasiregular value at ¢ distinct points yi,...,yq € Of(R™). Let h = s, 0 f.
Then by Lemma 3.1, h has a (K, X)-quasiregular value with respect to the
spherical metric at each of the points s,(y1),...,sn(yq) € Oh(R™), where
> =Cn,yi,. .. ,Yg)2. Now, Theorem 1.4 yields an upper bound on ¢ de-

pendent only on n and K, completing the proof. U

Remark 7.4. With Theorems 1.2 and 1.4 proven, we conclude this section by
briefly pointing out how the standard Rickman’s Picard Theorem follows al-
most immediately from the case 3 = 0 of our main results. Besides Theorem
1.2, the only other result of quasiregular theory used in the argument is ei-
ther Liouville’s theorem or Reshetnyak’s Theorem; the single-value versions
from Theorem 1.3 can also be used for this.

Both arguments begin in the same manner. Suppose towards contradiction
that f: R™ — R" is an entire non-constant K-quasiregular map that omits
q+1 distinct points y1, ... yg+1 ¢ f(R™), where ¢ = ¢(n, K) is as in Theorem
1.2. We note that f has a (K, 0)-quasiregular value at every y € R™. Hence,
by Theorem 1.2, we obtain that df(R™) contains at most ¢ points. Since f
omits more than ¢ different points, the set R” \ f(R") must be non-empty.

For the argument based on Reshetnyak’s theorem, we argue as follows.
Since f is non-constant, we have by Reshetnyak’s theorem that fR” is an
open set. Since Jf(R™) separates two non-empty open subsets of R", it is
not finite; see e.g. |25, Theorem IV 4] for a formal justification. This is a
contradiction, since Jf(R"™) consists of at most g points. The proof is thus
complete.

For the argument based on Liouville’s theorem, we instead use the non-

emptiness of R™\ f(R") to fix a point yp € R™\ f(R") and a Mébius trans-
formation T': R" U {oco} — R™ U {oo} satisfying T'(yp) = co. Now, since f is
a quasiregular map that omits a neighborhood of yg, the map f =Tofisa
quasiregular map that omits a neighborhood of oo, and thus f is bounded.
Hence, Liouville’s theorem implies that f is constant, resulting in a contra-
diction and completing the proof.

8. THE PLANAR CASE

In this section, we prove Theorem 1.6. The result is derived directly from
Theorem 1.2 with the use of a trick.

Before beginning the proof, we recall a corollary of the single-value Reshet-
nyak’s theorem from [29]. The corollary generalizes a version of the argument
principle used by Astala and Paivérinta [5, Proposition 3.3 b)]. Recall that
if f e W'I})’:(R",R") N C(R™,R™) has a (K, X)-quasiregular value at a point
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yo € R™ with K > 1 and ¥ € LT#(R") for some € > 0, then f~!{yo} is dis-
crete by the single-value Reshetnyak’s theorem. This is sufficient to ensure
the existence of a local index i(z, f) for every x € f~{yo}, as detailed e.g.

in [14, Theorem 2.8].

Lemma 8.1 (|29, Corollary 1.6]). Let f1, fo € WL™(R", R") N C(R", R") be
such that both f; have a (K;, ;)-quasiregular value at yo € R™, with K; > 1
and $; € LLTS(R™) for some e > 0. Suppose that

loc

liminf|fo(x) —yo| #0 and liminf|fi(z) — fo(z)[ = 0.

Yo il )= > i@ f).

zefi Hyo} zefy H{yo}

Note that the sum of local indices in Lemma 8.1 acts as a replacement of
the global degree.

We also recall a version of the main structure theorem for planar maps
with a quasiregular value. A proof for the result can essentially be found
embedded in [4, Proof of Theorem 8.5.1|. We regardless go over the key ideas
of the argument.

Then

Lemma 8.2. Suppose that f: C — C has a (K, X)-quasiregular value at
20 € C, where K > 1 and ¥ € L'*¢(C) N L'=%(C) for some ¢ > 0. Then f
1s of the form

f(2) = 20 + g(2)e”?),
where g: C — C is an entire quasireqular map, and 0 € C(C,C) with
lim, o 60(2) = 0.
Proof. We first rewrite (1.2) in the form of a Beltrami equation. Indeed,
recalling that |Df| = |f.| + |fz| and J; = |f.|* — | f|*, we have

\FP + 1 < IDFP < KPP = 1)+ |f — 20* 2.

Rearranging, we have

K-1 Dy
2 2 2
|4 < _ .
Due to the elementary inequality va? + b < |a| + |b|, we hence have
(8.1) [fzl S klfd+ o |f = 20l

where

. K -1 o )Y 24-2¢ 2—2¢
E=y g €0 and o=/ e IO N L0,

Moreover, (8.1) can be rewritten as a Beltrami-type equation

(8.2) fz=nf: + A(f = 20),
where || ;0 <k < 1and A € L**2(C,C) N L>7%(C,C).
To prove the structure theorem, one first studies the auxiliary equation

(8.3) 0z = pb. + A.

By standard existence theory of Beltrami-type equations as discussed in
e.g. [4], one can find a solution for (8.3) by 8 = C(I — uS)~'A, where C
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is the Cauchy transform and S is the Beurling transform. In particular,
since A € L?T%(C,C) N L?>7%(C,C), the map 6 ends up being a bounded,
continuous map with lim,_,., 6 = 0: see e.g. [4, Theorem 4.3.11 and Section
5.4].

Then, with the solution 6 of (8.3), one defines g = (f — z9)e™?, in which
case f = z9+ge?. Using (8.2) and (8.3), one computes directly that gz = jug..
Hence, g is an entire quasiregular map, completing the argument. O

We then prove a lemma on the preservation of quasiregular values under
complex logarithms.

Lemma 8.3. Let 2 C C be a domain, let vy € VVIiCQ(Q,(C) NC(Q,C), and let
f=¢€V. If f has a (K, X)-quasiregular value at both 0 and zy = e*° € C\{0},
where K > 1 and ¥: Q — [0,00), then v has a (K, 4Y)-quasireqular value at
every point of the form wg + 2mik, k € Z.

Proof. We have

2 . 2 . 2
‘D ’2_|‘Df’ <KJf mln(‘f| 7‘f ZO‘)

= — by
127 P 17

=KJ,+ min(l, }1 — ew0*7‘2)2.
Now, fix k € Z, and suppose first that |y(z) — wo — 2mik| < 271, Then
‘1 o ewo—'y(z)‘ _ ‘ewo+27rik—7(z) o 1‘

I~

o .

. wo + k27t — v(z

< fun + 2k~ (z) | - M2 )
Jj=1 )

o0

< wo + 2mik —y(2)] | D
j=1

1 .
If on the other hand we have |y(z) —wo — 27wik| > 27!, then we obtain
1 < 4|y(z) — wy — 2wik|?. In either case, we have

min(1, [1 — e 77%)?) < 4|y — wo — 2mik|*.
Thus,
|DA* < KJ, + |y — wo — 2mik|* 4.
O

We are now ready to prove Theorem 1.6. We again first recall the state-
ment for the convenience of the reader.

Theorem 1.6. Let K > 1 and ¥ € L'+ (C)NL'~¢(C) for some e > 0. Then

no continuous map f € VVI})’(?(C,C) has a (K, X)-quasireqular value at two

distinct points z1, zo € Of(C). Similarly, no continuous map h € T/VI})CQ((C, S?)
has a (K,X)-quasiregular value with respect to the spherical metric at three

distinct points wi, wa, w3 € Oh(C).
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Proof. We first reduce the case h: C — S? to the case f: C — C. Sup-
pose that h € VV&)’S(C,SQ) has a (K, ¥)-quasiregular value with respect to
the spherical metric at three distinct points wy, wy, ws € Oh(C). By post-
composing h with an isometric rotation, we may assume that ws = s2(00).
The single-point Reshetnyak’s theorem given in Proposition 3.3 (i) then again
yields that sy(c0) ¢ h(R™); indeed, otherwise h(R™) would be a neighbor-
hood of s3(00) by the openness part, contradicting so(o0) = ws € 9h(C).
Thus, if we define f: C — C by s3 o f = h, we have by Lemma 3.1 that f
has a (K, C(h)X)-quasiregular value at two distinct points z1,22 € 9f(C),
where s9(2z1) = wy and sa(z2) = wa.

Suppose then towards contradiction that f € VV&’?((C,(C) has a (K, X)-
quasiregular value at two distinct points z1, z2 € f(C). For convenience, we
may assume z; = 0 and 2o = 1 by replacing f with the map (f—z1)/(22—21),
an operation which only introduces a multiplicative constant C(z1, 22) to
3. As before, by the single-point Reshetnyak’s theorem, we also have that
0,1¢ f(C).

Since ¥ € L*¢(C) N L'7¢(C), we may use Lemma 8.2 to write f(z) =
g(2)e??) | where g: C — C is an entire quasiregular map and € C(C,C)
with lim, o 0(z) = 0. Since f(z) # 0 and e?®) £ 0 for all z € C, we
conclude that g omits 0. Hence, we may lift ¢ in the exponential map to find
an entire quasiregular map v: C — C such that g = 7. In particular,

f(z) = 1 (2)+0(2)

We first observe that 7 is non-constant. Indeed, suppose towards contra-
diction that v = ¢. Then we have lim,_,+ f(z) = e¢. However, this is impos-
sible, since it follows from lim, o, 0(z) = 0 that (9f(C)) \ f(C) C {e}, yet
(0f(C))\ f(C) must at least contain the two distinct points 0 and 1. Hence,
we conclude that v is non-constant; in particular, by the Picard theorem for
entire quasiregular maps, v omits at most a single point in C.

By Lemma 8.3, v + 0 has a (K,4Y)-quasiregular value at each of the
points 27ik, k € Z. Since ¥ € L'T¢(C) N L'~¢(C), Theorem 1.2 provides a
constant ¢ = ¢(n, K) such that 2wik € 9[(y 4+ 0)(C)] for at most ¢ different
values of k. Since « omits at most one point of C, we may fix kg € Z for
which 27miky € v(C) and 2miky ¢ O[(y + 6)(C)]. Since 1 ¢ f(C), we also
have 2mikg ¢ (v + 0)(C), and hence there exists a radius 79 > 0 such that
(’7 + 0)(@) N B2(k0271'i, 7‘0) = 0.

Now, for the final step of the argument, we apply Lemma 8.1. Indeed, we
have

lirginf |(y +60)(2) — 2miko| > 19 >0 and li_>m (v +6)(2) —~(2)| =0.

Moreover, v + 6 has a (K, 4Y)-quasiregular value at 2mikg, and v is a non-
constant quasiregular map. Hence, we conclude that

0= > i(zy+0) = Y i(z7) >0,

2€(y+0)~1{2miko } z€y~1{2miko}

which is a contradiction. The proof is thus complete. U
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9. COUNTEREXAMPLES

In this chapter, we discuss the sharpness of the assumptions of Theorem
1.2. In particular, we show that the assumption ¥ € L*(R") U Li;t¥(R™) in
Theorem 1.5 is not sufficient to obtain the conclusions of Theorem 1.2.

Example 9.1. In our first example, we construct for every g € Z~¢ a contin-
uous map f € WI’OO(R”,R") such that f has ¢ distinct (1, X)-quasiregular

loc

values, where ¥ € LY(R") N L*~¢(R") N L2 (R™) for every ¢ € (0,1). See

loc
Figure 4 for a rough illustration of the example in the case n = 2.

OOO o - L

FIGURE 4. Rough illustration of the map f of Example 9.1 in the
case n = 2. The map f takes each of the infinitely many shaded
annuli on the domain side to one of the open-ended stalks on the
target side, stopping partway through. In the lighter shaded part of
R? the map f is locally constant, with the unbounded component
mapped to the center of the stalks. The tips of the stalks are
quasiregular values of f and are contained in df(R?).

We begin by selecting ¢ distinct points {y1,...,yq} € S*=1 ¢ R™. Let
dop > 0 be the minimum distance from a point y to a line {ty;,t € R}, where

k1.
We consider the function #: (0,271) — [0, 00) given by

no1-s 1
6(r) =log" " =,
T

where § € (0,n — 1). Note that 6 is decreasing. We also define a function
©:B"(0,271) \ {0} — [0, 00) by

O(z) = 0(|x).

Then we have
1

W@"sﬁ/‘ BN
/JB”(OQU " Jen02-1) [ log! 0 || !

Thus, VO € L*(B"(0,27!)), and consequently, by Hélder’s inequality, VO €
LO=2)n(B"7(0,271)) for every € € (0,1). Note also that

lim ©(z) = lim 0(r) = oc.
z—0 r—0
Thus, we may select radii 27! = Ry > Ry > ... for which we have 0(R;+1) —
O(R;) =i for all i € Z>o.
We then pick a discrete set of points {z; : ¢ € Zs¢} C R" such that the
closures of the balls B; = B"(x;, R;) are pairwise disjoint. We also denote
B! = B"(zj, Riy1), and k; = (¢ mod q) € {1,...,q}. We then define a
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function f: R™ — R™ as follows: in the set R™ \ |J; B;, we define f = 0, in
the sets B; \ B}, we define

f(z) = (1= Olmm =0y,

and in the sets B!, we define f(z) = (1 — e ™) yy,.

By our construction, we observe that f € I/VI})’COO (R™, R™), f is continuous,
and y; € Of(R™) for every j € {1,...,q}. We also have J; = 0 everywhere
since the image of f is a 1-dimensional tree, and |Df| = 0 in R™ \ {J,; B;
and in every B.. Hence, we may select ¥ = 0 in these sets, and have
IDf| < Jp+|f —y;|" X for every j € {1,...,q}.

It remains to consider the regions B; \ B;. In these regions, we have

‘Df| . ‘yk1| e@(m—xi)—Q(Ri) ‘VG('Z' — x1)| _ ‘v@( _ )‘
|f — Yk, | B Yk, | eO(x—z;)—0(R;) = T —x;)|-
Moreover, whenever j # k;, we may use e®@—z:)=0() < 1 ly;| = 1, and

|f — yj] > do to obtain
DI _ sl 0 |6 — )
|f =yl |f =yl
Thus, we may select ¥ = max(1,d;") [VO(z — z;)|". Now, since the regions
B; \ B} are translates of the concentric annuli B"(0, R;) \ B"(0, Ri+1) by
x;, and since |VO| € LP(B"(0, Ry)) for all p € (0,n], we obtain that ¥ €
LY(R™) N L'*=¢(R") for every € € (0,1). Moreover, since {z;} is discrete and
since ¥ is bounded on every B; \ Bj, we get that ¥ € L{° (R™).

loc

<dyt |VO(x — )]

Finally, the following example shows the necessity of the global lower
integrability assumption in Theorem 1.2.

Example 9.2. In this example, we construct for every q € Z~g a continuous
map f € W/]})’COO(R",R”) with ¢ distinct (1, X)-quasiregular values in 9fR",
where ¥ € LY(R") N L>®(R™). Our strategy is similar to the one used in
Example 9.1, but we use increasingly large annuli instead of increasingly
small ones.

We let {y1,...,y4} € S*~1 and dy > 0 be as in the previous example.
This time, we consider the map 6: (2,00) — [0,00) given by

O(r) = logn_rlz_(s T,

where § € (0,n — 1). We define ©: R™\ B"(0,2) — [0,00) by O(x) = 0(|z]).
Similarly to last time, we have

1
VoI" <.s / ——— < 0.
/R"\B"(o,z) IVOr % r\Bn(0,2) |2|" log!t? |z

Moreover, we have lim,_,o 0(r) = co and |[VO| € L= (R™ \ B"(0, 2)).

We again split R™ \ B"(0,2) into sub-annuli by fixing radii 2 = Ry <
Ry < ... satisfying O(R;11) — O(R;) = i. We select points {x;} so that
the closures of the balls B; = B"(x;, R;1+1) are pairwise disjoint; note that
this time {z;} is automatically discrete and in fact extremely sparse, as

we have |z; —z;| > R; + R; > 4 whenever i # j. We also again denote
B! =B"(z;, R;) and k; = (i mod q) € {1,...,q}.
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We then define f: R™ — R" so that in the set R \ | J; B; we have f =0,
in the sets B; \ B, we have

fla) = (1= Plmm) iy,

and in the sets B} we have f(z) = (1 — e %)ys,. We again get that f
is continuous, that y; € 9f(R") for all j € {1,...,q}, that J; = 0, and
moreover that f € W12 (R",R"). In order for all y; to be (X, 1)-quasiregular
values of f, we can again pick ¥ = 0 in R" \ |J, B; and in the sets B..
Moreover, in the sets B; \ B}, a similar argument as in the last example
shows that we may pick ¥ = max(1,d;")|VO(z — z;)|", in which case ¥ €
LY(R™) N L®(R™).
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