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Abstract. We prove a far-reaching generalization of Rickman's Picard
theorem for a surprisingly large class of mappings, based on the recently
developed theory of quasiregular values. Our results are new even in the
planar case.

1. Introduction

Geometric Function Theory (GFT) is largely concerned with generaliza-
tions of the theory of holomorphic functions of one complex variable. A
widely studied example is the theory of quasiregular maps, which provides
such a generalization for spaces of real dimension n ≥ 2. We recall that, given
a domain Ω ⊂ Rn and a constant K ≥ 1, a K-quasiregular map f : Ω→ Rn
is a continuous map in the Sobolev space W 1,n

loc (Ω,Rn) which satis�es the
distortion inequality

(1.1) |Df(x)|n ≤ KJf (x)

for almost every (a.e.) x ∈ Ω. Here, |Df(x)| is the operator norm of the
weak derivative of f at x, and Jf denotes the Jacobian determinant of f .

A signi�cant achievement in the theory of higher-dimensional quasiregular
maps is the extension of the classical Picard theorem to n real dimensions.
This highly non-trivial result is due to Rickman [43].

Theorem 1.1 (Rickman's Picard Theorem). For every K ≥ 1 and n ≥ 2,
there exists a positive integer q = q(n,K) ∈ Z>0 such that if f : Rn → Rn is
K-quasiregular and Rn \ f(Rn) has cardinality at most q, then f is constant.

Rickman's theorem leaves an impression that the global distortion control
of quasiregular mappings is necessary for the bound on the number of omitted
points. However, in this article, we show that the distortion bound only needs
to hold in an asymptotic sense when f is near the omitted points, and can
in fact be replaced with an appropriate Sobolev norm estimate elsewhere.
Our result is formulated using a recently developed theory of quasiregular
values [29]. In particular, supposing that y0 ∈ Rn and that Ω is a domain in

Rn with n ≥ 2, a map f : Ω → Rn in the Sobolev space W 1,n
loc (Ω,Rn) has a
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(K,Σ)-quasiregular value at y0 if it satis�es the inequality

(1.2) |Df(x)|n ≤ KJf (x) + |f(x)− y0|n Σ(x)

for a.e. x ∈ Ω, where K ≥ 1 is a constant as in (1.1) and Σ is a nonnega-
tive function on Ω. Note that results on mappings with quasiregular values
typically assume a su�cient degree of Lp-regularity for Σ.

Notably, (1.2) only provides control on the distortion of a mapping f as
f(x) equals or asymptotically approaches y0. Away from y0, these maps
behave similarly to an arbitrary Sobolev map. For instance, a non-constant
map f satisfying (1.2) may for instance have a Jacobian that changes sign,
an entirely 1-dimensional image, or a bounded image even when f is de�ned
in all of Rn. In addition, a map f satisfying (1.2) needs not be locally
quasiregular even in any neighborhood of a point x0 ∈ f−1{y0}; in fact, it
is possible that every neighborhood of such a point meets a region where
Jf < 0.

In spite of these vast di�erences, Rickman's Picard theorem still general-
izes to the theory of quasiregular values in the following form.

Theorem 1.2. Let K ≥ 1 and Σ ∈ L1+ε(Rn) ∩ L1−ε(Rn) for some ε > 0.
Then there exists a positive integer q = q(n,K) ∈ Z>0 such that no con-

tinuous map f ∈W 1,n
loc (Rn,Rn) has a (K,Σ)-quasiregular value at q distinct

points y1, . . . , yq ∈ ∂f(Rn).

While the standard Rickman's Picard theorem concerns omitted points
yi /∈ f(Rn), Theorem 1.2 reveals that at this generality, Rickman's Picard
Theorem is in fact a result on points yi in the boundary ∂f(Rn). In-
deed, a version of Theorem 1.2 that instead assumes y1, . . . , yq /∈ f(Rn)
is immediately shown to be false by any smooth compactly supported map
f ∈ C∞0 (Rn,Rn). Regardless of this di�erence in statements, the standard
Rickman's Picard theorem follows almost immediately from the case Σ ≡ 0
of Theorem 1.2; see Remark 7.4.

The integrability assumptions on Σ in Theorem 1.2 are sharp on the Lp-
scale. Indeed, we show in Section 9 that neither Σ ∈ L1+ε

loc (Rn) ∩ L1(Rn) ∩
L1−ε(Rn) nor Σ ∈ L1+ε(Rn) ∩ L1(Rn) is su�cient for the result. The con-
structed maps even satisfy (1.2) with K = 1. We however expect a logarith-
mic Orlicz-type sharpening of the integrability assumptions to be possible,
though we elect not to pursue log-scale results in this work unless explicitly
required by an argument.

1.1. Background on quasiregular maps and the Picard theorem.

The classical Picard theorem states that if f : C→ C is an entire holomorphic
function, then either f is constant or C\f(C) contains at most one point. The
Picard theorem is among the most striking and universally known results in
complex analysis, with numerous di�erent proofs discovered over the years;
see e.g. [2, 7, 8, 15, 21, 31, 47, 52].

The theory of quasiregular maps originates from the planar setting, with
roots in the work of Grötzsch [18] and Ahlfors [1]. More speci�cally, when
n = 2, the distortion inequality (1.1) can be rewritten as a linear Beltrami
equation

(1.3) fz = µfz,
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where fz, fz are the (weak) Wirtinger derivatives of f and µ ∈ L∞(Ω,C)
satis�es ‖µ‖L∞ ≤ k < 1 with k = (K − 1)/(K + 1). If K = 1, then (1.3)
reduces to the Cauchy�Riemann system fz = 0; indeed, a planar map is 1-
quasiregular exactly if it is holomorphic. Moreover, homeomorphic solutions
of (1.1) or (1.3) are called K-quasiconformal, and we also have that a map
is 1-quasiconformal exactly if it is a conformal transformation.

In addition to this link to holomorphic maps, planar quasiregular maps
satisfy the Stoïlow factorization theorem, which states that a quasiregular
map f : Ω → C is of the form f = h ◦ g where g : Ω → Ω is quasiconfor-
mal and h : Ω → C is holomorphic, see e.g. [4, Chapter 5.5]. The Stoïlow
factorization theorem immediately generalizes the topological properties of
holomorphic maps to planar quasiregular maps, such as the open mapping
theorem, Liouville's theorem, and even the Picard theorem.

The higher-dimensional version of the theory began with the study of
n-dimensional quasiconformal mappings by e.g. �Sabat [46], Väisälä [49],
Gehring [16], and Zori£ [53]. Afterwards, the theory of n-dimensional quasi-
regular mappings was originated by Reshetnyak [38, 41, 40, 39], with sig-
ni�cant early contributions by Martio, Rickman, and Väisälä [33, 34, 35].
The theory is by now a central topic in modern analysis, with important
connections to partial di�erential equations, complex dynamics, di�erential
geometry and the calculus of variations; see the textbooks of Väisälä [50],
Rickman [45], Reshetnyak [42], and Iwaniec and Martin [27].

Unlike in the planar case, one cannot reduce the topological properties of
higher dimensional quasiregular maps to a better understood class of map-
pings. Indeed, the best known Stoïlow-type theorem in higher dimensions
[32] still has a relatively irregular non-injective component. Nevertheless,
many topological properties of holomorphic maps have non-trivial extensions
to spatial quasiregular mappings as well. For instance, the open mapping
theorem generalizes to Reshetnyak's theorem [41, 40], which states that if
f : Ω → Rn is a non-constant quasiregular map, then f is an open, discrete
map with positive local index i(x, f) at every x ∈ Ω.

Rickman's Picard theorem, stated in Theorem 1.1, is perhaps the most
clear demonstration of the similarities between the theory of higher dimen-
sional quasiregular maps and single-variable complex analysis. Consequently,
it has become one of the most widely studied results in quasiregular analy-
sis. For instance, a version of Rickman's Picard Theorem has been shown for
quasiregular maps f : Rn → M into an oriented Riemannian n-manifold M
by Holopainen and Rickman [23, 24]. A version of the theorem has also been
shown by Rajala [37] in the case where f is a mapping of �nite distortion,
i.e. a mapping satisfying (1.1) with a non-constant K.

When n = 2, the Stoïlow factorization approach yields that the constant
q(2,K) in Rickman's Picard theorem is equal to 2, and is thus in fact inde-
pendent on K. It was conjectured for some time that one could also have
q(n,K) = 2 for all n ≥ 2 and K ≥ 1. However, counterexamples by Rickman
[44] in the case n = 3, and by Drasin and Pankka [10] in the case n ≥ 4,
show that for a �xed n > 2 one has q(n,K)→∞ as K →∞.
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1.2. The theory of quasiregular values. Various generalizations of (1.1)
and (1.3) occur in the study of complex analysis. For instance, the condition

(1.4) |Df |2 ≤ KJf + C ,

where K ≥ 1 and C ≥ 0 are constants, arises naturally in the theory of
elliptic PDEs [17, Chapter 12]. The Hölder regularity of planar domain
solutions of (1.4) has been shown by Nirenberg [36], Finn and Serrin [13],
and Hartman [20]. Similar ideas also play a key role in the work of Simon [48],
where he obtains Hölder estimates for solutions of (1.4) between surfaces,
and applies them to the study of equations of mean curvature type.

The theory of quasiregular values stems from another similar generaliza-
tion of (1.1) and (1.3), namely

(1.5) fz = µfz +Af,

where ‖µ‖L∞ < 1 and A ∈ L2+ε
loc (Ω,C) for some ε > 0. In particular, (1.5)

corresponds to the case n = 2, y0 = 0 of the de�nition (1.2) of quasiregular
values. Much of the initial theory on solutions of (1.5) was developed by
Vekua [51]. One of the standout applications for (1.5) arose when Astala
and Päivärinta used it in their solution to the planar Calderón problem [5].
The solutions of (1.5) play a key part of various other uniqueness theorems
as well; we refer to the book of Astala, Iwaniec and Martin [4] for details.

Astala and Päivärinta relied on two results for entire solutions of (1.5),
which were essentially modeled on Liouville's theorem and the argument
principle; see [5, Proposition 3.3] and [4, Sect. 8.5 and 18.5]. The original
key idea behind the planar results is that any solution f of (1.5) is of the form
f = geθ, where g is quasiregular and θ : Ω→ C is a solution of θz = µθz +A.
Since the existence theory of Beltrami equations and the aforementioned
decomposition f = geθ lack higher-dimensional counterparts, this planar ap-
proach fails to generalize to the n-dimensional setting. Nevertheless, we have
recently in [28, 29, 30] managed to obtain higher-dimensional counterparts
to the planar results used by Astala and Päivärinta. The Liouville-type the-
orem in particular answers the Astala�Iwaniec�Martin uniqueness question
from [4, Sect. 8.5]; see [28, Theorem 1.3] and the correction [30].

The higher-dimensional results opened up an entirely new direction of
study in GFT, as they led us to introduce the notion of quasiregular values
in [29]. The term �quasiregular value� is partially motivated by the single-
value versions of various foundational results of quasiregular maps that follow
from (1.2). The other main motivation for the term is the fact that K-

quasiregularity of a map f ∈ W 1,n
loc (Ω,Rn) can be fully characterized by f

having a (K,Σy)-quasiregular value with Σy ∈ L1+ε
loc (Ω) at every y ∈ Rn; see

[29, Theorem 1.3].
The following theorem lists the two most notable current results of quasi-

regular values, which are the single-value versions of Liouville's theorem and
Reshetnyak's theorem. They were shown in [28] and [29], respectively, and
are key components behind the higher-dimensional versions of the planar
results for solutions of (1.5). The addition of Theorem 1.2 to this growing
list of results furthers the evidence that quasiregular values have a rich theory
comparable to that of quasiregular mappings.



QUASIREGULAR VALUES AND RICKMAN'S PICARD THEOREM 5

Theorem 1.3 ([28, Theorem 1.2] and [29, Theorem 1.2]). Let Ω ⊂ Rn be

a domain, let ε > 0, and let f ∈ W 1,n
loc (Ω,Rn) be a continuous map with

a (K,Σ)-quasiregular value at y0 ∈ Rn, where K ≥ 1 and Σ: Ω → [0,∞).
Then the following results hold:

(i) (Liouville's theorem) If Ω = Rn, Σ ∈ L1+ε
loc (Rn) ∩ L1(Rn), and f is

bounded, then either f ≡ y0 or y0 /∈ f(Rn).
(ii) (Reshetnyak's theorem) If Σ ∈ L1+ε

loc (Ω) and if f is not the constant

function f ≡ y0, then f−1{y0} is discrete, the local index i(x, f) is
positive at every x ∈ f−1{y0}, and f maps every neighborhood U ⊂ Ω
of a point of f−1{y0} to a neighborhood f(U) of y0.

We note that by [28, Theorem 1.1], solutions f ∈ W 1,n
loc (Ω,Rn) of (1.2)

always have a continuous representative if Σ ∈ L1+ε
loc (Ω) for some ε > 0;

see also [9] which explores how much these assumptions can be relaxed for
continuity to remain true. Hence, the continuity assumption in our results
only amounts to making sure that our chosen representative of the Sobolev
map is the continuous one.

1.3. Other versions of Theorem 1.2. Besides the standard formulation
for quasiregular mappings f : Rn → Rn, Rickman's Picard theorem is often
also equivalently formulated for quasiregular mappings f : Rn → Sn. In our
setting, we similarly obtain a version of Theorem 1.2 for mappings f : Rn →
Sn with little extra e�ort, though it requires formulating a spherical version
of (1.2). Given Ω ⊂ Rn, K ≥ 0, y0 ∈ Sn, and Σ ∈ L1+ε

loc (Ω) with ε > 0 and
Σ ≥ 0, we say that a continuous mapping h ∈ W 1,n(Ω, Sn) has a (K,Σ)-
quasiregular value with respect to the spherical metric at w0 ∈ Sn if f satis�es

(1.6) |Dh(x)|n ≤ KJh(x) + σn(h(x), w0)Σ(x)

at a.e. x ∈ Ω, where σ(·, ·) denotes the spherical distance on Sn, and |Dh(x)|
and Jh(x) are de�ned using the standard Riemannian metric and orientation
on Sn. With this de�nition, the resulting version of Theorem 1.2 is as follows.

Theorem 1.4. Let K ≥ 1 and Σ ∈ L1+ε(Rn) ∩ L1−ε(Rn) for some ε > 0.
Then there exists a positive integer q = q(n,K) ∈ Z>0 such that no contin-

uous map h ∈ W 1,n
loc (Rn, Sn) has a (K,Σ)-quasiregular value with respect to

the spherical metric at q distinct points w1, . . . , wq ∈ ∂h(Rn).

We remark that if we identify Sn with Rn ∪ {∞} via the stereographic
projection, then a map f : Rn → Rn has a quasiregular value with respect
to the Euclidean metric at y0 ∈ Rn if and only if f has a quasiregular value
with respect to the spherical metric at both y0 and ∞. Hence, (1.6) is in
some sense a weaker assumption than (1.2). The comparison between these
two de�nitions is discussed in greater detail in Section 3.

While the assumption Σ ∈ L1+ε(Rn)∩L1−ε(Rn) in Theorems 1.2 and 1.4
is sharp, the proof we use does yield us some additional information even
under a weaker assumption of Σ ∈ L1(Rn) ∩ L1+ε

loc (Rn). This result is more
elegantly stated using spherical quasiregular values.

Theorem 1.5. Let K ≥ 1 and Σ ∈ L1(Rn)∩L1+ε
loc (Rn) for some ε > 0. Then

there exists a positive integer q = q(n,K) ∈ Z>0 with the following property:

if a continuous map h ∈ W 1,n
loc (Rn, Sn) has a (K,Σ)-quasiregular value with
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respect to the spherical metric at q distinct points w1, . . . , wq ∈ ∂h(Rn), then
|Dh| ∈ Ln(Rn).

1.4. The planar case. In the case n = 2, similarly to the standard Picard
theorem, our main results end up having q(2,K) = 2 for maps f : C → C,
and q(2,K) = 3 for maps h : C → S2. Even this planar version of Theorem
1.2 and Theorem 1.4 is new.

Theorem 1.6. Let K ≥ 1 and Σ ∈ L1+ε(C)∩L1−ε(C) for some ε > 0. Then

no continuous map f ∈ W 1,2
loc (C,C) has a (K,Σ)-quasiregular value at two

distinct points z1, z2 ∈ ∂f(C). Similarly, no continuous map h ∈W 1,2
loc (C, S2)

has a (K,Σ)-quasiregular value with respect to the spherical metric at three
distinct points w1, w2, w3 ∈ ∂h(C).

We prove Theorem 1.6 by reducing it to Theorem 1.2. The version of
the argument for quasiregular maps is incredibly simple: If f : C → C is a
K-quasiregular map omitting two distinct points z1, z2 ∈ C, then the lift
γ : C→ C of f in the exponential map z 7→ z1 + ez is a K-quasiregular map
that omits the in�nitely many values of log(z2 − z1), which is impossible
by Rickman's Picard Theorem. Attempting the same idea for maps with
quasiregular values using Theorem 1.2 is less straightforward, but we are
ultimately able to construct a proof around this fundamental idea through
use of the decomposition f = geθ and existing results on quasiregular values;
see Section 8 for details.

1.5. Main ideas of the proof. While the classical Picard theorem has nu-
merous proofs, only a few of them have been successfully generalized to a
proof of the n-dimensional Rickman's Picard Theorem. The original proof
by Rickman [43] uses path lifting and conformal modulus techniques in or-
der to estimate spherical averages of the multiplicity function of f . Later,
work by Eremenko and Lewis [11, 31] resulted in an alternate proof using
Harnack inequalities of A-harmonic maps. Both of these approaches run
into signi�cant obstacles in our setting, as solutions of (1.2) currently lack
counterparts to e.g. conformal modulus estimates and the natural conformal

structure Gf (x) = J
2/n
f (x)[DT f(x)Df(x)]−1 of f .

Recently, however, a third method of proof has been discovered by Bonk
and Poggi-Corradini [6], which is closer to being applicable in our situation.
Motivated by the Ahlfors�Shimizu value distribution theory of holomorphic
functions, they study the pull-back v◦f of a subharmonic logarithmic singu-
larity function v : Sn \{x0} → [0,∞), where the spherical n-Laplacian of v is
identically 1. They are then able to leverage the preservation of the spherical
measure under isometric rotations of Sn to obtain growth rate estimates for
the measure µ = f∗ volSn , from which the result follows via ideas reminiscent
of the ones used in Rickman's original argument.

We prove Theorem 1.2 by adopting the structure of the proof of Bonk
and Poggi-Corradini, but with key developments to the proof in multiple
places where its current form is insu�cient for us. Notably, in order to
avoid use of the conformal structure Gf , we completely eliminate the use
of A-subharmonic theory in our proof, and we instead obtain the required
growth estimates by directly using (1.2) and the properties of the logarithmic
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singularity function. Issues caused by the extra term in (1.2) and the fact
that µ is a signed measure are eliminated by the global L1-integrability of
Σ.

The greatest challenges in our setting are tied to replacing the use of
[6, Lemma 4.4], which yields that if f : Rn → Rn is a non-constant entire
quasiregular map and r > 0, then every component of the set {|f | > r} is
unbounded. In our case, this is not true; instead, we essentially obtain control
on the total Af -measure of any bounded components of {|f | > r}. One of our
primary tools in addressing this problem is to introduce a �pseudosupremum�
based on unbounded components of pre-images. Indeed, when the growth
estimates for Af are formulated in terms of this pseudosupremum, they can
be combined in a similar manner as in the case of quasiregular maps.

However, the pseudosupremum does not solve the second major challenge
surrounding [6, Lemma 4.4], which is the problem of showing that mappings
with multiple quasiregular values in ∂f(Rn) satisfy Af (Rn) = ∞. We note
that Theorem 1.5 is obtained by essentially ignoring this issue and instead
assuming a-priori that Af (Rn) = ∞. For non-constant quasiregular maps
f : Rn → Sn \ {x1, x2}, the fact that Af (Rn) = ∞ follows easily; see for
example [45, Lemma IV.2.7] or [6, p. 631]. In our setting, however, this
step becomes nontrivial, involving challenges somewhat similar to the ones
encountered in the study of the Astala�Iwaniec�Martin uniqueness question.
In particular, the part about excluding the case Af (Rn) < ∞ is the only
part of the proof where the precise integrability assumptions of Theorems
1.2 and 1.4 become relevant.

1.6. The structure of this paper. In Section 2, we recall some prelimi-
nary information on Sobolev di�erential forms that is used in our computa-
tions. Section 3 is a discussion on the connections between the Euclidean and
spherical de�nitions of quasiregular values. In Section 4, we discuss spherical
logarithms of maps with quasiregular values, and prove a boundedness result
that is used later in the proof of Theorems 1.2 and 1.4. Section 5 is then
dedicated to proving the relevant Caccioppoli-type estimates that are used
in the proofs of the main results.

With these preliminaries complete, we then prove Theorem 1.5 in Sec-
tion 6. The proof of Theorems 1.2 and 1.4 is then completed in Section 7,
with an entire section dedicated to dealing with the special caseAf (Rn) <∞.
In Section 8, we prove the sharp planar result given in Theorem 1.6 by using
Theorem 1.2. Finally, in Section 9, we provide counterexamples which show
the sharpness of the assumptions of Theorem 1.2.

1.7. Acknowledgments. We thank Pekka Pankka for several helpful com-
ments and insights on the paper. We also thank the anonymous referee for
numerous suggested improvements that ended up signi�cantly improving the
presentation of the paper.

2. Preliminaries on Sobolev differential forms

Throughout this paper, we use C(a1, a2, . . . , am) to denote a positive con-
stant that depends on the parameters ai. The value of C(a1, a2, . . . , am) may
change in each estimate even if the parameters remain the same. We also use
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the shorthand A1 .a1,a2,...,am A2 which stands for A1 ≤ C(a1, a2, . . . , am)A2,
where we always list the dependencies of the constant on the .-symbol.
The shorthand A1 &a1,a2,...,am A2 is de�ned similarly. Additionally, if B =
Bn(x, r) ⊂ Rn is a Euclidean ball and c ∈ (0,∞), then we use cB to denote
the ball Bn(x, cr).

Let U be an open subset of Rn. We use Lp(∧kT ∗U), Lploc(∧
kT ∗U),

W 1,p(∧kT ∗U), W 1,p
loc (∧kT ∗U), and C l(∧kT ∗U) to denote di�erential k-forms

ω =
∑

I ωIdxI on U for which ωI are in L
p(U), Lploc(U), W 1,p(U), W 1,p

loc (U),

or C l(U), respectively. We also use the subscript 0 to denote spaces of dif-
ferential forms or real-valued functions with compact supports; for instance,
C∞0 (U) denotes the space of compactly supported smooth real-valued func-
tions on U .

Given a di�erential form ω : U → ∧kT ∗Rn, we use ωx ∈ ∧kT ∗xRn to denote
the value of ω at x. We use |ωx| for the norm of ωx, which is the l2-norm on
the coe�cients of ωx with respect to the standard basis; in particular |ω| is
a function U → [0,∞). Recall that |ω1 ∧ ω2| ≤ C(n) |ω1| |ω2|. If either ω1 or
ω2 is a wedge product of 1-forms, then one in fact has |ω1 ∧ ω2| ≤ |ω1| |ω2|.
We also use ?ω to denote the Hodge star of a di�erential k-form ω.

If ω ∈ L1
loc(∧kT ∗U), then dω ∈ L1

loc(∧k+1T ∗U) is a weak di�erential of ω
if ∫

U
dω ∧ η = (−1)k+1

∫
U
ω ∧ dη

for every η ∈ C∞0 (∧n−k−1T ∗U). We denote the space of ω ∈ Lploc(∧
kT ∗U)

with a weak di�erential dω ∈ Lqloc(∧
k+1T ∗U) byW d,p,q

loc (∧kT ∗U), with the ab-

breviation W d,p
loc (∧kT ∗U) = W d,p,p

loc (∧kT ∗U). We also de�ne versions of these

spaces with global integrability, denoted W d,p,q(∧kT ∗U) and W d,p(∧kT ∗U),

as well as versions for forms with compact supports, denotedW d,p,q
0 (∧kT ∗U)

and W d,p
0 (∧kT ∗U). Recall that W 1,p

loc (∧kT ∗U) ⊂ W d,p
loc (∧kT ∗U), along with

the similar inclusions W 1,p(∧kT ∗U) ⊂ W d,p(∧kT ∗U) and W 1,p
0 (∧kT ∗U) ⊂

W d,p
0 (∧kT ∗U), where the weak di�erential of an element of W 1,p

loc (∧kT ∗U) is
obtained component-wise by the rule d(fdxi1∧dxi2∧· · ·∧dxik) = df ∧dxi1∧
dxi2 ∧ · · · ∧ dxik .

If ω1 ∈ W 1,p
loc (∧kT ∗U) and ω2 ∈ W 1,q

loc (∧lT ∗U) with p−1 + q−1 = r−1 ≤
1, then standard product rules of Sobolev functions yield that ω1 ∧ ω2 ∈
W 1,r

loc (∧k+lT ∗U), and

(2.1) d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2.

By a convolution approximation argument, we have that (2.1) also holds if

one instead assumes that ω1 ∈ W d,p1,q1
loc (∧kT ∗U) and ω2 ∈ W d,p2,q2

loc (∧lT ∗U)

with p−1
1 + p−1

2 = r−1 ≤ 1 and max(p−1
1 + q−1

2 , p−1
2 + q−1

1 ) = s−1 ≤ 1, in

which case ω1 ∧ ω2 ∈ W d,r,s
loc (∧k+lT ∗U). Moreover, if ω ∈ W d,1

0 (∧n−1T ∗U),
then a convolution-based argument similarly yields

(2.2)

∫
U
dω = 0.
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We also note that if ω ∈ W d,1
loc (∧kT ∗U), then dω ∈ W d,1

loc (∧k+1T ∗U) with
ddω = 0.

If ω ∈ C(∧kT ∗V ), i.e. if the coe�cients ωI of ω are continuous, and if f ∈
W 1,n

loc (U,Rn), then the pull-back f∗ω is well-de�ned and lies in L
n/k
loc (∧kT ∗U).

We recall that in this case, we have the estimate

(2.3) |f∗ω| ≤ (|ω| ◦ f) |Df |k .

Indeed, if ω = ϕdxi1 ∧ · · · ∧ dxik , then |f∗ω| = |(ϕ ◦ f)dfi1 ∧ · · · ∧ dfik | ≤
(|ϕ| ◦ f) |Df |k, and the result for general ω then follows by the Pythagorean
theorem.

Moreover, if ω ∈ C1
0 (∧kT ∗V ) and f ∈ W 1,n

loc (U,Rn), the chain rule of C1
0 -

functions and W 1,n
loc -functions then yields that f∗ω ∈W d,n/k,n/(k+1)

loc (∧kT ∗U)
and df∗ω = f∗dω; see e.g. the proof of [28, Lemma 2.2]. If f is additionally
continuous, then the assumption ω ∈ C1

0 (∧kT ∗V ) can be weakened to ω ∈
C1(∧kT ∗V ) by using smooth cuto� functions.

In what follows, we also use a chain rule for f ∈ C(U, V ) ∩W 1,n
loc (U,Rn)

and ω ∈ C(∧kT ∗V ) ∩ W 1,∞
loc (∧kT ∗V ). Note that this assumption on ω is

equivalent with the coe�cients ωI being locally Lipschitz. At this level of
generality, caution is required with the use of chain rules; for instance, the
weak di�erential dω is only unique up to a null-set under these assumptions,
and changing dω in a null-set could change f∗dω in a set of positive measure,
making f∗dω ill-de�ned. However, these assumptions are still su�cient to
obtain weak di�erentiability of f∗ω. We record the precise statement we use
in the following Lemma, which follows in a straightforward manner from the
chain rule for Lipschitz and Sobolev maps; see e.g. Ambrosio and Dal Maso
[3, Corollary 3.2].

Lemma 2.1. Let U, V ⊂ Rn be open sets, let f ∈ C(U, V )∩W 1,n
loc (U,Rn), and

let ω ∈ C(∧kT ∗V ) ∩W 1,∞
loc (∧kT ∗V ) for k ∈ {0, . . . , n − 1}; i.e., we assume

that ω has locally Lipschitz coe�cients. Then f∗ω ∈W d,n/k,n/(k+1)
loc (∧kT ∗U).

In particular, combining Lemma 2.1 with (2.1) unlocks the following tool.

Corollary 2.2. Let U, V ⊂ Rn be open sets, let f ∈ C(U, V )∩W 1,n
loc (U,Rn),

let ω1 ∈ C(∧kT ∗V )∩W 1,∞
loc (∧kT ∗V ), and let ω2 ∈ C(∧lT ∗V )∩W 1,∞

loc (∧lT ∗V ),
with k, l ∈ Z≥0, k + l ≤ n− 1. Then

f∗(ω1 ∧ ω2) ∈W
d, n
k+l

, n
k+l+1

loc (∧k+lT ∗U),

with

df∗(ω1 ∧ ω2) = (df∗ω1) ∧ ω2 + (−1)kf∗ω1 ∧ (df∗ω2).

3. Quasiregular values and maps into spheres

Let ei denote the standard basis vectors of Rn, let 〈·, ·〉 denote the Eu-
clidean inner product on Rn, and let |·| denote the Euclidean norm. The
n-dimensional unit sphere Sn consists of all w ∈ Rn+1 with |w| = 1. Recall
that on Rn, the inverse sn : Rn → Sn \ {−e1} of the stereographic projection
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is de�ned by

sn(x) =
1

1 + |x|2
(

1− |x|2 , 2x1, 2x2, . . . , 2xn

)
.

The map sn is then extended to Rn ∪ {∞} by setting sn(∞) = −e1.
We recall that the spherical distance σ on Sn is given by σ(w1, w2) =

arccos 〈w1, w2〉 for w1, w2 ∈ Sn, using the inclusion of Sn into Rn+1. We also
de�ne the spherical distance on the space Rn ∪ {∞} by setting σ(x1, x2) =
σ(sn(x1), sn(x2)) for x1, x2 ∈ Rn ∪ {∞}. Via an elementary computation,
one sees for x1, x2 ∈ Rn that

cos(σ(x1, x2)) = 〈sn(x1), sn(x2)〉 = 1− 2 |x1 − x2|2

(1 + |x1|2)(1 + |x1|2)
.

In particular,

(3.1) sin
σ(x1, x2)

2
=

|x1 − x2|√
(1 + |x1|2)(1 + |x2|2)

for x1, x2 ∈ Rn.

By letting x2 tend to in�nity in (3.1), we also see that

(3.2) sin
σ(x1,∞)

2
=

1√
1 + |x1|2

for x1 ∈ Rn.

We equip Sn with the standard Riemannian metric that arises from the
inclusion to Rn+1, and orient Sn so that its volume form volSn is given
by the restriction of the n-form ?d(2−1 |x|2) ∈ C∞(∧nT ∗Rn+1). When Sn
is equipped with this metric and volume form, the map sn : Rn → Sn is
conformal; more precisely,

(3.3) |Dsn(x)|n = Jsn(x) =
2n(

1 + |x|2
)n

for every x ∈ Rn. Moreover, given a set U ⊂ Rn ∪ {∞}, we denote its
spherical measure by volSn(U). By (3.3) , we see that

(3.4) volSn(U) =

∫
U

2n voln(
1 + |x|2

)n .
Suppose then that f ∈ W 1,n

loc (Rn,Rn). We de�ne a measurable map
h : Rn → Sn by h = sn ◦ f . Since sn : Rn → Rn+1 is a smooth Lipschitz
map, it follows that h ∈ W 1,n

loc (Rn,Rn+1) and Dh(x) = Dsn(f(x))Df(x)
for a.e. x ∈ Rn. In particular, the image of Dh(x) lies in Th(x)Sn for a.e.
x, and hence Dh can be understood as a measurable map TRn → TSn.
Consequently, we obtain a Jacobian of h by Jh voln = h∗ volSn . Since sn is
conformal, we obtain by (3.3) that

(3.5) |Dh|n =
2n |Df |n(
1 + |f |2

)n and Jh =
2nJf(

1 + |f |2
)n

a.e. in Rn.
We then prove comparison results for the two de�nitions of quasiregular

values given in (1.2) and (1.6). We begin with a spherical interpretation of
Euclidean quasiregular values.
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Lemma 3.1. Let f ∈ W 1,n
loc (Ω,Rn) with Ω ⊂ Rn. Let h = sn ◦ f , let

w0 = sn(y0) for some y0 ∈ Rn, let K ∈ R, and let Σ: Ω → [0,∞) be
measurable. Then the following conditions are equivalent up to an extra
constant factor C = C(n, y0) on Σ:

(1) f has a (K,Σ)-quasiregular value at y0;
(2) h has a (K,Σ)-quasiregular value with respect to the spherical metric

at both w0 and sn(∞);
(3) h satis�es

|Dh|n ≤ KJh + σn(h,w0)σn(h, sn(∞))Σ

a.e. in Ω.

Proof. We �rst show the (almost) equivalence of (1) and (3). We multiply

(1.2) on both sides by 2n(1 + |f |2)−n and use (3.5), obtaining that (1.2) is
equivalent to

|Dh|n ≤ KJh + 2n
|f − y0|n(
1 + |f |2

)nΣ.

Now, using (3.1) and (3.2), we observe that

|f − y0|
1 + |f |2

=
|f − y0|√

(1 + |f |2)(1 + |y0|2)
· 1√

1 + |f |2
·
√

1 + |y0|2

= sin
σ(f, y0)

2
· sin σ(f,∞)

2
·
(

sin
σ(y0,∞)

2

)−1

.

Thus, (1.2) is equivalent to

|Dh|n ≤ KJh +
2n sinn

(
2−1σ(f, y0)

)
sinn

(
2−1σ(f,∞)

)
sinn(2−1σ(y0,∞))

Σ.

Since (2/π)t ≤ sin(t) ≤ t whenever t ∈ [0, π/2], the previous equation is
equivalent to the one in part (3), up to a multiplicative constant on Σ.

It remains to show the (almost) equivalence of (2) and (3). Since σ(·, ·) is
bounded from above by π, it is clear from the de�nition of spherical quasireg-
ular values in (1.6) that (3) implies (2) up to an extra factor of πn on Σ.
For the other diection, we use the fact that for any distinct w1, w2 ∈ Sn, the
function w 7→ min(σ−1(w,w1), σ−1(w,w2)) is continuous and has a maxi-
mum value of 2/σ(w1, w2). Thus, if (2) holds, then we have the estimate

|Dh|n ≤ KJh + min
(
σn(h,w0), σn(h, sn(∞))

)
Σ

= KJh + min
(
σ−n(h, sn(∞)), σ−n(h,w0)

)
σn(h,w0)σn(h, sn(∞))Σ

≤ KJh + C(n, y0)σn(h,w0)σn(h, sn(∞))Σ

a.e. on Ω, completing the proof. �

Next, we give a Euclidean interpretation of spherical quasiregular values.

Lemma 3.2. Let f ∈ W 1,n
loc (Ω,Rn) with Ω ⊂ Rn. Let h = sn ◦ f , let

w0 = sn(y0) for some y0 ∈ Rn, let K ∈ R, and let Σ: Ω → [0,∞) be
measurable. Then the following conditions are equivalent up to an extra
constant factor C = C(n, y0) on Σ:

(1) h has a (K,Σ)-quasiregular value at w0;



12 I. KANGASNIEMI AND J. ONNINEN

(2) f satis�es

|Df |n ≤ KJf + |f − y0|n
(
1 + |f |2

)n
2 Σ

a.e. in Ω.

Similarly, the following conditions are equivalent up to an extra constant
factor C = C(n) on Σ:

(1') h has a (K,Σ)-quasiregular value at sn(∞);
(2') f satis�es

|Df |n ≤ KJf +
(
1 + |f |2

)n
2 Σ

a.e. in Ω.

Proof. For the �rst equivalence, similarly as in the proof of Lemma 3.1, we
may use (3.1), (3.2), and (3.5) to show that condition (2) is equivalent to

|Dh|n ≤ KJh +
2n sinn

(
2−1σ(h,w0)

)
sinn(2−1σ(w0, sn(∞)))

Σ.

Since this is equivalent to (1.6) up to a multiplicative constant on Σ, the
claim follows. The proof of the second equivalence is analogous, as (3.2) and
(3.5) yield that condition (2') is equivalent to

|Dh|n ≤ KJh + 2n sinn
(
σ(h, sn(∞))

2

)
Σ.

�

We end this section by pointing out that the single-point Liouville's theo-
rem and Reshetnyak's theorem for Euclidean quasiregular values imply cor-
responding results for spherical quasiregular values.

Proposition 3.3. Let Ω ⊂ Rn be a domain, let ε > 0, and let h ∈W 1,n
loc (Ω, Sn)

be a continuous map with a quasiregular value with respect to the spherical
metric at w0 ∈ Sn, for given choices of K ≥ 1 and Σ: Ω→ [0,∞). Then the
following results hold.

(i) (Reshetnyak's theorem) If Σ ∈ L1+ε
loc (Ω) and if h is not the constant

function h ≡ w0, then h−1{w0} is discrete, the local index i(x, h)
is positive at every x ∈ h−1{w0}, and h maps every neighborhood
U ⊂ Ω of a point of f−1{w0} to a neighborhood h(U) of w0.

(ii) (Liouville's theorem) If Ω = Rn, Σ ∈ L1+ε
loc (Rn) ∩ L1(Rn), and

h(Rn) 6= Sn, then either h ≡ w0 or w0 /∈ h(Rn).

Proof. Suppose �rst that the assumptions of (i) hold. If we post-compose h
with an isometric rotation R : Sn → Sn, it follows that R ◦ h has a (K,Σ)-
quasiregular value with respect to the spherical metric at R(w0). Thus, we
may assume that w0 6=∞. Let y0 ∈ Rn be the point for which sn(y0) = w0.

We �x an open neighborhood U of w0 for which ∞ /∈ U . Now, in the
set Ω′ = h−1U , there is a bounded, continuous f ∈ W 1,n

loc (Ω′,Rn) such that
h = sn ◦ f . By Lemma 3.2, f has a (K,Σ′)-quasiregular value at y0, where

Σ′ = C(n, y0)(1+|f |2)n/2Σ. Since f is bounded, we have that Σ′ ∈ L1+ε
loc (Ω′).

Now, the Euclidean result (Theorem 1.3 (ii)) yields the claim for h|Ω′ . Since
Ω′ is the pre-image of a neighborhood of w0 under h, this in fact implies the
result for h.
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Suppose then that the assumptions of (ii) hold. If w0 ∈ Sn \ h(Rn), then
clearly w0 /∈ h(Rn) and the claim holds. Otherwise, by post-composing with

an isometric rotation, we may this time assume that sn(∞) ∈ Sn \h(Rn) and
that w0 = sn(y0) for some y0 ∈ Rn. Consequently, we obtain a bounded,

continuous map f ∈ W 1,n
loc (Rn,Rn) satisfying h = sn ◦ f . Lemma 3.2 again

yields that f has a (K,Σ′)-quasiregular value at the point y0, where Σ′ =

C(n, y0)(1+ |f |2)n/2Σ. Since f is bounded, we have Σ′ ∈ L1(Rn)∩L1+ε
loc (Rn),

and hence the corresponding Euclidean result (Theorem 1.3 (i)) implies that
either w0 /∈ h(Rn) or h ≡ w0. �

4. Omitted quasiregular values and the spherical logarithm

In this section, we cover a key boundedness result for mappings f ∈
W 1,n

loc (Ω,Rn) ∩C(Ω,Rn) which have a (K,Σ)-quasiregular value at an omit-
ted point y0 ∈ Rn \ f(Ω). This result is used near the end of the proof of
Theorems 1.2 and 1.4.

4.1. The spherical logarithm. The main result of this section is formu-
lated and proven in terms of the spherical logarithm, a key tool in studying
maps with an omitted quasiregular value. The �rst application of the spher-
ical logarithm to the theory of quasiregular values was in the solution of the
Astala�Iwaniec�Martin -question; see [28, Section 7] and the correction [30].

De�nition 4.1. Let Ω ⊂ Rn be an open domain. Suppose that a map
f ∈ C(Ω,Rn)∩W 1,n

loc (Ω,Rn) has a (K,Σ)-quasiregular value at y0 ∈ Rn with
K ≥ 1 and Σ: Ω→ [0,∞) measurable. Suppose also that y0 /∈ f(Rn). Then
the spherical logarithm of f centered at y0 is the map
(4.1)

G = (GR, GSn−1) : Ω→ R× Sn−1, G(x) =

(
log |f(x)− y0| ,

f(x)− y0

|f(x)− y0|

)
.

In particular, the spherical logarithm is of the form G = Θy0 ◦ f , where
Θy0 : Rn \ {y0} → R× Sn−1 is the conformal di�eomorphism de�ned by

Θy0(y) =

(
log |y − y0| ,

y − y0

|y − y0|

)
for y ∈ Rn \ {y0}.

Suppose then that f ∈ C(Ω,Rn)∩W 1,n
loc (Ω,Rn) has a (K,Σ)-quasiregular

value at an omitted point y0 ∈ Rn, and let G be the spherical logarithm of f
centered at y0. Since both f and Θy0 are continuous, G is also continuous.
If we embed R × Sn−1 isometrically to Rn+1, we see by a chain rule that
G ∈ W 1,n

loc (Rn,Rn+1). Moreover, if we equip R × Sn−1 with the standard
orientation, then G has a valid Jacobian JG de�ned a.e. in Rn by

JG voln = dGR ∧G∗Sn−1 volSn−1 = dGR ∧G∗Sn−1?d(2−1 |x|2),

where the Hodge star is taken in the Euclidean space Rn containing Sn−1.
The main use of the spherical logarithm is that it transforms the de�nition

(1.2) of quasiregular values into a version without the coe�cient |f − y0|n.
The following lemma sums up this property; its proof is a straightforward
computation that is covered in [28, Lemma 7.1].
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Lemma 4.2. Let Ω ⊂ Rn be an open domain. Suppose that a map f ∈
C(Ω,Rn) ∩ W 1,n

loc (Ω,Rn) has a (K,Σ)-quasiregular value at y0 ∈ Rn with
K ≥ 1 and Σ: Ω → [0,∞) measurable. Suppose that y0 /∈ f(Rn), and let G
be the spherical logarithm of f centered at y0. Then

(4.2) |DG| = |Df |
|f − y0|

, JG =
Jf

|f − y0|n
,

and therefore

(4.3) |DG|n ≤ KJG + Σ.

4.2. The boundedness result. We then state our boundedness result for
the spherical logarithm. The result is closely connected to the solution of
the Astala�Iwaniec�Martin question in [28, 30], and its proof is similarly
technical.

Proposition 4.3. Suppose that G : Rn → R× Sn−1 is continuous, that G ∈
W 1,n

loc (Rn,R×Sn−1), and that |DG| ∈ Ln(Rn). If G satis�es (4.3) with Σ ≥ 0
and Σ ∈ L1−ε(Rn)∩L1+ε(Rn) for some ε ∈ (0, 1), then the R-component GR
of G is bounded.

In particular, Proposition 4.3 has the following immediate corollary.

Corollary 4.4. Let f ∈ C(Rn,Rn)∩W 1,n
loc (Rn,Rn) have a (K,Σ)-quasiregular

value at y0 ∈ Rn with K ≥ 1 and Σ ∈ L1−ε(Rn) ∩ L1+ε(Rn) with ε > 0.
Suppose that y0 /∈ f(Rn) and |Df | / |f − y0| ∈ Ln(Rn). Then f is bounded
and dist(y0, f(Rn)) > 0.

Proof. If G is the spherical logarithm of f centered at y0, then G satis�es
(4.3), and (4.2) yields that |DG| = |Df | / |f − y0| ∈ Ln(Rn). Thus, Proposi-
tion 4.3 yields that GR = log |f − y0| is bounded, and the claim follows. �

The �rst step in the proof of Proposition 4.3 is a higher integrability
result for |DG|. The argument is a standard proof based on reverse Hölder
inequalities, and has already been recounted in e.g. [29, Lemma 6.1] and [9,
Section 2.1] in similar situations. Regardless, we state the result and recall
the short proof, as the previous statements do not cover the case where the
target of G is R× Sn−1.

Lemma 4.5. Suppose that G : Rn → R × Sn−1 is continuous, that G ∈
W 1,n

loc (Rn,R×Sn−1), and that |DG| ∈ Ln(Rn). If G satis�es (4.3) with Σ ≥ 0
and Σ ∈ L1(Rn)∩L1+ε(Rn) for some ε > 0, then there exists ε′ ∈ (0, ε) such
that ∫

Rn
|DG|(1+ε′)n .n,K

∫
Rn

Σ1+ε′ <∞.

Proof. Let Q be a cube in Rn with side length r. We select a cuto� function
η ∈ C∞(Rn, [0, 1]) satisfying η|Q ≡ 1, spt η ⊂ 2Q, and ‖∇η‖L∞ .n r−1,
where we interpret 2Q as the cube with the same center as Q but doubled
side length. First, (4.3) yields∫

Rn
ηn |DG|n ≤ K

∫
Rn
ηnJG +

∫
Rn
ηnΣ.
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We then use a Caccioppoli-type inequality for functions Rn → R×M , where
M is an oriented Riemannian (n − 1)-manifold without boundary; see [28,
Lemma 2.3]. That is, if GR is the R-coordinate function of G, we obtain∫

Rn
ηnJG ≤ n

∫
Rn
ηn−1 |DG|n−1 |∇η| |GR − c|

for every c ∈ R. By combining these estimates, using Hölder's inequality,
dividing by rn, and applying the assumptions on η, we obtain

−
∫
Q
|DG|n .n Kr−1

(
−
∫

2Q
|GR − c|n

2

) 1
n2
(
−
∫

2Q
|DG|

n2

n+1

)n2−1

n2

+−
∫

2Q
Σ.

We then use the Sobolev-Poincaré inequality on the �rst integral to obtain

r−1

(
−
∫

2Q
|GR − c|n

2

) 1
n2

.n

(
−
∫

2Q
|DGR|

n2

n+1

)n+1

n2

≤
(
−
∫

2Q
|DG|

n2

n+1

)n+1

n2

,

where c = (GR)2Q. In conclusion, we obtain a reverse Hölder inequality

−
∫
Q
|DG|n .n K

(
−
∫

2Q
|DG|

n2

n+1

)n+1
n

+−
∫

2Q
Σ.

As this holds for all cubes Q, we may hence use Gehring's lemma (see e.g.
[26, Lemma 3.2]), obtaining that for some ε′ ∈ (0, ε) we have the estimate∫

Rn
|DG|n(1+ε′) .n,K

∫
Rn

Σ1+ε′ <∞.

�

The second step is a corresponding lower integrability result. For this, we
use the corrected version of [28, Lemma 7.2] proven in [30]. This logarith-
mic lower integrability result builds upon ideas from [12]. As the proof is
relatively complicated, we refer the reader to [30] for details.

Lemma 4.6 ([30, Lemma 7.2 (revised)]). Suppose that G : Rn → R × Sn−1

is continuous and non-constant, that G ∈ W 1,n
loc (Rn,R × Sn−1), and that

|DG| ∈ Ln(Rn). If G satis�es (4.3) with Σ ≥ 0 and Σ ∈ L1(Rn)∩L1−ε(Rn)
for some ε ∈ (0, 1), then∫

Rn
|DG|n logn

(
1 +

1

M(|DG|)

)
<∞,

where M stands for the (centered) Hardy-Littlewood maximal function.

With Lemmas 4.5 and 4.6 recorded, we are ready to prove Proposition
4.3.

Proof of Proposition 4.3. Wemay assume thatG is non-constant. By Lemma
4.5 we have |DG| ∈ Ln+ε′(Rn) for some ε′ > 0, and by Lemma 4.6, we have
|DG| log(1 +M−1(|DG|)) ∈ Ln(Rn).

We �x x0 ∈ Rn, with the aim of estimating |GR(x0)−GR(0)|. We base
the proof on a standard chain of balls -argument used in e.g. [19]. In

particular, for all i ∈ Z, we let ri = |x0| 2−|i|−2, and �x balls Bi, where

Bi = Bn(2−|i|−1x0, ri) for i ≤ 0 and Bi = Bn((1 − 2−|i|−1)x0, ri) for i ≥ 0.
See Figure 1 for an illustration.
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0 x0

Figure 1. The chain of balls Bi from 0 to x0.

The balls form a chain where the center of Bi is on the boundary of
Bi−sgn(i) for i 6= 0. Moreover, no point in Rn is contained in more than two
balls Bi, and the overlap of consecutive balls Bi∩Bi−sgn(i) contains a ball B

′
i

with radius r′i = ri/2. By continuity, we also have that the integral averages
(GR)Bi converge to GR(0) as i→ −∞, and to GR(x0) as i→∞.

We thus obtain a telescopic sum estimate

|GR(x0)−GR(0)| ≤
∞∑

i=−∞

∣∣(GR)Bi+1 − (GR)Bi
∣∣ .

We show here the estimate for the upper end i ≥ 0 of the series, as the
estimate for the lower end i < 0 is analogous. By taking advantage of
the ball B′i+1 contained in Bi ∩ Bi+1 and by using the Sobolev�Poincaré
inequality, we obtain∣∣(GR)Bi+1 − (GR)Bi

∣∣ ≤ ∣∣(GR)B′i+1
− (GR)Bi

∣∣+
∣∣(GR)B′i+1

− (GR)Bi+1

∣∣
≤ −
∫
B′i+1

|GR − (GR)Bi |+−
∫
B′i+1

∣∣GR − (GR)Bi+1

∣∣
≤ 4n−

∫
Bi

|GR − (GR)Bi |+ 2n−
∫
Bi+1

∣∣GR − (GR)Bi+1

∣∣
.n ri−

∫
Bi

|DG|+ ri+1−
∫
Bi+1

|DG| .

Thus,
∞∑
i=0

∣∣(GR)Bi+1 − (GR)Bi
∣∣ .n ∞∑

i=0

r
−(n−1)
i

∫
Bi

|DG| .

Since ri is decreasing with respect to i when i ≥ 0 and tends to zero as
i → ∞, there exists an index i0 ∈ Z≥0 such that ri ≤ 2 when i ≥ i0, and
ri > 2 when 0 ≤ i < i0. Thus, the end of the series can now be estimated
using Hölder's inequality, yielding

∞∑
i=i0

r
−(n−1)
i

∫
Bi

|DG| .n
∞∑
i=i0

r
−(n−1)
i (rni )

ε′+n−1
n+ε′

(∫
Bi

|DG|n+ε′
) 1
n+ε′

=
∞∑
i=i0

r
ε′

n+ε′
i

(∫
Bi

|DG|n+ε′
) 1
n+ε′

≤ ‖DG‖Ln+ε′
∞∑
i=i0

r
ε′

n+ε′
i

.n,ε′ ‖DG‖Ln+ε′ r
ε′

n+ε′
i0

≤ 2 ‖DG‖Ln+ε′ .
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In particular, this upper bound for the end of the series is �nite by Lemma
4.5. The upper bound is also independent on x0.

For the beginning part 0 ≤ i < i0, we use the following elementary in-
equality: if Φ1,Φ2 are positive-valued real functions on an interval I ⊂ R
with Φ1 increasing and Φ2 decreasing, then

1 ≤ max

(
Φ1(a)

Φ1(b)
,

Φ2(a)

Φ2(b)

)
≤ Φ1(a)

Φ1(b)
+

Φ2(a)

Φ2(b)

for all a, b ∈ I. We use this with I = (0,∞), Φ1(t) = tn−1, Φ2(t) =

log(1 + t−1), a = M(|DG|)(x), and b = r
−1/2
i for some 0 ≤ i < i0. We

obtain

1 ≤ r
n−1
2

i Mn−1(|DG|) +
log (1 + 1/M(|DG|))

log
(
1 +
√
ri
) .

We observe that log(1 +
√
ri) > log(

√
ri) = log(ri)/2. Moreover, since

0 ≤ i < i0, we have ri > 2, and consequently log(ri) > 0. Hence, we
conclude that, for 0 ≤ i < i0, we have

1 ≤ r
n−1
2

i Mn−1(|DG|) +
2

log(ri)
log

(
1 +

1

M(|DG|)

)
,

and in particular,

(4.4)

i0−1∑
i=0

r
−(n−1)
i

∫
Bi

|DG| ≤
i0−1∑
i=0

r
−n−1

2
i

∫
Bi

|DG|Mn−1(|DG|)

+ 2

i0−1∑
i=0

1

rn−1
i log(ri)

∫
Bi

|DG| log

(
1 +

1

M(|DG|)

)
.

We then utilize the fact that i0 is the �rst index for which ri ≤ 2, from
which it follows that ri > 2i0−i when 0 ≤ i < i0. Thus, we may estimate the
�rst sum on the right hand side of (4.4) by

i0−1∑
i=0

r
−n−1

2
i

∫
Bi

|DG|Mn−1(|DG|) ≤
(∫

Rn
Mn(|DG|)

) ∞∑
j=1

2−
n−1
2
j ,

which is again a �nite upper bound independent on x0 due to the Hardy-
Littlewood maximal inequality. For the other sum on the right hand side of
(4.4), we use both the integral and sum versions of Hölder's inequality, the
fact that no point of Rn is contatined in more than two balls Bi, and the
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above estimate ri > 2i0−i, in order to obtain

i0−1∑
i=0

1

rn−1
i log(ri)

∫
Bi

|DG| log

(
1 +

1

M(|DG|)

)

.n

i0−1∑
i=0

1

log(ri)

(∫
Bi

|DG|n logn
(

1 +
1

M(|DG|)

)) 1
n

≤

(
i0−1∑
i=0

1

log
n
n−1 (ri)

)n−1
n
(
i0−1∑
i=0

∫
Bi

|DG|n logn
(

1 +
1

M(|DG|)

)) 1
n

≤

 ∞∑
j=1

1

(log(2)j)
n
n−1

n−1
n (

2

∫
Rn
|DG|n logn

(
1 +

1

M(|DG|)

)) 1
n

.

This upper bound is �nite by Lemma 4.6. It is also independent of x0. Thus,
combining our estimates, we have an x0-independent upper bound for the
upper end i ≥ 0 of the telescopic sum of integral averages. An identical
argument proves a similar bound for the lower end i < 0, completing the
proof. �

5. The logarithmic potential and Caccioppoli inequalities

In this section, we prove the Caccioppoli-type inequalities used in the
proof. In particular, we prove counterparts to [6, Lemmas 4.2 and 5.4]
where we assume (1.2) instead of full quasiregularity. Since our setting
still allows for large sets where Jf (x) = 0 and Df(x) is non-invertible,
we lack a good counterpart for the induced conformal structure Gf (x) =

J
−2/n
f (x)[DTf(x)Df(x)]−1 associated to f . Thus, instead of using A-sub-

harmonic theory as in the original proofs, we rely on more direct computa-
tions.

5.1. The logarithmic potential. We begin by recalling the logarithmic
potential function from [6, Section 3]. We �rst de�ne a function S : [0,∞)→
[0, 1) by

(5.1) S(r) =
volSn(Bn(0, r))

volSn(Rn)
.

By using (3.4), one can see that

S(r) =
2n volSn−1(Rn−1)

volSn(Rn)

∫ r

0

tn−1 dt(
1 + t2

)n .
In particular,

(5.2) S′(r) =
C(n)rn−1(
1 + r2

)n ,
and we obtain the following estimates describing the asymptotic behavior of
S(r) and S′(r) for large and small r:

(5.3) S(r) .n min(rn, 1), S′(r) .n min(rn−1, r−(n+1)).
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Next, we de�ne a function H : [0,∞)→ [0,∞) by

(5.4) H(r) =

∫ r

0

S
1

n−1 (t) dt

t
.

Consequently, we have

(5.5) H ′(r) =
S

1
n−1 (r)

r
,

and by applying (5.3), we get the estimates

(5.6) H(r) .n min
(
r

n
n−1 , 1 + |log(r)|

)
, H ′(r) .n min

(
r

1
n−1 , r−1

)
.

The logarithmic potential vRn : Rn → [0,∞) at in�nity is then de�ned on
Rn by

(5.7) vRn(x) = H(|x|).

Since vRn is a real-valued radial function, we have

∇vRn(x) = H ′(|x|) x
|x|

and |∇vRn(x)| = H ′(|x|).(5.8)

Moreover, recall that if v ∈ C1(Rn) is a function such that |∇v|n−2∇v ∈
C1(Rn,Rn), then the n-Laplacian ∆nv of v is de�ned by

∆nv = ∇ · (|∇v|n−2∇v).

We note that the n-Laplacian satis�es the identity

(∆nv) voln = d(|dv|n−2 ?dv).

We record that the n-Laplacian of vRn is in fact exactly the density of the
spherical volume; we refer to [6, Lemma 3.1] for the proof.

Lemma 5.1. We have vRn ∈ C1(Rn), |∇vRn |n−2∇vRn ∈ C1(Rn,Rn), and

∆nvRn(x) =
2n(

1 + |x|2
)n = Jsn(x).

5.2. Quasiregular values and superlevel sets. The study of sublevel
and superlevel sets of the form {|f − y0| > L} and {|f − y0| < L} has been
perhaps the most fundamental tool in the developement of the prior theory
on quasiregular values; see in particular [28, Section 5] and [29, Section 4].
Such sublevel and superlevel sets also play a key role in this paper. Indeed,
we prove a counterpart to [6, Lemma 4.4], which essentially yields that su-
perlevel sets {|f | > L} of an entire quasiregular function f have no bounded
components. As stated in the introduction, superlevel set methods do not
fully eliminate the existence of bounded components of {|f | > L} in our case,
which ends up causing signi�cant complications during the proof. However,
we do get a type of control on the total size of the bounded components of
{|f | > L}.

In particular, our main counterpart to [6, Lemma 4.4] is the following gen-
eral result, which is similar in spirit to [28, Lemma 5.3] and [29, Lemma 4.3].
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Lemma 5.2. Let y0 ∈ Rn and r > 0. Suppose that f ∈ W 1,n
loc (Rn,Rn) is

continuous and satis�es an estimate of the form

(5.9) |Df |n ≤ KJf + Σ̃,

where we assume K ∈ R, Σ̃ ≥ 0, and Σ̃ ∈ L1
loc(Rn). Let U be a bounded com-

ponent of f−1(Rn\Bn(y0, r)). Then for any continuous function Φ: [r,∞)→
[0,∞), we have ∫

U
Φ(|f − y0|) |Df |n ≤

∫
U

Φ(|f − y0|)Σ̃.

Proof. Since U is bounded and since f is continuous, f(U) is compact, and
hence there exists y1 ∈ Rn\(Bn(y0, r)∪f(U)). By the boundedness of U and
the continuity of f and Φ, we also have that the functions Φ(|f − y0|) |Df |n

and Φ(|f − y0|)Σ̃ are integrable over U . By a Sobolev change of variables,
see e.g. [14, Theorem 5.27], we have∫

U
Φ(|f − y0|)Jf =

∫
Rn\Bn(y0,r)

Φ(|y − y0|) deg(f, y, U) voln(y).

However, since U is a connected component of f−1(Rn \ Bn(y0, r)), we have
f(∂U) ⊂ ∂Bn(y0, r). Thus, since Rn \ Bn(y0, r) is connected, we have
deg(f, y, U) = deg(f, y1, U) = 0 for every y ∈ Rn \ Bn(y0, r); see for in-
stance [14, Theorem 2.1 and Theorem 2.3 (3)]. In conclusion,∫

U
Φ(|f − y0|)Jf = 0.

Consequently, the desired estimate follows by multiplying (5.9) by Φ(|f − y0|)
and by integrating both sides over U . �

5.3. Pull-backs of the spherical volume. Let K ≥ 1 and Σ ∈ L1(Rn),

and suppose that f ∈ W 1,n
loc (Rn,Rn) is a continuous map for which sn ◦

f has a (K,Σ)-quasiregular value with respect to the spherical metric at
sn(∞). Note that by Lemma 3.1, this assumption is true if f has a (K,Σ)-
quasiregular value at a point y0 ∈ Rn, up to an additional multiplicative
constant C = C(n, y0) on Σ. By Lemma 3.2, the map f satis�es

(5.10) |Df |n ≤ KJf + C(n)
(
1 + |f |2

)n
2 Σ

a.e. in Rn.
We use the notation Σ(E) to denote the integral of Σ over a measurable set

E ⊂ Rn. Moreover, we use J+
f and J−f to denote the positive and negative

parts of the Jacobian of f , which are given by J+
f (x) = max(0, Jf (x)) and

J−f (x) = max(0,−Jf (x)) for a.e. x ∈ Rn. In particular, Jf = J+
f − J

−
f a.e.

in Rn.
We then let A+

f and A−f denote the positive and negative parts of the
pull-back of the spherical volume under f . That is, if E ⊂ Rn is Lebesgue
measurable, then A+

f (E) and A−f (E) are de�ned by

(5.11) A+
f (E) =

∫
E

2nJ+
f(

1 + |f |2
)n and A−f (E) =

∫
E

2nJ−f(
1 + |f |2

)n .
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Both A+
f and A−f are measures on Rn. We observe the following fact about

A−f .

Lemma 5.3. Let f ∈ W 1,n
loc (Rn,Rn) be a non-constant continuous function

that satis�es (5.10), where K ≥ 1 and Σ ∈ L1(Rn) with Σ ≥ 0. Then for
every measurable E ⊂ Rn, we have

A−f (E) .n Σ(E) <∞.

Proof. The equation (5.10) can be rewritten as

|Df |n +KJ−f ≤ KJ
+
f + C(n)(1 + |f |2)n/2Σ.

Since J+
f vanishes when J−f is non-zero, we hence obtain

(5.12) J−f .n K
−1(1 + |f |2)n/2Σ.

In particular, using K−1 ≤ 1, (5.12) yields the estimate

A−f (E) =

∫
E

2nJ−f(
1 + |f |2

)n .n ∫
E

2n

K
(
1 + |f |2

)n
2

Σ .n Σ(E).

�

In particular, for a map f ∈ W 1,n
loc (Rn,Rn) ∩ C(Rn,Rn) satisfying (5.10)

with K ≥ 1 and Σ ∈ L1(Rn), the quantity A+
f (E) − A−f (E) is well-de�ned

for every measurable E ⊂ Rn, since Lemma 5.3 eliminates the possibility
of the expression evaluating to ∞ − ∞. Thus, we may de�ne Af (E) =

A+
f (E) − A−f (E) for every measurable E ⊂ Rn, obtaining a signed measure

Af on Rn. The measure Af is the pull-back of the spherical volume under
f , and is given by

(5.13) Af (E) =

∫
E

2nJf(
1 + |f |2

)n .
for every measurable E ⊂ Rn. We also use |Af | to denote the total variation
measure of Af , which is naturally given by

|Af | (E) = A+
f (E) +A−f (E) =

∫
E

2n |Jf |(
1 + |f |2

)n
for every measurable E ⊂ Rn

5.4. Measure estimates and Caccioppoli-type inequalities. With the
measure Af de�ned, we then proceed to obtain various estimates for Af . We
start with a technical Caccioppoli-type estimate that sees multiple uses in
the proofs.

Lemma 5.4. Let f ∈ W 1,n
loc (Rn,Rn) be a non-constant continuous function

that satis�es (5.10), where K ≥ 1, Σ ≥ 0, and Σ ∈ L1(Rn) ∩ L1+ε
loc (Rn) for

some ε > 0. Then for every L ≥ 0 and η ∈ C∞0 (Rn) with η ≥ 0, we have∫
{vRn◦f<L}

ηn
(
|dvRn |n ◦ f

)
|Df |n .n KnLn

∫
{vRn◦f<L}

|dη|n

+KL

∫
{vRn◦f<L}

ηn d|Af |+
∫
{vRn◦f<L}

ηnΣ.
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Proof. For brevity, we denote vL = min(vRn , L), u = vRn ◦ f , and uL =
min(u, L) = vL ◦ f . We may assume L > 0, as the case L = 0 is trivial due
to {u < L} being empty in this case.

We �rst observe that (|dvRn |◦f)(1+ |f |2)1/2 = H ′(|f |)(1+ |f |2)1/2 ≤ C(n)
by (5.6) and (5.8). We combine this with (5.10) to obtain

(5.14)

∫
{u<L}

ηn
(
|dvRn |n ◦ f

)
|Df |n

≤ K
∫
{u<L}

ηn
(
|dvRn |n ◦ f

)
Jf + C(n)

∫
{u<L}

ηn
(
|dvRn |n ◦ f

)(
1 + |f |2

)n
2 Σ

≤ K
∫
{u<L}

ηnf∗(|dvRn |n voln) + C(n)

∫
{u<L}

ηnΣ.

Let then X{u<L} be the characteristic function of {u < L}. We claim that

(5.15) X{u<L}f∗(|dvRn |n voln) = duL ∧ f∗(|dvRn |n−2 ?dvRn)

a.e. in Rn. Indeed, duL vanishes a.e. in the set {u ≥ L}; see e.g. [22, Corollary
1.21]. In {u < L}, we may compute as follows:

duL ∧ f∗(|dvRn |n−2 ?dvRn) = f∗dvRn ∧ f∗(|dvRn |n−2 ?dvRn)

= f∗(|dvRn |n−2 dvRn ∧ ?dvRn) = f∗(|dvRn |n voln).

Since the (n− 1)-form (vL−L) |dvRn |n−2 ?dvRn has Lipschitz coe�cients,

we have f∗((vL−L) |dvRn |n−2 ?dvRn) ∈W d,n/(n−1),1
loc (∧n−1T ∗Rn) by Lemma

2.1. Thus, by Corollary 2.2,

df∗((vL − L) |dvRn |n−2 ?dvRn)

= duL ∧ f∗(|dvRn |n−2 ?dvRn) + (uL − L)df∗(|dvRn |n−2 ?dvRn).

Now, by using (2.2), we may compute that

(5.16)

∫
Rn
ηnduL ∧ f∗(|dvRn |n−2 ?dvRn)

=

∫
Rn
ηndf∗((vL − L) |dvRn |n−2 ?dvRn)

−
∫
Rn
ηn(uL − L)df∗(|dvRn |n−2 ?dvRn)

= −
∫
Rn
dηn ∧ f∗((vL − L) |dvRn |n−2 ?dvRn)

−
∫
Rn
ηn(uL − L)df∗(|dvRn |n−2 ?dvRn).

By Lemma 5.1, we have that |dvRn |n−2 ?dvRn is a C1-smooth form, and
consequently

(5.17) df∗(|dvRn |n−2 ?dvRn) = f∗d(|dvRn |n−2 ?dvRn) = f∗s∗n volSn

in the weak sense. On the other hand, by using (2.3), we obtain

(5.18)
∣∣f∗((vL − L) |dv|n−2 ?dvRn)

∣∣ ≤ |uL − L| (|dvRn |n−1 ◦ f
)
|Df |n−1 .
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By combining (5.15), (5.16), (5.17) and (5.18), we obtain the estimate

K

∫
{u<L}

ηnf∗(|dvRn |n voln) = K

∫
Rn
ηnduL ∧ f∗(|dvRn |n−2 ?dv)

≤ K
∫
Rn
|dηn|

∣∣f∗((vL−L) |dvRn |n−2 ?dvRn)
∣∣+K ∫

Rn
|uL − L| ηn |f∗s∗n volSn |

≤ Kn
∫
Rn
|uL − L| |dη| (η(|dvRn | ◦ f) |Df |)n−1 +K

∫
Rn
ηn |uL − L| d|Af |.

Moreover, since uL − L = 0 in {u ≥ L}, and since |uL − L| ≤ L, we obtain

(5.19) K

∫
{u<L}

ηnf∗(|dvRn |n voln)

≤ KLn
∫
{u<L}

|dη| (η(|dvRn | ◦ f) |Df |)n−1 +KL

∫
{u<L}

ηn d|Af |.

We recall Young's inequality, which states that ab ≤ ap/p+bq/q for a, b ≥ 0
and p, q ≥ 1 with p−1 + q−1 = 1. We estimate the �rst term of the right
hand side of (5.19) by Young's inequality, resulting in

(5.20) KLn

∫
{u<L}

|dη| (η(|dvRn | ◦ f) |Df |)n−1

≤ KnLnnn−1

∫
{u<L}

|dη|n +
n− 1

n

∫
{u<L}

ηn
(
|dvRn |n ◦ f

)
|Df |n .

We note that since |dvRn | is bounded by (5.6) and (5.8), ηn(|dvRn |n◦f) |Df |n
has �nite integral over Rn. We chain (5.14), (5.19), and (5.20) together, and
absorb the integral of ηn(|dvRn |n ◦ f) |Df |n from the right side of (5.20) to
the left side of (5.14). The claim follows. �

The most immediate consequence of Lemma 5.4 is the following corollary,
which is our counterpart to [6, Lemma 5.4].

Corollary 5.5. Let f ∈W 1,n
loc (Rn,Rn) be a non-constant continuous function

that satis�es (5.10), where K ≥ 1, Σ ≥ 0, and Σ ∈ L1(Rn) ∩ L1+ε
loc (Rn) for

some ε > 0. Then for every open ball B ⊂ Rn and every L > 0, we have∫
B∩{vRn◦f<L}

|d(vRn ◦ f)|n .n KnLn +KL|Af |(2B) + Σ(Rn).

Proof. Let B = Bn(x0, r) with x0 ∈ Rn and r > 0. We �x a cuto� function
η ∈ C∞0 (Rn, [0, 1]) satisfying η ≡ 1 on B, spt η ⊂ 2B, and ‖dη‖L∞ ≤ 2r−1.

Since v is C1, the chain rule of C1 and Sobolev functions yields that

|du| = |df∗v| = |f∗dv| ≤ (|dv| ◦ f) |Df | .

Hence, ∫
B∩{u<L}

|du|n ≤
∫
{u<L}

ηn
(
|dv|n ◦ f

)
|Df |n .
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We now use Lemma 5.4, obtaining∫
{u<L}

ηn
(
|dv|n ◦ f

)
|Df |n

.n K
nLn

∫
{u<L}

|dη|n +KL

∫
{u<L}

ηn d|Af |+
∫
{u<L}

ηnΣ

≤ KnLn ‖dη‖nLn +KL|Af |(2B) + Σ(Rn).

Since

‖dη‖nLn ≤ ‖dη‖
n
L∞ voln(spt η) ≤

(
2r−1

)n
voln(2B) ≤ C(n),

the claim follows. �

5.5. Pseudosupremum of the induced potential. Besides Corollary 5.5,
we also use a counterpart to [6, Lemma 4.2], which in the quasiregular setting
yields Af (B) .n,K sup2B(vRn ◦ f)n−1 for every ball B ⊂ Rn. An estimate
based on sup2B(vRn ◦ f)n−1 is however insu�cient for us, since the function
vRn ◦ f need not have the property that every component of {vRn ◦ f > t}
is unbounded for every t > 0. To compensate for this, we de�ne a pseudo-
supremum of a continuous function ϕ : Rn → [0,∞) as follows.

De�nition 5.6. Let ϕ : Rn → [0,∞) be continuous, and let E ⊂ Rn. The
pseudosupremum s̃upE ϕ of ϕ over E is de�ned by

s̃up
E
ϕ = sup{t ∈ R : E meets an unbounded component of ϕ−1(t,∞)}.

Remark 5.7. The de�nition of the pseudosupremum is similar in spirit to
that of the classical essential supremum used e.g. in the de�nition of L∞-
spaces. Recall that if ϕ : Rn → R is a measurable function and if E ⊂ Rn is
measurable, then the essential supremum of ϕ over E is given by

ess sup
E

ϕ = sup{t ∈ R : E ∩ ϕ−1(t,∞) has positive measure}.

For bounded E, we clearly have 0 ≤ s̃upE ϕ ≤ supE ϕ < ∞ for every
continuous ϕ : Rn → [0,∞). Moreover, if E1 ⊂ E2, then s̃upE1

ϕ ≤ s̃upE2
ϕ.

We also note that (s̃upE ϕ)p = s̃upE(ϕp) for p ≥ 0, allowing us to ignore this
distinction in our notation.

By combining the pseudosupremum with Lemma 5.2, we obtain a key
lemma which, given a ball B ⊂ Rn and an entire map f with a quasiregular
value, essentially grants us strong control over the Ln-norm of ∇(vRn ◦f) on
the set {x ∈ B : vRn ◦ f(x) ≥ s̃upB(vRn ◦ f)}.

Lemma 5.8. Let f ∈ W 1,n
loc (Rn,Rn) be a non-constant continuous function

that satis�es (5.10), where K ≥ 1, Σ ≥ 0, and Σ ∈ L1(Rn) ∩ L1+ε
loc (Rn) for

some ε > 0. Then for every open ball B ⊂ Rn, every η ∈ C∞0 (B) with η ≥ 0,
and every L > s̃upB u, we have∫

{vRn◦f≥L}
ηn
(
|dvRn |n ◦ f

)
|Df |n .n ‖η‖L∞ Σ(Rn).

Proof. We denote u = vRn ◦ f for brevity, and let U = {u > L}. By
de�nition, B meets only bounded components of U ; denote the union of
these components of U that meet B by UB. Now, recalling that spt η ⊂ B,
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that |dvRn | ◦ f = H ′(|f |) by (5.8), and that f satis�es (5.10), we may use

Lemma 5.2 with Σ̃ = C(n)(1 + |f |2)n/2Σ, Φ(t) = [H ′(t)]n, and y0 = 0 to
obtain the estimate∫

{u>L}
ηn
(
|dvRn |n ◦ f

)
|Df |n ≤ ‖η‖L∞

∫
UB

(
|dvRn |n ◦ f

)
|Df |n

.n ‖η‖L∞
∫
UB

(
|dvRn |n ◦ f

)(
1 + |f |2

)n
2 Σ.

Since also Jf = 0 a.e. in {u = L} due to image of this set under f having zero

Hausdor� n-measure, we also have |Df |n .n (1 + |f |2)n/2Σ a.e. in {u = L}
by (5.10). Hence, we may improve the previous estimate to∫
{u≥L}

ηn
(
|dvRn |n◦f

)
|Df |n .n ‖η‖L∞

∫
U2B∪{u=L}

(
|dvRn |n◦f

)(
1+ |f |2

)n
2 Σ.

Since (|dvRn |◦f)(1+|f |2)1/2 ≤ C(n) by (5.6) and (5.8), we obtain the desired
estimate∫
{u≥L}

ηn
(
|dvRn |n ◦ f

)
|Df |n .n ‖η‖L∞ Σ(U2B ∪ {u = L}) ≤ ‖η‖L∞ Σ(Rn).

�

With this, we prove our counterpart to [6, Lemma 4.2].

Lemma 5.9. Let f ∈ W 1,n
loc (Rn,Rn) be a non-constant continuous function

that satis�es (5.10), where K ≥ 1, Σ ≥ 0, and Σ ∈ L1(Rn) ∩ L1+ε
loc (Rn) for

some ε > 0. Then for every open ball B ⊂ Rn, we have

|Af | (B) .n K
n−1 s̃up

2B
(vRn ◦ f)n−1 + C(n)

(
Σ(Rn) + [Σ(Rn)]

n−1
n
)
.

Proof. Let B be an open ball with radius r > 0. We �x a cuto� function η ∈
C∞0 (Rn, [0, 1]) satisfying η ≡ 1 on B, spt η ⊂ 2B, and ‖dη(x)‖L∞ ≤ 2r−1.

We �rst estimate that

|Af | (B) ≤
∫
Rn
ηn d|Af | ≤

∫
Rn
ηn dAf + 2A−f (2B)

By Lemma 5.3, we have A−f (2B) .n Σ(B), and by Lemma 5.1, we have

d(|dvRn |n−2 ?dvRn) = s∗n volSn . Hence, we obtain∫
Rn
ηn dAf =

∫
Rn
ηnf∗s∗n volSn =

∫
Rn
ηnf∗d(|dvRn |n−2 ?dvRn)

=

∫
Rn
ηndf∗(|dvRn |n−2 ?dvRn) ≤ n

∫
Rn
ηn−1 |dη| |f∗(|dvRn |n−2 ?dvRn)|,

where d and f∗ commute since the form |dvRn |n−2 ?dvRn is C1-smooth. Fur-
thermore, we may estimate using (2.3) that

|f∗(|dvRn |n−2 ?dv)| ≤ |Df |n−1 (|dvRn |n−1 ◦ f).
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Consequently by Hölder's inequality,∫
Rn
ηn−1 |dη| |f∗(|dvRn |n−2 ?dvRn)|

≤
(∫

Rn
|dη|n

) 1
n
(∫

Rn
ηn
(
|dvRn |n ◦ f

)
|Df |n

)n−1
n

.

Since spt η ⊂ 2B, we have by our estimate |dη|n ≤ 4nr−n that ‖dη‖Ln ≤
C(n). In conclusion,

(5.21) |Af | (B) ≤
∫
Rn
ηn d|Af |

.n

(∫
Rn
ηn
(
|dvRn |n ◦ f

)
|Df |n

)n−1
n

+ C(n)Σ(Rn).

We then proceed to estimate the integral in (5.21). Let L > s̃up2B(vRn◦f).
By Lemma 5.8, we obtain∫

{vRn◦f≥L}
ηn
(
|dvRn |n ◦ f

)
|Df |n .n Σ(Rn).

In the remaining set {vRn ◦ f > L} we use Lemma 5.4, which, recalling that
‖dη‖Ln ≤ C(n), yields the estimate

(5.22)

∫
Rn
ηn
(
|dvRn |n ◦ f

)
|Df |n

.n K
nLn +KL

∫
Rn
ηn d|Af |+ C(n)Σ(Rn).

Next, chaining together (5.21) and (5.22) and using the elementary in-
equality (a+ b)p .p ap + bp for a, b, p ≥ 0, we obtain

(5.23)

∫
Rn
ηn d|Af | .n Kn−1Ln−1 + (KL)

n−1
n

(∫
Rn
ηn d|Af |

)n−1
n

+ C(n)
(

Σ(Rn) + [Σ(Rn)]
n−1
n

)
.

We then apply Young's inequality to obtain

C(n)(KL)
n−1
n

(∫
Rn
ηn d|Af |

)n−1
n

≤ [C(n)]nKn−1Ln−1

n
+
n− 1

n

∫
Rn
ηn d|Af |,

where the last integral is �nite and can hence be absorbed to the left side of
(5.23). In conclusion, we obtain

|Af | (B) ≤
∫
Rn
ηn d|Af | .n Kn−1Ln−1 + C(n)

(
Σ(Rn) + [Σ(Rn)]

n−1
n

)
.

Since L > s̃up2B(vRn ◦ f) is arbitrary, the claim follows. �
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5.6. Existence of unbounded components. To �nish this section, we
show that if |Af |(Rn) = ∞, then s̃upRn(vRn ◦ f) = ∞. The result is a
relatively immediate consequence of Lemma 5.9.

Lemma 5.10. Let f ∈ W 1,n
loc (Rn,Rn) be a non-constant, unbounded, con-

tinuous function that satis�es (5.10), where K ≥ 1, Σ ≥ 0, and Σ ∈
L1(Rn) ∩ L1+ε

loc (Rn) for some ε > 0. Then for every t > 0, there exists
s = s(n,K,Σ(Rn), t) > 0 such that if |Af |(B) > s for some ball B ⊂ Rn,
then 2B meets an unbounded component of (vRn ◦ f)−1(t,∞). In particu-
lar, if |Af |(Rn) = ∞, then for every t > 0 the set (vRn ◦ f)−1(t,∞) has an
unbounded component.

Proof. Let B be a ball, and let t > 0 be such that 2B meets no unbounded
component of (vRn ◦ f)−1(t,∞). Then s̃up2B(vRn ◦ f) ≤ t, and Lemma 5.9
yields

|Af | (B) ≤ C(n)Kn−1t+ C(n)
(
Σ(Rn) + [Σ(Rn)]

n−1
n
)
.

Hence, we may set s(n,K,Σ(Rn), t) to be bigger than the right hand side of
the above estimate, and the claim follows. �

6. The proof of Theorem 1.5

Following the proofs of the Caccioppoli-type estimates in Section 5, we
then proceed to show that the Picard theorem for quasiregular values is true
when |Af |(Rn) =∞, assuming Σ ∈ L1(Rn)∩L1+ε

loc (Rn). For this part of the
result, we follow the proof of Bonk and Poggi-Corradini from [6] relatively
closely, with the main di�erence being our use of the pseudosupremum s̃up
instead of the usual maximum.

We begin by recalling a key tool in the proof that is colloquially referred
to as Rickman's hunting lemma. For further details including the proof of
the lemma, we refer to [6, Lemma 2.1 and p. 627].

Lemma 6.1 (Rickman's Hunting Lemma). Let µ be a (non-negative) Borel
measure on Rn such that µ(Rn) =∞, µ(B) <∞ for every ball B ⊂ Rn, and
µ has no atoms. Then there exists a constant D = D(n) > 1 and a sequence
of balls Bj, j ∈ Z>0 such that µ(8Bj) ≤ Dµ(Bj) and limj→∞ µ(Bj) =∞.

We also recall a lemma on conformal capacity that is essentially similar
to [6, Lemma 5.3] but phrased in a more abstract way; this more general
formulation will become relevant in the next section. Recall that if E,F are
compact and mutually disjoint subsets of Rn, then the (conformal) capacity
of the condenser (E,F ) is de�ned by

(6.1) Cap(E,F ) = inf

{∫
Rn
|dη|n : η ∈ C∞0 (Rn), η|E ≥ 1, η|F ≤ 0

}
.

By a standard convolution approximation argument, an equivalent de�ni-
tion is obtained if the assumption η ∈ C∞0 (Rn) in (6.1) is replaced by

η ∈ W 1,n
0 (Rn) ∩ C(Rn). We call a function η ∈ W 1,n

0 (Rn) ∩ C(Rn) with
η|E ≥ 1 and η|F ≤ 0 admissible for the condenser (E,F ).

Lemma 6.2. Let q ≥ 2. For each k ∈ {1, . . . , q}, let Ek and Fk be closed
subsets of Rn such that Ek ∩ Fk = ∅ for every k and Fl ∪ Fk = Rn whenever
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l 6= k. Suppose that B = Bn(x0, r) meets an unbounded component of Ek for
every k ∈ {1, . . . , q}. Let t > 1, and de�ne

(6.2) Ek,t = Ek ∩ (tB \B), Fk,t = Fk ∩ (tB \B).

Then we have
q∑

k=1

Cap(Ek,t, Fk,t) &n q
n
n−1 log t.

Proof. If l 6= k, we observe that since Fl ∪Fk = Rn and El ∩Fl = ∅, we have
El ⊂ Rn \ Fl ⊂ Fk. Consequently, B also meets an unbounded component
of Fk for every k ∈ {1, . . . , q}. Due to our assumption that q ≥ 2, we may
�x l ∈ {1, . . . , q} \ {k} and note that B meets an unbounded component of
El ⊂ Fk. It follows that (∂sB) ∩ Ek 6= ∅ 6= (∂sB) ∩ Fk for every s ≥ 1, and
we may thus use a capacity estimate given e.g. in [6, Lemma 3.3] to conclude
that

Cap(Ek,t, Fk,t) &n

∫ t

1

r ds

[Hn−1((∂sB) \ (Ek ∪ Fk))]
1

n−1

.

We note that the denominator Hn−1((∂sB)\(Ek∪Fk)) in the above integral
is non-zero for every s ≥ 1; indeed, (∂sB) \ (Ek ∪ Fk)) is an open subset of
∂sB, and (∂sB) \ (Ek ∪ Fk)) is non-empty since ∂sB is connected and Ek
and Fk are disjoint closed sets.

We then observe that the sets Rn \ (Ek ∪ Fk) are pairwise disjoint, since
(Rn \ (Ek ∪ Fk)) ∩ (Rn \ (El ∪ Fl)) ⊂ Rn \ (Fk ∪ Fl) = ∅ whenever k 6= l.
Thus, the sets (∂sB) \ (Ek ∪ Fk) are disjoint for every s ≥ 1, and Hölder's
inequality for sums yields that

q =

q∑
k=1

[
Hn−1((∂sB) \ (Ek ∪ Fk))

] 1
n

1

[Hn−1((∂sB) \ (Ek ∪ Fk))]
1
n

≤
[
Hn−1(∂sB)

] 1
n

(
q∑

k=1

1

[Hn−1((∂sB) \ (Ek ∪ Fk))]
1

n−1

)n−1
n

.

Since [Hn−1(∂sB)]1/n .n (rs)(n−1)/n, we hence obtain the desired estimate

q∑
k=1

Cap(Ek,t, Fk,t) &n

∫ t

1

q∑
k=1

rds

[Hn−1((∂sB) \ (Ek ∪ Fk))]
1

n−1

&n

∫ t

1

q
n
n−1 r ds

rs
= q

n
n−1 log t.

�

Now, we begin the proof of Theorem 1.5. We recall the statement for the
convenience of the reader.

Theorem 1.5. Let K ≥ 1 and Σ ∈ L1(Rn)∩L1+ε
loc (Rn) for some ε > 0. Then

there exists a positive integer q = q(n,K) ∈ Z>0 with the following property:

if a continuous map h ∈ W 1,n
loc (Rn, Sn) has a (K,Σ)-quasiregular value with

respect to the spherical metric at q distinct points w1, . . . , wq ∈ ∂h(Rn), then
|Dh| ∈ Ln(Rn).
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Proof. Suppose that h ∈ W 1,n
loc (Rn, Sn) is continuous and has a (K,Σ)-

quasiregular value with respect to the spherical metric at q distinct points
w1, . . . , wq ∈ ∂h(Rn), yet ‖Dh‖Ln = ∞. Our objective is hence to �nd an
upper bound on q that only depends on n and K. We may assume q ≥ 2.
Since wk ∈ ∂h(Rn), by the single-value Reshetnyak's theorem for spherical
quasiregular values given in Proposition 3.3 (i), we conclude that wk /∈ h(Rn).

For every point wk, we select a rotation Rk : Sn → Sn that takes wk
to sn(∞), and denote hk = Rk ◦ h. Since Rk is an orientation-preserving
isometry of Sn, it follows that hk has a (K,Σ)-quasiregular value with respect
to the spherical metric at sn(∞).

Consequently, we obtain maps fk ∈W 1,n
loc (Rn,Rn) satisfying hk = sn ◦ fk.

Notably, for every k ∈ {1, . . . , q} and every measurable E ⊂ Rn, we have

Afk(E) =

∫
E
f∗ks
∗
n volSn =

∫
E
h∗k volSn =

∫
E
h∗R∗k volSn =

∫
E
h∗ volSn .

That is, every Afk is the same measure; we denote this signed measure by
µ, with |µ| denoting the total variation measure of µ. Since ‖Dh‖Ln = ∞
and Σ(Rn) <∞, (1.6) yields that

|µ|(Rn) ≥ µ(Rn) =

∫
Rn
Jh ≥

1

K

(∫
Rn
|Dh|n − πn

∫
Rn

Σ

)
=∞.

We also note that since every hk has a (K,Σ)-quasiregular value with respect
to the spherical metric at sn(∞), we obtain that every fk satis�es (5.10) by
Lemma 3.2, allowing us to use the results of Section 5 on fk.

We then let uk = vRn ◦ fk for every k ∈ {1, . . . , q}. We note that the
sets sn({∞} ∪ v−1

Rn (t,∞)) form a neighborhood basis of sn(∞), where the
neighborhoods become smaller as t > 0 increases. Hence, there exists C0 =
C0(n,w1, w2, . . . , wq) > 0 such that for every t ≥ C0, the sets u

−1
k (t,∞), k ∈

{1, . . . , q} are pairwise disjoint. Moreover, by Lemma 5.10, there exists A0 =
A0(n,K,Σ(Rn), w1, w2, . . . , wq) such that if B ⊂ Rn is a ball with µ(B) >

A0, then 2B meets an unbounded component of each of the sets u−1
k (3C0,∞).

Since |µ|(Rn) = ∞, we may also use Rickman's Hunting Lemma 6.1 to
obtain a sequence (Bj) of balls in Rn for which limj→∞|µ|(Bj) = ∞ and
|µ|(8Bj) .n |µ|(Bj). Then there exists j0 > 0 such that |µ|(Bj) > A0

whenever j ≥ j0. For all such j and for every k ∈ {1, . . . , q}, we de�ne

Lj,k = s̃up
2Bj

uk.

We also de�ne

Ejk = u−1
k [2Lj,k/3,∞), F jk = u−1

k [0, Lj,k/3],

and

Ejk,2 = Ejk ∩ (4Bj \ 2Bj), F jk,2 = Ejk ∩ (4Bj \ 2Bj).

We claim that for every j ≥ j0, the sets Ejk and F jk with k ∈ {1, . . . q}
satisfy the assumptions of Lemma 6.2. Indeed, it is clear from the de�nition

that Ejk ∩ F
j
k = ∅ for every k. Since µ(Bj) > A0, 2Bj meets an unbounded

component of u−1
k (3C0,∞), and hence Lj,k ≥ 3C0 > 0 for every k. Thus,

the sets Rn \ F jk = u−1
k (Lj,k/3,∞) are pairwise disjoint, and consequently
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F jk ∪ F
j
l = Rn whenever k 6= l. Since 0 < Lj,k = s̃up2Bj uk, we also have

that 2Bj meets an unbounded component of every u−1
k (2Lj,k/3,∞), and

consequently 2Bj also meets an unbounded component of every Ejk. Thus,
the assumptions of Lemma 6.2 are satis�ed, and it follows that for every
j ≥ j0, we have

(6.3)

q∑
k=1

Cap(Ejk,2, F
j
k,2) &n q

n
n−1 .

We are now ready to estimate q. Let j ≥ j0. By using Lemma 5.9 on fk,
we obtain

(6.4) |µ|(Bj) .n Kn−1Ln−1
j,k + C(n,Σ(Rn)).

for every k ∈ {1, . . . , q}. Since limj→∞|µ|(Bj) =∞ by our use of Rickman's
Hunting Lemma, we conclude that

(6.5) lim
j→∞

min
k
Lj,k =∞.

We may �x a function ψj ∈ C∞0 (8Bj) for which ‖∇ψj‖Ln ≤ C(n) and

ψj ≡ 1 on a neighborhood of 4Bj . Now, the function

ηj =

(
3 min(uk, Lj,k)

Lj,k
− 1

)
ψ

is admissible for the condenser (Ejk,2, F
j
k,2). It follows that

Cap(Ejk,2, F
j
k,2) ≤

∫
Rn
|∇ηj |n .n ‖∇ψj‖nLn +

∫
4Bj∩{uk<Lj,k}

|∇uk|n

Lnj,k

We apply Corollary 5.5 to the last integral and use ‖∇ψj‖Ln .n 1 ≤ Kn to
obtain

Cap(E1
k,2, E

2
k,2) .n 2Kn +

K|µ|(8Bj)
Ln−1
j,k

+
C(n,Σ(Rn))

Lnj,k
.

By (6.3), there always exists an index k = k(j, h) ∈ {1, . . . , q} such that

Cap(E1
k,2, E

2
k,2) ≥ C(n)q1/(n−1). Hence, for this speci�c choice of k, we have

q
1

n−1 .n 2Kn +
K|µ|(8Bj)
Ln−1
j,k

+
C(n,Σ(Rn))

Lnj,k
.

We then apply the estimate |µ|(8Bk) .n |µ|(Bk) and (6.4) to obtain

(6.6) q
1

n−1 .n 3Kn +
KC(n,Σ(Rn))

Ln−1
j,k

+
C(n,Σ(Rn))

Lnj,k

for our speci�c choice of k = k(j, h). Finally, let j → ∞ in (6.6). It follows
from (6.5) that the terms involving Lj,k vanish at the limit, and we obtain
the desired

q ≤ C(n)Kn(n−1),

concluding the proof. �



QUASIREGULAR VALUES AND RICKMAN'S PICARD THEOREM 31

7. The proof of Theorems 1.2 and 1.4

In order to prove Theorems 1.2 and 1.4, what remains is essentially to show
that, under the assumptions of Theorem 1.2, we have |Af |(Rn) = ∞. As
stated in the introduction, this is a small step in the quasiregular version of
the proof [6, p.631], but grows into a signi�cantly more complex undertaking
in our setting, involving e.g. the boundedness result shown in Proposition
4.3 and Corollary 4.4.

7.1. The two cases. The starting point of our argument is that if one does
not have Af (Rn) =∞, then one essentially obtains an Ln-integrability con-
dition for ∇ log |f |. This general idea of obtaining Ln-regularity for ∇ log |f |
when the behavior of f di�ers from that of a quasiregular map is frequent in
the proofs of other results on quasiregular values [28, 29]. This underlying
dichotomy is summarized in the following result.

Proposition 7.1. Let K ≥ 1 and Σ ∈ L1(Rn) ∩ L1+ε
loc (Rn) for some ε > 0.

Suppose that f ∈ W 1,n
loc (Rn,Rn) is an unbounded, continuous function such

that f has a (K,Σ)-quasiregular value at 0 and 0 /∈ f(Rn). Then

|Af | (Rn) =∞ or

∫
Rn

|Df |n

|f |n
<∞.

We divide the proof into two cases. For this division, note that if s ∈
[0,∞] and {|f | > s} has an unbounded component, then {|f | > s′} has an
unbounded component for all s′ < s. Similarly, if s ∈ [0,∞] and {|f | < s}
has an unbounded component, then {|f | < s′} has an unbounded component
for all s′ > s. The �rst case is when there exists an overlap between the
region where {|f | > s} has an unbounded component and the region where
{|f | < s} has an unbounded component; see Figure 2 for an illustration.

Lemma 7.2. Let K ≥ 1 and Σ ∈ L1(Rn) ∩ L1+ε
loc (Rn) for some ε > 0.

Suppose that f ∈ W 1,n
loc (Rn,Rn) is an unbounded, continuous function such

that f has a (K,Σ)-quasiregular value at 0 and 0 /∈ f(Rn). If there exist
0 < s1 < s2 < ∞ for which {|f | > s2} and {|f | < s1} both have an
unbounded component, then |Af | (Rn) =∞.

0

0

∞

∞

{|f | > s} has only
bounded components.

{|f | > s} has an
unbounded component.

{|f | < s} has an
unbounded component.

{|f | < s} has only
bounded components.

s2

s1

Figure 2. The case covered in Lemma 7.2, where both {|f | > s2}
and {|f | < s1} have an unbounded component.

Proof. The argument is reminiscent of the proof that |Af | (Rn) = ∞ in
the quasiregular case. We begin by observing that, since f has a (K,Σ)-
quasiregular value at 0, we can use Lemmas 3.1 and 3.2 to conclude that f
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satis�es (5.10). Since f is also unbounded, we may hence use the results of
Section 5 on f . We divide the proof into two main cases.

We �x a ball B that meets the unbounded components of both {|f | > s2}
and {|f | < s1}. We choose values c1, c2, c3, c4 such that s1 < c1 < c2 < c3 <
c4 < s2. We let E1 = {|f | ≥ c4}, F1 = {|f | ≤ c3}, E2 = {|f | ≤ c1}, and
F2 = {|f | ≥ c2}. Since we have {|f | > s2} ⊂ E1 and {|f | < s1} ⊂ E2, B
meets an unbounded component of E1 and E2. Moreover, E1 ∩ F1 = ∅ =
E2 ∩ F2 and F1 ∪ F2 = Rn. Consequently the sets Ei and Fi satisfy the
conditions of Lemma 6.2 with q = 2. Hence, if t > 1, and Ei,t, Fi,t are as in
(6.2), we get

Cap(E1,t, F1,t) + Cap(E2,t, F2,t) &n log t.

Thus, for each t > 1, we have Cap(E1,t, F1,t) &n log t or Cap(E2,t, F2,t) &n
log t.

Consider �rst the case where one can �nd arbitrarily large values of t such
that Cap(E1,t, F1,t) &n log t. We let u = v ◦ f where v is as in (5.7), and
select a function ψ ∈ C∞0 (2tB, [0, 1]) with ‖∇ψ‖Ln ≤ C(n) and ψ ≡ 1 in a
neighborhood of tB. Similarly to the beginning of the proof of Theorem 1.5,
we obtain that

η =

(
min(u,H(c4))−H(c3)

H(c4)−H(c3)

)
ψ

is admissible for the condenser (E1,t, F1,t), where H is as in (5.4). We then
use Corollary 5.5 to obtain that

log t .n Cap(E1,t, F1,t) ≤
∫
Rn
|∇η|n

.n
1

(H(c4)−H(c3))n

(
Hn(c3) ‖∇ψ‖nLn +

∫
2tB∩{u<H(c4)}

|∇u|n
)

.n
Hn(c3)C(n) +KnHn(c4) +KHn(c4)|Af |(4tB) + Σ(Rn)

(H(c4)−H(c3))n

≤ C(n,K, c3, c4,Σ(Rn)) + C(n,K, c3, c4)|Af |(4tB).

Letting t→∞, we conclude that |Af |(Rn) =∞.
In the other case where Cap(E2,t, F2,t) &n log t for arbitrarily large t, we

repeat the above proof with the function

η =

(
H(c2)−min(u,H(c2))

H(c2)−H(c1)

)
ψ.

Indeed, this η is admissible for the condenser (E2,t, F2,t), and provides an
analogous upper bound for log t in terms of |Af | (4tB) by a similar proof. �

The other case in the proof of Proposition 7.1 is when there is no overlap
between the region where {|f | > s} has an unbounded component and the
region where {|f | < s} has an unbounded component, or alternatively when
this overlap is merely a single endpoint. See Figure 3 for an illustration.

Lemma 7.3. Let K ≥ 1 and Σ ∈ L1(Rn) ∩ L1+ε
loc (Rn) for some ε > 0.

Suppose that f ∈ W 1,n
loc (Rn,Rn) is an unbounded, continuous function such

that f has a (K,Σ)-quasiregular value at 0 and 0 /∈ f(Rn). If there exists
an s0 ∈ [0,∞] for which {|f | > s} has only bounded components whenever
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s > s0, and {|f | < s} has only bounded components whenever s < s0, then

|f |−1 |Df | ∈ Ln(Rn).

0

0

∞

∞

{|f | > s} has only
bounded components.

{|f | > s} has an
unbounded component.

{|f | < s} has an
unbounded component.

{|f | < s} has only
bounded components.

s0

s0

Figure 3. The case covered in Lemma 7.3, where {|f | > s} has
only bounded components for s > s0, and {|f | < s} has only

bounded components for s < s0. Note that if the endpoints of the

regions coincide, this case also applies, with s0 as the shared end-

point.

Proof. Let s > s0. Since f has a (K,Σ)-quasiregular value at 0 and since
{|f | > s} has only bounded components, we may use Lemma 5.2 with Ψ(t) =

t−n and Σ̃ = |f |n Σ to conclude that∫
{|f |>s}

|Df |n

|f |n
≤ C(n)

∫
{|f |>s}

Σ ≤ C(n)Σ(Rn).

Monotone convergence consequently yields that∫
{|f |>s0}

|Df |n

|f |n
.n Σ(Rn) <∞.

We then consider the map f̃ = ι ◦ f , where ι : Rn \ {0} → Rn \ {0} is
the conformal inversion across the unit (n − 1)-sphere. Then since we have

0 /∈ f(Rn), we obtain that f̃ ∈ C(Rn,Rn) ∩W 1,n
loc (Rn,Rn) and 0 /∈ f̃(Rn).

By the conformality of ι and the fact that |ι(y)| = |y|−1 and |Dι(y)| = |y|−2,
we obtain that

|Df̃ |
|f̃ |

=
(|Dι| ◦ f) |Df |

|f |−1 =
|Df |
|f |

.

It also follows that the map f̃ also has a (K,Σ)-quasiregular value at 0, since

|Df̃ |n =
|Df |n

|f |2n
≤
KJf

|f |2n
+

Σ

|f |n
= KJf̃ + |f̃ |nΣ.

Furthermore, for every s̃ > s−1
0 , we have that {|f̃ | > s̃} = {|f | < s−1} has

no unbounded components. Hence, similarly as before, we may use Lemma
5.2 to obtain that∫

{|f |<s0}

|Df |n

|f |n
=

∫
{|f̃ |>s−1

0 }

|Df̃ |
|f̃ |
≤ C(n)Σ(Rn) <∞.

In conclusion, ∫
{|f |6=s0}

|Df |n

|f |n
.n Σ(Rn) <∞.
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It remains to show that if 0 < s0 < ∞, then the integral of |f |−n |Df |n
over {|f | = s0} is �nite. If s0 ∈ {0,∞}, then this set is empty. Otherwise,
for a.e. x ∈ {|f | = s0}, we may estimate as follows:

|Df(x)|n

|f(x)|n
=
|Df(x)|n

sn0
≤
KJf (x)

sn0
+ Σ(x).

Here, Σ has �nite integral over Rn, and Jf = 0 a.e. in {|f | = s0} due to the
set having an image with zero Hausdor� n-measure. The proof of the lemma
is hence complete. �

The proof of Proposition 7.1 is hence complete, since if the assumptions
of Proposition 7.1 are satis�ed, then the assumptions of either Lemma 7.2
or Lemma 7.3 are satis�ed.

7.2. Completing the proofs. It remains to complete the proofs of Theo-
rems 1.2 and 1.4. We start with Theorem 1.4, where we recall the statement
for the convenience of the reader.

Theorem 1.4. Let K ≥ 1 and Σ ∈ L1+ε(Rn) ∩ L1−ε(Rn) for some ε > 0.
Then there exists a positive integer q = q(n,K) ∈ Z>0 such that no contin-

uous map h ∈ W 1,n
loc (Rn, Sn) has a (K,Σ)-quasiregular value with respect to

the spherical metric at q distinct points w1, . . . , wq ∈ ∂h(Rn).

Proof. Suppose that h ∈W 1,n
loc (Rn, Sn) has a (K,Σ)-quasiregular value with

respect to the spherical metric at q distinct points w1, . . . , wq ∈ ∂f(Rn), with
q ≥ 2. By Theorem 1.5, we must have either q ≤ q0(n,K), or |Dh| ∈ Ln(Rn).
Suppose then that we are in the latter case, with the aim of deriving a
contradiction. From this point onwards, we may ignore all of the spherical
quasiregular values wi except the �rst two, w1 and w2.

By the single-point Reshetnyak's theorem given in Proposition 3.3 (i),
we have w1, w2 /∈ h(Rn). By post-composing h with an isometric spherical
rotation, we may assume that w2 = sn(∞). In this case, we have an un-

bounded continuous map f̃ ∈ W 1,n
loc (Rn,Rn) such that h = sn ◦ f̃ . We let

y1 ∈ Rn be the point for which sn(y1) = w1. It follows that f̃ is unbounded,

that y1 ∈ ∂f̃(Rn), and that f̃ has a (K,C(n)Σ)-quasiregular value at y1 by
Lemma 3.1. The fact that |Dh| ∈ Ln(Rn) also yields that

|Af̃ |(R
n) =

∫
Rn
|Jh| ≤

∫
Rn
|Dh|n <∞.

We then consider the map f = f̃ − y1. It follows that f is a con-
tinuous, unbounded map in W 1,n

loc (Rn,Rn), that 0 /∈ f(Rn), and that f
has a (K,C(n)Σ)-quasiregular value at 0. Moreover, since Jf = Jf̃ and

1 + |f |2 &n,y1 1 + |f − y1|2, we obtain

Af (Rn) =

∫
Rn

2nJf
(1 + |f |2)n

.n,y1

∫
Rn

2n|Jf |
(1 + |f − y1|2)n

= |Af̃ |(R
n) <∞.

Thus, we may apply Proposition 7.1 on f , and conclude that |f |−1 |Df | ∈
Ln(Rn).

However, since f omits 0 and Σ ∈ L1+ε(Rn) ∩ L1−ε(Rn), we may now
apply Corollary 4.4 to conclude that f is bounded. This is a contradiction,
since f is unbounded. The proof is hence complete. �
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Theorem 1.2 is then an immediate corollary of Theorem 1.4. We recall
the statement and give a short proof.

Theorem 1.2. Let K ≥ 1 and Σ ∈ L1+ε(Rn) ∩ L1−ε(Rn) for some ε > 0.
Then there exists a positive integer q = q(n,K) ∈ Z>0 such that no con-

tinuous map f ∈W 1,n
loc (Rn,Rn) has a (K,Σ)-quasiregular value at q distinct

points y1, . . . , yq ∈ ∂f(Rn).

Proof. Suppose that f ∈ W 1,n
loc (Rn,Rn) is continuous and has a (K,Σ)-

quasiregular value at q distinct points y1, . . . , yq ∈ ∂f(Rn). Let h = sn ◦ f .
Then by Lemma 3.1, h has a (K, Σ̃)-quasiregular value with respect to the
spherical metric at each of the points sn(y1), . . . , sn(yq) ∈ ∂h(Rn), where

Σ̃ = C(n, y1, . . . , yq)Σ. Now, Theorem 1.4 yields an upper bound on q de-
pendent only on n and K, completing the proof. �

Remark 7.4. With Theorems 1.2 and 1.4 proven, we conclude this section by
brie�y pointing out how the standard Rickman's Picard Theorem follows al-
most immediately from the case Σ ≡ 0 of our main results. Besides Theorem
1.2, the only other result of quasiregular theory used in the argument is ei-
ther Liouville's theorem or Reshetnyak's Theorem; the single-value versions
from Theorem 1.3 can also be used for this.

Both arguments begin in the same manner. Suppose towards contradiction
that f : Rn → Rn is an entire non-constant K-quasiregular map that omits
q+1 distinct points y1, . . . yq+1 /∈ f(Rn), where q = q(n,K) is as in Theorem
1.2. We note that f has a (K, 0)-quasiregular value at every y ∈ Rn. Hence,
by Theorem 1.2, we obtain that ∂f(Rn) contains at most q points. Since f

omits more than q di�erent points, the set Rn \ f(Rn) must be non-empty.
For the argument based on Reshetnyak's theorem, we argue as follows.

Since f is non-constant, we have by Reshetnyak's theorem that fRn is an
open set. Since ∂f(Rn) separates two non-empty open subsets of Rn, it is
not �nite; see e.g. [25, Theorem IV 4] for a formal justi�cation. This is a
contradiction, since ∂f(Rn) consists of at most q points. The proof is thus
complete.

For the argument based on Liouville's theorem, we instead use the non-
emptiness of Rn \ f(Rn) to �x a point y0 ∈ Rn \ f(Rn) and a Möbius trans-
formation T : Rn ∪ {∞} → Rn ∪ {∞} satisfying T (y0) =∞. Now, since f is

a quasiregular map that omits a neighborhood of y0, the map f̃ = T ◦ f is a
quasiregular map that omits a neighborhood of ∞, and thus f̃ is bounded.
Hence, Liouville's theorem implies that f̃ is constant, resulting in a contra-
diction and completing the proof.

8. The planar case

In this section, we prove Theorem 1.6. The result is derived directly from
Theorem 1.2 with the use of a trick.

Before beginning the proof, we recall a corollary of the single-value Reshet-
nyak's theorem from [29]. The corollary generalizes a version of the argument
principle used by Astala and Päivärinta [5, Proposition 3.3 b)]. Recall that

if f ∈ W 1,n
loc (Rn,Rn) ∩ C(Rn,Rn) has a (K,Σ)-quasiregular value at a point
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y0 ∈ Rn with K ≥ 1 and Σ ∈ L1+ε
loc (Rn) for some ε > 0, then f−1{y0} is dis-

crete by the single-value Reshetnyak's theorem. This is su�cient to ensure
the existence of a local index i(x, f) for every x ∈ f−1{y0}, as detailed e.g.
in [14, Theorem 2.8].

Lemma 8.1 ([29, Corollary 1.6]). Let f1, f2 ∈W 1,n
loc (Rn,Rn)∩C(Rn,Rn) be

such that both fi have a (Ki,Σi)-quasiregular value at y0 ∈ Rn, with Ki ≥ 1
and Σi ∈ L1+ε

loc (Rn) for some ε > 0. Suppose that

lim inf
x→∞

|f2(x)− y0| 6= 0 and lim inf
x→∞

|f1(x)− f2(x)| = 0.

Then ∑
x∈f−1

1 {y0}

i(x, f1) =
∑

x∈f−1
2 {y0}

i(x, f2).

Note that the sum of local indices in Lemma 8.1 acts as a replacement of
the global degree.

We also recall a version of the main structure theorem for planar maps
with a quasiregular value. A proof for the result can essentially be found
embedded in [4, Proof of Theorem 8.5.1]. We regardless go over the key ideas
of the argument.

Lemma 8.2. Suppose that f : C → C has a (K,Σ)-quasiregular value at
z0 ∈ C, where K ≥ 1 and Σ ∈ L1+ε(C) ∩ L1−ε(C) for some ε > 0. Then f
is of the form

f(z) = z0 + g(z)eθ(z),

where g : C → C is an entire quasiregular map, and θ ∈ C(C,C) with
limz→∞ θ(z) = 0.

Proof. We �rst rewrite (1.2) in the form of a Beltrami equation. Indeed,

recalling that |Df | = |fz|+ |fz| and Jf = |fz|2 − |fz|2, we have

|fz|2 + |fz|2 ≤ |Df |2 ≤ K(|fz|2 − |fz|2) + |f − z0|2 Σ.

Rearranging, we have

|fz|2 ≤
K − 1

K + 1
|fz|2 + |f − z0|2

Σ

K + 1
.

Due to the elementary inequality
√
a2 + b2 ≤ |a|+ |b|, we hence have

(8.1) |fz| ≤ k |fz|+ σ |f − z0| ,
where

k =

√
K − 1

K + 1
∈ [0, 1) and σ =

√
Σ

K + 1
∈ L2+2ε(C) ∩ L2−2ε(C).

Moreover, (8.1) can be rewritten as a Beltrami-type equation

(8.2) fz = µfz +A(f − z0),

where ‖µ‖L∞ ≤ k < 1 and A ∈ L2+2ε(C,C) ∩ L2−2ε(C,C).
To prove the structure theorem, one �rst studies the auxiliary equation

(8.3) θz = µθz +A.

By standard existence theory of Beltrami-type equations as discussed in
e.g. [4], one can �nd a solution for (8.3) by θ = C(I − µS)−1A, where C
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is the Cauchy transform and S is the Beurling transform. In particular,
since A ∈ L2+2ε(C,C) ∩ L2−2ε(C,C), the map θ ends up being a bounded,
continuous map with limz→∞ θ = 0: see e.g. [4, Theorem 4.3.11 and Section
5.4].

Then, with the solution θ of (8.3), one de�nes g = (f − z0)e−θ, in which
case f = z0+geθ. Using (8.2) and (8.3), one computes directly that gz = µgz.
Hence, g is an entire quasiregular map, completing the argument. �

We then prove a lemma on the preservation of quasiregular values under
complex logarithms.

Lemma 8.3. Let Ω ⊂ C be a domain, let γ ∈W 1,2
loc (Ω,C)∩C(Ω,C), and let

f = eγ. If f has a (K,Σ)-quasiregular value at both 0 and z0 = ew0 ∈ C\{0},
where K ≥ 1 and Σ: Ω→ [0,∞), then γ has a (K, 4Σ)-quasiregular value at
every point of the form w0 + 2πik, k ∈ Z.

Proof. We have

|Dγ|2 =
|Df |2

|f |2
≤ K

Jf

|f |2
+

min(|f |2 , |f − z0|2)

|f |2
Σ

= KJγ + min
(
1,
∣∣1− ew0−γ

∣∣2)Σ.
Now, �x k ∈ Z, and suppose �rst that |γ(z)− w0 − 2πik| ≤ 2−1. Then∣∣1− ew0−γ(z)

∣∣ =
∣∣ew0+2πik−γ(z) − 1

∣∣
≤ |w0 + 2πik − γ(z)|

 ∞∑
j=1

|w0 + k2πi− γ(z)|j−1

j!


≤ |w0 + 2πik − γ(z)|

 ∞∑
j=1

1

2j−1j!

 ≤ 2 |γ(z)− w0 − 2πik| .

If on the other hand we have |γ(z)− w0 − 2πik| ≥ 2−1, then we obtain

1 ≤ 4 |γ(z)− w0 − 2πik|2. In either case, we have

min(1, |1− e−γ−θ|2) ≤ 4 |γ − w0 − 2πik|2 .

Thus,

|Dγ|2 ≤ KJγ + |γ − w0 − 2πik|2 4Σ.

�

We are now ready to prove Theorem 1.6. We again �rst recall the state-
ment for the convenience of the reader.

Theorem 1.6. Let K ≥ 1 and Σ ∈ L1+ε(C)∩L1−ε(C) for some ε > 0. Then

no continuous map f ∈ W 1,2
loc (C,C) has a (K,Σ)-quasiregular value at two

distinct points z1, z2 ∈ ∂f(C). Similarly, no continuous map h ∈W 1,2
loc (C, S2)

has a (K,Σ)-quasiregular value with respect to the spherical metric at three
distinct points w1, w2, w3 ∈ ∂h(C).
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Proof. We �rst reduce the case h : C → S2 to the case f : C → C. Sup-
pose that h ∈ W 1,2

loc (C, S2) has a (K,Σ)-quasiregular value with respect to
the spherical metric at three distinct points w1, w2, w3 ∈ ∂h(C). By post-
composing h with an isometric rotation, we may assume that w3 = s2(∞).
The single-point Reshetnyak's theorem given in Proposition 3.3 (i) then again
yields that s2(∞) /∈ h(Rn); indeed, otherwise h(Rn) would be a neighbor-
hood of s2(∞) by the openness part, contradicting s2(∞) = w3 ∈ ∂h(C).
Thus, if we de�ne f : C → C by s2 ◦ f = h, we have by Lemma 3.1 that f
has a (K,C(h)Σ)-quasiregular value at two distinct points z1, z2 ∈ ∂f(C),
where s2(z1) = w1 and s2(z2) = w2.

Suppose then towards contradiction that f ∈ W 1,2
loc (C,C) has a (K,Σ)-

quasiregular value at two distinct points z1, z2 ∈ ∂f(C). For convenience, we
may assume z1 = 0 and z2 = 1 by replacing f with the map (f−z1)/(z2−z1),
an operation which only introduces a multiplicative constant C(z1, z2) to
Σ. As before, by the single-point Reshetnyak's theorem, we also have that
0, 1 /∈ f(C).

Since Σ ∈ L1+ε(C) ∩ L1−ε(C), we may use Lemma 8.2 to write f(z) =

g(z)eθ(z), where g : C → C is an entire quasiregular map and θ ∈ C(C,C)

with limz→∞ θ(z) = 0. Since f(z) 6= 0 and eθ(z) 6= 0 for all z ∈ C, we
conclude that g omits 0. Hence, we may lift g in the exponential map to �nd
an entire quasiregular map γ : C→ C such that g = eγ . In particular,

f(z) = eγ(z)+θ(z).

We �rst observe that γ is non-constant. Indeed, suppose towards contra-
diction that γ ≡ c. Then we have limz→∞ f(z) = ec. However, this is impos-
sible, since it follows from limz→∞ θ(z) = 0 that (∂f(C)) \ f(C) ⊂ {ec}, yet
(∂f(C)) \ f(C) must at least contain the two distinct points 0 and 1. Hence,
we conclude that γ is non-constant; in particular, by the Picard theorem for
entire quasiregular maps, γ omits at most a single point in C.

By Lemma 8.3, γ + θ has a (K, 4Σ)-quasiregular value at each of the
points 2πik, k ∈ Z. Since Σ ∈ L1+ε(C) ∩ L1−ε(C), Theorem 1.2 provides a
constant q = q(n,K) such that 2πik ∈ ∂[(γ + θ)(C)] for at most q di�erent
values of k. Since γ omits at most one point of C, we may �x k0 ∈ Z for
which 2πik0 ∈ γ(C) and 2πik0 /∈ ∂[(γ + θ)(C)]. Since 1 /∈ f(C), we also
have 2πik0 /∈ (γ + θ)(C), and hence there exists a radius r0 > 0 such that
(γ + θ)(C) ∩ B2(k02πi, r0) = ∅.

Now, for the �nal step of the argument, we apply Lemma 8.1. Indeed, we
have

lim inf
z→∞

|(γ + θ)(z)− 2πik0| ≥ r0 > 0 and lim
z→∞

|(γ + θ)(z)− γ(z)| = 0.

Moreover, γ + θ has a (K, 4Σ)-quasiregular value at 2πik0, and γ is a non-
constant quasiregular map. Hence, we conclude that

0 =
∑

z∈(γ+θ)−1{2πik0}

i(z, γ + θ) =
∑

z∈γ−1{2πik0}

i(z, γ) > 0,

which is a contradiction. The proof is thus complete. �
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9. Counterexamples

In this chapter, we discuss the sharpness of the assumptions of Theorem
1.2. In particular, we show that the assumption Σ ∈ L1(Rn) ∪ L1+ε

loc (Rn) in
Theorem 1.5 is not su�cient to obtain the conclusions of Theorem 1.2.

Example 9.1. In our �rst example, we construct for every q ∈ Z>0 a contin-
uous map f ∈ W 1,∞

loc (Rn,Rn) such that f has q distinct (1,Σ)-quasiregular
values, where Σ ∈ L1(Rn) ∩ L1−ε(Rn) ∩ L∞loc(Rn) for every ε ∈ (0, 1). See
Figure 4 for a rough illustration of the example in the case n = 2.

. . .
f

Figure 4. Rough illustration of the map f of Example 9.1 in the

case n = 2. The map f takes each of the in�nitely many shaded

annuli on the domain side to one of the open-ended stalks on the

target side, stopping partway through. In the lighter shaded part of

R2 the map f is locally constant, with the unbounded component

mapped to the center of the stalks. The tips of the stalks are

quasiregular values of f and are contained in ∂f(R2).

We begin by selecting q distinct points {y1, . . . , yq} ∈ Sn−1 ⊂ Rn. Let
d0 > 0 be the minimum distance from a point yk to a line {tyl, t ∈ R}, where
k 6= l.

We consider the function θ : (0, 2−1)→ [0,∞) given by

θ(r) = log
n−1−δ
n

1

r
,

where δ ∈ (0, n − 1). Note that θ is decreasing. We also de�ne a function
Θ: Bn(0, 2−1) \ {0} → [0,∞) by

Θ(x) = θ(|x|).

Then we have∫
Bn(0,2−1)

|∇Θ|n .n,δ
∫
Bn(0,2−1)

1

|x|n log1+δ |x|−1 <∞.

Thus, ∇Θ ∈ Ln(Bn(0, 2−1)), and consequently, by Hölder's inequality, ∇Θ ∈
L(1−ε)n(Bn(0, 2−1)) for every ε ∈ (0, 1). Note also that

lim
x→0

Θ(x) = lim
r→0

θ(r) =∞.

Thus, we may select radii 2−1 = R1 > R2 > . . . for which we have θ(Ri+1)−
θ(Ri) = i for all i ∈ Z≥0.

We then pick a discrete set of points {xi : i ∈ Z>0} ⊂ Rn such that the
closures of the balls Bi = Bn(xi, Ri) are pairwise disjoint. We also denote
B′i = Bn(xi, Ri+1), and ki = (i mod q) ∈ {1, . . . , q}. We then de�ne a
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function f : Rn → Rn as follows: in the set Rn \
⋃
iBi, we de�ne f ≡ 0, in

the sets Bi \B′i, we de�ne

f(x) = (1− eΘ(x−xi)−θ(Ri))yki ,

and in the sets B′i, we de�ne f(x) ≡ (1− e−i)yki .
By our construction, we observe that f ∈W 1,∞

loc (Rn,Rn), f is continuous,
and yj ∈ ∂f(Rn) for every j ∈ {1, . . . , q}. We also have Jf ≡ 0 everywhere
since the image of f is a 1-dimensional tree, and |Df | ≡ 0 in Rn \

⋃
iBi

and in every B′i. Hence, we may select Σ ≡ 0 in these sets, and have
|Df | ≤ Jf + |f − yj |n Σ for every j ∈ {1, . . . , q}.

It remains to consider the regions Bi \B′i. In these regions, we have

|Df |
|f − yki |

=
|yki | eΘ(x−xi)−θ(Ri) |∇Θ(x− xi)|

|yki | eΘ(x−xi)−θ(Ri)
= |∇Θ(x− xi)| .

Moreover, whenever j 6= ki, we may use eΘ(x−xi)−θ(Ri) ≤ 1, |yj | = 1, and
|f − yj | ≥ d0 to obtain

|Df |
|f − yj |

=
|yj | eΘ(x−xi)−θ(Ri) |∇Θ(x− xi)|

|f − yj |
≤ d−1

0 |∇Θ(x− xi)| .

Thus, we may select Σ = max(1, d−n0 ) |∇Θ(x− xi)|n. Now, since the regions
Bi \ B′i are translates of the concentric annuli Bn(0, Ri) \ Bn(0, Ri+1) by
xi, and since |∇Θ| ∈ Lp(Bn(0, R1)) for all p ∈ (0, n], we obtain that Σ ∈
L1(Rn) ∩ L1−ε(Rn) for every ε ∈ (0, 1). Moreover, since {xi} is discrete and
since Σ is bounded on every Bi \B′i, we get that Σ ∈ L∞loc(Rn).

Finally, the following example shows the necessity of the global lower
integrability assumption in Theorem 1.2.

Example 9.2. In this example, we construct for every q ∈ Z>0 a continuous
map f ∈ W 1,∞

loc (Rn,Rn) with q distinct (1,Σ)-quasiregular values in ∂fRn,
where Σ ∈ L1(Rn) ∩ L∞(Rn). Our strategy is similar to the one used in
Example 9.1, but we use increasingly large annuli instead of increasingly
small ones.

We let {y1, . . . , yq} ∈ Sn−1 and d0 > 0 be as in the previous example.
This time, we consider the map θ : (2,∞)→ [0,∞) given by

θ(r) = log
n−1−δ
n r,

where δ ∈ (0, n− 1). We de�ne Θ: Rn \Bn(0, 2)→ [0,∞) by Θ(x) = θ(|x|).
Similarly to last time, we have∫

Rn\Bn(0,2)
|∇Θ|n .n,δ

∫
Rn\Bn(0,2)

1

|x|n log1+δ |x|
<∞.

Moreover, we have limr→∞ θ(r) =∞ and |∇Θ| ∈ L∞(Rn \ Bn(0, 2)).
We again split Rn \ Bn(0, 2) into sub-annuli by �xing radii 2 = R1 <

R2 < . . . satisfying θ(Ri+1) − θ(Ri) = i. We select points {xi} so that
the closures of the balls Bi = Bn(xi, Ri+1) are pairwise disjoint; note that
this time {xi} is automatically discrete and in fact extremely sparse, as
we have |xi − xj | ≥ Ri + Rj ≥ 4 whenever i 6= j. We also again denote
B′i = Bn(xi, Ri) and ki = (i mod q) ∈ {1, . . . , q}.
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We then de�ne f : Rn → Rn so that in the set Rn \
⋃
iBi we have f ≡ 0,

in the sets Bi \B′i we have

f(x) = (1− eΘ(x−xi)−θ(Ri+1))yki ,

and in the sets B′i we have f(x) = (1 − e−i)yki . We again get that f
is continuous, that yj ∈ ∂f(Rn) for all j ∈ {1, . . . , q}, that Jf ≡ 0, and
moreover that f ∈W 1,∞(Rn,Rn). In order for all yj to be (Σ, 1)-quasiregular
values of f , we can again pick Σ ≡ 0 in Rn \

⋃
iBi and in the sets B′i.

Moreover, in the sets Bi \ B′i, a similar argument as in the last example
shows that we may pick Σ = max(1, d−n0 ) |∇Θ(x− xi)|n, in which case Σ ∈
L1(Rn) ∩ L∞(Rn).
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