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ABSTRACT
Deep neural networks (DNN) are being used in a wide range of
applications including safety-critical systems. Several DNN test gen-
eration approaches have been proposed to generate fault-revealing
test inputs. However, the existing test generation approaches do
not systematically cover the input data distribution to test DNNs
with diverse inputs, and none of the approaches investigate the re-
lationship between rare inputs and faults. We propose ���4���, an
automated black-box approach to generate DNN test sets that are
feature-diverse and that comprise rare inputs. ���4��� constructs
diverse test sets by applying combinatorial interaction testing to the
latent space of generative models and formulates constraints over
the geometry of the latent space to generate rare and fault-revealing
test inputs. Evaluation on a range of datasets and models shows
that ���4��� generated tests are more feature diverse than the
state-of-the-art, and can target rare fault-revealing testing inputs
more e�ectively than existing methods.
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1 INTRODUCTION
Deep Neural Networks (DNN) are being developed for use in mis-
sion and safety critical systems, e.g., [6, 36, 61]. Similar to traditional
programmed software components, these learned components re-
quire signi�cant testing to ensure that they are �t for deployment.

DNNs learn from observed data that comprises multiple factors
of variation – referred to as features, combinations of which give rise
to the diversity in the data [7, 13, 17, 31, 38]. For example, consider
an input domain including handwritten zeros, for which stroke
thickness and slant are two features. A combination of these two
features results in diverse samples with varying stroke thickness
and slant as shown in Figure 1. A study conducted on the real
faults of deep learning systems identi�ed that DNNs make incorrect
predictions when they process inputs that are underrepresented in
the training data [32, 70, 71]. Finding these faults requires methods
that adequately test DNNs with diverse inputs that are representative
of the feature combinations of the observed data distribution.

Feature combinations occur with varying probabilities in the
observed data, and the inputs with a low probability of occurrence
are referred to as rare inputs. Failing to test the system behavior for
rare inputs can make deep learning systems unsafe for real-world
deployment. For example, in a fatal Tesla crash, the Autopilot was
not able to detect the white side of a tractor-trailer against a brightly
lit sky and a GM autonomous vehicle crashed into a bus in this rare
circumstance [2, 5]. There is a need for methods that adequately
test DNNs with rare inputs to ensure the safety and trustworthiness
of deep learning systems.

Much of the prior work in neural network test input genera-
tion has focused on fault detection and has targeted neither di-
verse nor rare inputs. DNN test generation methods that apply
pixel-level manipulations on seed images to generate test inputs,
e.g., [29, 49, 57, 60, 67], do not yield feature-diverse inputs [26, 70].
More recent work has targeted the generation of diverse test inputs
using two approaches. First, tests can be generated using a manu-
ally constructed model of features and their interactions, but this
does not scale to complex datasets [16, 27, 70]. Second, tests can
be generated using feature space models that are trained from ob-
served data [14, 15, 35, 68], but these provide no information about
the degree to which test inputs cover that feature space. While, in
principle, some of these techniques, e.g., [14, 35], could generate
rare inputs through rejection sampling approaches, i.e., by gen-
erating test inputs �rst and then rejecting the ones that are not
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Figure 1: Diversity of digit 0 with variation in the slant and
stroke thickness.

rare, this would be cost-prohibitive for complex datasets. Moreover,
such approaches cannot systematically explore a subspace of the
observed data distribution that comprises the target density of rare
inputs.

In this research, we present a black-box test generation algorithm,
���4���, that addresses the limitations of the existing methods
discussed above. The research objective of ���4��� is to automati-
cally generate diverse and rare inputs that systematically cover a
target density of the feature space of the observed data distribution.

���4���meets the research objectives by adapting ideas from re-
cently proposed work on input distribution coverage (IDC) [26]. IDC
uses a generative model to automatically learn a low-dimensional
representation of the features of the training data, called the latent
space. IDC partitions the latent space and applies combinatorial
interaction testing (CIT) [20] on the partitioned latent space to mea-
sure test coverage proportional to the C-way feature combinations
present in a test set. While IDC measures test coverage, ���4���
applies CIT on the partitioned latent space to generate covering
arrays containing combinations of partitions, called test descriptions
fromwhich test inputs can be generated. The test descriptions cover
all the C-way feature combinations resulting in test adequacy with
respect to the diversity of the observed data distribution.

Rare inputs are spread out on the low-probability regions of the
latent space. To support testing with rare inputs, ���4��� formu-
lates constraints on the latent space and presents a constrained CIT
algorithm to generate test descriptions that belong to the required
target density.

The test descriptions generated by ���4��� are dependent only
on the dimensionality of the latent space. As a result, the test de-
scriptions can be reused for DNNs trained on di�erent datasets
as long as the dimensionality of the latent space of the generative
models of the datasets are the same. This results in test descrip-
tion generation time being amortized across testing many di�erent

DNNs under test. In §3 we describe how permuting test descriptions
can further increase test diversity with low overhead.

An evaluation of ���4���, in §4, shows that ���4��� yields
higher feature diversity than the state-of-the-art DNN testing ap-
proachDeepHyperion-CS [70]. In comparison to the state-of-the-art
generative model-based testing approach SINVAD [35], ���4���
yields 9 times more coverage and detects 6.5 times more faults while
running 90 times faster. For rare test input generation, ���4���
improves on SINVAD 107-fold for coverage and 111-fold for fault-
detection, and in comparison to random sampling, ���4��� im-
proves on coverage while generating 6 orders of magnitude fewer
test inputs and running 56 times faster.

The contributions of this work include:
(1) ���4���– a black-box DNN test generator capable of au-

tomatically producing diverse and rare test inputs while
achieving 100% IDC test adequacy;

(2) a constraint-based method to generate rare inputs without
costly rejection sampling;

(3) a method for applying CIT to the latent space of a genera-
tive model that enables reusing test descriptions to generate
inputs with increasing diversity; and

(4) the results of an evaluation across a range of datasets, DNNs,
and instantiations of ���4��� that demonstrates its bene�-
cial characteristics.

2 BACKGROUND
2.1 Deep Generative Models
The latent space is a low-dimensional embedding that represents
the factors of variation comprising the observed data [7, 40]. Ma-
chine Learning research has shown that deep generative models
are e�ective in learning the latent space of real-world datasets [13,
17, 28, 38, 39]. We use a deep generative model called variational
autoenoder in this work [39].

A variational autoencoder (VAE) is comprised of a pair of net-
works – an encoder, +E , and a decoder, +D – that is trained to
accurately reconstruct inputs from the data distribution, X, with
the training objective,minx2X kx �+D(+E (x))k [39].+E converts
samples from the data into vectors in the latent space whereas+D is
a generator that converts samples from the latent space into inputs
in the data space. The latent space of a VAE de�nes the parame-
ters of a multivariate distribution of size equal to the dimension
of the latent space. A loss term in training biases that distribution
to match an assumed prior, commonly a standard Normal distribu-
tion. While early VAEs were known to su�er in the quality of their
reconstructions, modern VAEs exceed the performance of many
other generative models [44].

2.2 Combinatorial Interaction Testing
Thorough black-box testing of software with a high-dimensional
input space is challenging. Applying methods, such as category-
partitioning [47], to construct a �nite partition for each input helps
to a degree, but the combinatorics generally preclude complete cov-
erage of input-partition combinations. Combinatorial interaction
testing (CIT) is a method to generate test suites that systematically
cover a partitioned input space up to a user-speci�ed arity, C , which
is referred to as combinatorial strength [20]. CIT methods have been



���4���: Generating Diverse and Rare Inputs for Neural Networks Using Latent Space Combinatorial Testing ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 2: Overview of ���4���.

used to both generate test suites that achieve a desired strength [20]
and to measure the strength of a given test suite to de�ne coverage
criteria [41].

Central to CIT is the notion of a covering array (CA), a matrix
with a column for each input where the cells hold the appropriate
partition values for the input. A row constitutes a test description
de�ning a possible set of values, de�ned by the partitions, for each
input. A C-way CA includes every possible combination of input-
partition pairs in some row and thereby assures that any interaction
among inputs up to C has a chance to be exposed by tests generated
from the CA. For example, Figure 1 shows inputs I1, I2 2 [�6, 6]
partitioned into 10 intervals {?1, ?2, .., ?10} representing two features
of the handwritten digit zero. A 1-way CA for this con�guration
would have 10 test descriptions, {(?8 , ?8 ) : 8 2 [1, 10]}, that cover
the diagonal inputs, whereas a 2-way CA for this results in 100
test descriptions, {(?8 , ? 9 ) : 8, 9 2 [1, 10]}, that cover all the inputs
shown in the Figure 1.

In many systems, inputs are not completely independent, re-
quiring that CIT methods take into account constraints over input-
partition combinations [62]. Cohen et al. [21] de�ned a general
framework that permits propositional constraints over such combi-
nations to be incorporated into greedy CIT test input generation
methods [20]. The resulting constrained CIT (CCIT) approach ef-
�ciently generates a constrained covering array (CCA), which is a
CA whose rows are consistent with the constraints.

2.3 Input Distribution Coverage
A CIT coverage metric, called input distribution coverage (IDC),
has been de�ned for DNN testing [26]. IDC’s coverage domain is
the latent space of a trained VAE with a standard Normal prior,
N(0, 1). IDC de�nes an equal density partition, P, of N(0, 1) as
a set of intervals that each contain the same probability density.
Choosing the size of the partition, |P |, allows the set of intervals
to be computed using the quantile function for N(0, 1).

IDC allows coverage to be computed over the portion of the
latent space de�ned by a user-de�ned target density, 3 . This density
de�nes a shell with inner, A8 , and outer, A> , radii. IDC maps a test
input to the latent space and then converts it to a hyper-rectangle
de�ned as the product of the elements of P corresponding to the
latent coordinates. The total C-way coverage metric measures how
well a test set exercises combinations of partitions by accumulating
the combinations present in the hyper-rectangles derived from the
test inputs. Test suites with higher C-way coverage were shown to
be more feature diverse, as judged against human-de�ned ground
truth, and improve fault-detection e�ectiveness [26].

A key challenge in IDC is to compute the ratio of the count
of C-way combinations in a test set to the feasible C-way feature
combinations, which allows coverage to be reported as a percentage.
To calculate this quantity, it is necessary to account for the fact
that a hyper-rectangle de�ned by the product of partitions may not
overlap with the target density shell, in which case it is infeasible.
A step in this calculation involves checking a quadratic distance
constraint: 92 2 h?1, . . . , ?: i : | |2 | | 2 [A8 , A> ], where 2 is a latent
space coordinate that is consistent with the ?8 2 P intervals. To
side-step the nonlinearity of this constraint, IDC uses an e�cient
SMT-encoding that expresses the constraints over the squared latent
coordinates which yields a linear constraint that is e�cient to solve.

Whereas IDC only measures coverage, ���4��� is the �rst DNN
test generation approach to guarantee C-way coverage of a gener-
ated test suite. We describe how ���4��� builds on the concepts
introduced in IDC in the next section.

3 APPROACH
The goal of ���4��� is to systematically generate diverse and rare
inputs from a target density of the observed data distribution –
Figure 2 sketches the components of ���4���. ���4��� uses a
generative model with a standard Normal prior, N(0, 1), to learn
a representation of the features of the observed data in the latent
space. ���4��� leverages the properties of N(0, 1) to partition the
latent space into equal-density partitions and parameterizes the
geometry of the latent space to represent a target density using
radial constraints. TheConstrained Combinatorial Interaction Testing
(CCIT) module shown in Figure 2 uses the partitioned latent space
and radial constraints that express the target density to generate
a Radial Constrained Covering Array (RCCA) comprising the test
descriptions representing partition combinations on the required
target density. The Sample Partition module converts the RCCA
into a set of latent samples, such that each sample belongs to the
corresponding test description of the RCCA. The Generator module
converts latent samples into test inputs, and, by construction, the
generated test inputs achieve 100% C-way combinatorial coverage
of the target density in the latent space.

3.1 Radial Constrained Covering Arrays
The latent space with a multivariate standard Normal prior has
its probability concentrated in an annulus [9], and the probability
density along the radial dimension of the annulus is described by a
Chi distribution. Hence a target density can be converted to a pair of
radii using the interval function of the Chi distribution [26], where
the interval is the smallest one containing the target density. These
radial bounds are used to specify the constraints for the CCIT and
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Figure 3: Depiction of ���4��� applied to a 2-dimensional latent space partitioned 4-ways (P =
{[�3.25,�0.67), [�0.67, 0), [0, 0.67), [0.67, 3.25]}).

the resulting covering array is referred to as a Radial Constrained
Covering Array (RCCA).

D��������� 1 (R����� C���������� C������� A����). A ra-
dial constrained covering array, '⇠⇠�(C,:,P, [A8 , A> ]), is an # ⇥ :
array where: 1) Each column 1  8  : contains an element of P; 2)
the rows of each # ⇥ C subarray cover all C-way feature combinations
that are feasible for the given radii, [A8 , A> ], at least once; and 3) all
rows are feasible combinations for the radii.

The properties of RCCA ensure that ���4��� systematically
covers a target density of the feature space to test DNNs with
diverse and rare inputs; ���4��� generates rare inputs when target
density represents a low-probability region of the latent space.

RCCA di�er from existing CCA in two ways. First, each of the
columns of the array can take on the same set of values, P. Sec-
ond, they employ the quadratic distance constraints from IDC to
model feasibility relative to a target density – speci�cally, we use
the �����C��������� function from Alg. 1 [26]. We adapted the
greedy AETG-SAT covering array generation algorithm from [21]
with this modi�cation to generate RCCA.

Example 3.1. Figure 3 depicts a 2-dimensional latent space – the
surface comprised of light-gray grid lines with densities shown as
intensities of orange and marginal distributions for each dimension
shown separately, % (z8 ). The gray rectangular regions on the plane
show the 4-way partitioned latent dimensionswithin an outer target
density of 0.99 (solid circle). The four black circles, e.g., B1, depict
samples from a 1-way RCCA that covers each dimension partition.

Restricting the target density to the range [0.97, 0.99] – the shell
between the dashed and solid circles – requires a larger RCCA.

The black square coordinates depict samples, e.g., B2, from a 6-
row RCCA. Some of these samples, e.g., B3, B5, fall outside of the
shell and as a result, they are infeasible with respect to the target
density. These samples are projected (arrows) to the blue triangle
coordinates, B4, B6, using the ���������������� method discussed
in Alg. 1 thereby producing latent samples on the target density.

3.1.1 Reusing RCCA. ���4��� is designed to be applicable to any
input domain for which a high-quality generator with a standard
Normal prior can be trained, but it is largely independent of the
learned mapping between the domain and the generator’s latent
space, i.e., CCIT and Sample Partition modules in Figure 2 are inde-
pendent of the Generator module. Instead, it relies on the dimension
of the latent space and the fact that the latent distribution is a close
match to an isotropic standard normal prior.

Whereas prior CIT work focuses mostly on 2-way combinatorial
strength [58], for DNN test generation, 3-way coverage yields more
diverse test suites [26]. This presents a challenge since the cost of
generating CAs grows combinatorially with C . Here we can leverage
the fact that a C-way RCCA for a :-dimensional latent space parti-
tioned ? ways in a target density range [38 ,3> ] is independent of
the VAE’s encoder and decoder. Thus, an RCCA for an input domain
modeled by a :-dimensional latent space can be pre-computed and
reused, saving time.

Moreover, the isotropic latent space means that the column-wise
permutation of an RCCA yields an RCCA that, with high probability,
has distinct rows.

P���������� 3.2 (RCCA P���������� C������). The set of
'⇠⇠�(C,:,P, [A8 , A> ]) is closed under column-wise permutation.
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Figure 4: Test inputs generated by RCCA permutation.

P����. Let A 2 '⇠⇠�(C,:,P, [38 ,3> ]) and ? : [1,:] ! [11,:]
be a surjective function de�ning a column permutation of A .

For 8 2 [1,:], let C (8) be the set of C-tuples present in A involving
column 8 . Since A is a covering array, C (8) is the complete set of
tuples pairing values of 8 with all other column-value pairs.

A tuple in C (8) is of the form (E 91 , . . . , E8 , . . . , E 9C�1 ) and is mapped
by ? to (E? ( 91 ) , . . . , E? (8 ) , . . . , E? ( 9C�1 ) ). Every tuple in C (8) is mapped
in this way, and since ? is surjective, it generates a complete set
of tuples for column ? (8). Applying this mapping for all columns,
means that permutation of A yields a covering array.

Radial constraints are formulated in terms of the sum of the
squared intervals associated with the partitions in a row. Since
addition commutes, the constraints hold on any permutation of a
row. ⇤

In general, there are :! possible permutations, but repeated par-
tition values in rows reduce the number of distinct permutations. If
there are 2 repeated values, the number of distinct permutations is
reduced by 2! � 1, but the probability of 2 repeated values is 1

?
2�1

which indicates that the probability of identical permutations is
very low. Thus, reusing and permuting RCCA columns e�ectively
guarantees distinct test descriptions in time that is linear in : – the
time to permute column indices.

Example 3.3. In Figure 3, a second sample for the [0.97, 0.99]
shell would permute RCCA columns to generate the green dia-
mond coordinates which generates additional diverse tests. For
example, the coordinate B4 = (�0.3, 3.0) when permuted yields
B7 = (3.0,�0.3).

To illustrate the diversity of column permutation, we randomly
selected a row of a 3-way covering array for MNIST with : = 9,
? = 20, 38 = 0.9999, and 3> = 0.999999. Figure 4 shows the images
generated from 8 random permutations of this row and shows the
diversity possible from column permutation. Only two columns
share a common partition valuemeaning that there are:!�(2!�1) =
362879 distinct column permutations.

3.2 ���4��� Algorithm
Alg. 1 de�nes ���4��� as a pair of functions: ���4��� and �������
���������. The entry point is the function ���4��� which �rst
extracts the latent dimension and computes their partition – lines 2-
3. Lines 4-11 employ '⇠⇠� to compute the covering array handling
two cases. The simpler case is where 38 is zero and a single covering
array is constructed – line 10 – based on the radii calculated for 3> –
line 4. Themore complex case – lines 6-8 – deals with the case where
an inner target density is de�ned. Here a pair of covering arrays
are constructed – lines 7-8 – where one uses the inner radii for 38
and 3> and the other uses the outer radii to de�ne the shells used
to compute '⇠⇠�. We require that 38 < 3> which means that their
corresponding shells – whose radii are computed on lines 4 and 6 –
are concentric, requiring that the roles of the radii be transposed

Algorithm 1 Latent Space CIT Sampling for DNN Test Generation
Input:
⌧  Generator; [38 ,3> ]  Target density; C  strength of CIT
? No. of partitions; = # samples per Covering Array (⇠�) row
Output: Set of test inputs
1: function ���4���(⌧,38 ,3> , C, ?,=)
2: :  38<(⌧)
3: P  ��������������������(?,3> )
4: A8 , A>  ⇠⌘8 .8=C4AE0; (3> ,:)
5: if 38 > 0 then ù Construct two shells
6: A 08 , A

0
>  ⇠⌘8 .8=C4AE0; (38 ,:)

7: ⇠� {(2, A8 , A 08 ) : 2 2 '⇠⇠�(C,:,P, [A8 , A 08 ])}
8: ⇠� ⇠� [ {(2, A 0> , A> ) : 2 2 '⇠⇠�(C,:,P, [A 0> , A> ])}
9: else ù Construct one shell
10: ⇠� {(2, A8 , A> ) : 2 2 '⇠⇠�(C,:,P, [A8 , A> ])}
11: end if
12: (  ;
13: for 8 2 [1,=] do
14: ⇠� ���������������(⇠�)
15: for (2, A8 , A> ) 2 ⇠� do
16: (  ( [ ����������������(2, A8 , A> )
17: end for
18: end for
19: return {⌧ (B) : B 2 (} ù Decode latent samples
20: end function
21: function ����������������(2, A8 , A> )
22: B  hB1, . . . , B |2 | i : B8 ⇠ [;8 ,D8 ] ^ (;8 ,D8 ) = 28
23: if kB k < A8 _ kB k > A> then
24: @  h@1, . . . ,@ |2 | i : @8 = 8C4 (B1 < 0,�1, 1)
25: EB  ���������( |2 |)
26: k  CAD4
27: for 8 2 [1, |2 |] do
28: (;,D)  28
29: k  k ^ EB [8] � 8C4 (D > 0, ;2,D2) ù Lower bound
30: k  k ^ EB [8] < 8C4 (D > 0,D2, ;2) ù Upper bound
31: end for
32: k  k ^ (Õ82 [1, |2 | ] EB [8]) � (A8 )2
33: k  k ^ (Õ82 [1, |2 | ] EB [8])  (A> )2
34: <  ���������(k )
35: B  h����(<1) · @1, . . . , ����(< |2 | ) · @ |2 | i
36: end if
37: return B
38: end function

when computing the inner covering array – line 7. Lines 12-18
generate = samples from each row of⇠�. To yield more diverse test
samples, we implement proposition 3.2 and generate = column-wise
permutations of the covering array – line 14 – and draw a single
sample from each row of each permutation – line 16. Since rows
of the covering array(s) may be associated with di�erent radii, we
record radii along with each row to generate latent samples – line
15. The set of generated latent samples, ( , is decoded to generate a
set of test inputs – line 19.
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Example 3.4. A call to ���4���(G, 0.97, 0.99, 1, 4, 1), with a 2-
dimensional latent space, is depicted in Figure 3. The 4-way, equal-
density partition is shown as P along the back I2 axis. The pairs of
interval partitions subdivide the plane into 16 rectangles. To sim-
plify the example, we consider just the case of the outer radii com-
puted on lines 4 and 6 which are 3.255 and 2.898, respectively. The
call to'⇠⇠� on line 8 results in: {(?1, ?1), (?2, ?4), (?3, ?1), (?1, ?2),
(?4, ?3), (?4, ?4)}, which covers each partition in each dimension.
Six rows are required because the four inner rectangles, e.g., (?2, ?2),
do not intersect the target outer density shell and are thus infeasible.

The ���������������� function samples coordinates, B , using
the density associated with the partition interval, [;8 ,D8 ], for each
dimension, 8 – line 22. When inner and outer densities target a
rare portion of the input distribution a sample within the partition
interval may not lie between the target radii – line 23. This can
be observed in Figure 3 where a small arc of the [0.97, 0.99] shell
intersects with any of the rectangular partition combinations. Lines
24-35 compute a sample that satis�es the partition and radial con-
straints using SMT.We build on the squared-distance constraint for-
mulation used in the �����C��������� function from Alg. 1 [26],
which works because distance constraints are insensitive to the
orthant1 within which a partition lies. We record a sample’s orthant,
@, as a vector that holds the polarity of each sample coordinate –
line 24. Lines 26-33 compute squared-distance constraints and then
solve them for a model in line 34. The use of radial constraints in
'⇠⇠� generation guarantees these constraints are solvable. The
model generated holds the squared coordinates and lies in the pos-
itive orthant. Line 35 recovers the coordinates and maps them to
the recorded orthant and updates the sample B .

Example 3.5. Sampling from row (?2, ?4) results in coordinate
B3 in Figure 3. The radius of this coordinate falls short of 2.898, the
dotted circle. The orthant is recorded, @ = h�1, 1i, and the following
squared radial constraint is formulated:

(0 < EB [1]  (�0.674)2) ^ ((0.674)2  EB [2]  (3.255)2)^
((2.898)2  EB [1] + EB [2]  (3.255)2)

where EB [1] = (I1)2 and EB [2] = (I2)2. Solving the constraint yields
a satisfying model where EB [1] = 0.04 and EB [2] = 9. Taking the
square root and recovering the orthant yields the blue coordinate
B4 = (�0.2, 3). A similar calculation projects B5 to the blue triangle
B6 in the target shell. Permuting the columns of the covering array
to draw a second sample for B4 results in the row (?4, ?2) which is
sampled and solved to yield the green diamond B7.

4 EVALUATION
We designed a set of experiments to explore the e�ectiveness of
���4��� in generating realistic, feature-diverse, and rare inputs for
testing DNNs by exploring a series of research questions:

RQ1: How realistic are tests generated by ���4���?
RQ2: How e�ective is ���4��� in generating feature-diverse tests?
RQ3: How does fault density vary with the latent distribution?
RQ4: How cost-e�ective is ���4��� in targeting normal and rare
inputs?
1An orthant is the high-dimensional analog of a quadrant.

Dataset Architecture #Parameters Metric Value

MNIST LeNet-4 [43]
LeNet-5 [43]

69362
107786

Accuracy
Accuracy

99.05%
98.53%

Fashion Custom [51]
Custom [64]

1.6M
3.3M

Accuracy
Accuracy

93.58%
92.26%

SVHN ALL-CNN-A [55]
ALL-CNN-B [55]

1.2M
1.3M

Accuracy
Accuracy

96%
95.67%

TaxiNet Taxi1 [63]
Custom

650
794

MSE
MSE

63.31
37.79

Udacity Dave-2 [10]
Epoch [1]

2.8M
104.9M

MSE
MSE

0.014
0.016

Table 1: Models used in our studies with number of parame-
ters, test accuracy or MSE (Mean Squared Error); “M” denotes
millions of parameters.

4.1 Experimental Setup
Three Classi�cation datasets, MNIST [42], FashionMNIST [65],
SVHN [46], and two regression datasets, TaxiNet [34] and Udac-
ity [33], are used in the studies. MNIST and SVHN are selected as
they are used in the experimental studies of the baselines of our
work, DeepHyperion-CS [71] and SINVAD [35]. FashionMNIST,
TaxiNet, and Udacity are considered as they represent domains
di�erent from that of MNIST and SVHN. For each of the datasets,
we train VAEs for instantiating ���4��� as shown in Table 2 and
two DNN models as shown in Table 1 to study fault-revealing test
inputs in RQ3 and RQ4.

4.1.1 Datasets and DNN Models. MNIST contains greyscale im-
ages of handwritten digits; it has 60k training inputs and 10k test
inputs. We train LeNet-4 and LeNet-5 DNNs for this dataset [43].
FashionMNIST contains 28x28 greyscale images of fashion products
belonging to 10 categories. We use the FashionMNIST networks
used in the IDC work [26]. SVHN contains 32x32 color images
of digits in natural scenes; it has 73257 training inputs and 26032
test inputs. We train All-CNN-A and All-CNN-B networks for this
dataset[55].

TaxiNet contains aircraft runway images with 16x32 resolution
with cross-track position and heading angle for each. The TaxiNet
dataset has 80k training and 20k test inputs. We use the network
from an open-sourced artifact [63] as one of the models for this
dataset. Since a second model for TaxiNet is not available, we de-
veloped a custom model by adding two extra fully connected layers
to the �rst model and using ELU activation in one of the layers.
We used the same training hyperparameters for training both mod-
els. The Udacity dataset is a self-driving car dataset generated in a
simulation environment as open-sourced by DeepCrime [33]. This
dataset has 9800 training inputs and 2451 test inputs where each
input is a 160x320 color image. We train two models, NVIDIA’s
Dave-2 [10, 33] and Epoch [1] to output steering angles for the
inputs.

4.1.2 Test Oracles. ���4��� uses a di�erential test oracle similar
to DeepXplore [49] for identifying fault-revealing test inputs. For
classi�cation datasets, the test oracle fails when the two DNN mod-
els trained on the same dataset predict di�erent classes. For the
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regression datasets, we use the steering angle outputs of DNNs for
Udacity and the heading angle outputs of the DNNs for TaxiNet for
formulating the test oracle. The test oracle fails when the outputs
of the two models have di�erent signs, and the di�erence in their
predictions is greater than 5% of the output range of the test dataset.
There are other test oracles proposed in the literature which we
plan to study in our future work [22, 56, 59, 66].

4.1.3 �antitative Model Metrics. We use quantitative metrics to
measure both how realistic a given test is and how diverse a set of
tests is. For a test to be completely realistic, a consumer must be
unable to discernwhether the test came from a generative technique
or from the original data. For a test set to be perfectly diverse, all
possible underlying feature combinations must be expressed in the
set. Unfortunately, evaluation of the �delity of generative models
is a di�cult problem with signi�cant active research [12].

The threemetrics we use to assess ourmodels are FID [30] (which
is used in prior works [15, 68]), Coverage, and Density [45]. While
prior works have also used Inception Score [15], we contend that
this is not an e�ective metric for this use case - Inception Score
does not handle mode collapse well and is improved on by FID [12].

FID, the Fréchet-Inception Distance, is the 2-Wasserstein dis-
tance of two distributions taken from a lower-dimensional "em-
bedding" space; the embedding used is Inception v3 [30]. FID is
highly variable across implementations - we use the torchmetrics
FID implementation on Inception v3’s 2048 layer. A critical issue
with FID and related single-valued metrics is their inability to di�er-
entiate a lack of diversity from other failure-modes. A recent line of
work introduces a 2-dimensional metric: Density and Coverage [45].
Similar to FID, Density and Coverage use an embedding space, but
instead of measuring the distribution distance, they measure how
often generated points (in the embedding space) occur near real
points, where “near” means within the manifold created by taking
the k-nearest-neighbor ball of each point in the original dataset.
Intuitively, Coverage is the percentage of real points that have at
least one generated point near them. Density follows as the rate
at which generated points are near real points. We include these
as measures of ���4���’s capability to generate realistic inputs in
§4. We use the reference implementation[3] for these with K=5 and
torchvision’s pretrained vgg16 Imagenet model as the embedding.
For datasets smaller than 32x32, we upscale by repeating the un-
dersized dimension until the image is >32x32; for single channel
datasets we repeat the greyscale channel 3 times.

4.2 ���4��� Instantiation
���4��� has �ve con�guration parameters which yield a large
experimental space. To control costs, we consider a range of param-
eter combinations selected to explore the RQs and leave a fuller
consideration of the parameter space to future work.

Generator ���4��� uses a pre-trained Generator, and we use
the decoder networks of variational autoencoders (VAE) as the
Generator networks in the experiments. Since using higher-quality
VAEs is bene�cial, we explore the combination of two recent innova-
tions in VAE architecture and training: a two-stage VAE [23], which
ensures a better match to the prior, and a f-VAE [54], which opti-
mizes the balance between loss terms that govern reconstruction
accuracy and matching the prior.

We use three VAE architectures in the study: a basic VAE [39],
denoted  , a basic VAE trained with optimal variance estimate [54],
denoted  f , and a Two-Stage VAE [24] trained with optimal vari-
ance estimate, denoted 2f . VAEs for the MNIST dataset are trained
using the network con�guration used in Burgess et al. [13] and all
other VAEs are trained using the InfoGAN [18] network architec-
ture. The network input layers are modi�ed to �t the input sizes
of the respective datasets. Each VAE con�guration is trained for
�ve datasets (MNIST, FashionMNIST, SVHN, TaxiNet, and Udacity),
resulting in the 15 VAE con�gurations shown in Table 2. We report
the non-noise latent dimension, : , for 2f since using non-noise
latent dimensions is recommended by IDC for formulating the test
coverage domain [26].

Target Density Across the experiments, we consider a range of
target densities that include both high and low probability regions
of the latent distribution to study both normal and rare input test
generation. More speci�cally, we use the following overlapping
higher-probability regions: ⇡1 = [0, 0.99],⇡2 = [0.49, 0.99],⇡3 =
[0.94, 0.99], and a disjoint set of low-probability regions: ⇡4 =
[0.99, 0.9999],⇡5 = [0.9999, 0.999999]. We distributed these target
densities across the research questions to control the experimental
cost. RQ1 uses only⇡1, which includes 99% of the distribution since
the aim of the study is to explore normal inputs. In RQ2, we study
the diversity of normal inputs using ⇡1 and also the improvement
in diversity obtained by adding rare inputs from the tail of the
distribution, ⇡5 with a density of .99e-4. RQ3 uses all of the regions
as it studies the prevalence of faults across the regions with varying
densities. RQ4 has two sub-studies that use both normal and rare
inputs, we use D1,D5, and D1,D4 to include both low-probability
regions in the experiments respectively.

CIT Parameters and = We vary ? as well as C in RQ2 as that
question studies aspects of the diversity of test sets. We �x C = 3
for RQ3/RQ4 and ? = 20 for RQ1/RQ3/RQ4 since these were shown
to be good choices for assessing test suite coverage [26]. We use
==1 in all of the research questions except for RQ4, where we also
explore the fault-revealing capability of the test sets generated for
increasing =.

4.3 Results and Research Questions
4.3.1 RQ1: How realistic are tests generated by ���4���? The in-
puts generated by the testing techniques should be representative
of the input data distribution for testing to be e�ective [8, 25]. We
conduct a study to investigate whether the inputs generated by
���4��� are realistic. We show that our selected models generate
viable outputs with random sampling; we then show that sampling
with ���4��� preserves the �delity of the underlying 2f VAE.

We compute FID and Coverage scores relative to the full test
set for each dataset to select the best VAE, and these values are
presented in Table 2. While FID is sensitive to test set size, this is
not an issue since we are only comparing within our trained model
architectures.

We �nd that VAEs with optimal variance perform consistently
better than those without on both metrics. Additionally, for each
metric, 2f performs better for 4/5 datasets. To reduce the cost of
subsequent experiments, we use the 2f VAE to instantiate ���4���.
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Dataset Size Type : Coverage FID

MNIST 10000
 0.145 89
 f 0.756 44
2f 9 0.751 43

Fashion 10000
 0.322 161
 f 0.518 105
2f 12 0.574 92

SVHN 26032
 0.452 137
 f 0.742 49
2f 30 0.769 62

TaxiNet 13502
 0.003 379
 f 0.807 68
2f 8 0.897 43

Udacity 2451
 0.059 154
 f 0.183 139
2f 23 0.274 120

Table 2: Coverage and FID scores for VAEs of di�erent types
for each dataset evaluated relative to test set of given size.
Best metric values are in bold. Latent dimension, : , shown
for 2f VAE.
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Figure 5: Sample images for each dataset from test set (t), 2f
(r), and ���4��� (3).

It is a common practice in the generative model literature to
perform a visual study to verify the quality of the generated in-
puts [11, 54]. Using the same approach, all the co-authors manually
checked the random samples generated by the VAEs for visual sim-
ilarity with their training inputs and any visual anomalies. Figure 5

shows random samples for visual inspection. We also performed a
qualitative comparison of randomly generated outputs from each
VAE to random test samples. This analysis con�rmed the quality of
the 2f ; we show random generated samples from this VAE in the r
rows of Figure 5 and show random test samples in the t rows.

We then use Density, Coverage, and FID to assess the impact of
selecting tests using ���4��� as compared to randomly sampling
the VAE. We are limited by the small size of ���4���’s t=2 test sets
(100% 2-way coverage is achieved with 528-832 tests depending
on dataset), so we test with random samples of size 500 from each
set and repeat the trails 100 times each. The results are shown in
Figure 6.

We �nd that sampling with ���4���, for either value of C , pre-
serves the realism of the 2f VAE as measured by Density, Coverage,
and FID. We con�rmed this with a qualitative analysis. We provide
example ���4��� tests with C = 3 for each dataset in the rows
labeled 3 in Figure 5 and compare them with randomly generated
tests in the rows labeled r.

RQ1 Finding: Based on both FID and qualitative analysis
used by prior work and the state-of-the-art Coverage and
Densitymetrics, we �nd that ���4��� generates tests that
are as realistic as any that can be generated by the VAE
used to instantiate it.

4.3.2 RQ2: How e�ective is ���4��� in generating feature-diverse
tests? To provide insight into the diversity of the tests generated
by ���4��� with respect to human interpretable features, we need
ground truth features for the datasets used in our studies (which
are unknown). DeepHyperion-CS [70, 71] is a recently published
approach that uses human interpretable features for generating
diverse tests. Their evaluation shows that DeepHyperion-CS is supe-
rior to DeepHyperion [70], DeepJanus [52] and DLFuzz [29] with re-
spect to feature diversity. For these reasons, we use DeepHyperion-
CS as a baseline in this study.

DeepHyperion-CS uses human assessors to identify the features
of the input data; the experimental studies include MNIST [42]
and BeamNG [71] datasets. Of these datasets, DeepHyperion-CS
transforms the inputs directly only for MNIST, so we compare
���4��� on that dataset. DeepHyperion-CS generates feature maps
of the generated test sets and uses the metrics, Filled Cells (FC),
and Coverage Sparseness (CS), computed over the feature maps
to measure the feature diversity of the test sets. We use these two
metrics for comparing the feature diversity of the tests generated
by ���4��� and DeepHyperion-CS to answer RQ2.

DeepHyperion-CS uses Luminosity (Lum), Moves (Mov), and Ori-
entation (Or) as the features of the MNIST digits. We ran ���4���
and DeepHyperion-CS for an hour each and generated feature maps
for test inputs generated by the two approaches for pairs of feature
combinations, ($A ,">E), ($A , !D<), (">E, !D<). ���4��� is run
with ?=20, C=3, ==1, and [38 ,3> ] 2 {⇡1,⇡5,⇡1 + ⇡5} to include
both normal and rare inputs in the study. We ran DeepHyperion-CS
for all 10 classes of MNIST and limited the overall runtime of the
tool to one hour. ���4��� runs for less than 2 minutes across ⇡1
and⇡5; DeepHyperion-CS runs for one hour. We note that ���4���
could have been run for a full hour by using = = 25, but we only
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Figure 6: Density, Coverage and FID for test sets generated by ���4��� (2f) with C 2 {2, 3} compared with random sampling.

Figure 7: Filled Cells and Coverage Sparseness of test sets
generated by DeepHyperion-CS and ���4��� (2f , 38 , 3> , 3, 20,
1), where [38 ,3> ] 2 {⇡1,⇡5,⇡1 + ⇡5}, for the MNIST dataset.

Figure 8: Filled Cells and Coverage Sparseness of test sets
generated by ���4��� ���4��� (2f , 0, .99, 3, ?, 1), where
? 2 {4, 8, 16, 20}, for the MNIST dataset.

used = = 1 for these studies; therefore, the results presented un-
derestimate the feature diversity that could have been achieved by
���4��� given an hour.

This experiment is repeated 10 times with the �⇠ and⇠( metrics
being measured for each of the feature maps. Box plots of the
results are shown in Figure 7. We performed a Mann-Whitney U
Test and the results show that rare inputs (⇡5) have better �⇠ and
⇠( values when compared to normal inputs (⇡1). Additionally, a
test set with both rare and normal inputs (⇡1 + ⇡5) outperforms
both DeepHyperion-CS and test sets generated for normal or rare
inputs alone. These all hold with signi�cance; p-values for all less
than 0.05.

Using FC and CS metrics, we conduct two studies to demonstrate
how the partition granularity, ? , and the strength of CIT, C , of
���4��� impact diversity. For the partition granularity study, test
sets are generated for ? 2 {4, 8, 16, 20} while keeping [38 ,3> ], C and
= �xed to (0, .99), 3 and 1 respectively. Figure 8 shows the FC and CS
measured for the generated test sets.We usedMann-Whitney U Test
to study whether " (? = 4) < " (? = 8), " (? = 8) < " (? = 16)
and " (? = 16) < " (? = 20) where " 2 {�⇠,⇠(}. All three tests
are performed for 3 feature combinations, resulting in 9 Mann-
Whitney U Tests for each metric. The test passed for 9 out of 9
con�gurations for FC and 7 out of 9 con�gurations for CS with
p-values less than 0.05. The tests failed for ⇠( (? = 4) < ⇠( (? = 8)
for (">E, !D<) and" (? = 16) < " (? = 20) for ($A ,">E) feature
combinations. Similarly to the partition granularity study, to study
the e�ect of C on diversity, test sets are generated for C 2 {1, 2, 3}
while keeping [38 ,3> ], ? and= �xed to (0, .99), 20 and 1 respectively.
Mann-Whitney U Tests for" (C = 1) < " (C = 2), and" (C = 2) <
" (C = 3) where " 2 {�⇠,⇠(} indicate that diversity increases
with C for all the feature combinations tested with p-values less
than 0.05.

RQ2 Finding: ���4��� generates diverse test inputs when
compared to DeepHyperion-CS. For the con�gurations
of ? and C studied in the research question, diversity in-
creases with both ? and C , with increasing C leading to
better diversity than increasing ?.

4.3.3 RQ3: How does fault density vary with the latent distribution?
For this study, we used di�erent target density regions, ⇡1 � ⇡5,
to generate normal and rare inputs. These density ranges include a
broad range of cumulative densities in the latent space. We measure
the number of fault-revealing test inputs in each density partition to
study the distribution of faults in the latent space. MNIST, Fashion,
SVHN, TaxiNet, and Udacity are used in the study. The study varies
[38 ,3> ] while ? , C and = are set to 20, 3, and 1 respectively. Table 3
shows the average number of faults identi�ed by the di�erential
test oracles for each of the density partitions across 10 repetitions
of the experiment. Due to the low standard deviation of the number
of faults across all the con�gurations, which is at most 45, we show
only average values in the table.

Since ⇡3 ✓ ⇡2 ✓ ⇡1, we note that faults detected in ⇡1 might
include faults present in ⇡3. Nevertheless, we see that across the
datasets there is an increase in the number of faults detected mov-
ing from ⇡1 to ⇡3, except for Udacity. Generally, the test set size
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Dataset Metric D1 D2 D3 D4 D5 D5/D1

MNIST #tests 14658 14668 15421 15825 16073 1.09
#faults 768 795 1266 1792 3145 4.09

Fashion #tests 17777 17791 18037 18227 18366 1.03
#faults 4341 4324 4575 4659 4953 1.14

SVHN #tests 29702 29698 29703 29711 29717 1.00
#faults 5537 5519 5998 6492 7320 1.32

TaxiNet #tests 13504 13534 14660 15171 15446 1.14
#faults 1739 1720 2254 2480 2626 1.51

Udacity #tests 26028 26014 26025 26056 26071 1.00
#faults 1567 1565 1560 1503 1559 0.99

Table 3: Number of tests (#tests) and faults (#faults) generated
by ���4��� (2f , 38 , 3> , 3, 20, 1), where [38 ,3> ] 2 ⇡1 � ⇡5.

increases across this range, except for Udacity which could explain
the lack of increased fault detection. Recall that varying the target
density can change the RCCA size and the extent of that change will
vary with : , which varies across the VAEs used for these datasets
(Table 2). Comparing rare input to normal density region (⇡5/⇡1)
reveals that the increase in test size alone does not explain the
increase in the number of faults detected. This is especially true for
datasets like MNIST and SVHN.

RQ3 Finding: The research results indicate an increase in
faults detected that is out of proportion to the increase
in test set size with decreasing input probability, which
suggests that fault density increases as input density de-
creases.

4.3.4 RQ4: How cost-e�ective is ���4��� in targeting normal and
rare inputs? We demonstrate the e�ectiveness of ���4��� in gen-
erating normal and rare inputs by comparing against random sam-
pling in the latent space and SINVAD [35]. We consider SINVAD as
a baseline since it is a recently published generative-model based ap-
proach, and its implementation is available. While manifold-based
test generation [15] is also relevant and open-sourced, it only gen-
erates normal inputs, and it would be unfair to use it as a baseline
for rare input testing. Our primary cost metric is test generation
time, but we also report the number of tests generated by each
technique since this can in�uence clients of the generated tests, e.g.,
when running a test set multiple times. Our primary e�ectiveness
metric is total 3-way coverage, which, as we have shown in RQ1
and RQ2, is capable of generating realistic and feature-diverse tests,
but in the second part of this RQ we also report fault detection as
an e�ectiveness metric.

RandomBaseline The random baseline generates tests by draw-
ing= samples from the Gaussian prior of a VAE,+ , as Byun et al. [15]
proposed, and is equivalent to ���4���(+ , 0, 1, 1, 1,=). For each ap-
proach, the experiment terminates either when it achieves 100%
total 3-way coverage or the runtime exceeds one hour. We used
a server with an AMD EPYC 7742, 2.25GHz CPU with 128GB of
memory for running the experiment. We formulated the random
baseline test generation using a strategy to ensure that the cover-
age measurement overhead does not dominate the study results.
The strategy �rst incrementally adds 1000 test inputs to the test
set until the algorithm meets the termination criteria. When the

Dataset Approach
D1 D5

Feasible/ 3-way Time Feasible/ 3-way Time
Generated Cov. (s) Generated Cov. (s)

MNIST ���4��� 14.6k/14.6k 1 15 16.1k/16.1k 1 74
Random 98.9k/100k 1 137 158k/1.5B 0.88 3602

Fashion ���4��� 17.8k/17.8k 1 24 18.4k/18.4k 1 110
Random 98.6k/99.6k 1 172 132k/1.3B 0.93 3602

SVHN ���4��� 29.7k/29.7k 1 95 29.7k/29.7k 1 481
Random 97.6k/98.6k 1 847 53.9k/543M 0.97 3606

TaxiNet ���4��� 13.5k/13.5k 1 13 15.4k/15.4k 1 64
Random 96.1k/97.1k 1 124 169k/1.7B 0.85 3602

Udacity ���4��� 26.0k/26.0k 1 65 26.1k/26.1k 1 312
Random 98.4k/99.4k 1 455 72.5k/733M 0.97 3604

Table 4: Comparison of ���4��� (2f ,38 ,3> , 3, 20, 1) toRandom
baselines in terms of number of generated tests, number of
feasible tests, 3-way coverage, and test generation time for
⇡1 and ⇡5.

Figure 9: Number of fault-revealing inputs (Faults) and total
3-way coverage (Coverage) of the tests generated by SINVAD
normalized with respect to the values measured for ���4���
across datasets for ⇡1 (left) and ⇡4 (right).

random sampling fails to terminate with 100% total 3-way coverage,
a strategy that adds one million tests on each increment is used.

���4��� is con�gured for two target densities, ⇡1 and ⇡5, to
study normal and rare inputs respectively with ?=20, C=3, and ==1.
Table 4 reports the metrics for ���4��� and the random baseline
for �ve datasets. The number of tests is divided into the number
sampled and the number that is feasible relative to the target density
range. For the high-density region, ⇡1, most random samples are
feasible, but this is not the case for the low-density region, ⇡5. The
hit rate of random sampling allows it to achieve 100% coverage,
reported as a 1 in the table, within the timeout for ⇡1, but requires
between 3.3 and 7.2 times the number of tests generated by ���4���.
Moreover, ���4��� generates those tests up to 7 times faster. In the
low-density space, the story is very di�erent. Random sampling
cannot hit the target density range frequently causing it to timeout
and fail to achieve 100% coverage. In contrast, while ���4��� incurs
increased cost in ⇡5, those costs are comparable to the time for
random on⇡1 for 4 of the datasets. ���4��� achieves 100% coverage
by construction and the projection technique never fails to map a
sampled input to the target density range.

SINVAD Since SINVAD only supports classi�cation datasets,
only MNIST, Fashion, and SVHN are used in the experiment.
���4��� is con�gured for two target densities, ⇡1 and ⇡4, to study
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normal and rare inputs respectively with ?=20, C=3, and==1.We use
the di�erential testing algorithm and the DNN networks provided
in the SINVAD artifact for test generation and the test oracles in the
study [4]. We ran each technique until either the generated tests
achieve 100% total 3-way coverage or the total runtime exceeds
�ve hours. Since SINVAD has high runtime costs, we ran it on a
server with an 11GB Nvidia GTX1080Ti GPU, an Intel Xeon E5-
2620 2.10GHz CPU and 128GB RAM for the experiment. SINVAD
timed out for all runs, whereas ���4��� for ==1 ran in less than 15
minutes just on a CPU across each dataset.

Figure 9 reports the detected faults and coverage ratios of SIN-
VAD relative to ���4���metrics across⇡1 and⇡4 for 10 repetitions
of the experiment. The⇡1 results show that ���4��� yields a 5-fold
increase in total 3-way coverage when compared to SINVAD and
that ���4��� is better than SINVAD with respect to the number of
faults for 2 out of 3 cases in the D1 study. For MNIST, SINVAD de-
tected 842 faults and ���4��� only 671. We then ran ���4��� with
= = 2 for these datasets and found that it detected 1339 faults, an
improvement of 1.6 times relative to SINVAD. Running with = = 2
involves permuting the columns of the covering array, allowing
tests to be generated for ⇡1 in 50 seconds – 360 times faster than
SINVAD which ran for 5 hours. More broadly, we �nd that the cost
of ���4��� grows linearly with = as does its fault detection e�ec-
tiveness. The ⇡4 results in Figure 9 indicate that ���4��� yields
more than a 50-fold improvement in faults detected and total 3-way
coverage across all datasets.

RQ4 Finding: ���4��� is cost-e�ective in generating nor-
mal and rare inputs and achieving 100% total 3-way cov-
erage when compared to random sampling and SINVAD.
While ���4��� is not a fault-directed technique it out-
performs SINVAD in fault-detection while running more
than 140 times faster.

4.4 Threats to Validity
To promote replicability, we release our implementation as open-
source2.

To mitigate the threats to internal validity, we reused an existing
CIT algorithm as a starting point as well as existing DNN model
architectures and baselines. We used the default hyperparameters
when training the models and for running the baselines. For the
components we developed, we manually cross-checked the results
for any anomalies in the data.

To mitigate the threats to external validity, we designed the
experimental studies to explore a range of con�guration parameters
of ���4��� and recently published baselines. The study presented
in §4 guides users in selecting VAEs for generalizing ���4��� to
other datasets. We used �ve datasets representing di�erent data
domains. However, all the datasets use image inputs; generative
models are available for other domains [50, 69], and we plan to
extend ���4��� to speech and text datasets in the future.

5 RELATEDWORK
DNN test generation approaches generate test inputs by exploring
either the input space or the feature space [53]. Techniques such as

2https://github.com/less-lab-uva/CIT4DNN

DeepXplore [49], DeepTest [57], DLFuzz [29], and BET [60] work
on the input space and generate test inputs by applying pixel-level
transformations on seed inputs. The diversity of the generated tests
is limited by the diversity of the seed inputs used by these methods
and they can generate out-of-distribution inputs [8, 25].

Test generation approaches that work on the feature space pro-
duce in-distribution tests. However, these approaches require a
model representing the features of the input data distribution. With
such a model technique, DeepHyperion [70, 71], DeepJanus [52],
and methods that apply traditional CIT to ML [19, 27, 48] have
been shown to be e�ective in covering the input feature space and
revealing faults. When such a model is available these approaches
can be e�ective, but they are costly for domain-experts to construct
and challenging to produce for high-dimensional input spaces like
those found in image DNNs.

In contrast, generativemodel-based approaches such asManifold-
Based Test Generation [15], SINVAD [35], and DeepTraversal [68]
use the latent space of the generative models as a feature domain
for test generation, sidestepping the need for a human-de�ned
model. ���4��� falls into the generative model-based test category
but di�ers from existing approaches since it (a) guarantees sys-
tematic latent space coverage which yields a form of systematic
feature diversity coverage and (b) has the ability to e�ciently target
low-probability input regions which may harbor faults.

Khadka et al. developed a method that applies CIT on the parti-
tioned latent space of a VAE to generate synthetic datasets to train
Machine learning models [37]. However, their goal is training data
generation whereas ���4��� focuses on DNN testing. While their
work uses CIT, ���4��� uses constrained CIT on the geometry
of the latent space which means that, unlike ���4���, their work
cannot generate rare inputs on a target density of the latent space.

6 CONCLUSIONS AND FUTUREWORK
���4��� applies constrained combinatorial interaction testing [21]
to the latent space of a generative model to produce diverse test
inputs. Our experimental studies show that ���4��� is e�ective in
generating feature-diverse test sets when compared to the state-of-
the-art approaches, is cost-e�ective for generating rare inputs, and
is e�ective in revealing faults.

���4��� is the �rst cost-e�ective approach for validating model
behavior on rare inputs. We plan to further study the relationship
between input and fault density by investigating a broader set
of models, test oracles, and target density shells. We expect that
moving too far out on the tails of the distribution will yield inputs
that do not resemble training inputs and we plan to investigate
methods to estimate the range of target density shells for which
���4��� can produce valuable tests.
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