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This study examines the photoconductivity of solution-synthesized Bi;O2S nanostructures, with or without hy-
drazine hydrate (HH). HH produces thinner nanostructures with faster carrier trapping times due to surface
defects. Both samples show similar bulk trapping and recombination times, with longer rise times possibly
indicating enhanced exciton binding energies from confinement to two dimensions. This approach promises to

modulate photoconductivity in layered materials by adjusting reducing agent amounts during synthesis.

1. Introduction

Bismuth oxyselenide (Bi;O5Se) is a layered material with remarkable
properties that make it an exciting candidate for electronic and opto-
electronic applications [1-5]. Nevertheless, only a limited number of
studies have explored the analogous material bismuth oxysulfide
((Bi202S) [4-7]. Biz02S exhibits a bandgap of 1.1 eV, and possesses
efficient charge dissociation, high charge carrier transport and long
carrier lifetime [7-10]. Unlike the trending 2D materials like ReSj,
Biy05S has the potential to be used for the effecient photocatalytic ac-
tivities and photodetection applications [11]. This study examines how
HH affects the synthesis and morphology of Bi,O2g nanostructures, and
their corresponding transient photoconductivity. The millimeter-wave
pump-probe method utilized here provides a unique characterization
of photoconductivity compared to conventional contact methods for
nanoscale materials [12] and provides probing of photoconductivity
over nanosecond to millisecond time scales.

2. Experimental

To synthesize BizO,S nanosheets, 100 mg of Bi(NO3)3-5H20 was first
dissolved in 20 ml of water, 1 ml of HH was then added to a separate vial
containing thiourea (12.7 mg). Finally, 306.8 mg of disodium EDTA,
120 mg of KOH and 320 mg of NaOH were added and left overnight to
obtain brown color precipitates. The product was washed with water
and dried overnight. To synthesize Bi;O2S nanoplatelets, similar reac-
tion was performed with the same constituents except HH.
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A Panalytical X’Pert PRO HR-XRD system was utilized to collect XRD
patterns. Raman spectra were obtained using a HORIBA LabRAM Evo-
lution RAMAN microscope and UV-Vis-NIR absorption spectra using a
UV 3000 spectrophotometer. An FEI Tecnai T12 G2 TWIN TEM was used
to perform transmission electron microscopy (TEM), while scanning
electron microscopy (SEM) studies were carried out using a Thermo
Scientific Apreo S SEM. A millimeter wave system was used to obtain the
time-dependent photoconductivity. BioO2S samples suspended at 5 mg/
ml were dropcast onto glass slides and heated at 100 °C for 30 min. The
samples were excited with a 0.35 ns pulse width, 532 nm output of a
frequency doubled Nd:YAG laser (Coherent, Inc.), and the change in
transmission of a 120 GHz probe beam generated by an IMPATT diode
(Gilland Electronics) was detected by a zero biased Schottky diode (ZBD,
Virginia Diodes). Recorded decay curves were averaged over 1000 laser
shots.The detection system had a bandwidth of 4 GHz, and is capable of
measuring excitation-induced changes of 1 part in 10°.

3. Results and discussion
3.1. Characterization of Bi;02S nanostructures

Fig. 1a shows the crystal structure of Bi»O2S [13], which consists of
alternating stacks of [Bi02]2"" and S2°~ layers [14]. Fig. 1b shows the
XRD patterns of BizO2S nanostructures. The XRD patterns for Bi;O5S
nanostructures confirms their crystallinity where the indexed peaks
correspond to the orthorhombic Pnnm space group [7]. Sharper and
more intense peaks were observed for BioO5S nanoplatelets compared to
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Fig. 1. (a) Crystal structure of Bi>0,S, (b) XRD patterns, ¢c) Raman spectra and (d) UV-VIS-NIR absorption spectra of Bi»O,S nanoplatelets and nanosheets.

Bi»05S nanosheets. Fig. 1c shows the Raman spectra of Bi;OsS nano-
structures, which exhibit theoretically predicted Raman peaks at ~ 164
cm ! (Ag mode) and 263 em ! (B1g mode) [15]. The UV-Vis-NIR ab-
sorption spectra shown in Fig. 1d. exhibit an absorption edge near 1000
nm, corresponding to an intrinsic bandgap absorption edge around 1.1
eV, which is consistent with existing literature [7]. From the Tauc plot,
we observed that the band gap of Bi»O,S nanoplatelets is lower (~1.04
eV), while for BioO,S nanosheets is ~ 1.10 eV.

Fig. 2a and 2b show SEM images indicating the significant role of HH
in the morphology of BizO5S nanostructures. A small amount of HH can
intercalate with the molecular layers of layered-structured materials and
undergo radical reactions, enabling effective exfoliation by cavitation
[16]. The HH-based Bi»O-S nanosheets had a thickness of ~ 3 nm and
lateral dimensions of ~ 100 nm [17]. Fig. 2c and 2d display TEM images
of Biy02S nanostructures, confirming their crumpled morphology
resulting from weak electrostatic interactions between the layers.

3.2. Transient photoconductivity properties of BizO2S nanostructures

Photoconductivity decay curves from BizO2S nanostructures are
shown in Fig. 3. While absolute photoconductivities cannot be deter-
mined due to the unknown thicknesses of the dropcasted samples, sig-
nificant differences between the time decays are readily apparent. Since
the TRmmWC technique [18] is much more sensitive to dissociated
charge carriers than excitons, ~ 8 ns rise times may point to enhanced
exciton binding energies resulting from confinement to two dimensions.
Data from Biy0,S prepared without HH are well fit by a bi-exponential
convoluted with a gaussian, while Bi3O,S prepared with HH exhibits an

additional fast decay process (see insets in Fig. 3) that necessitates in-
clusion of a third exponential term.

Fitted parameters are shown below, in Table 1. The additional rapid
(~46 ns) decay process observed in samples with HH may arise from
carrier trapping at surface defects introduced by morphological changes.
Highly similar slower decay constants (Tau-2 and Tau-3) observed in
both samples are likely due to recombination and bulk trapping.
Definitive determination of the mechanisms underlying the decay con-
stants will require additional measurements such as pump-probe spec-
troscopy or fluence-dependent millimeter wave photoconductivity,
combined with modeling.

4. Conclusions

We reported a facile synthesis of Bi;O5S nanostructures under
ambient conditions. HH plays a significant role in the morphology of the
resulting nanostructures. The photoconductivity decay data suggests
that rapid carrier trapping occurs at morphology-related surface defects
in the nanosheets prepared with HH, while bulk trapping is common to
both samples. The long decay times indicate that both samples exhibit
indirect bandgaps. Bi»O»S nanostructures have photocatalytic proper-
ties, making them useful in environmental remediation. The enhanced
exciton binding energies resulting from confinement to two dimensions
could also be useful in the field of electronics, creating new devices with
improved performance.
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Fig. 2. SEM images of (a) Bi»O,S nanoplatelets, and (b) Bi,O»S nanosheets. TEM images of (c) Bi»O,S nanoplatelets and (d) Bi»O»S nanosheets.
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Fig. 3. Transient photoconductivities of (a) Bi»O2S nanoplatelets and (b) Bi»O>S nanosheets. Decays at short times (up to 300 ns) are shown in the insets to (a)

and (b).
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Table 1
Fitted parameters for photoconductivity decay in Bi,O»S nanostructures.
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Parameters Without HH

With HH

Background (a. u.) 8.0x 1077 +1.0 x 1077
Gaussian Width (s) 6.2 x 107 £ 5.2 x 10710
Amplitude 1 (a. u.) -

Tau 1 (s) -

Amplitude 2 (a. u.) 2.69 x 107>+ 5.8 x 1077
Tau 2 () 6.6 x 1077 £2.7 x 1078
Amplitude 3 (a. u.) 6.30 x 107°+£3.0 x 1077
Tau 3 (s) 8.15x 1077 +53 x 1078

—3x10°+1.1x%x1077
8.4 x107°+3.8x1071°
5.6 x 107+ 4.0 x 10°°
4.6 x 1078450 x107°
29x10°+1.2x10°
6.0x1077 +3.4x10°8
1.0x10%+£32x1077
8.15x 107°+ 3.5 x 1078
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