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Abstract. As a counterpoint to classical stochastic particle methods for lin-
ear diffusion equations, such as Langevin dynamics for the Fokker-Planck
equation, we develop a deterministic particle method for the weighted porous
medium equation and prove its convergence on bounded time intervals. This
generalizes related work on blob methods for unweighted porous medium equa-
tions. From a numerical analysis perspective, our method has several advan-
tages: it is meshfree, preserves the gradient flow structure of the underlying
PDE, converges in arbitrary dimension, and captures the correct asymptotic
behavior in simulations.

The fact that our method succeeds in capturing the long time behavior of
the weighted porous medium equation is significant from the perspective of
related problems in quantization. Just as the Fokker-Planck equation provides
a way to quantize a probability measure ρ̄ by evolving an empirical measure

ρN (t) = 1
N

∑N
i=1 δXi(t) according to stochastic Langevin dynamics so that

ρN (t) flows toward ρ̄, our particle method provides a way to quantize ρ̄ ac-
cording to deterministic particle dynamics approximating the weighted porous
medium equation. In this way, our method has natural applications to multi-
agent coverage algorithms and sampling probability measures.

A specific case of our method corresponds to confined mean-field dynam-
ics of training a two-layer neural network for a radial basis activation func-
tion. From this perspective, our convergence result shows that, in the over-
parametrized regime and as the variance of the radial basis functions goes to
zero, the continuum limit is given by the weighted porous medium equation.
This generalizes previous results, which considered the case of a uniform data
distribution, to the more general inhomogeneous setting. As a consequence
of our convergence result, we identify conditions on the target function and
data distribution for which convexity of the energy landscape emerges in the
continuum limit.

1. Introduction

Quantization is a fundamental problem throughout the sciences, in which one
seeks to approximate a continuum distribution or signal by discrete objects [41].
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2576 KATY CRAIG ET AL.

Mathematically, the quantization problem may be modeled by fixing a target proba-
bility measure ρ̄ on a subset Ω of Rd and seeking locations {Xi}Ni=1 in Ω so that the

empirical measure ρN = 1
N

∑N
i=1 δXi approximates ρ̄ in an appropriate sense. In

statistics, this problem arises in the context of sampling, since the locations {Xi}Ni=1

represent approximate samples drawn from ρ̄. In control theory, this problem is
relevant to multi-agent coverage algorithms [12,27], in which one seeks to control a
fleet of robots to evolve from their current locations {Xi

0}Ni=1 to terminal locations
{Xi}Ni=1 distributed according to ρ̄.

There is a vast literature on different approaches to the quantization problem,

arising from the many different criteria by which ρN = 1
N

∑N
i=1 δXi is considered

a “good” approximation of ρ̄. For example, if one seeks ρN to approximate ρ̄ opti-
mally in the Wasserstein metric of optimal transport, recent work has shown that
this is closely related to the well-known Lloyd’s algorithm and has a fascinating con-
nection to weighted fast diffusion equations [10, 11, 16, 44, 45, 58]. In the statistics
literature, developing efficient sampling methods and quantifying their convergence
is an active area of research, from classical methods based on Langevin dynamics
to more recent developments, such as Hamiltonian Monte Carlo or Stein Varia-
tional Gradient Descent [9, 52, 75]. In the control theory literature, recent work
has developed multi-agent coverage algorithms based on stochastic and kernelized
particle methods for linear diffusions, as well as theoretically explored the poten-
tial of nonlinear diffusions for the coverage task, via finite volume and graph-based
methods [35–37, 49, 59]. Other authors have explored the role of different notions
of optimality in designing coverage algorithms [4, 5].

In each of these applications, quantization methods based on partial differential
equations play an important role. A classical approach is given by evolving the
locations of the particles by Langevin dynamics,

{

dXi
t =

√
2dBi

t −∇ log ρ̄(Xi
t)dt,

Xi(0) = Xi
0,

which is the stochastic particle discretization of the Fokker-Planck equation,
{

∂tρ = Δρ−∇ · (ρ∇ log ρ̄) ,

ρ(0) = ρ0.
(FP)

In the present work, we continue in this line of PDE-principled methods for sam-
pling and coverage algorithms. We introduce a new method based on the weighted
porous medium equation (WPME). Given a bounded, convex domain Ω ⊆ R

d, a
strictly positive target ρ̄ : Rd → R that is log-concave on Ω and satisfies

∫

Ω
ρ̄ = 1,

and a fixed external potential V ∈ C2(Ω), we consider the equation,

{

∂tρ = ∇ ·
(

ρ̄
2∇

(
ρ2

ρ̄2

))

+∇ · (∇V ρ) ,

ρ(0) = ρ0,
(WPME)

with no-flux boundary conditions on ∂Ω. The initial conditions are chosen to satisfy
ρ0 ≥ 0 and

∫

Ω
ρ0 = 1. (See Proposition 3.10 for the definition of weak solution.)

The dynamics of (WPME) arise in connection to quantization since, for V = 0,
solutions of (WPME) converge as t → +∞ to ρ̄ on Ω in the Wasserstein metric; see
Proposition 3.14. Consequently, if one can approximate solutions ρ(t) of (WPME)

Licensed to Michigan St Univ. Prepared on Fri May  3 10:50:09 EDT 2024 for download from IP 35.8.11.3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A BLOB METHOD FOR INHOMOGENEOUS DIFFUSION 2577

by an empirical measure ρN (t) = 1
N

∑N
i=1 δXi(t), this naturally leads to a method

for flowing the empirical measure toward ρ̄ on Ω in the long time limit.
The main goal of the present work is to develop a deterministic particle method

for (WPME), constructing an empirical measure ρN (t) = 1
N

∑N
i=1 δXi(t) and a

system of ordinary differential equations to govern the locations of the particles
Xi(t) so that ρN (t) indeed converges, as N → +∞, to a solution ρ(t) of (WPME)
on bounded time intervals. In Sections 1.4-1.5, we describe the specific assumptions
we impose and the precise statements of our results, including which of our results
continue to hold for ρ̄ not log-concave, on unbounded domains Ω, and for less
regular V .

On one hand, (WPME) is of interest outside the context of quantization. Weight-
ed porous medium equations arise throughout the sciences, from models of fluid
flow to biological swarming [42, 72]. From this perspective, Theorem 1.2 of the
present work provides a new numerical method for simulating these phenomena.
In particular, our work extends the blob method for the porous medium equation
(ρ̄ = 1), which has been studied by Oelschläger [60], Lions and MasGallic [50],
Carrillo, Craig, and Patacchini [19], and Burger and Esposito [14], to the case of
weighted porous medium equations. (See below for a more detailed discussion of the
relation with these results.) This provides a provably convergent numerical method
for (WPME) in arbitrary dimensions, contributing to the substantial literature
on numerical methods for such equations, including classical finite volume, finite
element, and discontinuous Galerkin methods [7,13,18,69], as well as methods based
on alternative deterministic particle methods in one spatial dimension [17,23,30,31,
56], Lagrangian evolution of the transport map along the flow [22,24,38,55,78], and
many others [6, 20, 21, 40]. From a numerical analysis perspective, the key benefits
of our approach are that it is meshfree, deterministic, preserves the gradient flow
structure and asymptotic behavior, and converges in arbitrary dimension.

On the other hand, we believe (WPME) is particularly interesting from the
perspective of quantization for several reasons. First, as we describe below, there is
a strong analogy between (WPME) and (FP), so that a quantization method based
on (WPME) provides a counterpoint to classical Langevin dynamics.

A second reason for studying (WPME) in connection with quantization comes
from applications in sampling. Over the past five years, Stein Variational Gradient
Decent, originally introduced by Liu and Wang [52], has attracted attention in the
statistics community as a novel method for sampling a target measure ρ̄ via a deter-
ministic interacting particle system, which has a formal Wasserstein gradient flow
structure with respect to a convex mobility [48,51,53]. Recent work by Chewi et al.
[25] identified that, when V = 0, Stein Variational Gradient Descent (SVGD) may
be interpreted as a kernelized version of (WPME), which has a rigorous Wasserstein
gradient flow structure, as we explain below. In this way, understanding properties
of (WPME) and its discretizations has the potential to shed light on behavior of
SVGD more generally.

A third reason for interest in (WPME) from a quantization perspective comes
from applications in control theory. This is due to the fact that the particle method
we succeed in developing for (WPME) is deterministic, an important attribute in
the context of coverage algorithms, since the results of the algorithm wouldn’t need
to be averaged over many runs, and there is hope that future research could lead

Licensed to Michigan St Univ. Prepared on Fri May  3 10:50:09 EDT 2024 for download from IP 35.8.11.3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2578 KATY CRAIG ET AL.

to quantitative convergence guarantees. This is in contrast to the case of classi-
cal quantization methods based on (FP), for which the natural Langevin particle
approximation is stochastic.

A final reason for interest in (WPME) comes from a variant of the quantization
problem arising in models of two-layer neural networks. As we will explain below,
the particle method we develop to approximate solutions of (WPME) coincides
with confined dynamics for training a two-layer neural network with a radial basis
activation function. In this way, our convergence result sheds light on the continuum
limit of two-layer neural networks, showing that they converge to a solution of
(WPME) when confined to the domain Ω; see Corollary 1.4. This generalizes the
previous convergence result of Javanmard, Mondelli, and Montanari [46] to the
case of nonuniform data distributions. As a consequence of this result, we are able
to provide conditions on the target function and data distribution that guarantee
that the continuum limit of the training dynamics of two-layer neural networks is
the gradient flow of a convex energy, where the relevant notion of convexity along
Wasserstein gradient flow is displacement convexity or convexity along Wasserstein
geodesics ; see Definition 2.6. This emergence of convexity in the continuum limit
is relevant to the behavior of neural networks in practice, where researchers seek to
explain why gradient descent dynamics sometimes converge to a global optimum,
in spite of the fact that, at the discrete level, the energy landscape is nonconvex
[26, 79].

The remainder of the introduction proceeds as follows. In Section 1.1, we state
fundamental properties of (WPME) and describe the analogy between (WPME)
and (FP). In Section 1.2, we introduce our particle method for approximating
solutions of (WPME). In Section 1.3, we describe the connection with two-layer
neural networks. In Sections 1.4 and 1.5, we state our main assumptions and results.
Finally, in Section 1.6, we outline our approach and describe directions for future
work.

1.1. The weighted porous medium equation. A key feature of (WPME),
which serves as a guiding principle of the present work, is that it is a Wasser-
stein gradient flow of the energy,

F : P(Rd) → R ∪ {+∞}, F(μ) = E(μ) + V(μ) + VΩ(μ),(1.1)

where P(Rd) denotes the set of Borel probability measures on R
d; and the internal

energy E , external potential energy V , and confining potential energy VΩ are given
by,

E(μ) =
{

1
2

∫

Rd

|μ(x)|2
ρ̄(x) dx if μ 
 ρ̄(x)dx and dμ(x) = μ(x)dx,

+∞ otherwise,
(1.2)

V(μ) =
∫

Rd

V (x)dμ(x),(1.3)

VΩ(μ) =

{

0 if suppμ ⊆ Ω,

+∞ otherwise.
(1.4)

The internal energy E induces the nonlinear diffusion term, the external potential V
induces the convection term, and the confining potential VΩ restricts the dynamics
to Ω, with no-flux boundary conditions on ∂Ω. Our primary interest, and the main
mathematical challenge in establishing our results, is in the nonlinear diffusion
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induced by E and its approximation by a deterministic particle method. In Section
2, we provide detailed background on the Wasserstein metric W2 and Wasserstein
gradient flows. In Proposition 3.10, we recall the precise statement of the result
that solutions of (WPME) are the gradient flow of F .

The fact that (WPME) has a gradient flow structure is in close analogy with the
(FP) equation: in their seminal work [47], Jordan, Kinderlehrer, and Otto estab-
lished that (FP) is the Wasserstein gradient flow of the Kullback-Leibler divergence,

KL(μ, ρ̄) =

∫

Ω

log(μ/ρ̄) dμ, for μ 
 ρ̄.

From this perspective, it is useful to notice that, when V = 0, (WPME) can also
be thought of as the Wasserstein gradient flow of the χ2 divergence [70],

χ2(μ, ρ̄) =

{
1
2

∫

Ω
|μ(x)−ρ̄(x)|2

ρ̄(x) dx, if μ 
 Ld, dμ(x) = μ(x)dx, and suppμ ⊆ Ω,

+∞ otherwise,

where Ld denotes d-dimensional Lebesgue measure. This can be seen by noticing
∫
|μ(x)− ρ̄(x)|2/ρ̄(x)dx =

∫
|μ(x)|2/ρ̄(x)dx−1, so that, when V = 0, our energy F

agrees with χ2, up to a constant that does not affect the dynamics of the gradient
flow: F(μ) + 1/2 = χ2(μ, ρ̄). In what follows, we will always suppose that ρ̄ is
normalized to satisfy

∫

Ω
ρ̄ = 1, and so that for μ ∈ P(Rd), the KL divergence and

the χ2 divergence measure the discrepancy between μ and ρ̄ on Ω and vanish in the
case that μ = ρ̄ on Ω.

The gradient flow structures of (WPME) and (FP) have important interpre-
tations from the perspective of quantization, since they encode key information
about how quickly solutions are flowing toward ρ̄. The fact that solutions of the
(FP) equation are the Wasserstein gradient flow of the KL divergence is equivalent
to saying that they dissipate the KL divergence as quickly as possible, with respect
to the Wasserstein structure. In the same way, solutions of the (WPME) equation
dissipate the χ2 divergence as quickly as possible, with respect to the Wasserstein
structure.

Another important feature of (WPME) from the perspective of quantization is
the available estimates quantifying its convergence to equilibrium. Chewi et al.
[25] show that if Ω = R

d, V = 0, and ρ̄ satisfies a Poincaré inequality, then, along
smooth solutions, the Kullback-Leibler divergence decreases exponentially:

(1.5) KL(ρ(t), ρ̄) ≤ e−Cρ̄ t KL(ρ(0), ρ̄), for Cρ̄ > 0.

If, in addition, ρ̄ is strongly log-concave, then the χ2 divergence decreases exponen-
tially:

χ2(ρ(t), ρ̄) ≤ e−Cρ̄ tχ2(ρ(0), ρ̄), for Cρ̄ > 0.

This mirrors the theory for (FP), in which a Poincaré inequality ensures exponential
decay of the χ2 divergence and log-concavity ensures decay of the KL divergence.
See Matthes, McCann, and Savaré’s flow interchange method for general results of
this form [54]. In addition, see Grillo, Muratori, and Porzio [42], who rigorously
proved exponential convergence to equilibrium of weak solutions in Lp spaces for all
p < +∞. Furthermore, in the case of the (WPME) equation, if ρ̄ merely satisfies a
weaker condition, known as an L2/3-Poincaré inequality, then Dolbeault et al. [33]
showed that the χ2 divergence decreases polynomially. This raises the possibility
that, for different choices of ρ̄ and initial conditions ρ0, there may exist contexts
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in which solutions of (WPME) converge to ρ̄ with stronger convergence guarantees
than solutions of (FP). Since developing general conditions on the target ρ̄ and
the initialization ρ0 that distinguish whether (WPME) or (FP) equilibrates more
quickly remains an active area of research, we do not claim that the dynamics of
(WPME) offer superior long time behavior to (FP). Instead, we merely observe
that, at the continuum level, (WPME) provides competitive dynamics. Under-
standing when solutions to (WPME) or (FP) converge more quickly to equilibrium
may, in the future, shed light on which quantization methods are superior in differ-
ent contexts.

1.2. Particle approximation of (WPME). The aim of the present work is to
design a deterministic particle method for approximating solutions of (WPME)
that preserves its gradient flow structure. Since solutions of (WPME) are gradient
flows of the energy (1.1)-1.4, we seek to approximate them by gradient flows of the
regularized energy, defined by,

Fε,k : P(Rd) → R ∪ {+∞}, Fε,k(μ) = Eε(μ) + Vε(μ) + Vk(μ),(1.6)

for the energies Eε(μ), Vε(μ), and Vk(μ) given by,

Eε(μ) =
1

2

∫

Rd

|ζε ∗ μ|2(x)
ρ̄(x)

dx,(1.7)

Vε(μ) =

∫

Rd

(ζε ∗ V )(x)dμ(x),(1.8)

Vk(μ) =

∫

Rd

Vk(x)dμ(x).(1.9)

Here ζε(x) = ε−dζ(x/ε) for ζ ∈ C∞(Rd) an even, rapidly decreasing mollifier and
Vk ∈ C2(Rd), for k ∈ N, is a convex function that vanishes on Ω and approaches

+∞ on Ω
c
as k → +∞.

The energy Eε(μ) is an approximation, as ε → 0, of E . This regularized energy
has superior differentiability properties along empirical measures, ensuring that the
gradient flow starting at empirical measure initial data leads to a well-posed particle
method. It also enjoys the property,

Eε(ρ) = E(ζε ∗ ρ),(1.10)

which is a key element in our proof of an H1 bound for ζε ∗ ρε along solutions of
the gradient flow; see Theorem 4.1. The energy Vε is an approximation of V and
likewise enjoys the analogous property Vε(ρ) = V(ζε ∗ ρ). While many different
methods of approximating V would work well both numerically and theoretically,
we focus our attention on Vε due to the connection with two-layer neural networks.
Finally, the energy Vk is an approximation, as k → +∞, of VΩ.

While the main focus of our work is the analysis of how dynamics induced by
Eε, for general initial data, approximate dynamics induced by E (indeed, if Ω is
the entire space R

d and V is taken to be zero, then the energy Fε,k is exactly
Eε), our analysis of how the gradient flow dynamics induced by Vk converge to
those from VΩ as k → +∞ also generalizes existing results by Alasio, Bruna,
and Carrillo to weighted porous medium equations [1]. (See also recent work by
Patacchini and Slepčev, which uses a similar approach to study well-posedness of
aggregation equations on compact manifolds [63].) Our motivations for considering
this approximation of the confining potential VΩ are twofold. First, it simplifies the
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implementation of the particle method, obviating the need to implement reflection
boundary conditions. Second, it allows for the most challenging aspect of the
analysis — the relationship between the dynamics induced by Eε and E — to be
carried out on R

d, rather than on a domain with boundary.
Wasserstein gradient flows of the regularized energy Fε,k are characterized by

the equation,
{

∂tρ = ∇ ·
(

ρ
(

∇ζε ∗
(

ζε∗ρ
ρ̄

)

+∇ζε ∗ V +∇Vk

))

,

ρ(0) = ρ0,
(WPMEε,k)

defined on all of Rd in the duality with C∞
c (Rd × (0,+∞)); see Proposition 3.12.

If the initial conditions are given by an empirical measure, ρ0 =
∑N

i=1 δXi
0
mi, with

∑N
i=1 m

i = 1, then the solution remains an empirical measure for all time. Con-

cretely, we have ρ(t) =
∑N

i=1 δXi(t)m
i, and the locations of the particles {Xi(t)}Ni=1

are characterized as solutions of,
{

Ẋi(t) = −∑N
j=1 f(X

i, Xj)mj −∇ζε ∗ V (Xi)−∇Vk(X
i),

Xi(0) = Xi
0,

(1.11)

for

f(x, y) :=

∫

Rd

∇ζε(x− z)ζε(y − z)

ρ̄(z)
dz;(1.12)

see Proposition 3.13. Here, we again leverage the fact that ζε is even. In
Section 7.1, we provide sufficient conditions on ρ̄ for which the integral in f(x, y)
has an analytic formula, in which case it can be precomputed exactly and does not
contribute to the computational complexity of our method.

Based on the intuition that Fε,k is an approximation of F , it is natural to hope
that gradient flows of Fε,k approximate gradient flows of F . Our main result
is that this is indeed true. We show that the particle method defined by (1.11)
converges to a solution of (WPME) on bounded time intervals, provided that the
initial conditions ρ0 of (WPME) have bounded entropy, the initial conditions

ρN0 (0) =
∑N

i=1 δXi
0
mi of the particle method converge sufficiently quickly to ρ0,

and ε → 0 and k → +∞ sufficiently rapidly; see Theorem 1.2. Note that this
method formally extends to equations of the form (WPME) with an additional
term −∇ · (vρ) on the right hand side, for general velocities v(x, t), by adding a
term of the form v(Xi(t), t) to the right hand side of (1.11).

Our work on the convergence of the ε → 0, k → +∞ limit builds on several
previous works. All previous works have considered the spatially homogeneous case
ρ̄ ≡ 1. The first work in this direction was due to Oelschläger [60], who considered
the case V = Vk = 0 and proved convergence to classical, strictly positive solutions
of (WPME) in arbitrary dimensions and convergence to weak solutions in one
dimension. Subsequently, Lions and Mas-Gallic [50], also in the case V = Vk = 0,
proved convergence of (WPMEε,k) as ε → 0, provided that the initial conditions
ρ0 of both (WPMEε,k) and (WPME) had uniformly bounded entropy, thereby
excluding particle initial data required to connect (WPMEε,k) to the system of
ODEs (1.11). The assumption of bounded entropy played an important role in Lions

and Mas-Gallic’s proof of an Ḣ1 bound for regularized solutions to (WPMEε,k).
(In fact, the analogous bound also plays an important role in the present work –
see Theorem 4.1 for a generalization of this result to the spatially inhomogeneous
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2582 KATY CRAIG ET AL.

setting.) Next, Carrillo, the first author, and Patacchini [19] generalized Lions and
Mas-Gallic’s approach to porous medium equations of the form,

∂tρ = Δρm +∇ · (ρ(∇V +∇W ∗ ρ)).
In the case m = 2, they obtained convergence of the ε → 0 limit under appropri-
ate continuity and semiconvexity assumptions on V and W ; for 1 ≤ m < 2, they
obtained Γ-convergence of the corresponding energies as ε → 0; and for m > 2,
they obtained conditional convergence of the ε → 0 limit, as long as certain a
priori estimates were preserved along the flow. Again, Carrillo, Craig, and Patac-
chini’s work required the initial data of both (WPMEε,k) and (WPME) to have
bounded entropy, excluding particle solutions. Very recently, Burger and Esposito
[14] continued the study of the m = 2 case for more general velocity fields v(x, t),

∂tρ+∇ · (ρv) = Δρm,

and weaker regularity on the mollifier ζ.
Our work makes three contributions to this active area of research. We obtain

true convergence of the particle method, relaxing the hypothesis that the initial
data of (WPMEε,k) have bounded entropy by using stability properties of the
regularized flow, so that only the initial data of (WPME) must have bounded
entropy; see Theorem 1.2. Our result holds for spatially inhomogeneous porous
medium equations, allowing general ρ̄ ∈ C1(Rd) that are bounded above and below
on R

d and log-concave on Ω ⊆ R
d. (See Section 1.4 for a discussion of where

the log-concavity assumption may be weakened.) Finally, by allowing spatially
inhomogenous equations, we identify a connection between our particle method and
problems in sampling, control theory, and training of two-layer neural networks.

1.3. Application to two-layer neural networks. An additional reason for in-
terest in the convergence of (1.11)-1.12 to (WPME), aside from its utility as a
particle approximation, is that the dynamics of (1.11)-1.12 represent a type of con-
fined training dynamics for mean field models of two-layer neural networks with a
radial basis function activation function. In this context, one is given a data dis-
tribution ν, a nonnegative target function f0 ∈ L2(ν), and an activation function
Φε(x, z) = ζε(x − z), and one seeks to choose parameters, {Xi}Ni=1, so that the

empirical measure ρN = 1
N

∑N
i=1 δXi minimizes the following energy, known as the

population risk :

Rε(μ) =
1

2

∫

Rd

∣
∣
∣
∣

∫

Rd

Φε(x, z)dμ(x)− f0(z)

∣
∣
∣
∣

2

dν(z).(1.13)

In existing literature on this application, ζε is typically assumed to be radial, and
Φε is referred to as a radial basis function activation. Our assumption on ζε merely
requires it to be even, so our results certainly hold under the conventional stronger
assumption that ζε is radial.

In several recent works, it was discovered that evolving the parameters Xi(t) by
gradient descent of the function (X1, . . . , Xn) �→ Rε(ρ

N )+VΩ(ρ
N ) is equivalent to

evolving the empirical measure ρN by the Wasserstein gradient flow of Rε restricted
to Ω [26,46,57,64,68,77]. Various methods for treating the boundary conditions are
considered, including projection of the gradient descent direction into the convex
hull of the domain Ω [26] or projection onto interior approximations of Ω [46].
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To see the connection with (1.11)-1.12, note that using the definition of Φε,
expanding the square, and applying Tonelli’s theorem (see also the associativity
property of convolution (2.1) for the even mollifier ζε), we obtain,

Rε(μ) =
1

2

∫

|ζε ∗ μ(z)|2dν(z)−
∫

ζε ∗ μ(z)f0(z)dν(z) +
1

2

∫

|f0(z)|2dν(z)
(1.14)

= Eε(μ) +
∫

(ζε ∗ V )(x)dμ(x) + C = Eε(μ) + Vε(μ) + C,

for,

ν = 1/ρ̄ , V = −f0ν , C =
1

2

∫

|f0(z)|2dν(z).(1.15)

Moreover, the confining potential Vk provides an explicit method for projecting
gradient descent dynamics onto an exterior approximation of Ω. In this way, since
the addition of a constant to the energy does not affect the dynamics of the gradient
flow, the confined training dynamics given by the gradient flow ofRε+Vk = Fε,k+C
for general initial data ρ0 is characterized by (WPMEε,k), and the evolution for
particle initial data corresponds to (1.11)-1.12. Corollary 1.4, which follows from
our convergence result for the gradient flows of Fε,k, states that, for well-behaved
initial conditions, particle solutions of (1.11)-1.12 converge to a gradient flow of,

R(μ) =

{
1
2

∫
|μ(z)− f0(z)|2 dν(z) if μ 
 Ld|Ω, dμ(z) = μ(z)dz,

+∞ otherwise.
(1.16)

This generalizes previous work due to Javanmard, Mondelli, and Montanari [46],
which considered the limit ε → 0 in the specific case of a uniform data distribution
ν = �Ω/|Ω|, smooth target function f , bounded convex domain Ω, and compactly
supported radial basis function ζ. The fact that our result holds for general nonuni-
form data distributions ν is significant from the perspective of two-layer neural
networks, since, as can be seen in Corollary 1.4, there is an interplay between the
data distribution ν and the target function f to determine when convexity of the
energy Fε,k emerges in the continuum limit.

1.4. Assumptions. We now describe our assumptions. We consider a domain
Ω ⊆ R

d satisfying,

Ω is nonempty, open, and convex.(D)

We suppose our mollifier satisfies,

ζ ∈ C2(Rd) is even, nonnegative, ‖ζ‖L1(Rd) = 1, D2ζ ∈ L∞(Rd),

ζ(x) ≤ Cζ |x|−q and |∇ζ(x)| ≤ Cζ |x|−q′ , for Cζ > 0, q > d+ 1, q′ > d.
(M)

This assumption is satisfied by both Gaussians and smooth functions with com-
pact support. Note that this assumption ensures that ζ has finite first moment,
∫

Rd |x|ζ(x)dx < +∞.
We suppose the external potential V satisfies,

(V) V ∈ C2(Rd) ∩ L1(Rd) ∩ L∞(Rd), with ∇V ∈ L∞(Rd)

and D2V uniformly bounded below.
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We are optimistic that our results may continue to hold under weaker regularity
hypotheses on V , but we leave this question to future work, since our primary
interest is the approximation of the diffusive dynamics arising from E via the particle
method induced by Eε.

We suppose that our approximation of the confining potential Vk, for k ∈ N,
satisfies,

Vk is nonnegative, convex, and twice differentiable with D2Vk ∈ L∞(Rd),(C)

Vk = 0 on Ω and lim
k→∞

(

inf
x∈B

Vk(x)

)

= +∞ for any ball B ⊂⊂ Ωc.(Ck)

Note that assumption (C) ensures Vk ∈ L1(μ) and ∇Vk ∈ L2(μ) for any μ ∈ P(Rd)
with

∫
|x|2dμ(x) < +∞. These assumptions play the following role in our proof:

Assumption (C) ensures well-posedness of the gradient flows, and Assumption (Ck)
allows us to recover the correct limiting dynamics as k → +∞. In particular, note
that (Ck) implies that, in the k → ∞ limit, Vk approximates the hard cutoff
potential VΩ, which is given by,

(1.17) VΩ(x) =

{

0 for x ∈ Ω,

+∞ otherwise.

Finally, we suppose that our target ρ̄ satisfies the regularity assumption,

(T) ρ̄ ∈ C1(Rd), ∇ρ̄ ∈ L∞(Rd), and there exists C > 0

so that 1/C ≤ ρ̄(x) ≤ C, for all x ∈ R
d.

Assumption (T) is sufficient to ensure that the energy Fε,k is lower semicontinuous,
convex, and subdifferentiable, so that gradient flows of Fε,k are well-posed. It also
allows us to conclude that the energy F is lower semicontinuous. However, in order
to obtain convexity and subdifferentiability of F , hence well-posedness of gradient
flows, we require ρ̄ to be log-concave on Ω; that is,

x �→ log(ρ̄(x)) is concave on Ω.

It is an open question whether well-posedness of the gradient flows of F could
be obtained under weaker assumptions on ρ̄. Interestingly, the main estimates in
our proof of the convergence of the gradient flows of Fε,k as ε → 0 (Theorem 4.1,
Theorem 5.1, and Proposition 5.6) do not require log-concavity of ρ̄. Instead, log-
concavity comes into play when we seek to identify that the limit as ε → 0 and
k → ∞ of gradient flows of Fε,k is indeed a gradient flow of F , since log-concavity
of ρ̄ ensures that the metric slope of F is a strong upper gradient ; see Section 2.3
and [3, Section 1.2]. For this reason, we are optimistic that, in future work, it may
be possible to extend our results to ρ̄ that are not log-concave, once the difficulty
of obtaining well-posedness of the gradient flow of F and characterization of its
strong upper gradient are overcome.

1.5. Main results. To state our main results, first we introduce some notation.
Let the entropy S(μ) and p-thmoment Mp(μ), where p ≥ 1, of a measure μ ∈ P(Rd)
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be given by

(1.18)

S(μ) =
{∫

Rd μ(x) logμ(x)dLd(x) if μ 
 Ld and dμ(x) = μ(x)dx,

+∞ otherwise,

Mp(μ) =

∫

Rd

|x|pdμ(x).

Recall that a probability measure μ ∈ P(Rd) lies in the domain of an energy
G : P(Rd) → R∪{+∞} if G(μ) < +∞. We denote this by μ ∈ D(G). We also write

(1.19) Pp(R
d) = P(Rd) ∩D(Mp), for p ≥ 1.

Finally, we often use the notion of narrow convergence of probability measures
(see Definition 2.2) and 2-absolutely continuous curves AC2([0, T ];P2(R

d)) (see
Definition 2.4).

Theorem 1.1 (Convergence of gradient flows as k → +∞, ε = ε(k) → 0). Assume
(D), (M), (V), (C), (Ck), (T) and that ρ̄ is log-concave on Ω. Fix T > 0 and
ρ(0) ∈ D(F) ∩D(S) ∩ P2(R

d).
For ε > 0 and k ∈ N, let ρε,k ∈ AC2([0, T ];P2(R

d)) be the gradient flow of Fε,k

with initial data ρ(0). Then, as k → +∞, there exists a sequence ε = ε(k) → 0 so
that

lim
k→+∞

W1(ρε,k(t), ρ(t)) = 0, uniformly for t ∈ [0, T ],

where ρ ∈ AC2([0, T ];P2(R
d)) is the gradient flow of F with initial data ρ(0).

Theorem 1.1 requires that the initial conditions of the gradient flow of Fε,k

have bounded entropy, which explicitly excludes empirical measure initial data.
However, we are able to extend this result to empirical measure initial data by
leveraging stability properties of the gradient flow of Fε,k. In this way, we obtain the
following convergence result for the deterministic particle method to weak solutions
of (WPME), provided that the underlying continuum solution has initial data with
bounded entropy. In Proposition 3.10, we state the precise notion of weak solution of
(WPME) that we consider, and in Lemma A.5, we provide an explicit construction
of ρNε,k(0) satisfying condition (1.21).

Theorem 1.2 (Convergence with particle initial data). Assume (D), (M), (V),
(C), (Ck), (T), and that ρ̄ is log-concave on Ω. Fix T > 0 and ρ(0) ∈ D(F) ∩
D(S)∩P2(R

d). For k,N ∈ N, ε > 0, and t ∈ [0, T ], consider the evolving empirical
measure,

ρNε,k(t) =
N∑

i=1

δXi
ε,k

(t)mi, mi ≥ 0,
N∑

i=1

mi = 1,

where Xi
ε,k ∈ C1([0, T ];Rd) solves,

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẋi
ε,k =−

N∑

j=1

mj

∫

Rd

∇ζε(X
i
ε,k − z)ζε(z −Xj

ε,k)
1

ρ̄(z)
dz

−∇(ζε ∗ V )(Xi
ε,k)−∇Vk(X

i
ε,k),

Xi
ε,k(0) = Xi

0,ε.

(1.20)
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Suppose that as ε → 0 there exist N = N(ε) → +∞, so that, for all k ∈ N,

ρNε,k(0) =
∑N

i=1 δXi
0,ε

mi converges to ρ(0) with the rate,

(1.21) lim
k→∞

e−λεTW2(ρ
N
ε,k(0), ρ(0)) = 0,

for λε = −ε−d−2‖1/ρ̄‖L∞(Rd)‖D2ζ‖L∞(Rd) + inf
{x,ξ∈Rd}

ξtD2V (x)ξ.

Then, as k → +∞, there exist ε = ε(k) → 0 and N = N(ε) → +∞ for which

ρNε,k(t) =
∑N

i=0 δXi
ε,k(t)

mi satisfies

lim
k→+∞

W1(ρ
N
ε,k(t), ρ(t)) → 0, uniformly for t ∈ [0, T ],

where ρ ∈ AC2([0, T ];P2(R
d)) is the unique weak solution of (WPME) with initial

data ρ(0).

Corollary 1.3 ensures that the particle method defined in Theorem 1.2 indeed
converges to ρ̄ on Ω in the long time limit, as relevant for applications in quan-
tization. The idea behind the proof is as follows: given arbitrary δ > 0, our
log-concavity assumption for ρ̄ on Ω allows us to prove that, for any exact solution
ρ(x, t) of (WPME), we may pick t sufficiently large so that ρ(x, t) is within distance
δ/2 of �Ωρ̄ in the 1-Wasserstein metric, where �Ω denotes the indicator function

on Ω. For such a t, Theorem 1.2 ensures that for k sufficiently large (depending
on t), ε sufficiently large (depending on k), and N sufficiently large (depending on
ε), the particle solution ρNε,k(t) is within distance δ/2 of ρ(x, t). In this way, there

exists a choice of parameters so that the particle solution ρNε,k(t) is arbitrarily close
to �Ωρ̄.

Corollary 1.3 (Long time limit). Suppose the assumptions of Theorem 1.2 hold

and again denote ρNε,k(t) =
∑N

i=0 δXi
ε,k(t)

mi. In addition, assume V = 0, Ω is

bounded, and
∫

Ω
ρ̄ dLd = 1. Then there exist k = k(t) → +∞, ε = ε(k) → 0, and

N = N(ε) → +∞ so that

lim
t→+∞

W1

(
ρNε,k(·, t),�Ωρ̄

)
= 0.

Theorems 1.1 and 1.2 provide sufficient conditions to guarantee convergence of
the particle method to (WPME) on bounded time intervals and convergence to
the desired target distribution ρ̄ on Ω when V = 0 and Ω is bounded. However,
these results are purely qualitative, and it remains an open question to what extent
they could be made quantitative in T , k, ε, and N . For example, an inspection
of the construction in Lemma A.5 shows that if the particles are initialized with
uniform spacing on a bounded domain Ω, the number of particles is required to
grow extremely quickly with respect to ε. In particular, it suffices to have

N(ε, k)−1 = o
(

e−1/εd+2
)

as ε → 0.

On the other hand, we observe numerically that N(ε) ∼ ε−1.01 is sufficient for good
performance in one dimension. We leave a finer quantitative convergence analysis
to future work. For example, it would be interesting to investigate whether higher
regularity of the initial data ρ(0) could be used to decrease the rate at which N
must grow with ε in our rigorous convergence results, as the numerical simulations
suggest is possible.
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As a second corollary of our main convergence results, we identify the limit
of the confined training dynamics of two-layer neural networks with a radial basis
activation function and quadratic loss, as described in Section 1.3. In particular, our
result gives sufficient conditions under which the limit of these training dynamics is
the gradient flow of a convex energy, in the sense that it is convex along Wasserstein
geodesics; see Definition 2.6.

Corollary 1.4 (Two-layer neural networks). Consider a domain Ω satisfying (D),
a radial basis function activation function Φε(x, z) = ζε(x − z) satisfying (M),
a data distribution ν = 1/ρ̄, for ρ̄ satisfying (T) and log-concave on Ω, and a
target function f0 = −V ρ̄, for V satisfying (V). For k ∈ N, consider a confining
potential Vk satisfying (C) and (Ck). Fix T > 0. For ε > 0, N ∈ N, and t ∈ [0, T ],
consider the confined training dynamics of a two-layer neural network corresponding
to the energy Rε + Vk; that is, consider the evolution of the empirical measure of
parameters,

ρNε (t) =
N∑

i=1

δXi
ε
(t)mi, mi ≥ 0,

N∑

i=1

mi = 1,

where Xi
ε ∈ C1([0, T ];Rd) solves,

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẋi
ε =−

N∑

j=1

mj

∫

Rd

∇ζε(X
i
ε − z)ζε(z −Xj

ε )ν(z) dz

+∇(ζε ∗ (f0ν))(Xi
ε)−∇Vk(X

i
ε,k),

Xi
ε(0) = Xi

0,ε.

(1.22)

Suppose there exists ρ(0) ∈ D(F) ∩D(S) ∩ P2(R
d) so that, for all ε > 0, there

exists N = N(ε) so that ρN (0) converges to ρ(0) sufficiently quickly, according to
the rate from equation (1.21). Then, as k → +∞, there exist ε = ε(k) → 0 and

N = N(ε) → +∞ for which ρNε (t) =
∑N

i=1 δXi
ε(t)

mi satisfies

lim
k→+∞

W1(ρ
N
ε,k(t), ρ(t)) → 0, uniformly for t ∈ [0, T ],

where ρ ∈ AC2([0, T ];P2(R
d)) is the unique weak solution of (WPME) with initial

data ρ(0).
In particular, whenever ν is log-convex on Ω and f0ν is concave on Ω, the limit

of the training dynamics is the gradient flow of the convex energy R.

Our last main result concerns the behavior of minimizers of the energies Fε,k

and F . Our proof of Theorem 1.1 on the convergence of gradient flows as k → +∞
and ε = ε(k) → 0 leverages the perspective of Serfaty’s general metric space frame-
work for Γ-convergence of gradient flows [67], which we recall in Section 2.4. As a
consequence of this approach, we easily obtain that, under sufficient compactness
assumptions on the approximation of our confining potential Vk, minimizers of Fε,k

converge to a minimizer of F . Unlike in Theorem 1.1 on convergence of the gradient
flows, the rate at which ε → 0 does not depend on the rate k → +∞. Likewise,
this result does not require ρ̄ to be log-concave on Ω.

Theorem 1.5 (Minimizers converge to minimizers). Suppose Assumptions (T),
(D), (M), (V), (C), and (Ck) hold. Suppose further that Vk ≥ V1 for all k ∈ N

and the sublevel sets of V1 are compact. Then, if ρε,k ∈ P2(R
d) is a minimizer of
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Fε,k for all ε > 0, k ∈ N, then as ε → 0, k → +∞, ρε,k narrowly converges to
ρ ∈ P(Rd), where ρ is the unique minimizer of F .

Theorem 1.5 has the potential to shed light on the convergence of the gradient
flows in the long time limit. In particular, while our main results on convergence
of the gradient flows only hold on bounded time intervals, if one could show that a
gradient flow ρε,k(t) of Fε,k indeed converged as t → +∞ to a minimizer of Fε,k,
uniformly in ε > 0 and k ∈ N, then one could combine Theorem 1.5 with Theorems
1.1 and 1.2 to get convergence of the gradient flows of Fε,k to F globally in time.
Proving these estimates remains an open question, closely related to our motivating
applications in quantization.

1.6. Outline of approach and future directions. We now outline our approach
to proving these results. We begin, in Section 2, by recalling preliminary informa-
tion on optimal transport, including basic notation in Section 2.1, convolution and
convergence of measures in Section 2.2, optimal transport and Wasserstein gradient
flows in Section 2.3, and our variant of Serfaty’s framework for Γ-convergence of
gradient flows in Section 2.4. In Section 3, we prove several fundamental properties
of the energy Fε,k and recall known properties of the energy F , including convex-
ity and differentiability in Section 3.1. We give the PDE characterizations of the
gradient flows of these energies in Section 3.2 and address the long time behavior
of gradient flows of the energy F in Section 3.3.

With these results in hand, we move on to studying the behavior of gradient
flows of Fε,k as ε → 0 and k → +∞. Section 4 is devoted to proving a key estimate
for the analysis of the ε → 0 limit, which shows that if the initial conditions of
the gradient flow of Fε,k have bounded entropy, then the mollified gradient flow
ζε ∗ ρε,k(t) satisfies an H1 bound; see Theorem 4.1. In Section 4.1, we sketch our
proof of this result, formally integrating by parts, and in Sections 4.2-4.3, we prove
the result, using the flow interchange method developed by Matthes, McCann, and
Savaré [54].

In Section 5, we use the results of Section 4 to study the ε → 0 limit. In
Section 5.1, we obtain Γ-convergence of the energies Eε + Vε as ε → 0. In Section
5.2, we move on to considering convergence of the gradient flows of Fε,k as ε →
0 in Proposition 5.6, under the key hypothesis that the initial conditions of the
gradient flow have uniformly bounded entropy. Ultimately, we prove the gradient
flows converge to an “almost” curve of maximal slope (see Definition 5.2) of the
intermediate energy Fk, defined by

Fk(ρ) = E(ρ) + V(ρ) + Vk(ρ).(1.23)

We introduce the notion of an “almost” curve of maximal slope as a weakening of
the traditional notion of gradient flow. We need this weakening because we only
suppose ρ̄ is log-concave on Ω, instead of on all of Rd. Heuristically, this causes the
energy Fk to lack sufficient regularity to define its gradient flow. More precisely, our
weak assumptions on ρ̄ prevent us from characterizing the strong upper gradient of
Fk, which likewise prevent us from defining its curve of maximal slope.

In spite of the fact that our hypotheses on ρ̄ are too weak to identify the ε → 0
limit of gradient flows of the energies Fε,k as a true gradient flow, it turns out that
our notion of “almost” curve of maximal slope is sufficient to identify the behavior
as k → +∞. We consider this limit in Section 6, first obtaining Γ-convergence of the
energies Fk to F , as k → +∞, as well as our main theorem on convergence of the
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minimizers, Theorem 1.5. We then prove that, as k → +∞, the “almost” curves
of maximal slopes of Fk converge to the unique gradient flow of F . Combining
this with the ε → 0 result from the previous section, we prove our main result,
Theorem 1.1, showing that gradient flows of Fε,k converge to a gradient flow of F
as k → +∞ and ε → 0 sufficiently quickly. With these results in hand, we turn
in Section 6.1 to extending the preceding convergence results on the gradient flows
as ε → 0, k → +∞ to allow for gradient flows with particle initial data, thereby
obtaining the proof of Theorem 1.2. We also prove Corollary 1.3 on the long time
behavior of the particle method and Corollary 1.4 on the limit of two-layer neural
networks.

We close in Section 7 with several numerical examples illustrating key properties
of our method. We explore the dynamics and long time behavior of particle solu-
tions, for targets ρ̄ that satisfy the log-concavity assumptions of our main theorems,
as well as targets that fail this assumption but satisfy a Poincaré inequality. In both
cases, we observe that our particle discretization captures the behavior of the con-
tinuum PDE when V = 0 and flows toward ρ̄ on Ω in the long-time limit. We also
explore the effect of the confining potential Vk on the dynamics for various choices
of k, observing the qualitative agreement with no-flux boundary conditions on Ω,
as well as the quantitative effect on rate of convergence to (WPME) as N → +∞,
ε → 0. In the case of strong confinement (k = 109) and log-concave target ρ̄, we
observe first order convergence in N , with ε = 4/N0.99 on Ω = (−1, 1), both for the
rate of convergence of the particle method to solutions of (WPME) and for conver-
gence of the particle method to the target ρ̄ on Ω in the long time limit. Finally, as
our scheme preserves the gradient flow structure of (WPME), it succeeds in cap-
turing the exponential decay of the KL divergence along particle method solutions
(see inequality (1.5)), up to discretization error and is energy decreasing for Fε,k

for all values of N , ε, and k.
There are several directions for future work. Many of our results only lightly use

the assumption that ρ̄ is log-concave on Ω, and it would be interesting to remove
it. A key challenge in this direction is obtaining well-posedness of the gradient flow
of F in the absence of convexity of the energy and proving that the metric slope is
a strong upper gradient. A second direction for future work would be to improve
methods for computing or approximating f(x, y), as defined in (1.12), which drives
the dynamics of our system of ODEs. To compute this exactly involves integrating
the reciprocal of the target ρ̄ against the mollifiers, which can be done analytically
for a variety of targets ρ̄, including piecewise constant ρ̄; see Appendix C). Better
understanding of the minimal information required on ρ̄ required to approximate
(1.12) and the effect of this approximation on the dynamics would be important to
applying this method in practice, especially when only partial information of ρ̄ is
known. A third interesting open question would be to obtain quantitative results
on the rate of convergence depending on N ∈ N, ε > 0, and k ∈ N, particularly
if these quantitative estimates could be combined with existing estimates on the
long time behavior of (WPME) to provide convergence guarantees regarding the
convergence of the particle method to the target ρ̄ on Ω.

2. Preliminaries

2.1. Basic notation. For any r > 0 and x ∈ R
d we use Br(x) to denote the open

ball of center x and radius r. We write �S for the indicator function of a given
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subset S of Rd. i.e.,

�S(x) =

{

1 for x ∈ S,

0 otherwise.

We denote the d-dimensional Lebesgue measure by Ld.
Given μ ∈ P(Rd), we write μ 
 Ld if μ is absolutely continuous with respect to

Ld, in which case we will denote both the probability measure μ and its Lebesgue
density by the same symbol, e.g. dμ(x) = μ(x)dx. Finally, we let Lp(μ; Ω) denote
the Lebesgue space of functions f on Ω ⊆ R

d with |f |p being μ-integrable, and
abbreviate Lp(Ω) = Lp(Ld; Ω). (We commit a slight abuse of notation by using the
same notation for the Lebesgue spaces of real-valued and R

d-valued functions.)

2.2. Convolution and convergence of measures. A fundamental aspect of our
approach is the regularization of the energy (1.2) via convolution with a mollifier.
We now recall some elementary results on convolution of probability measures. For
any μ ∈ P(Rd) and φ ∈ L∞(Rd), the convolution of φ with μ is defined by,

φ ∗ μ(x) =
∫

Rd

φ(x− y) dμ(y) for all x ∈ R
d.

Throughout, we use the fact that the definition of convolution allows us to move
mollifiers from the measure to the integrand. In particular, for any f bounded
below and φ ∈ L1(Rd) even, we have,

(2.1)

∫

Rd

f d(φ ∗ μ) =
∫

Rd

f ∗ φ dμ.

Likewise, we often use the following mollifier exchange lemma, which provides suf-
ficient conditions for moving functions in and out of convolutions within integrals.

Lemma 2.1 (Mollifier exchange lemma, [19, Lemma 2.2]). Let f : Rd → R be
Lipschitz continuous with constant Lf > 0, and let σ and ν be finite, signed Borel
measures on R

d. There is p = p(q, d) > 0 so that,
∣
∣
∣
∣

∫

ζε ∗ (fν) dσ −
∫

(ζε ∗ ν)f dσ

∣
∣
∣
∣

≤ εpLf

(∫

(ζε ∗ |ν|) d|σ|+ Cζ |σ|(Rd)|ν|(Rd)

)

for all ε > 0.

We will often use the following notion of convergence:

Definition 2.2 (Narrow convergence). A sequence μn in P(Rd) is said to narrowly
converge to μ ∈ P(Rd) if

∫
fdμn →

∫
fdμ for all bounded and continuous functions

f .

For fixed φ ∈ Cb(R
d)∩L1(Rd) even and any sequence μn narrowly converging to

μ, we immediately obtain from the definition of narrow convergence that, for any
f ∈ Cb(R

d),
∫

f(φ ∗ μn) =

∫

(f ∗ φ)dμn
n→+∞−−−−−→

∫

(f ∗ φ)dμ =

∫

f(φ ∗ μ),(2.2)

so φ ∗ μn narrowly converges to φ ∗ μ. Moreover, we have:

Lemma 2.3 (Mollifiers and narrow convergence, [19, Lemma 2.3]). Suppose ζε is a
mollifier satisfying Assumption (M), and let με be a sequence in P(Rd) converging
narrowly to μ ∈ P(Rd). Then ζε ∗ με narrowly converges to μ.
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2.3. Optimal transport, the Wasserstein metric, and Wasserstein gradi-

ent flows. We now describe basic facts about optimal transport and the Wasser-
stein metric, which we will use in what follows. For further background, we refer
the reader to one of the many excellent textbooks on the subject [2, 3, 39, 66, 73].

For a Borel measurable map t : Rn → R
m, we say that t transports μ ∈ P(Rn) to

ν ∈ P(Rm) if ν(A) = μ(t−1(A)) for all measurable sets A. We call t a transport map
and denote ν as t#μ ∈ P(Rm), the push-forward of μ through t. For μ, ν ∈ P(Rd),
the set of transport plans from μ to ν is given by,

Γ(μ, ν) := {γ ∈ P(Rd × R
d) | π1

#γ = μ, π2
#γ = ν},

where π1, π2 : Rd×R
d → R

d are the projections of Rd×R
d onto the first and second

copies of Rd, respectively. For p ≥ 1, the p-Wasserstein distance [3, Chapter 7]
between μ, ν ∈ Pp(R

d) is given by,

(2.3) Wp(μ, ν) = min
γ∈Γ(μ,ν)

(∫

Rd×Rd

|x− y|pdγ(x, y)
)1/p

,

where the definitions of the p-th moment and the space Pp(R
d) were recalled in

(1.18) and (1.19). We say that a transport plan γ is optimal if it attains the
minimum in (2.3). We denote the set of optimal transport plans by Γ0(μ, ν).

We make the following observation: if γ is a transport plan from a measure μ
to a Dirac mass δ0, then γ = (id×0)#μ, where 0 denotes the function 0 : x �→ 0.
Using this in the definition (2.3), we obtain,

(2.4) W p
p (μ, δ0) =

∫

Rd×Rd

|x− y|pdγ(x, y) =
∫

Rd×Rd

|x− 0|pdμ(x) = Mp(μ).

Note that applying Hölder’s inequality in the definition of Wp(μ, ν) yields,

Wp(μ, ν) ≤ Wp′(μ, ν) for 1 ≤ p ≤ p′ and for all μ, ν ∈ Pp′(Rd).(2.5)

Convergence with respect to the p-Wasserstein metric is stronger than narrow
convergence of probability measures [3, Remark 7.1.11]. In particular, for p > 1, if
μn is a sequence in Pp(R

d) and μ ∈ Pp(R
d), we have,

Wp(μn, μ)→0 as n→∞ ⇐⇒ (μn→μ narrowly and Mp(μn)→Mp(μ) as n→∞) .

(2.6)

When p = 1, the analogous result holds if convergence of first moments is replaced
with the requirement that the first moments are uniformly integrable [3, Proposition
7.1.5].

In order to define Wasserstein gradient flows, we require the following notion of
regularity in time with respect to the Wasserstein metric.

Definition 2.4 (Absolutely continuous). We say μ : [0, T ] → P(Rd) is 2-absolutely
continuous on [0, T ], and write μ ∈ AC2([0, T ];P2(R

d)), if there exists f ∈ L2([0, T ])
so that,

W2(μ(t), μ(s)) ≤
∫ t

s

f(r) dr for all t, s ∈ (0, T ) with s ≤ t.(2.7)

Along such curves, we may define the metric derivative.

Definition 2.5 (Metric derivative). Given μ ∈ AC2([0, T ];P2(R
d)), the limit,

|μ′|(t) := lim
s→t

W2(μ(t), μ(s))

|t− s|
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exists for a.e. t ∈ [0, T ] and is called the metric derivative of μ.

In fact, the metric derivative is the minimal square integrable function satisfying
(2.7): for any μ ∈ AC2([0, T ];P2(R

d)), we have |μ′| ∈ L2((0, T )), and for any
function f satisfying (2.7), we have |μ′|(t) ≤ f(t) for a.e. t ∈ [0, T ] (see [3, Theorem
1.1.2]).

Geodesics form an important class of curves in the Wasserstein metric. Given
μ0, μ1 ∈ P2(R

d), the geodesics connecting μ0 to μ1 are the curves of the form,

μα = ((1− α)π1 + απ2)#γ for α ∈ [0, 1], γ ∈ Γ0(μ, ν).(2.8)

More generally, given μ1, μ2, μ3 ∈ P2(R
d), a generalized geodesic from μ2 to μ3

with base μ1 is given by,

(2.9) μ2→3
α =

(
(1− α)π2 + απ3

)

#
γ for α ∈ [0, 1] and γ ∈ P(Rd × R

d × R
d)

such that π1,2
#γ ∈ Γ0(μ1, μ2) and π1,3

#γ ∈ Γ0(μ1, μ3),

with π1,i : Rd×R
d×R

d → R
d×R

d the projection of R
d×R

d×R
d onto the first and

ith copies of Rd. Note that when the base μ1 coincides with one of the endpoints
μ2 or μ3, a generalized geodesic is a geodesic.

A key property for the uniqueness and stability of Wasserstein gradient flows is
convexity, or more generally semiconvexity, along generalized geodesics.

Definition 2.6 (Semiconvexity). A functional G : P2(R
d) → (−∞,∞] is semicon-

vex along generalized geodesics if there exists λ ∈ R such that, for all μ1, μ2, μ3 ∈
P2(R

d), there exists a generalized geodesic from μ2 to μ3 with base μ1 for which
the following inequality holds:

G(μ2→3
α ) ≤ (1− α)G(μ2) + αG(μ3)− α(1− α)

λ

2
W 2

2,γ(μ2, μ3) for all α ∈ [0, 1],

(2.10)

where,

W 2
2,γ(μ2, μ3) :=

∫

Rd×Rd×Rd

|π2 − π3|2 dγ(x, y, z).

In this case, we will sometimes say the functional is λ-convex. If a functional is
0-convex, we will say it is convex.

We recall the following sufficient condition for convexity, which is the Wasserstein
analogue of the “above the tangent line” characterization of convexity from finite
dimensional Euclidean space.

Lemma 2.7 (Above the tangent line property, [28, Proposition 2.8]). A functional
G : P2(R

d) → (−∞,∞] is λ-convex along generalized geodesics if, for all general-
ized geodesics μ2→3

α connecting μ2 to μ3 with base μ1, the map α �→ G(μ2→3
α ) is

differentiable for all α ∈ [0, 1] and,

G(μ3)− G(μ2)−
d

dα
G(μα

2→3)

∣
∣
∣
∣
α=0

≥ λ

2
W 2

2,γ(μ2, μ3).

For any functional G : P2(R
d) → (−∞,+∞], we denote its domain by D(G) =

{μ ∈ P2(R
d) | G(μ) < +∞}, and say that G is proper if D(G) �= ∅. For any measure

μ in the domain of a functional G, we may define the local slope of G at μ as follows.
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Definition 2.8 (Local slope). Given G : P2(R
d) → (−∞,∞], for any μ ∈ D(G),

the local slope is,

|∂G|(μ) = lim sup
ν→μ

(G(μ)− G(ν))+
W2(μ, ν)

,

where (s)+ = max{s, 0} denotes the positive part of s.

Next, we define the subdifferential of a functional G : P2(R
d) → (−∞,+∞]

that is lower semicontinuous with respect to Wasserstein convergence and λ-convex
along generalized geodesics.1

Definition 2.9 (Subdifferential of λ-convex functional). Suppose G : P2(R
d) →

(−∞,+∞] is proper, lower semicontinuous, and λ-convex along geodesics. Let
μ ∈ D(G) and ξ : R

d → R
d with ξ ∈ L2(dμ). We say that ξ belongs to the

subdifferential of G at μ, and write ξ ∈ ∂G(μ), if for all ν ∈ P2(R
d),

G(ν)− G(μ) ≥
∫

Rd×Rd

〈ξ(x), y − x〉 dγ(x, y) + λ

2
W 2

2 (μ, ν) for all γ ∈ Γ0(μ, ν).

(2.11)

Remark 2.10 (Subdifferential of sum). Note that if G1 and G2 satisfy the hypotheses
of Definition 2.9 and μ ∈ D(G1)∩D(G2), then for any ξ1 ∈ ∂G1(μ) and ξ2 ∈ ∂G2(μ),
we have ξ1 + ξ2 ∈ ∂(G1 + G2)(μ).

The local slope and subdifferential are related by Proposition 2.11, which is a
direct adaptation of [3, Lemma 10.1.5] to the case of functionals which contain
measures μ in their domain that are not necessarily absolutely continuous with
respect to Lebesgue measure. We defer the proof to Appendix A.

Proposition 2.11 (Local slope and minimal subdifferential). Suppose G : P2(R
d)

→ (−∞,+∞] is proper, lower semicontinuous, and λ-convex along generalized geo-
desics. Then for any μ ∈ D(|∂G|), we have,

|∂G|(μ) ≤ inf
{
‖ξ‖L2(μ) : ξ ∈ ∂G(μ)

}
.(2.12)

If equality holds and ξ attains the infimum, we will write ξ = ∂◦G(μ). In this case,
the element of the subdifferential attaining the infimum is unique.

We now turn to the definition of a gradient flow in the Wasserstein metric (c.f.
[3, Definition 1.1.1, Proposition 8.3.1, Definition 11.1.1, Theorem 11.1.3]).

Definition 2.12 (Gradient flow). Suppose G : P2(R
d) → (−∞,+∞] is proper,

lower semicontinuous, and λ-convex along generalized geodesics. A curve μ(t) ∈
AC2([0, T ];P2(R

d)) is a gradient flow of G in the Wasserstein metric if μ(t) is a
weak solution of the continuity equation,

(2.13) ∂tμ(t) +∇ · (v(t)μ(t)) = 0, in duality with C∞
c ((0, T )× R

d),

and

v(t) = −∂◦G(μ(t)) for L1-a.e. t ∈ [0, T ].

1Note that in Ambrosio, Gigli, and Savaré [3, Chapter 10] this is known as the reduced subd-

ifferential, which is stronger than their notion of extended subdifferential : see Definition 10.3.1 of
the extended subdifferential and equations (10.3.12)-(10.3.13) for the reduced subdifferential. The
reduced subdifferential is sufficient for our purposes, due to the fact that our main Γ-convergence
result considers gradient flow solutions that are absolutely continuous with respect to Lebesgue
measure, and we extend the convergence to particle initial data separately.
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Next, we recall sufficient conditions for well-posedness of the initial value problem
for the gradient flow, when the initial condition μ(0) is in the closure of the domain

of the energy D(G). We also recall equivalent characterizations of the gradient flow
as a curve of maximal slope and evolution variational inequality. As the theorem
is simply a collection of general results developed by Ambrosio, Gigli, and Savaré
[3], we defer its proof to Appendix A. Note that our notion of curve of maximal
slope differs slightly from Ambrosio, Gigli, and Savaré, since we use a version that
is integrated in time.

Theorem 2.13 (Well-posedness and characterization of gradient flow). Suppose
G : P2(R

d) → (−∞,+∞] is proper, lower semicontinuous, and λ-convex along gen-

eralized geodesics and μ(0) ∈ D(G). Then, there exists a unique gradient flow μ(t)
of G satisfying limt→0+ μ(t) = μ(0) in the Wasserstein metric.

Furthermore μ(t) ∈ AC2([0, T ];P2(R
d)) is the gradient flow of G if and only if

μ(t) satisfies one of the following equivalent conditions:

(i) Curve of Maximal Slope:

1

2

∫ t

0

|μ′|2(r)dr + 1

2

∫ t

0

|∂G|2(μ(r))dr ≤ G(μ(0))− G(μ(t)), for all t ∈ [0, T ].

(2.14)

(ii) Evolution Variational Inequality: For all ν ∈ P2(R
d) and for L1-a.e. t ∈

[0, T ],

1

2

d+

dt
W 2

2 (μ(t), ν) +
λ

2
W 2

2 (μ(t), ν) + G(μ(t)) ≤ G(ν).

2.4. Γ-convergence of energies and gradient flows. We now recall the general
framework of Γ-convergence of energies, which is a classical tool in the Calculus
of Variations. This provides sufficient conditions that, when combined with some
compactness, ensure minimizers of a sequence of energies converge to a minimizer of
a limiting energy. Next, we introduce a variant of Serfaty’s scheme of Γ-convergence
of gradient flows [67] that is weak enough to accommodate our assumptions on ρ̄.
In particular, it will allow us to study the limiting behavior of both gradient flows
of Fε,k in Section 5, as well as “almost” curves of maximal slope in Section 6.

We begin by recalling the notion of Γ-convergence of energies, focusing in partic-
ular on the case of energies defined on P(Rd), with respect to the narrow topology.

Definition 2.14 (Γ-convergence of energies). A sequence of functionals Gα : P(Rd)
→ R ∪ {+∞} is said to Γ-converge to G : P(Rd) → R ∪ {+∞} if:

for any sequence ρα ∈ P(Rd) converging narrowly

to ρ ∈ P(Rd), lim inf
α→0

Gα(ρα) ≥ G(ρ);(2.15)

for any ρ ∈ P2(R
d), there exists ρα ∈ P(Rd) converging

narrowly to ρ s.t. lim sup
α→0

Gα(ρ) ≤ G(ρ).(2.16)

Next, we prove Lemma 2.15, which provides sufficient conditions for compactness
of a sequence of absolutely continuous curves.
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Lemma 2.15 (Compactness of absolutely continuous curves). Fix T > 0. Suppose
we have a sequence {ρα}α>0 ⊆ AC2([0, T ];P2(R

d)) and

sup
α>0

∫ T

0

|ρ′α|2(r) dr < +∞ and sup
α>0

M2(ρα(0)) < +∞.(2.17)

Then there exists ρ ∈ AC2([0, T ];P2(R
d)) such that, along a subsequence α → 0,

W1(ρα(t), ρ(t)) → 0 uniformly in t ∈ [0, T ], and

(2.18) lim inf
α→0

∫ t

0

|ρ′α|2(r) dr ≥
∫ t

0

|ρ′|2(r) dr for every t ∈ [0, T ].

Proof. First, we shall produce ρ : [0, T ] → P2(R
d) and a subsequence ρα such that

W1(ρα(t), ρ(t)) → 0 uniformly in t ∈ [0, T ]. To this end, we use Proposition A.3,
together with hypothesis (2.17) to find that there exists C = C(T ) > 0, so that,
for all t ∈ [0, T ] and α > 0, ρα(t) belongs to the set {ρ : M2(ρ) ≤ C}. This set is
narrowly sequentially compact [3, Remark 5.1.5, Lemma 5.1.7] and has uniformly
integrable 1st moments [3, equation 5.1.20], so it is relatively compact in the 1-
Wasserstein metric [3, Proposition 7.1.5]. In particular, {ρα(t)}α>0 is relatively
compact with respect to the 1-Wasserstein metric, pointwise in time.

Next, using inequality (2.5) and hypothesis (2.17), we deduce equicontinuity with
respect to the 1-Wasserstein metric: for all 0 ≤ s ≤ t ≤ T ,

sup
α>0

W1(ρα(s), ρα(t)) ≤ sup
α>0

W2(ρα(s), ρα(t))

≤ sup
α>0

∫ t

s

|ρ′α|(r)dr

≤
√
t− s

(

sup
α>0

∫ T

0

|ρ′α|2(r)
)1/2

.

Therefore, the Ascoli-Arzelá theorem ensures that there exists ρ : [0, T ] → P2(R
d)

so that, up to a subsequence, W1(ρα(t), ρ(t)) → 0 uniformly in t ∈ [0, T ].
It remains to show ρ ∈ AC2([0, T ];P2(R

d)) and (2.18). To see this, note that
hypothesis (2.17) ensures {|ρ′α|(r)}α>0 is bounded in L2([0, T ]). Thus, up to another
subsequence, it is weakly convergent to some ν(r) ∈ L2([0, T ]). Thus, for all 0 ≤
s ≤ t ≤ T , using the lower semicontinuity of the 2-Wasserstein metric with respect
to narrow (hence 1-Wasserstein) convergence,

W2(ρ(s), ρ(t)) ≤ lim inf
α→0

W2(ρα(s), ρα(t)) ≤ lim inf
α→0

∫ t

s

|ρ′α|(r)dr =
∫ t

s

ν(r)dr.

This shows ρ ∈ AC2([0, T ];P2(R
d)). Furthermore, by [3, Theorem 1.1.2], it ensures

|μ′|(r) ≤ ν(r) for a.e. r ∈ [0, T ]. Thus, by lower semicontinuity of the L2([0, T ])
norm with respect to weak convergence, (2.18) holds. �

With the preceding result in hand, we now introduce our variant of Γ-convergence
of gradient flows. Our conditions strongly mirror Serfaty’s framework [67, Theorem
2], in the context of functionals defined on (P2(R

d),W2) that are lower semicon-
tinuous and semiconvex along generalized geodesics. The main difference is that
we do not identify either ‖ηα‖L2(ρα) or ‖η‖L2(ρ) in Proposition 2.16 as a strong
upper gradient of Fα or F . For this reason, we cannot conclude that either ρα or
ρ is a gradient flow of the respective energy. Our version of Serfaty’s framework
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allows us to accommodate our more general assumptions on ρ̄, while still ultimately
obtaining our main convergence result, Theorem 1.1.

Proposition 2.16. Let F ,Fα : P2(R
d) → R be functionals that are proper and

bounded from below uniformly in α, and suppose Fα Γ-converges to F as α → 0.
Fix T > 0. Suppose that, for all α > 0, there exists ρα ∈ AC2([0, T ];P2(R

d)) and,
for almost all r ∈ [0, T ], there exists ηα(r) ∈ L2(ρα(r)), such that

(2.19)
1

2

∫ t

0

|ρ′α|2(r) dr +
1

2

∫ t

0

∫

Rd

|ηα(r)|2 dρα(r) dr ≤ Fα(ρα(0))−Fα(ρα(t))

for all 0 ≤ t ≤ T.

Suppose also that there exists ρ(0) ∈ D(F) ∩ P2(R
d) so that

(2.20)
ρα(0)

α→0−−−→ ρ(0) narrowly, lim
α→0

Fα(ρα(0)) = F(ρ(0)),

and sup
α>0

M2(ρα(0)) < +∞.

Then, there exists ρ ∈ AC2([0, T ];P2(R
d)) so that, up to a subsequence in α,

lim
α→0

W1(ρα(r), ρ(r)) = 0 uniformly for r ∈ [0, T ].(2.21)

Furthermore, we have

(2.22)

1

2

∫ t

0

|ρ′|2(r)dr + 1

2

∫ t

0

(

lim inf
α→0

∫

Rd

|ηα(r)|2dρα(r)
)

dr ≤ F(ρ(0))−F(ρ(t))

for all 0 ≤ t ≤ T.

Proof. By (2.20), we may assume,

(2.23) sup
α

Fα(ρα(0)) < +∞.

Using this, together with our assumption that Fα is bounded from below uniformly
in α, we see that the right-hand side of (2.19) is bounded from above uniformly

in α. From this we deduce supα
∫ t

0
|ρ′α|2(r) dr < +∞. Therefore, we may apply

Lemma 2.15. We find that there exists ρ ∈ AC2([0, T ];P2(R
d)) such that (2.21)

holds along a subsequence α → 0 and we also have,

(2.24) lim inf
α→0

∫ t

0

|ρ′α|2(r) dr ≥
∫ t

0

|ρ′|2(r) dr for all t ∈ [0, T ].

Now, taking lim infα→0 of (2.19), we find, for all t ∈ [0, T ],

(2.25)
1

2

∫ t

0

|ρ′|2(r) dr + lim inf
α→0

1

2

∫ t

0

∫

Rd

|ηα(r)|2 dρα(r) dr

≤ lim inf
α→0

(F(ρα(0))−F(ρα(t))) .

The Γ-convergence of Fα to F and the narrow convergence of ρα(t) to ρ(t) (which
follows from the convergence in 1-Wasserstein), as well as the hypothesis (2.20),
imply the following upper bound for the right-hand side of the previous line:

F(ρ(0))−F(ρ(t)) ≥ lim sup
α→0

F(ρα(0))−F(ρα(t)) ≥ lim inf
α→0

F(ρα(0))−F(ρα(t)).
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Finally, we use Fatou’s Lemma to bound the second term on the left-hand side of
(2.25) from below. Together with the previous line, this yields the desired estimate
(2.22). �

3. Gradient flows of energies with regularization and confinement

We now prove several fundamental properties of the internal energy E and the
regularized internal energy Eε, with the addition of external potential energies, V
and Vε, as well as the confining energies, Vk and VΩ. In particular, we will charac-
terize their lower semicontinuity, convexity, and subdifferentiability. Each of these
properties provides information about the one-sided regularity of the energy func-
tional, its first derivative, and its second derivative with respect to the Wasserstein
metric. Since our study of gradient flows only considers well-posedness of the flow
forward in time (which is natural given that our motivating equation is a diffu-
sion equation), these one-sided estimates on the energy functionals’ regularity are
sufficient for our analysis. We will close the section by applying these properties
to characterize the gradient flows of these energies in terms of partial differential
equations.

3.1. Fundamental properties of energies. First, we recall that the functionals
E and Eε are lower semicontinuous with respect to narrow convergence. Since
narrow convergence is weaker than Wasserstein convergence, this in turn implies
lower semicontinuity with respect to Wasserstein convergence. The proof of this
result is standard, and we defer it to Appendix B.

Lemma 3.1 (Lower semicontinuity of E and Eε). Suppose Assumptions (T) and
(M) are satisfied. Then, for all ε > 0, the functionals E and Eε are lower semicon-
tinuous with respect to narrow convergence.

The lower semicontinuity of the external potential energies, V and Vε, and the
confining energies, Vk and VΩ, with respect to narrow convergence is an immediate
consequence of the Portmanteau theorem, see e.g. [3, Lemma 5.1.7], since they all
are obtained by integrating a function that is lower semicontinuous and bounded
below against ρ.

Lemma 3.2 (Lower semicontinuity of V , Vε, Vk, VΩ). Under Assumptions (M),
(D), (V), and (C), the energies V, Vε, Vk, and VΩ are lower semicontinuous with
respect to narrow convergence.

The convexity of the energies E , V , Vε, Vk, and VΩ follows immediately from the
theory developed by Ambrosio, Gigli, and Savaré [3]. We recall these results in the
following proposition. The proof of Proposition 3.3 is an immediate consequence of
existing theory, so we defer it to Appendix B.

Proposition 3.3 (Convexity properties of E + VΩ, V , Vε, and Vk).

(i) Suppose ρ̄ is log-concave on Ω, where ρ̄ satisfies Assumption (T) and Ω sat-
isfies Assumption (D). Then E + VΩ is convex along generalized geodesics.

(ii) Suppose Assumptions (M), (V), and (C) hold. Then V and Vε are λ-
convex along generalized geodesics, for λ = inf{x,ξ∈Rd} ξ

tD2V (x)ξ, and Vk

is convex along generalized geodesics.

We now aim to show that Eε is also semiconvex for all ε > 0. In order to
accomplish this, we begin by characterizing the directional derivative of Eε. For
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the reader’s convenience, we also recall the directional derivatives of the external
potential energies V , Vε, and Vk, which have been studied extensively in previous
works; see, for example, [3, Proposition 10.4.2].

Proposition 3.4 (Directional derivatives of Eε, V , Vε, and Vk). Suppose As-
sumptions (T), (M), (V) and (C) hold. Fix ε > 0, ν1, ν2, ν3 ∈ P2(R

d), and
γ ∈ P2(R

d × R
d × R

d) with πi
#γ = νi. Consider the curve,

μα =
(
(1− α)π2 + απ3

)

#
γ for α ∈ [0, 1].

Then,

d

dα
Eε(μα)

∣
∣
∣
∣
α=0

=

∫
ζε ∗ ν2(x)

ρ̄(x)

∫
〈
∇ζε

(
x− y2

)
, y3 − y2

〉
dγ(y1, y2, y3) dx,

d

dα
V(μα)

∣
∣
∣
∣
α=0

=

∫

〈∇V (y2), y3 − y2〉 dγ(y1, y2, y3),

d

dα
Vε(μα)

∣
∣
∣
∣
α=0

=

∫

〈∇(ζε ∗ V )(y2), y3 − y2〉 dγ(y1, y2, y3),

d

dα
Vk(μα)

∣
∣
∣
∣
α=0

=

∫

〈∇Vk(y2), y3 − y2〉 dγ(y1, y2, y3).

Remark 3.5. Note that if γ ∈ P2(R
d×R

d×R
d) satisfies the hypotheses in the defi-

nition of generalized geodesic (2.9), then γ satisfies the assumptions of Proposition
3.4.

Proof. We begin with the characterization of the directional derivative
d
dαEε(μα)

∣
∣
α=0

. As a first step in this direction, we estimate d
dαζε ∗ μα

∣
∣
α=0

. For all

x ∈ R
d and α ∈ [0, 1],

(3.1)
1

α
(ζε ∗ μα(x)− ζε ∗ μ0(x))

=

∫
1

α
[ζε(x− ((1− α)y2 + αy3))− ζε(x− y2)] dγ(y1, y2, y3).

By the mean value theorem for ζε, we may bound the integrand by,

1

α
‖∇ζε‖∞ |((1− α)y2 + αy3)− y2| ≤ ‖∇ζε‖∞ |y3 − y2| ∈ L1(γ),(3.2)

where the integrability holds since

M1(γ) ≤ M2(γ)
1/2 = (M2(ν1) +M2(ν2) +M2(ν3))

1/2
< +∞.

Thus, by the dominated convergence theorem,

lim
α→0

1

α
(ζε ∗ μα(x)− ζε ∗ μ0(x))

=

∫

lim
α→0

1

α
[ζε(x− ((1− α)y2 + αy3))− ζε(x− y2)] dγ(y1, y2, y3)

=

∫

〈∇ζε(x− y2), y3 − y2〉 dγ(y1, y2, y3).(3.3)
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Now, we use this to compute d
dαEε(μα)

∣
∣
α=0

. First, note that we may express
the difference quotient as,

1

α
(Eε(μα)− Eε(μ0))

(3.4)

=
1

2α

∫
(
(ζε ∗ μα)

2(x)− (ζε ∗ μ0)
2(x)

)
ρ̄(x)−1dx

=

∫
1

2α
[(ζε ∗ μα)(x) + (ζε ∗ μ0)(x)] [(ζε ∗ μα)(x)− (ζε ∗ μ0)(x)] ρ̄(x)

−1dx.

By equations (3.1)-3.2 and the fact that ρ̄ is uniformly bounded below, the integrand
is dominated by,

gα(x) := C [(ζε ∗ μα)(x) + (ζε ∗ μ0)(x)] for C = ‖∇ζε‖∞‖ρ̄−1‖∞M1(γ).

The narrow convergence of μα to μ0 as α → 0, and the fact that ζε is bounded and
continuous, ensures that gα(x) → 2C(ζε ∗ μ0)(x) pointwise. Furthermore,

lim
α→0

∫

gα(x)dx = lim
α→0

C

∫

ζε ∗ μα(x)dx+ C

∫

ζε ∗ μ0(x)dx = 2C.

Therefore, by the generalized dominated convergence theorem [65, Chapter 4, The-
orem 19] and equations (3.3) and (3.4),

lim
α→0

1

α
(Eε(μα)− Eε(μ0))

=

∫

lim
α→0

1

2α
[(ζε ∗ μα)(x) + (ζε ∗ μ0)(x)] [(ζε ∗ μα)(x)− (ζε ∗ μ0)(x)] ρ̄(x)

−1dx

=

∫
(ζε ∗ μ0)(x)

ρ̄(x)

∫

〈∇ζε(x− y2), y3 − y2〉 dγ(y1, y2, y3) dx.

Next we consider the directional derivative d
dαV(μα)

∣
∣
α=0

. By definition of V and
μα,

lim
α→0

1

α
(V(μα)− V(μ0)) = lim

α→0

∫
1

α
[V ((1− α)y2 + αy3)− V (y2)] dγ(y1, y2, y3).

By the mean value theorem for V , we may bound the integrand by,

1

α
‖∇V ‖∞| ((1− α)y2 + αy3)− y2| ≤ ‖∇V ‖∞|y3 − y2| ∈ L1(γ).

Thus, by the dominated convergence theorem,

lim
α→0

1

α
(V(μα)− V(μ0)) =

∫

lim
α→0

1

α
[V ((1− α)y2 + αy3)− V (y2)] dγ(y1, y2, y3)

=

∫

〈∇V (y2), y3 − y2〉 dγ(y1, y2, y3),

which gives the result. The result for Vε follows exactly as above, replacing V with
(ζε ∗ V ).

Finally, we consider the directional derivative of Vk. By definition of Vk and
μα and the assumption that Vk ∈ C2 with ‖D2Vk‖∞ < +∞, we may apply the
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Fundamental Theorem of Calculus to conclude,

lim
α→0

1

α
(Vk(μα)− Vk(μ0))

= lim
α→0

1

α

∫

Rd

[Vk ((1− α)y2 + αy3)− Vk(y2)] dγ(y1, y2, y3),

= lim
α→0

1

α

∫

Rd

∫ α

0

∫ β

0

(y3 − y2)
tD2Vk((1− s)y2 + sy3)(y3 − y2) ds dβ

+ α 〈∇Vk(y2), y3 − y2〉 dγ(y1, y2, y3)

=

∫

Rd

〈∇Vk(y2), y3 − y2〉 dγ(y1, y2, y3),

where the first term vanishes sinceD2Vk ∈ L∞(Rd) and
∫
|y3−y2|2dγ ≤ 2(M2(ν1)+

M2(ν2)) < +∞. �

Using this characterization of the directional derivative of Eε, we now prove that

our energy Eε is λε-convex along generalized geodesics, where λε
ε→0−−−→ −∞.

Proposition 3.6 (Semiconvexity of Eε). Suppose Assumptions (T) and (M) hold.
For all ε > 0, the functional Eε is λε-convex along generalized geodesics, where,

(3.5) λε = −‖1/ρ̄‖L∞(Rd)‖D2ζε‖L∞(Rd) = −ε−d−2‖1/ρ̄‖L∞(Rd)‖D2ζ‖L∞(Rd).

Proof. Let (μ2→3
α )α∈[0,1] be a generalized geodesic with base μ1 ∈ P2(R

d) connect-

ing two probability measures μ2, μ3 ∈ P2(R
d), and let γ ∈ P2(R

d×R
d×R

d) be the
associated measure as defined in (2.9). Since x �→ x2 is a convex function, using
the above the tangent inequality for convex functions yields,

Eε(μ3)− Eε(μ2) =
1

2

∫ (
ζε ∗ μ3(x)

)2

ρ̄(x)
dx− 1

2

∫ (
ζε ∗ μ2(x)

)2

ρ̄(x)
dx

≥
∫

ζε ∗ μ2(x)

ρ̄(x)
(ζε ∗ μ3(x))− ζε ∗ μ2(x)) dx

=

∫
ζε ∗ μ2(x)

ρ̄(x)

(∫∫∫

ζε(x− y3)− ζε(x− y2)

)

dγ(y1, y2, y3) dx.

Therefore, by Proposition 3.4,

Eε(μ3)− Eε(μ2)−
d

dα
Eε(μ2→3

α )

∣
∣
∣
∣
α=0

≥
∫

ζε ∗ μ2(x)

ρ̄(x)

(∫∫∫

ζε(x− y3)− ζε(x− y2)

−
〈
∇ζε

(
x− y2

)
, y2 − y3

〉
dγ(y1, y2, y3)

)

dx

≥ −‖D2ζε‖L∞(Rd)

2

∫
ζε ∗ μ2(x)

ρ̄(x)
dx

∫∫∫

|y2 − y3|2dγ(y1, y2, y3)dx

≥ −‖1/ρ̄‖L∞(Rd)‖D2ζε‖L∞(Rd)

2
W 2

2,γ(μ2, μ3),

where we have applied Young’s inequality to conclude that ‖ζε ∗μ2‖L1(Rd) = 1. By
Lemma 2.7, this gives the result. �
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The preceding results ensure that our energies E + VΩ, Eε,V ,Vε, and Vk are
proper, lower semicontinuous, and semiconvex along generalized geodesics. Thus,
the gradient flows of each of their energies, as well as the sum of any of the en-
ergies, are well-posed, by Theorem 2.13, for any initial conditions in the closure
of their domains. However, in order to characterize these gradient flows in terms
of partial differential equations and prove our main Γ-convergence result, we must
now characterize the minimal elements of their subdifferentials.

We begin with Proposition 3.7, identifying elements in the subdifferential of Eε,
V , Vε, and Vk. Note that the subdifferentials of V , Vε, and Vk were characterized
in previous work [3, Proposition 10.4.2], and we recall key parts of these results in
item (ii) below for the reader’s convenience.

Proposition 3.7 (Subdifferentials of Eε, V , Vε, and Vk).

(i) Suppose Assumptions (T) and (M) hold. For all ε > 0 and μ ∈ D(Eε), we
have ∇ δEε

δμ ∈ ∂Eε(μ), where δEε

δμ = ζε ∗ ((ζε ∗ μ) /ρ̄).
(ii) Suppose Assumptions (M), (V), and (C) hold. For all μ ∈ D(V), we have

∇V ∈ ∂V(μ). Similarly, for all μ ∈ D(Vε), we have ∇(ζε ∗ V ) ∈ ∂Vε(μ),
and, for all μ ∈ D(Vk), we have ∇Vk ∈ ∂Vk(μ).

Proof. We begin with the proof of (i). Fix μ, ν ∈ P2(R
d) and γ ∈ Γ0(μ, ν). Let

μα = ((1 − α)π1 + απ2)#γ be a geodesic from μ to ν. By Proposition 3.6, Eε is
λε-convex along generalized geodesics, so in particular, it is convex along μα, and
Lemma 2.7 ensures,

Eε(ν)− Eε(μ)−
d

dα
Eε(μα)

∣
∣
∣
∣
α=0

≥ λε

2
W 2

2 (μ, ν).

Rearranging and applying Proposition 3.4, with γ̃ = (π1, π1, π2)#γ, and Fubini’s
theorem, yields,

Eε(ν)− Eε(μ)

≥
∫

ζε ∗ μ(x)
ρ̄(x)

∫
〈
∇ζε

(
x− y2

)
, y2 − y3

〉
dγ̃(y1, y2, y3) dx+

λε

2
W 2

2 (μ, ν)

=

∫
ζε ∗ μ(x)
ρ̄(x)

∫
〈
∇ζε

(
x− y1

)
, y1 − y2

〉
dγ(y1, y2) dx+

λε

2
W 2

2 (μ, ν)

=

∫ 〈

∇ζε ∗
(
ζε ∗ μ
ρ̄

)

(y1), y2 − y1

〉

dγ(y1, y2) +
λε

2
W 2

2 (μ, ν)

=

∫ 〈

∇δEε
δμ

(y1), y2 − y1

〉

dγ(y1, y2) +
λε

2
W 2

2 (μ, ν).

This shows ∇ δEε

δμ ∈ ∂Eε(μ), by Definition 2.9 of the subdifferential.

For item (ii), we will show the result for V , since the result for Vε and Vk follows
from the same argument, simply via replacing V with ζε ∗ V and Vk, respectively.
Let ν, μ, γ, and γ̃ be as in the proof of item (i). Applying Lemma 2.7, Proposition
3.3, Proposition 3.4, and rearranging, again as in the proof of (i), yields,

V(ν)− V(μ) ≥
∫

〈∇V (y2), y3 − y2〉 dγ̃(y1, y2, y3) +
λ

2
W 2

2 (ν, μ)

=

∫

〈∇V (y1), y2 − y1〉 dγ(y1, y2) +
λ

2
W 2

2 (ν, μ),

which shows ∇V ∈ ∂V(μ), by Definition 2.9 of the subdifferential. �
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Next, we characterize the minimal subdifferential of the energy Fε,k = Eε+Vε+Vk

for all ε > 0, k ∈ N. The proof is standard, and we defer it to Appendix B.

Proposition 3.8 (Minimal subdifferential of Fε,k). Suppose Assumptions (T),
(M), (V), and (C) hold. For all ε > 0 and k ∈ N, μ ∈ D(Fε,k),

∇∂Eε
∂μ

+∇(ζε ∗ V ) +∇Vk = ∂◦Fε,k(μ).(3.6)

Finally, we close by recalling Ambrosio, Gigli, and Savaré’s characterization of
the minimal subdifferential of F [3, Theorems 10.4.9-10.4.13].

Proposition 3.9 (Minimal subdifferential of F , [3, Theorems 10.4.9-10.4.13]). As-
sume (T), (V), (D) hold and that ρ̄ is log-concave on Ω. Given μ ∈ D(F), we have

|∂F|(μ) < +∞ if and only if (μ/ρ̄)2 ∈ W 1,1
loc (Ω) and there exists ξ ∈ L2(μ) so that,

ξμ =
ρ̄

2
∇(μ/ρ̄)2 +∇V μ on Ω.

In this case, ξ ∈ ∂◦F(μ).

3.2. Differential equation characterization of gradient flows. We close by
identifying the differential equations that characterize gradient flows of Fε,k and
F . These proofs are natural consequences of the properties of the energies proved
in the previous section and the definition of gradient flow, so we defer them to
Appendix B.

Proposition 3.10 (PDE characterization of GF of F). Assume (V), (T), (D)

hold and ρ̄ is log-concave on Ω. For every μ0 ∈ D(F), we have that μ(t) ∈
AC2([0, T ];P2(R

d)) is the unique Wasserstein gradient flow of F with initial data
μ0 if and only if μ(t) satisfies,

(3.7)

{

∂tμ−∇ ·
(

ρ̄
2∇

(
μ2

ρ̄2

)

+∇V μ
)

= 0, in duality with C∞
c (Rd × (0,∞)),

limt→0+ μ(t) = μ0 in W2,

and satisfies,

μ(t) 
 Ld, μ = 0 Ld-a.e. on R
d \ Ω, and (μ(t)/ρ̄)2 ∈ W 1,1

loc (Ω) for L1-a.e. t > 0,

(3.8)

∫

Rd

∣
∣ρ̄ ∇

(
μ(t)2/ρ̄2

)
/(2μ) +∇V

∣
∣
2
dμ ∈ L1

loc(0,∞).

(3.9)

Remark 3.11 (Relationship with existing work on nonlinear diffusion equations).
First, note that if Ω is compact, then the weak formulation of the PDE in equation
(3.7) implies that the PDE also holds in the duality with C∞((0,+∞)×Ω), which
is a weak formulation of the no-flux boundary conditions,

ρ̄

2
∂n

(
μ2

ρ̄2

)

+ ∂nV μ = 0 on ∂Ω,(3.10)

since the test functions are merely required to be compactly supported R
d×(0,+∞),

not Ω× (0,+∞). In particular, if μ is a smooth classical solution of (WPME) with
no-flux boundary conditions, it solves (3.7).

In [62], Otto pioneered the connection between PDEs and Wasserstein gradient
flows, characterizing solutions to homogeneous porous medium equations (ρ̄ = 1)
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without boundary (Ω = R
d) as gradient flows of the internal energy F(ρ) = 1

2

∫
ρ2.

The notion of solution used in this previous work is stronger than the one in Propo-
sition 3.10. In particular, if ρ is a solution to the porous medium equation in this
previous sense [62, Definition 1], then it is a solution of (3.7), hence a gradient flow
in the sense defined here.

More recently, Dolbeault et al. [33] and Grillo, Muratori, and Porzio [42] consider
well-posedness of (WPME). If u is smooth enough, it is a solution to [42, equation
(1.1)] (with ρν = ρμ = ρ̄, and with Ω = R

d) if and only if μ := ρ̄u satisfies (3.7).
More precisely comparing our notion of solution with [42, Definition 3.5], we observe
that our definition requires the same regularity in space, stronger regularity in time,
and we employ a smaller class of test functions.

Next, we provide a PDE characterization of the gradient flow of Fε,k, the proof
of which we again defer to Appendix B.

Proposition 3.12 (PDE characterization of GF of Fε,k). Suppose Assumptions

(T), (M), (V), and (C) hold. For every μ0 ∈ D(Fε,k), we have that μ(t) ∈
AC2([0, T ];P2(R

d)) is the unique Wasserstein gradient flow of Fε,k with initial
data μ0 if and only if μ(t) satisfies,

⎧

⎪⎪⎨

⎪⎪⎩

∂tμ−∇ ·
(

μ

(

∇ζε ∗
(
ζε ∗ μ
ρ̄

)

+∇(ζε ∗ V ) +∇Vk

))

= 0,

in duality with C∞
c (Rd × (0,∞)),

limt→0+ μ(t) = μ0 in W2.

(3.11)

Finally, we characterize the dynamics of the gradient flow of Fε,k when the
initial data is given by an empirical measure. We show that it remains an empirical
measure for all time, that is, “particles remain particles”, and we explicitly state
the ODE that characterizes the empirical measure’s evolution. The proof is in
Appendix B.

Proposition 3.13 (Particle evolution for Fε,k). Suppose Assumptions (T), (M),
(V), and (C) hold. Fix ε > 0, N ∈ N, {X1

0 , . . . , X
N
0 } ∈ R

d, and {m1, . . . ,mN} ∈
R+ satisfying

∑N
i=1 m

i = 1. Then, there exists a unique continuously differentiable

function X : [0,∞) → R
Nd, with components (X1(t), . . . , XN (t)), that satisfies the

system,
(3.12)
{

Ẋi = −∑N
j=1 m

j
∫

Rd ∇ζε(X
i−z)ζε(z−Xj) 1

ρ̄(z) dz−∇(ζε ∗ V )(Xi)−∇Vk(X
i),

Xi(0) = Xi
0.

Moreover, μ(t) :=
∑N

i=1 δXi(t)m
i is the unique Wasserstein gradient flow of Fε,k

with initial conditions μ(0).

3.3. Long-time behavior. We conclude this section by recalling known properties
of the long time behavior of (WPME) or, equivalently, gradient flows of F , which
motivate its connection to quantization.

Proposition 3.14 (Long time behavior, [3]). Assume (D), (T) hold V = 0, Ω is
bounded, and ρ̄ is log-concave on Ω. Let ρ0 ∈ D(F) and let ρ(t) be the gradient
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flow ρ of F with initial data ρ0. Then we have,

lim
t→+∞

W2

(

ρ(t),
�Ωρ̄∫

Ω
ρ̄ dLd

)

= 0.

Proof. This is an immediate consequence of [3, Corollary 4.0.6]. �

4. An H1 bound on the mollified gradient flow of Fε,k

A key element in our proof of the convergence of the gradient flows of Fε,k

to a gradient flow of Fk as ε → 0 is the following H1-type bound on ζε ∗ ρε(t)
(the mollified gradient flow of Fε,k) in terms of the energy, second moment, and
entropy of the initial data. We remark that this bound holds without a log-concavity
assumption on ρ̄.

Theorem 4.1 (H1 bound on mollified GF of Fε,k). Assume (T), (M), (V), and (C)
hold. There exist positive constant Cρ̄ and CV , depending on ρ̄, V , and Vk, so that,
for all T > 0, k ∈ N, and ε > 0 and for any gradient flow ρε ∈ AC2([0, T ];P2(R

d))
of Fε,k, we have,

∫ T

0

‖∇ζε ∗ ρε(t)‖2L2(Rd) dt

(4.1)

≤ Cρ̄

(

S(ρε(0)) + (2π)d/2 + (1 + T + TeT ) (M2(ρε(0)) + 2Fε,k(ρε(0)) + CV )
)

.

4.1. Proof sketch. First, we describe a formal argument to obtain inequality (4.1),
and then we explain how to make the argument rigorous. By Proposition 3.12, ρε(t)
is a weak solution of the PDE,

(4.2) ∂tρε = ∇ ·
(

ρε∇ζε ∗
(
ζε ∗ ρε

ρ̄

)

+ ρε∇(ζε ∗ V ) + ρε∇Vk

)

,

in the duality with C∞
c (Rd × (0,∞)). Thus, formally evaluating the entropy S(ρ)

along the gradient flow, differentiating in time, and integrating by parts, we obtain,

d

dt
S(ρε)(t)

(4.3)

=

∫

Rd

log(ρε)∂tρε dLd

= −
∫

Rd

〈

∇ρε,∇ζε ∗
(
ζε ∗ ρε

ρ̄

)〉

+ 〈∇ρε,∇(ζε ∗ V )〉+ 〈∇ρε,∇Vk〉 dLd

= −
∫

Rd

|∇ζε ∗ ρε|2
ρ̄

+

〈

∇(ζε ∗ ρε), (ζε ∗ ρε)∇
(
1

ρ̄

)〉

+ 〈∇(ζε ∗ ρε),∇V 〉 − ρεΔVk dLd

≤ −Cρ̄‖∇ζε ∗ ρε‖L2(Rd) −
∫

Rd

〈

∇(ζε ∗ ρε), (ζε ∗ ρε)∇
(
1

ρ̄

)

+∇V

〉

− ρεΔVk dLd,

where the final inequality holds for some Cρ̄ > 0 since ρ̄ is uniformly bounded
below.

We notice that the first term on the right-hand side is, up to a (good) sign, a
constant, and an integration in time, exactly what appears on the left-hand side
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of our desired inequality (4.1). To control the other two terms, we apply Cauchy’s
inequality and our hypotheses on ρ̄, V and Vk to find,

d

dt
S(ρε)(t) ≤ −Cρ̄‖∇ζε ∗ ρε‖L2(Rd) +

Cρ̄

2
‖∇ζε ∗ ρε‖L2(Rd) + C‖ζε ∗ ρε‖2L2(Rd) + C ′,

where C,C ′ > 0 are constants depending on ρ̄, V , and Vk. (We make the depen-
dencies more precise in the actual proof). Integrating in time from 0 to T and
rearranging, we obtain

Cρ̄

2

∫ T

0

‖∇ζε ∗ ρε‖2L2(Rd) ≤ S(ρε(0))− S(ρε(T )) + C

∫ T

0

‖ζε ∗ ρε‖2L2(Rd) + C ′.

As we describe below, we may use a Carleman-type estimate to bound S(ρε(T ))
from below in terms of a dimension dependent constant plus M2(ρε(T )), which
by Corollary A.4 can then be controlled by M2(ρε(0)), Fε,k(ρε(0)), and T > 0.
Likewise, we may bound ‖ζε ∗ ρε‖2L2(Rd) from above by C ′

ρ̄Fε,k(ρε(t)) for C ′
ρ̄ > 0,

which can then be controlled by C ′′
ρ̄Fε,k(ρε(0)), since the energy decreases along

the gradient flow. In this way, we obtain inequality (4.1).
The key difficulty in making the above argument rigorous is justifying the time

differentiation of the entropy, in the absence of relevant a priori estimates for ρε.
In order to overcome this difficulty, Matthes, McCann, and Savaré introduced the
flow interchange method [54]. This method strongly leverages the heuristic in-
terpretation of the 2-Wasserstein metric as an infinite dimensional Riemannian
manifold with inner product 〈·, ·〉W2,ρ

; see [73, Chapter 8.2] for more details on

this interpretation, originally discovered by Otto [62]. Suppose that ρε(t) and μ(t)
are, respectively, the gradient flows of the energy Fε,k and the entropy S, and we
have ρε(0) = μ(0). The flow interchange method is based on the following formal
observation, with ∇W2

denoting the Wasserstein gradient:

d

dt
S(ρε)

∣
∣
∣
∣
t=0

= 〈∇W2
S(ρε), ∂tρε〉W2,ρε

∣
∣
∣
t=0

= − 〈∇W2
S(ρε),∇W2

Fε,k(ρε)〉W2,ρε

∣
∣
∣
t=0

= − 〈∇W2
S(μ),∇W2

Fε,k(μ)〉W2,μ

∣
∣
∣
t=0

= 〈∂tμ,∇W2
Fε,k(μ)〉W2,μ

∣
∣
∣
t=0

=
d

dt
Fε,k(μ)

∣
∣
∣
∣
t=0

.

Consequently, at a fixed time, differentiating Fε,k along the gradient flow of S
should give the same result as equation (4.3). The former is much easier to justify
in practice, since the gradient flow μ(t) of S with initial data μ(0) is precisely the
solution of the heat equation on R

d with initial data μ(0) [3, Examples 11.2.7], for
which we have robust a priori estimates.

Note that, since the entropy S is a 0-convex energy [3, Proposition 9.3.9], the
evolution variational inequality characterization of gradient flows, recalled in The-
orem 2.13, ensures that if μ(t) is the gradient flow of S, then for all ν ∈ P2(R

d)
and for L1-a.e. t ≥ 0,

1

2

d+

dt
W 2

2 (μ(t), ν) + S(μ(t)) ≤ S(ν).(4.4)
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4.2. Preliminaries for the proof. Now, we introduce the machinery we need for
our rigorous argument, following the outline described above. To avoid differenti-
ating S(ρε) in time, we work with the discrete time analogue of the gradient flow
of Fε,k, given by the minimizing movement scheme (see Definition A.1).

Definition 4.2 (Minimizing movement scheme for Fε,k). Given μ ∈ P2(R
d), let

Jnτ,ε μ denote the nth step of the minimizing movement scheme of Fε,k with time

step τ and initial data J0τ,ε μ = μ.

Due to the robust a priori estimates available for solutions of the heat equation,
we will work with continuous time gradient flow of S.

Definition 4.3 (Heat flow semigroup). Given μ ∈ P2(R
d) and h ≥ 0, we will let

Sh μ denote the (continuous time) gradient flow of S with initial data μ at time h;
in other words, Sh is the heat flow semigroup operator.

We will use the fact that, for any μ ∈ P2(R
d), we have,

(4.5) ζε ∗ (Sh(μ)) = Sh(ζε ∗ μ).

A key step in the proof is computing the derivatives in h of Eε(Sh(J
n
τ,εμ)),

Vε(Sh(J
n
τ,εμ)), and Vk(Sh(J

n
τ,εμ)) at h = 0. We separate this step into a sepa-

rate lemma:

Lemma 4.4 (Derivatives along Sh(J
n
τ,ε μ)). Assume (T), (M), (V), and (C) hold.

Let μ ∈ P2(R
d). We have,

lim sup
h→0+

Eε(Jnτ,ε μ)− Eε(Sh(Jnτ,ε μ))
h

= −
∫

Rd

1

ρ̄
Δ(ζε ∗ Jnτ,ε μ)

(
ζε ∗ Jnτ,ε μ

)
dLd,(4.6)

lim sup
h→0+

Vε(J
n
τ,ε μ)− Vε(Sh(J

n
τ,ε μ))

h
=

∫

Rd

〈
∇V,∇(ζε ∗ Jnτ,ε μ)

〉
dLd, and(4.7)

lim sup
h→0+

Vk(J
n
τ,ε μ)− Vk(Sh(J

n
τ,ε μ))

h
= −

∫

Rd

ΔVk d J
n
τ,ε μ.(4.8)

Our proof of Lemma 4.4 relies on two key facts, which we now recall. First, for
any ν ∈ P2(R

d),

(4.9) the map h �→ Sh ν is narrowly continuous;

that is, h �→
∫
f d Sh ν is continuous for any bounded and continuous function f .

This holds since Sh ν, by virtue of being the gradient flow of S, is in
AC2([0, T ];P2(R

d)), hence h �→ Sh ν is continuous with respect to W2, which im-
plies narrow continuity.

The second fact we will use is that, for any for any ν ∈ P2(R
d) and φ ∈ C1

c (R
d),

(4.10)

∫

Rd

φ dSh ν −
∫

Rd

φ dν = −
∫ h

0

∫

Rd

〈∇φ(y),∇ St ν(y)〉 dy dt.

Notice that, at a formal level, the integrand on the left-hand side is exactly
∫ h

0
d
dt St νdt, which, upon using the fact that St ν satisfies the heat equation, and

integrating by parts, yields the desired equality. More rigorously, one may obtain
(4.10) as a consequence of [3, Lemma 8.1.2]. And, arguing as in [3, Example 11.1.9],
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we have Sh ν ∈ W 1,1
loc (R

d) for a.e. h > 0 and,

∫ T

0

∫

Rd

|∇ Sh ν| =
∫ T

0

∫

Rd

|∇ Sh ν|
Sh ν

Sh ν

≤
(
∫ T

0

∫

Rd

|∇ Sh ν|2
Sh ν

)1/2 (∫ T

0

∫

Rd

Sh ν

)1/2

=
√
T

(
∫ T

0

∫

Rd

|∇ Sh ν|2
Shν

)1/2

,

where the quantity on the right-hand side is finite by equation (11.1.38) of [3].
With these facts in hand, we now turn to the proof of Lemma 4.4.

Proof of Lemma 4.4. We begin by proving equation (4.6). For all h > 0, using the
definition of Eε and the commutativity relation (4.5), we find,

Eε(Jnτ,ε μ)− Eε(Sh(Jnτ,ε μ))
h

=
1

2h

∫

Rd

∣
∣ζε ∗ (Jnτ,ε μ)

∣
∣
2

ρ̄
dLd − 1

2h

∫

Rd

∣
∣ζε ∗ (Sh(Jnτ,ε μ))

∣
∣
2

ρ̄
dLd

=

∫

Rd

1

2ρ̄

(
ζε ∗ (Jnτ,ε μ)− ζε ∗ (Sh(Jnτ,ε μ))

h

)
(
ζε ∗ (Jnτ,ε μ) + ζε ∗ (Sh(Jnτ,ε μ))

)
dLd

=

∫

Rd

1

2ρ̄

(
ζε ∗ (Jnτ,ε μ)− Sh(ζε ∗ Jnτ,ε μ)

h

)
(
ζε ∗ (Jnτ,ε μ) + ζε ∗ (Sh(Jnτ,ε μ))

)
dLd.

(4.11)

Recalling that ζε ∗ (Jnτ,ε μ) is a smooth function, and using that Sh(ζε ∗ Jnτ,ε μ)
satisfies the heat equation in the classical sense, we find,
(4.12)

ζε ∗ (Jnτ,ε μ)− Sh(ζε ∗ Jnτ,ε μ) = −
∫ h

0

d

dt
St(ζε ∗ Jnτ,ε μ) dt = −

∫ h

0

ΔSt(ζε ∗ Jnτ,ε μ) dt.

Using this in (4.11), we obtain,

Eε(Jnτ,ε μ)− Eε(Sh(Jnτ,ε μ))
h

=

∫

Rd

1

2ρ̄

(

1

h

∫ h

0

−ΔSt(ζε ∗ Jnτ,ε μ) dt
)

(
ζε ∗ (Jnτ,ε μ) + ζε ∗ (Sh(Jnτ,ε μ))

)
dLd.

Classical elliptic regularity implies that ‖ΔSt(ζε ∗ Jnτ,ε μ)‖L∞(Rd) ≤ Cε,τ,n holds for
all t. Hence, the integrand on the right-hand side of the previous line is bounded
in L1(Rd), independently of h. Thus, upon applying the dominated convergence
theorem to take the limit h → 0+, we find,

lim sup
h→0+

Eε(Jnτ,ε μ)− Eε(Sh(Jnτ,ε μ))
h

= −
∫

Rd

1

ρ̄
Δ(ζε ∗ Jnτ,ε μ)

(
ζε ∗ Jnτ,ε μ

)
dLd.

We have again used that St(ζε ∗ Jnτ,ε) satisfies the heat equation in the classical
sense, and is therefore continuous in t. This completes the proof of equation (4.6).
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Next we establish equation (4.7). For all h > 0, using the definition of Vε,
followed by (4.5), we obtain,

Vε(J
n
τ,ε μ)− Vε(Sh(J

n
τ,ε μ))

h
=

1

h

(∫

Rd

(ζε ∗ V ) d Jnτ,ε μ−
∫

Rd

(ζε ∗ V ) d Sh(J
n
τ,ε μ)

)

=
1

h

∫

Rd

V
(
ζε ∗ Jnτ,ε μ− ζε ∗ Sh(Jnτ,ε μ)

)
dLd

=
1

h

∫

Rd

V
(
ζε ∗ Jnτ,ε μ− Sh(ζε ∗ Jnτ,ε μ)

)
dLd.

As in the computation for Eε, we now use (4.12) to find,

Vε(J
n
τ,ε μ)− Vε(Sh(J

n
τ,ε μ))

h
= −

∫

Rd

V
1

h

∫ h

0

ΔSt(ζε ∗ Jnτ,ε μ) dt dLd.

Assumption (V) implies V ∈ L1(Rd), so we can pass to the limit in h (again, as
above), and find,

lim sup
h→0+

Vε(J
n
τ,ε μ)− Vε(Sh(J

n
τ,ε μ))

h
= −

∫

Rd

VΔ(ζε ∗ Jnτ,ε μ) dLd.

Integrating by parts yields (4.7).
Finally, we establish (4.8). For all h > 0, using the definition of Vk, followed by

(4.10), and an integration by parts, yields,

Vk(J
n
τ,ε μ)− Vk(Sh(J

n
τ,ε μ))

h
=

1

h

(∫

Rd

Vk d J
n
τ,ε μ−

∫

Rd

Vk d Sh(J
n
τ,ε μ)

)

=

∫

Rd

1

h

∫ h

0

〈
∇Vk(x),∇ St J

n
τ,ε μ(x, t)

〉
dt dx

= −
∫

Rd

1

h

∫ h

0

ΔVk(x) St J
n
τ,ε μ(x, t) dt dx.

Since ‖ΔVk‖L∞(Rd) is bounded, we use the dominated convergence theorem, as well
as the narrow continuity of St J

n
τ,ε μ in t (see (4.9)), to pass to the limit in h and

obtain the desired result. �

Before proceeding to the main result of the section, we estimate the right-hand
side of (4.6). Notice that the hypotheses on φ in the statement are satisfied by
ζε ∗ Jn

τ,εμ, since Jn
τ,εμ ∈ D(Eε).

Lemma 4.5. Let φ ∈ C∞(Rd) ∩ L1(Rd) ∩ L2(Rd). Then we have,

−
∫

Rd

1

ρ̄
(Δφ)(φ) dL ≥ Cρ̄‖∇φ‖2L2(Rd) − C ′

ρ̄‖φ‖2L2(Rd),

where Cρ̄ and C ′
ρ̄ depend only on ρ̄.

Proof. Integrating by parts, using the product rule, and the fact that ρ̄ is bounded
uniformly away from zero, we find,

−
∫

Rd

1

ρ̄
(Δφ)(φ) =

∫

Rd

〈

∇φ,∇
(
1

ρ̄
φ

)〉

=

∫

Rd

|∇φ|2
ρ̄

+ φ

〈

∇φ,∇
(
1

ρ̄

)〉

≥ Cρ̄

∫

Rd

|∇φ|2 − C ′
ρ̄

∫

Rd

|∇φ||φ| ≥ Cρ̄

2

∫

Rd

|∇φ|2 − C ′
ρ̄

∫

|φ|2,
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where the last estimate follows from the Cauchy-Schwartz inequality, and C ′
ρ̄

changes from line to line (but depends only on ρ̄). �

4.3. Proof of H1-type bound. We now apply Lemmas 4.4 and 4.5 to prove the
main result of the section.

Proof of Theorem 4.1. By definition of the minimizing movement scheme (see Def-
inition A.1), for any μ ∈ D(Fε,k),

Fε,k(J
n
τ,ε μ)−Fε,k(Sh(J

n
τ,ε μ)) ≤

1

2τ

[
W 2

2 (Sh(J
n
τ,ε μ), J

n−1
τ,ε μ)−W 2

2 (J
n
τ,ε μ, J

n−1
τ,ε μ)

]
.

Dividing by h, taking the limit as h → 0, and applying the evolution variational
inequality characterization of the gradient flow of S, inequality (4.4), we obtain,
(4.13)

lim sup
h→0+

Fε,k(J
n
τ,ε μ)−Fε,k(Sh(J

n
τ,ε μ))

h
≤ 1

2τ

d+

dh
W 2

2 (Sh(J
n
τ,ε μ), J

n−1
τ,ε μ)

∣
∣
∣
∣
h=0

≤ S(Jn−1
τ,ε μ)− S(Jnτ,ε μ)

τ
.

The quantity on the right hand side will play the role of − d
dtS(ρε) in the τ → 0

limit. Thus, in order to obtain (4.1), we aim to bound it from below by estimating
the left hand side of (4.13).

Recalling that Fε,k = Eε + Vε + Vk and applying Lemma 4.4, we find,

lim sup
h→0+

Fε,k(J
n
τ,ε μ)−Fε,k(Sh(J

n
τ,ε μ))

h

= −
∫

Rd

1

ρ̄
Δ(ζε ∗ Jnτ,ε μ)

(
ζε ∗ Jnτ,ε μ

)
dLd

+

∫

Rd

〈
∇V,∇(ζε ∗ Jnτ,ε μ)

〉
dLd −

∫

Rd

ΔVk d J
n
τ,ε μ.

Combining this with (4.13), and summing over n, we obtain,

S(J0τ,ε μ)− S(Jnτ,ε μ)

τ
=

n∑

i=1

S(Ji−1
τ,ε μ)− S(Jiτ,ε μ)

τ

≥
n∑

i=1

−
∫

Rd

1

ρ̄
Δ(ζε ∗ Jiτ,ε μ)

(
ζε ∗ Jiτ,ε μ

)
dLd

+

∫

Rd

〈
∇V,∇(ζε ∗ Jnτ,ε μ)

〉
dLd −

∫

Rd

ΔVk d J
i
τ,ε μ.

Take τ = T/n, and let μτ,ε(t) denote the piecewise constant interpolation of the
minimizing movement scheme Jnτ,ε μ; see equation (A.2). Then the above line im-
plies,

S(μτ,ε(0))− S(μτ,ε(T ))(4.14)

≥
∫ T

0

∫

Rd

−1

ρ̄
Δ(ζε ∗ μτ,ε(s)) (ζε ∗ μτ,ε(s)) + 〈∇V,∇(ζε ∗ μτ,ε(s))〉 dLd ds

−
∫ T

0

∫

Rd

ΔVk dμτ,ε(s) ds.
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We consider the right-hand side. The first term on the right-hand side is the
most important one, since this is where the derivative we seek to estimate will come
from. First, we note, using the definition of Eε, the properties of ρ̄, the fact that
the energy Fε,k decreases along the minimizing movements scheme (see inequality
(A.1)), and the fact that the minimizing movements scheme is initialized at ρε(0),

‖ζε ∗ μτ,ε(s)‖2L2(Rd)

(4.15)

≤ 2‖ρ̄−1‖L∞(Rd)Eε(μτ,ε(s)) ≤ 2‖ρ̄−1‖L∞(Rd)

(
Fε,k(μτ,ε(s)) + ‖V ‖L∞(Rd)

)

≤ 2‖ρ̄−1‖L∞(Rd)

(
Fε,k(ρε(0)) + ‖V ‖L∞(Rd)

)
< +∞.

Thus, for each fixed s, we may apply Lemma 4.5 to find,
∫

Rd

−1

ρ̄
Δ(ζε ∗ μτ,ε(s)) (ζε ∗ μτ,ε(s)) dLd

≥ Cρ̄‖∇ζε ∗ μτ,ε(s)‖2L2(Rd) − C ′
ρ̄‖ζε ∗ μτ,ε(s)‖2L2(Rd).

Using (4.15) to bound the second term on the right-hand side of the previous line
from below, and integrating in time, we find,

∫ T

0

∫

Rd

−1

ρ̄
Δ(ζε ∗ μτ,ε(s)) (ζε ∗ μτ,ε(s)) dLd ds

≥ Cρ̄

∫ T

0

‖∇ζε ∗ μτ,ε(s)‖2L2(Rd) ds− TC ′
ρ̄

(
Fε,k(ρε(0)) + ‖V ‖L∞(Rd)

)
.

(Here C ′
ρ̄ is allowed to change from line to line, but only depends on ρ̄.)

Next, we apply the Cauchy-Schwartz inequality to the second term on the right-
hand side of (4.14) to obtain,

∫ T

0

∫

Rd

〈∇V,∇(ζε ∗ μτ,ε(s))〉 dLd ds

≥ −Cρ̄

2

∫ T

0

‖∇ζε ∗ μτ,ε(s)‖2L2(Rd) ds− C ′
ρ̄T‖∇V ‖2L2(Rd).

Finally, for third term on the right-hand side of (4.14), we bound it from below
simply by T‖ΔVk‖L∞(Rd), which is finite by assumption. Using this, along with the
two previous estimates, we find,

(4.16) S(μτ,ε(0))− S(μτ,ε(T ))

≥ Cρ̄

2

∫ T

0

‖∇ζε ∗ μτ,ε(s)‖2L2(Rd) ds− TC ′
ρ̄ (Fε,k(ρε(0)) + CV ) ,

where CV = ‖V ‖L∞(Rd) + ‖∇V ‖2L2(Rd) + ‖ΔVk‖L∞(Rd).
We now aim to send n → +∞ in inequality (4.16), using the fact that μτ,ε(t) →

ρε(t) narrowly for all t ≥ 0; see Theorem A.2. Note that, for any f ∈ L2(Rd) and
s ∈ [0, T ],

∫

Rd

f∇(ζε ∗ μτ,ε(s))

= −
∫

Rd

(∇ζε ∗ f)μτ,ε(s)
n→+∞−−−−−→ −

∫

Rd

(∇ζε ∗ f)ρε(s) =
∫

Rd

f∇(ζε ∗ ρε(s)).
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Thus, ∇(ζε ∗ μτ,ε)(s) → ∇(ζε ∗ ρε)(s) weakly in L2(Rd) for all s ∈ [0, T ]. By the
lower semicontinuity of the L2(Rd) norm with respect to weak convergence and
Fatou’s lemma, sending n → +∞ in inequality (4.16) yields,

(4.17) lim sup
n→∞

S(μτ,ε(0))− S(μτ,ε(T ))

≥ Cρ̄

2

∫ T

0

‖∇ζε ∗ ρε(s)‖2L2(Rd) ds− T
(
C ′

ρ̄Fε,k(ρε(0)) + CV

)
.

For the left hand side of (4.17), note that the choice of initial data for the
minimizing movement scheme ensures S(μτ,ε(0)) = ρε(0) for all τ > 0 and, by the
lower semicontinuity of the entropy with respect to narrow convergence [3, Remark
9.3.8], lim supn→∞ −S(μτ,ε(T )) ≤ −S(ρε(T )). Thus, sending n → +∞ on the left
hand side of (4.17), we estimate,

lim sup
n→+∞

S(μτ,ε(0))− S(μτ,ε(T )) ≤ S(ρε(0))− S(ρε(T )).(4.18)

Next, we use a Carleman-type estimate [23, Lemma 4.1] to bound the entropy from
below by a constant plus the second moment and apply Corollary A.4 to bound the
second moment,

lim sup
n→+∞

S(μτ,ε(0))− S(μτ,ε(T ))

≤ S(ρε(0)) + (2π)d/2 +M2(ρε(T ))

≤ S(ρε(0)) + (2π)d/2 + (1 + TeT ) (M2(ρε(0)) + 2Fε,k(ρε(0))) .(4.19)

Thus, combining inequalities (4.17) and (4.19), we obtain

S(ρε(0)) + (2π)d/2 + (1 + TeT ) (M2(ρε(0)) + 2Fε,k(ρε(0)))

≥ Cρ̄

2

∫ T

0

‖∇ζε ∗ ρε(s)‖2L2(Rd) ds− T
(
C ′

ρFε,k(ρε(0)) + CV

)
.

Rearranging then gives the result. �

5. Convergence of the energies Fε,k and gradient flows as ε → 0

We now apply the properties of the energy Fε,k and its gradient flows developed
in the previous sections to study the behavior of minimizers and gradient flows as
ε → 0 for fixed k ∈ N. In Subsection 5.1, we begin by proving the Γ-convergence
of the energies Fε,k to the energy F . Next, in Subsection 5.2, we analyze the
convergence of the gradient flows of Fε,k as ε → 0 with “well-prepared” initial
data (bounded entropy and energy). Due to the fact that we only suppose ρ̄ is
log-concave on Ω, and not on all of Rn, we are not able to conclude that the limit
is a gradient flow of Fk, which we recall is defined by

Fk(ρ) = E(ρ) + V(ρ) + Vk(ρ).

Instead we merely conclude it is an “almost” curve of maximal slope of Fk, see
Definition 5.2. Nevertheless, this weaker notion is still sufficient for our main con-
vergence result, Theorem 1.1, studying the limits as ε → 0, k → +∞.
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5.1. Γ-convergence of the energies and convergence of minimizers. We
now prove the Γ-convergence of the energies Fε,k to the energy Fk, in the sense of
Definition 2.14.

Theorem 5.1 (Γ-convergence of Fε,k). Assume (T), (M), (V), and (C) hold. Fix
k ∈ N. Then the energies Eε + Vε Γ-converge to E + V and the energies Fε,k Γ-
converge to Fk as ε → 0. In particular, for any μ ∈ P2(R

d), limε→0 Eε(μ)+Vε(μ) =
E(μ) + V(μ).
Proof. We begin with the proof of (2.15). We first consider the energies Eε + Vε.
Let ρε narrowly converge to ρ. Lemma 2.3 implies,

(5.1) ζε ∗ ρε narrowly converges to ρ.

By definition of Eε and E , we have, as in (1.10), Eε(ρε) = E(ζε ∗ ρε). Taking
lim infε→0 and using the lower semicontinuity of E with respect to narrow conver-
gence, as well as (5.1), we obtain,

lim inf
ε→0

Eε(ρε) = lim inf
ε→0

E(ζε ∗ ρε) ≥ E(ρ).

For the Vε term, we first use the properties of convolution, followed by the assump-
tion V ∈ Cb(R

d) and (5.1), to find,

(5.2)

∫

Rd

(ζε ∗ V ) dρε =

∫

Rd

V (ζε ∗ ρε) dLd →
∫

Rd

V dρ.

This concludes the proof of (2.15) for Eε + Vε. Since Vk is lower semicontinuous,
this likewise implies (2.15) holds for Fε,k

Now we establish (2.16). Let ρ ∈ P(Rd). Taking ρε = ρ for all ε > 0 in (5.2), we
find that it suffices to prove lim supε→0 Eε(ρ) ≤ E(ρ). Without loss of generality,
we assume ρ is such that E(ρ) < +∞, otherwise, the desired inequality is trivially
true. Together with the definition of E and our assumption (T) that ρ̄ is bounded
uniformly above and below, we deduce ρ ∈ L2(Rd). We use the definition of Eε to
find,

2Eε(ρ) =
∫

Rd

|ζε ∗ ρ|2(x)
1

ρ̄(x)
dx =

∫

Rd

∣
∣
∣
∣

∫

Rd

ζε(x− y)ρ(y) dy

∣
∣
∣
∣

2
1

ρ̄(x)
dx.

Next we use Jensen’s inequality, followed by Fubini’s Theorem, to obtain,

2Eε(ρ) ≤
∫

Rd

∫

Rd

ζε(x− y)ρ(y)2
1

ρ̄(x)
dy dx =

∫

Rd

(

ζε ∗
1

ρ̄

)

(y)ρ2(y) dy.(5.3)

We shall now prove:

(5.4) lim
ε→0

∣
∣
∣
∣

∫

Rd

(

ζε ∗
1

ρ̄

)

(y)ρ2(y) dy − 2E(ρ)
∣
∣
∣
∣
= 0.

Together with (5.3), this will yield the desired result.
In order to establish (5.4), we first use the definition of E(ρ) to write,

∣
∣
∣
∣

∫

Rd

(

ζε ∗
1

ρ̄

)

ρ2 dLd − 2E(ρ)
∣
∣
∣
∣
=

∣
∣
∣
∣

∫

Rd

(

ζε ∗
1

ρ̄

)

ρ2 dLd −
∫

Rd

ρ2

ρ̄
dLd

∣
∣
∣
∣

(5.5)

≤
∫

Rd

∣
∣
∣
∣

(

ζε ∗
1

ρ̄

)

− 1

ρ̄

∣
∣
∣
∣
ρ2 dLd.
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Fix δ > 0 arbitrary. Since ρ ∈ L2(Rd), there exists R > 0 such that
∫

Bc
R
ρ2 ≤ δ.

Moreover, since 1/ρ̄ is uniformly bounded (see Assumption (T)),
∫

Bc
R

∣
∣
∣
∣

(

ζε ∗
1

ρ̄

)

− 1

ρ̄

∣
∣
∣
∣
ρ2 dLd ≤ C

∫

Bc
R

ρ2 ≤ Cδ,

where C is independent of δ and ε. Now, splitting the integral in (5.5) into integrals
over BR and Bc

R, we find,
∣
∣
∣
∣

∫

Rd

(

ζε ∗
1

ρ̄

)

ρ2 dLd − 2E(ρ)
∣
∣
∣
∣
≤

∫

BR

∣
∣
∣
∣

(

ζε ∗
1

ρ̄

)

− 1

ρ̄

∣
∣
∣
∣
ρ2 dLd + Cδ

≤
∥
∥
∥
∥

(

ζε ∗
1

ρ̄

)

− 1

ρ̄

∥
∥
∥
∥
L∞(BR)

‖ρ‖L2(Rd) + Cδ.

Since 1/ρ̄ is continuous, ζε ∗ 1
ρ̄ converges to 1/ρ̄ uniformly on compact subsets of Rd

as ε → 0. In particular, we may choose ε > 0 small enough so that the value of the
right-hand side of the previous line is no larger than δ. Since δ > 0 was arbitrary,
this completes the proof of estimate (5.4) and therefore of the theorem. �

5.2. Convergence of the gradient flows. We seek to identify the limit of gra-
dient flows of Fε,k as ε → 0. Heuristically, one may expect that they converge to a
weak notion of gradient flow of Fk, but in the absence of a log-concavity assumption
on ρ̄, the subdifferential of Fk lacks appropriate regularity for even a weak notion
of gradient flow to be well-defined. However, inspired by Serfaty’s approach for
studying Γ-convergence of gradient flows, we are still able to identify a limit and
show that it nearly satisfies the definition of a curve of maximal slope of Fk. In
order to simplify our exposition, we will call the limit an “almost” curve of maximal
slope of Fk.

Definition 5.2 (“Almost” curve of maximal slope of Fk). A curve

ρk ∈ AC2([0, T ];P2(R
d))

is an “almost” curve of maximal slope of Fk if it satisfies,

(5.6)
1

2

∫ t

0

|ρ′k|2(r)dr +
1

2

∫ t

0

∫

Rd

|ηk(r)|2dρk(r)dr

≤ Fk(ρk(0))−Fk(ρk(t)) for all t ∈ [0, T ],

where, for almost every t ∈ [0, T ],

(5.7) ρ2k(t) ∈ W 1,1(Rd) and ηk(t) ∈ L2(ρk(t)) satisfies

ηkρk =
ρ̄

2
∇

(
ρ2k
ρ̄2

)

+ ρk∇(V + Vk).

We emphasize that if ρ̄ were log-concave on all of Rd, ρk �→
∫

Rd |ηk|2dρk would
be a strong upper gradient for Fk and any ρk satisfying Definition 5.2 would be a
true curve of maximal slope of Fk.

Our approach proceeds as follows. Inspired by Serfaty’s framework for Γ-
convergence of gradient flows, in Subsection 5.2.1, we first prove Proposition 5.3,
which gives a weak notion of lower semicontinuity for the metric slopes along a
sequence of gradient flows ρε(t): we show,

lim inf
ε→0

|∂Fε,k|2(ρε(t)) ≥ ‖ηk(t)‖2L2(ρk(t))
,(5.8)
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where ηk is as in Definition 5.2. Next, in Subsection 5.2.2, we apply this to prove
Proposition 5.6 on convergence of the gradient flows for “well-prepared” initial data.
It is in this result that we employ the key estimate that we established in Theorem
4.1.

5.2.1. Limit of metric slopes. We begin by identifying sufficient conditions under
which the limiting behavior of the metric slopes (5.8) holds.

Proposition 5.3 (Limiting behavior of metric slopes). Assume (T), (M), (V),
and (C) hold. Fix k ∈ N. Consider a sequence ρε in P2(R

d) satisfying,

sup
ε>0

Fε,k(ρε) < +∞,(5.9)

lim inf
ε→0

‖∇ζε ∗ ρε‖L2(Rd) < +∞, and(5.10)

lim inf
ε→0

∫ ∣
∣
∣
∣
∇ζε ∗

(
ζε ∗ ρε

ρ̄

)∣
∣
∣
∣

2

dρε < +∞.(5.11)

In addition, suppose there exists ρk ∈ P(Rd) such that ρε narrowly converges to ρk.
Then ρ2k ∈ W 1,1(Rd), and there exists ηk ∈ L2(ρk), with,

(5.12) ηkρk =
ρ̄

2
∇

(
ρ2k
ρ̄2

)

+ ρk∇(V + Vk),

and such that,

(5.13) lim inf
ε→0

∫ ∣
∣
∣
∣
∇ζε ∗

(
ζε ∗ ρε

ρ̄

)

+∇(ζε ∗ V ) +∇Vk

∣
∣
∣
∣

2

dρε ≥
∫

|ηk|2dρk.

The remainder of this subsection is devoted to the proof of Proposition 5.3. We
begin with a preliminary lemma, showing that, under the assumptions of Proposi-
tion 5.3, we may upgrade the convergence of ζε ∗ ρε to ρ from narrow convergence
to convergence in L2

loc(R
d).

Lemma 5.4 (Upgraded convergence of ζε ∗ ρε). Assume (T), (M), (V), and (C)
hold. Fix k ∈ N. Consider any sequence ρε in P(Rd) and ρk ∈ P(Rd) such that
ρε narrowly converges to ρk and (5.9) and (5.10) are satisfied. Then ρk ∈ L2(Rd),
and there exists a subsequence (still denoted ρε) along which we have,

sup
ε>0

‖ζε ∗ ρε‖H1(Rd) < +∞ and(5.14)

ζε ∗ ρε converges to ρk in L2
loc(R

d).(5.15)

Proof of Lemma 5.4. By assumption (5.9) and the definition of Fε,k, we find,

(5.16)

+∞ > sup
ε>0

Fε,k(ρε) + ‖V ‖L∞(Rd)

≥ sup
ε>0

Eε(ρε)

= sup
ε>0

1

2

∫

Rd

|ζε ∗ ρ|2
ρ̄

≥ 1

2‖ρ̄‖L∞(Rd)

sup
ε>0

∫

Rd

|ζε ∗ ρ|2.
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Similarly, since Theorem 5.1 ensures the Γ-convergence of Fε,k to Fk, statement
(2.16) in Definition 2.14 of Γ-convergence ensures,

+∞ > sup
ε>0

Fε,k(ρε) + ‖V ‖L∞(Rd)

≥ Fk(ρk) + ‖V ‖L∞(Rd)

≥ E(ρk)

≥ 1

2‖ρ̄‖L∞(Rd)

∫

Rd

ρ2k dx,

so ρk ∈ L2(Rd).
Combining assumption (5.10) with the estimate (5.16) we find that, up to a sub-

sequence, (5.14) holds. Therefore, by the Rellich-Kondrachov embedding theorem,
we find that, up to another subsequence, ζε∗ρε converges in L2

loc(R
d). On the other

hand, Lemma 2.3 implies that ζε ∗ ρε narrowly converges to ρk. The uniqueness of
limits therefore implies (5.15). �

A key step in studying the limiting behavior of the metric slopes of Fε,k, as in

Proposition 5.3, is to identify the weak limit of ∇ζε ∗
(

1
ρ̄ (ζε ∗ ρε)

)

in L1(ρε). With

this weak limit in hand, the desired result will then follow from general results due
to Ambrosio, Gigli, and Savaré on lower semicontinuity of integral functions with
varying measures [3, Theorem 5.4.4 (ii)]. In Lemma 5.5, we characterize the weak
limit.

Lemma 5.5 (Weak limit of subdifferentials). Assume (T), (M), (V), and (C)
hold. Fix k ∈ N. Consider any sequence ρε in P(Rd) and ρk ∈ P(Rd) such that ρε
narrowly converges to ρk and (5.9), (5.10), and (5.11) are satisfied. For all ε > 0
and f ∈ C∞

c (Rd), define,

(5.17)

Lε(f) =

∫

Rd

f

(

∇ζε ∗
(
1

ρ̄
(ζε ∗ ρε)

))

dρε

and L(f) =

∫

Rd

−1

2
∇

(
f

ρ̄

)

ρ2k dx+

∫

Rd

fρ2k∇
(
1

ρ̄

)

dx.

There exists a subsequence, still denoted by ε, so that, for any f ∈ C∞
c (Rd), we

have,

(5.18) lim
ε→0

Lε(f) = L(f).

Furthermore, L is a bounded linear operator on L2(ρk).

Proof. By Lemma 5.4, we may choose a subsequence, still denoted ρε, along which
(5.14) and (5.15) hold.

In order to characterize limε→0 Lε(f), we begin by breaking up the expression
for Lε(f) into two terms, which we will estimate separately. Using the definition of

Licensed to Michigan St Univ. Prepared on Fri May  3 10:50:09 EDT 2024 for download from IP 35.8.11.3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2616 KATY CRAIG ET AL.

Lε and properties of convolution, we find that, for any f ∈ C∞
c (Rd),

Lε(f) =

∫

Rd

f

(

ζε ∗
(
1

ρ̄
∇ (ζε ∗ ρε)

))

dρε +

∫

Rd

f

(

ζε ∗
(

∇
(
1

ρ̄

)

(ζε ∗ ρε)
))

dρε

=

∫

Rd

((fρε) ∗ ζε)
(
1

ρ̄
∇ (ζε ∗ ρε)

)

dLd

+

∫

Rd

((fρε) ∗ ζε)
((

∇1

ρ̄

)

(ζε ∗ ρε)
)

dLd

=: Iε(f) + Jε(f).

(5.19)

We begin by showing,

(5.20) lim
ε→0

Jε(f) =

∫

Rd

fρ2k∇
(
1

ρ̄

)

dLd.

To this end, we apply Lemma 2.1, with σ = ζε ∗ ρε∇
(

1
ρ̄

)

dLd and ν = ρε to find,

for Cζ > 0 as in assumption (M), there exist p, Lf > 0, and Cρ̄ > 0 so that,
∣
∣
∣
∣
Jε(f)−

∫

Rd

f(ζε ∗ ρε)2∇
(
1

ρ̄

)

dLd

∣
∣
∣
∣

≤ εpLf

(∫

Rd

(ζε ∗ ρε)2|∇(1/ρ̄)| dLd + Cζ

∫

(ζε ∗ ρε)
∣
∣
∣
∣
∇1

ρ̄

∣
∣
∣
∣
dLd

)

≤ εpLfCρ̄

(∫

Rd

(ζε ∗ ρε)2 dLd + Cζ

)

.

By (5.14) of Lemma 5.4, the right-hand side converges to 0 as ε → 0, which implies
that (5.20) holds.

Next, we consider limε→0 Iε(f). For any f ∈ C∞
c (Rd), define,

Ĩε(f) =
1

2

∫

Rd

f

ρ̄
∇

(

(ζε ∗ ρε)2
)

dLd.

Note that the L2 convergence of ζε ∗ ρε to ρk established in (5.15) of Lemma 5.4
ensures that, for any f ∈ C∞

c (Rd),

lim
ε→0

Ĩε(f) = lim
ε→0

−1

2

∫

Rd

∇
(
f

ρ̄

)

(ζε ∗ ρε)2 dLd = −1

2

∫

Rd

∇
(
f

ρ̄

)

ρ2k dLd.

Thus, to complete our proof that limε→0 Lε(f) = L(f), it suffices to prove that, for
any f ∈ C∞

c (Rd),

(5.21) lim
ε→0

|Iε(f)− Ĩε(f)| = 0.

Using the definitions of Iε(f) and Ĩε(f), followed by some rearranging, we find,

|Iε(f)− Ĩε(f)| =
∣
∣
∣
∣

∫

Rd

((fρε) ∗ ζε)(x)
1

ρ̄(x)
∇(ζε ∗ ρε)(x) dx

−
∫

Rd

f(x)(ζε ∗ ρε)(x)
1

ρ̄(x)
∇(ζε ∗ ρε)(x) dx

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

Rd

[((fρε) ∗ ζε) (x)− f(x)(ζε ∗ ρε)(x)]
1

ρ̄(x)
∇(ζε ∗ ρε)(x) dx

∣
∣
∣
∣
.
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We have, for all x ∈ R
d,

((fρε) ∗ ζε)(x)− f(x)(ζε ∗ ρε)(x) =
∫

Rd

(f(y)− f(x))ρε(y)ζε(x− y) dy.

Thus, using this and Fubini’s Theorem we find,

|Iε(f)− Ĩε(f)| ≤
∫∫

|f(y)− f(x)| ρε(y)ζε(x− y)
1

ρ̄(x)
|∇(ζε ∗ ρε)(x)| dy dx.

Since ρ̄ is bounded uniformly from below and f ∈ C∞
c (Rd),

|Iε(f)− Ĩε(f)| ≤
‖∇f‖∞
inf ρ̄

∫∫

|x− y| ρε(y)ζε(x− y) |∇(ζε ∗ ρε)(x)| dy dx.(5.22)

Next, we claim that there exist C > 0, γ ∈ (0, 1) and δ > 1, all depending only
on ζ, such that,

(5.23) ζε(x− y)|x− y| ≤ Cεδ for |x− y| > εγ .

Indeed, let q be as in Assumption (M), define δ′ = q−(d+1) > 0 and γ = δ′/2(d+δ′).
The definition of ζε and assumption (M) imply,

ζε(z)|z| = ζ
(z

ε

) |z|
εd

≤ C|z|−(d+1+δ′)εd+1+δ′ |z|ε−d = C|z|−d−δ′ε1+δ′ .

Thus, for |z| > εγ we obtain ζε(z)|z| ≤ Cε−(d+δ′)γε1+δ′ = Cε1+δ′/2. The inequality
(5.23) now follows by taking δ = 1 + δ′/2.

Thus, breaking up the integral on the right-hand side of (5.22) into two regions
and using (5.23), we find,

|Iε(f)− Ĩε(f)|

≤ ‖∇f‖∞
inf ρ̄

(

εγ
∫∫

|x−y|<εγ
ρε(y)ζε(x− y)|∇(ζε ∗ ρε)(x)| dy dx

+ Cεδ
∫∫

|x−y|>εγ
ρε(y)|∇(ζε ∗ ρε)(x)| dy dx

)

≤ ‖∇f‖∞
inf ρ̄

(

εγ
∫

(ρε ∗ ζε)(x) |∇(ζε ∗ ρε)(x)| dx+ Cεδ
∫

|(∇ζε ∗ ρε)(x)| dx
)

.

Now we use Hölder’s inequality for the first term on the right-hand side, and Young’s
inequality for the second term to obtain,

|Iε(f)− Ĩε(f)| ≤ Cf

(
εγ‖ζε ∗ ρε‖L2(Rd)‖∇ζε ∗ ρε‖L2(Rd) + εδ‖∇ζε‖L1(Rd)

)
.

To bound the first term on the right-hand side we recall that ζε ∗ ρε is bounded in
H1(Rd) uniformly in ε (see the estimate (5.14) from Lemma 5.4). For the second
term, we note εδ‖∇ζε‖L1(Rd) = εδ−1‖∇ζ‖L1(Rd). Since γ > 0 and δ − 1 > 0, this

ensures limε→0 |Iε(f)− Ĩε(f)| = 0, which completes the proof that limε→0 Lε(f) =
L(f).

It remains to show that L is a bounded linear operator on L2(ρk). We will show
that, for any f ∈ C∞

c (Rd),

|L(f)| ≤ C‖f‖L2(ρk).

Indeed, since ρk ∈ L2(Rd), ρk is a Radon measure, so C1
c (R

d) is dense in L2(ρk)
[8, Corollary 4.2.2], and there exists a unique extension of L to L2(ρk) enjoying the
same bound.
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Fix arbitrary f ∈ C∞
c (Rd). By definition of Lε in equation (5.17) and Hölder’s

inequality,

|Lε(f)| ≤ ‖f‖L2(ρε)

∣
∣
∣
∣

∣
∣
∣
∣
∇ζε ∗

(
1

ρ̄
(ζε ∗ ρε)

)∣
∣
∣
∣

∣
∣
∣
∣
L2(ρε)

.

Thus, by assumption (5.11), there exists C > 0 so that,

|L(f)| = lim inf
ε→0

|Lε(f)| ≤ C lim inf
ε→0

‖f‖L2(ρε) = C‖f‖L2(ρk),

which gives the result. �

We now apply Lemmas 5.4 and 5.5 to prove our result on the limit of the metric
slopes.

Proof of Proposition 5.3. Choose a subsequence, still denoted by ρε, so that,

lim
ε→0

|∂Fε,k|(ρε) = lim inf
ε→0

|∂Fε,k|(ρε).

It suffices to show ρ2k ∈ W 1,1(Rd), there exists ηk ∈ L2(ρ) satisfying (5.12), and,
up to a further subsequence,

(5.24) lim
ε→0

∫

Rd

f

(

∇ζε ∗
(
1

ρ̄
(ζε ∗ ρε)

)

+∇(ζε ∗ V ) +∇Vk

)

dρε

=

∫

fηk dρk for all f ∈ C∞
c (Rd).

The estimate (5.13) then follows by applying [3, Theorem 5.4.4 (ii)], completing
the proof.

Notice that, for any f ∈ C∞
c (Rd), the fact that ∇V and ∇Vk are continuous and

Lemma 2.3 ensure,

lim
ε→0

∫

Rd

f (∇(ζε ∗ V )) dρε = lim
ε→0

∫

Rd

∇V (ζε ∗ (fρε)) dLd =

∫

f∇V dρk,(5.25)

lim
ε→0

∫

Rd

f (∇Vk) dρε =

∫

f∇Vk dρk.(5.26)

Next, we use the definitions of Lε(f) and L(f), as well as the convergence of
Lε(f) to L(f) established in (5.18) of Lemma 5.5. Combining these with the Riesz
Representation Theorem on L2(ρk) (which we can apply to the operator L due to,
again, Lemma 5.5), we find that there exists η̃ ∈ L2(ρk) such that,

lim
ε→0

∫

Rd

f

(

∇ζε ∗
(
1

ρ̄
(ζε ∗ ρε)

))

dρε =

∫

Rd

−1

2
∇

(
f

ρ̄

)

ρ2k dx+

∫

Rd

fρ2k∇
(
1

ρ̄

)

dx

=

∫

f η̃ dρk.

Rearranging, we obtain,

−1

2

∫

Rd

∇
(
f

ρ̄

)

ρ2k dx =

∫

Rd

f η̃ρk − fρ2k∇
(
1

ρ̄

)

dx

=

∫

Rd

f

ρ̄

(

η̃ρkρ̄− ρ̄ρ2k∇
(
1

ρ̄

))

dx.

Since the previous line holds for all f ∈ C∞
c (Rd), we deduce ρ2k ∈ W 1,1(Rd) and

∇
(
ρ2k
2

)

= η̃ρkρ̄− ρ̄ρ2k∇
(
1

ρ̄

)

.
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Finally, by the chain rule for W 1,1(Rd) functions and the previous line, we have,

∇
(
ρ2k
ρ̄2

)

= ∇(ρ2k)
1

ρ̄2
+ ρ2k∇

(
1

ρ̄2

)

=
1

ρ̄2

(

2η̃ρkρ̄− 2ρ̄ρ2k∇
(
1

ρ̄

))

+ ρ2k∇
(

1

ρ̄2

)

= 2η̃
ρk
ρ̄
.

Thus,

(5.27) η̃ρk =
ρ̄

2
∇

(
ρ2k
ρ̄2

)

.

Finally, defining ηk = η̃ + ∇V + ∇Vk, the facts that ∇V ∈ L∞(Rd) and ∇Vk ∈
L2(ρk) (see sentence following Assumption (C)), ensure ηk ∈ L2(ρk) and (5.24)
holds. �

5.2.2. Convergence of gradient flows. We now apply the result on the limiting be-
havior of the metric slopes, obtained in Proposition 5.3, as well as the Γ-convergence
of the energies, obtained in Theorem 5.1, to show that gradient flows of Fε,k with
“well-prepared” initial data converge to an “almost curve of maximal slope” of Fk.
We emphasize that this result does not require a log-concavity assumption on ρ̄.

Proposition 5.6. Assume (M), (V), (C), (T) hold. Fix T > 0 and k ∈ N. For
ε > 0, let ρε,k ∈ AC2([0, T ];P2(R

d)) be a gradient flow of Fε,k satisfying,

sup
ε>0

S(ρε,k(0)) < ∞ and sup
ε>0

M2(ρε,k(0)) < ∞.(5.28)

Suppose there exists ρk(0) ∈ D(Fk) ∩ P2(R
d) such that,

ρε,k(0)
ε→0−−−→ ρk(0) narrowly and lim

ε→0
Fε,k(ρε,k(0)) = Fk(ρk(0)).(5.29)

Then, there exists ρk ∈ AC2([0, T ];P2(R
d)) that is an “almost” curve of maximal

slope of Fk, in the sense of Definition 5.2, and a subsequence ε
(k)
n , depending on k,

so that

lim
n→+∞

W1(ρε(k)
n ,k

(t), ρk(t)) = 0 uniformly for t ∈ [0, T ].(5.30)

Proof of Proposition 5.6. By Theorem 2.13, ρε,k is a curve of maximal slope of Fε,k,
so

(5.31)
1

2

∫ t

0

|ρ′ε,k|2(r)dr +
1

2

∫ t

0

|∂Fε,k|2(ρε,k(r))dr

≤ Fε,k(ρε,k(0))−Fε,k(ρε,k(t)) , for all 0 ≤ t ≤ T.

We seek to apply Proposition 2.16. Theorem 5.1 ensures that Fε,k Γ-converges to
Fk. Next, we note that, the previous line, together with the explicit characterization
of |∂Fε,k|2 given in Proposition 3.8, yields that the hypothesis (2.19) holds with
ηε,k(r) ∈ L2(ρε,k(r)) given by,

ηε,k(r) = ∇ζε ∗
(
1

ρ̄
(ζε ∗ ρε,k(r))

)

+∇(ζε ∗ V ) +∇Vk.
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In addition, the hypotheses of the present proposition guarantee that (2.20) holds.
Thus, Proposition 2.16 ensures that there exist ρk ∈ AC2([0, T ];P2(R

d)) and a

subsequence ε
(k)
n , depending on k, so that (5.30) holds and with, for all t ∈ [0, T ],

(5.32)
1

2

∫ t

0

|ρ′k|2(r)dr +
1

2

∫ t

0

(

lim inf
n→∞

∫

Rd

|η
ε
(k)
n

(r)|2dρ
ε
(k)
n ,k

(r)

)

dr

≤ Fk(ρk(0))−Fk(ρk(t)).

In order to conclude, it suffices to establish that ρk satisfies the conditions of
Definition 5.2, that is, for almost every r ∈ [0, T ], we have:

ρk(r)
2 ∈ W 1,1(Rd),(5.33)

there exists ηk(r) ∈ L2(ρk(R)) satisfying (5.7), and(5.34)

lim inf
n→∞

∫

Rd

|η
ε
(k)
n

(r)|2dρ
ε
(k)
n ,k

(r) ≥
∫

Rd

|ηk(r)|2 dρk(r).(5.35)

Note that we may assume

sup
n∈N

F
ε
(k)
n ,k

(

ρ
ε
(k)
n ,k

(0)
)

< +∞.(5.36)

Combining this with Theorem 4.1 and assumption (5.28) of the present proposition,
we obtain,

lim inf
n→∞

∫ T

0

‖∇ζ
ε
(k)
n

∗ ρ
ε
(k)
n ,k

(r)‖2L2(Rd) dr < +∞.

Thus, by Fatou’s lemma, for almost every r ∈ [0, T ], the above integrand must be
finite. Likewise, inequality (5.32) ensures the left-hand side of (5.35) is finite for
a.e. r ∈ [0, T ].

We seek to apply Proposition 5.3. Fix r ∈ [0, T ] such that

(5.37)
lim inf
n→∞

∫

Rd

|η
ε
(k)
n

(r)|2dρ
ε
(k)
n ,k

(r) < +∞

and lim inf
n→∞

‖∇ζ
ε
(k)
n

∗ ρ
ε
(k)
n ,k

(r)‖L2(Rd) < +∞.

Inequality (5.36) together with the fact that the energy Fε,k decreases in time along
the gradient flow ρε,k implies that (5.9) holds at time r. Thus, by our standing
hypotheses on V and Vk, the hypotheses of Proposition 5.3 hold at time r. Conse-
quently, the conclusion of Proposition 5.3 yields (5.33), (5.34), and (5.35) at time
r. �

6. Convergence of energies Fk and “almost” curves of maximal slope
as k → +∞

The present section has two main goals. First, we show that the energies Fk

Γ-converge to the energy F and use this to prove Theorem 1.5 that minimizers
of Fε,k converge to the unique minimizer of F as ε → 0, k → +∞. Our second
goal is to show that if ρ̄ is log-concave on Ω, then as the confining potentials Vk

approximate VΩ, the “almost” curves of maximal slope of Fk (see Definition 5.2)
converge to a gradient flow of F as k → +∞. We then use this to conclude our
main result, Theorem 1.1, that gradient flows of Fε,k converge to a gradient flow
of F as k → +∞ and ε = ε(k) → 0. Finally, in Section 6.1, we extend our result to
cover particle initial data (Theorem 1.2), long time behavior (Corollary 1.3), and
establish our results concerning two-layer neural networks (Corollary 1.4).
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Our result on the k → +∞ limit generalizes work by Alasio, Bruna, and Carrillo
[1] to the case of weighted porous medium equations. As in Proposition 5.6, which
considered the ε → 0 limit, we use an approach based on Γ-convergence of gradient
flows, which is different from the approach used in the aforementioned work [1].
We are optimistic this new approach will be more easily generalizable to a range of
Wasserstein gradient flows.

We begin by showing Γ-convergence of the energies Vk to VΩ, in the sense of
Definition 2.14.

Theorem 6.1 (Γ convergence of energies Vk to VΩ). Assume (T), (D), (V), (C),
and (Ck) hold. Then, the energies Vk Γ-converge to VΩ and the energies Fk Γ-
converge to F as k → ∞. In particular, limk→+∞ Vk(μ) = VΩ(μ) for any μ ∈
P2(R

d).

Proof. We first establish item (2.15) for the energies Vk and VΩ. Without loss of
generality, we may assume lim infk→+∞ Vk(ρk) < +∞ so, up to a subsequence,

sup
k∈N

Vk(ρk) < +∞.(6.1)

To show inequality (2.15), it suffices to prove that supp ρ ⊆ Ω, since Vk(ρk) is
nonnegative and VΩ(ρ) would equal zero. Suppose for the sake of contradiction

that supp ρ �⊆ Ω, so that there exist x ∈ Ω
c
and an open ball B containing x so

that B ⊂⊂ Ω
c
and ρ(B) > 0. By the Portmanteau theorem, the fact that ρk → ρ

narrowly ensures lim infk→+∞ ρk(B) ≥ ρ(B) > 0. Thus, up to taking another
subsequence, we may assume that there exists δ > 0 so that ρk(B) ≥ δ for all
k ∈ N. By definition of Vk, this implies,

lim inf
k→+∞

∫

Rd

Vkdρk ≥ lim inf
k→+∞

∫

B

Vkdρk

≥ lim inf
k→+∞

(

inf
x∈B

Vk(x)

)

ρk(B)

≥ δ lim inf
k→+∞

(

inf
x∈B

Vk(x)

)

= +∞,

where the last inequality follows from Assumption (Ck) on Vk. This contradicts
(6.1). Thus, we must have supp ρ ⊆ Ω, which completes the proof of item (2.15).
Note that, since E and V are lower semicontinuous and bounded below, it follows
immediately that inequality (2.15) holds for the energies Fk and F .

It remains to prove item (2.16). To this end, we note that we may write VΩ(ρ) =∫
VΩ dρ, where VΩ(x) is given by (1.17). Assumption (Ck) on Vk implies Vk(x) ≤

VΩ(x) for all x ∈ R
d. Therefore we find,

lim sup
k→+∞

Vk(ρ) = lim sup
k→+∞

∫

Vkdρ ≤
∫

VΩdρ = VΩ(ρ),

and thus conclude by recalling the definitions of Vk and V . Likewise, we also obtain
(2.16) for Fk and F . �

As a corollary of Theorems 5.1 and 6.1, we obtain the result of Theorem 1.5:
minimizers of Fε,k converge to a minimizer of F . The additional assumptions we
add – that Vk are all greater than V1 and the sublevel sets of V1 are compact – are
natural in the context of taking the Vk’s to be diverging to +∞ off of Ω.

Licensed to Michigan St Univ. Prepared on Fri May  3 10:50:09 EDT 2024 for download from IP 35.8.11.3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2622 KATY CRAIG ET AL.

Proof of Theorem 1.5. First, we show that F has a unique minimizer. Suppose that
ρ0 and ρ1 are both minimizers of F . Since F is proper, we have F(ρ0),F(ρ1) < +∞,
so supp ρ1, supp ρ2 ⊆ Ω. Thus,

F((1− α)ρ0 + αρ1) =
1

2

∫

Ω

|(1− α)ρ0 + αρ1|2
ρ̄

+

∫

Ω

V d((1− α)ρ0 + αρ1)

= (1− α)F(ρ0) + αF(ρ1)− α(1− α)

∫

Ω

|ρ0 − ρ1|2
ρ̄

.

Since ρ̄ is uniformly bounded above, we must have ρ0 = ρ1, else F((1−α)ρ0+αρ1) <
F(ρ0) for α ∈ (0, 1), contradicting the choice of ρ0 as a minimizer.

Now, we show minimizers of Fε,k converge to the unique minimizer of F . Again,
using that F is proper, take ν ∈ P2(R

d) such that F(ν) < +∞, so in particular,
VΩ(ν) = 0 = Vk(ν). Since ρε,k minimizes Fε,k, using the fact from Theorem 5.1
that Eε + Vε Γ-converges to E + V , we have

lim sup
ε→0,k→+∞

Fε,k(ρε,k) ≤ lim sup
ε→0,k→+∞

Fε,k(ν) = lim sup
ε→0,k→+∞

Eε(ν) + Vε(ν) + 0(6.2)

= E(ν) + V(ν) + 0 = F(ν) < +∞.

Thus, we may assume that, up to a subsequence, Fε,k(ρε,k) is uniformly bounded
above in ε > 0, k ∈ N. Since Eε and Vε are bounded below uniformly in ε >
0, Vk(ρε,k) must be bounded above uniformly in ε > 0 and k ∈ N. Next, the
assumption Vk ≥ V1 implies,

sup
ε>0,k∈N

∫

V1 dρε,k ≤ sup
ε>0,k∈N

∫

Vk dρε,k ≤ sup
ε>0,k∈N

Vk(ρε,k) < +∞.

Together with the fact that the sublevel sets of V1 are compact, this guarantees that
the sequence ρε,k is tight; see [3, Remark 5.1.5]. Thus, up to another subsequence,
there exists ρ ∈ P(Rd) so that ρε,k → ρ. By inequality (6.2), Theorem 5.1, and
Theorem 6.1, we have, for any ν ∈ D(F),

F(ν) = E(ν) + V(ν) + VΩ(ν)

= lim
ε→0,k→+∞

Eε(ν) + Vε(ν) + Vk(ν)

= lim
ε→0,k→+∞

Fε,k(ν)

≥ lim inf
ε→0,k→+∞

Fε,k(ρε,k)

≥ lim inf
ε→0,k→+∞

(

Eε(ρε,k) + Vε(ρε,k)
)

+ lim inf
ε→0,k→+∞

Vk(ρε,k).

Next, we choose subsequences that attain the lim inf, and then apply Theorem 6.1,
to find,

F(ν) ≥ lim
n→+∞

(

Eεn(ρεn,kn
) + Vε(ρεn,kn

)
)

+ lim
m→+∞

Vkm
(ρεm,km

)

≥ E(ρ) + V(ρ) + VΩ(ρ) = F(ρ).

Since ν was an arbitrary measure in the domain of F , this shows ρ is the unique
minimizer of F . Finally, since the above argument shows that every subsequence of
ρε,k has a further subsequence that converges to ρ, the original sequence ρε,k must
converge to ρ. �
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We now turn our attention from minimizers to gradient flows and prove that
“almost” curves of maximal slopes of Fk converge to a gradient flow of F as k →
+∞.

Proposition 6.2. Assume (D), (V), (C), (Ck), (T) hold and that ρ̄ is log-concave
on Ω. Fix T > 0. For k ∈ N, let ρk ∈ AC2([0, T ];P2(R

d)) be an “almost” curve
of maximal slope of Fk, in the sense of Definition 5.2, and suppose there exists
ρ(0) ∈ D(F) ∩ P2(R

d) such that

(6.3)
ρk(0)

k→+∞−−−−−→ ρ(0) narrowly , lim
k→+∞

Fk(ρk(0)) = F(ρ(0)) ,

and sup
k∈N

M2(ρk(0)) < +∞.

Then

lim
k→+∞

W1(ρk(t), ρ(t)) = 0, uniformly for t ∈ [0, T ],(6.4)

where ρ ∈ AC2([0, T ];P2(R
d)) is the unique gradient flow of F with initial condi-

tions ρ(0).

Proof. Recall from Theorem 6.1 that Fk Γ-converges to F . Thus, by Proposition
2.16, we find that there exists ρ ∈ AC2([0, T ];P2(R

d)) so that, up to a subsequence,
(6.4) holds and

(6.5)
1

2

∫ t

0

|ρ′|2(r)dr + 1

2

∫ t

0

(

lim inf
k→∞

∫

Rd

|ηk(r)|2dρk(r)
)

dr

≤ F(ρ(0))−F(ρ(t)) for all 0 ≤ t ≤ T.

Furthermore, by Definition 5.2 of an “almost” curve of maximal slope, we see
that Fk(ρk(t)) ≤ Fk(ρk(0)) for all k ∈ N, t ∈ [0, T ]. Combining this with (6.3)
yields

sup
t∈[0,T ],k∈N

Fk(ρk(t)) ≤ sup
k∈N

Fk(ρk(0)) < +∞.(6.6)

Furthermore, since ρk(t)
W1−−→ ρ(t), hence narrowly, for all t ∈ [0, T ], Theorem 6.1

implies,

sup
t∈[0,T ]

F(ρ(t)) ≤ sup
t∈[0,T ]

lim inf
k→+∞

Fk(ρk(t)) ≤ sup
t∈[0,T ],k∈N

Fk(ρk(t)) < +∞.(6.7)

Let us use Ak to denote the measure zero subset of [0, T ] on which condition (5.7)
of Definition 5.2 fails, and note that ∪+∞

k=1Ak is likewise a set of measure zero, so
that for almost every t ∈ [0, T ], condition (5.7) holds for all k ∈ N. The remainder
of the proof will be devoted to establishing that, for almost every t ∈ [0, T ], we
have

lim inf
k→+∞

∫

Rd

|ηk(t)|2dρk(t) ≥
∫

Rd

|η(t)|2dρ(t),(6.8)

for ρ and η satisfying

(ρ(t)/ρ̄)2 ∈ W 1,1
loc (Ω),(6.9)

η(t)ρ(t) =
ρ̄

2
∇(ρ(t)/ρ̄)2 +∇V ρ(t) on Ω.(6.10)

Licensed to Michigan St Univ. Prepared on Fri May  3 10:50:09 EDT 2024 for download from IP 35.8.11.3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2624 KATY CRAIG ET AL.

Indeed, combining inequalities (6.5) and (6.8) yields that ρ satisfies

1

2

∫ t

0

|ρ′|2(r)dr + 1

2

∫ t

0

∫

Rd

|η(r)|2dρ(r)dr

≤ F(ρ(0))−F(ρ(t)) , for all 0 ≤ t ≤ T.

Proposition 3.9, which characterizes the metric slope of F , and Theorem 2.13 imply
that ρ is the unique gradient flow of F with initial data ρ(0). Finally, we remark
that this argument shows that every subsequence of ρk has a further subsequence
that converges to ρ in the sense (6.4), implying that the original sequence must also
converge to ρ.

For almost every t ∈ [0, T ], inequality (6.5) ensures that the left-hand side of
(6.8) is finite. Fix such a t ∈ [0, T ]. Since the left-hand side of (6.8) is finite, passing
to a subsequence in k, we may assume

(6.11) sup
k∈N

‖ηk(t)‖L2(ρk(t)) < +∞.

To conclude the proof, it remains to show that (6.8), (6.9), and (6.10) hold at this
time. From now on, we will suppress dependence on t, for simplicity of notation.

Since V and Vk are bounded below, inequality (6.6) implies,
(

1

2 sup ρ̄

)

sup
k∈N

‖ρk‖22 ≤ sup
k∈N

1

2

∫

Rd

|ρk|2
ρ̄

= sup
k∈N

E(ρk) < +∞.(6.12)

Likewise, inequality (6.7) and the definition of F imply supp ρ(t) ⊆ Ω.
Next, we note that, since Assumption (V) ensures ∇V ∈ L∞, applying the

triangle inequality and inequality (6.11) yields,

sup
k

∫ ∣
∣
∣
ρ̄

2
∇(ρk/ρ̄)

2 +∇Vkρk

∣
∣
∣ = sup

k
‖ηk −∇V ‖L1(ρk)

(6.13)

≤ sup
k

‖ηk −∇V ‖L2(ρk)

< +∞.

By [3, Theorem 5.4.4], provided we have (6.9) and (6.10), in order to show (6.8),
it suffices to show

(6.14) lim inf
k→+∞

∫

Rd

f
( ρ̄

2
∇(ρk/ρ̄)

2 +∇V ρk +∇Vkρk

)

=

∫

Ω

f
( ρ̄

2
∇(ρ/ρ̄)2 +∇V ρ

)

for all f ∈ C∞
c (Rd),

where we use that ρ = 0 a.e. on Ωc. By Assumption (V) on V , we have f∇V ∈
Cb(R

d), so since ρk narrowly converges to ρ, we find,

lim inf
k→+∞

∫

Rd

f∇V ρk =

∫

Ω

f∇V ρ , for a.e. t ∈ [0, T ].

Thus, (6.14) is equivalent to the claim that, for all f ∈ C∞
c (Rd),

lim inf
k→+∞

∫

Rd

f
( ρ̄

2
∇(ρk/ρ̄)

2 +∇Vkρk

)

=

∫

Ω

f
ρ̄

2
∇(ρ/ρ̄)2.(6.15)

We will establish (6.15) for test functions f ∈ C∞
c (Ω). Then, we will extend to the

general case of f ∈ C∞
c (Rd) via a cutoff function to obtain (6.15).
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First, we consider the region Ω. By Assumption (Ck), which ensures Vk vanishes
on Ω for all k, inequality (6.13) implies,

(
inf ρ̄

2

)

sup
k

∫

Ω

∣
∣∇(ρk/ρ̄)

2
∣
∣ ≤ sup

k

∫

Ω

∣
∣
∣
ρ̄

2
∇(ρk/ρ̄)

2
∣
∣
∣ < +∞.(6.16)

Since (ρk/ρ̄)
2 ∈ W 1,1(Rd), combining (6.12) and (6.16), we obtain that (ρk/ρ̄)

2 is
bounded in W 1,1(Ω). Thus, up to a subsequence, (ρk/ρ̄)

2 converges in L1(Ω) and
almost everywhere to some g ∈ L1(Ω) with g ≥ 0. Furthermore,
∥
∥
∥
∥

ρk
ρ̄

−√
g

∥
∥
∥
∥
L1(Ω)

≤
√

|Ω|
∥
∥
∥
∥

ρk
ρ̄

−√
g

∥
∥
∥
∥
L2(Ω)

≤
√

|Ω|
(∫

Ω

∣
∣
∣
∣

ρk
ρ̄

−√
g

∣
∣
∣
∣

(
ρk
ρ̄

+
√
g

))1/2

=
√

|Ω|
(
∫

Ω

∣
∣
∣
∣
∣

(
ρk
ρ̄

)2

− g

∣
∣
∣
∣
∣

)1/2

,

so ρk/ρ̄ → √
g in L1(Ω). Combining this with the fact that ρk → ρ narrowly, we

obtain
√
g = ρ/ρ̄ a.e. on Ω. Therefore, for all f ∈ C∞

c (Ω), the fact that Vk vanishes

on Ω ensures,

lim inf
k→+∞

∫

Ω

f
( ρ̄

2
∇(ρk/ρ̄)

2 +∇Vkρk

)

= lim inf
k→+∞

∫

Ω

f
ρ̄

2
∇(ρk/ρ̄)

2(6.17)

= − lim inf
k→+∞

∫

Ω

∇
(

f
ρ̄

2

)

(ρk/ρ̄)
2

= −
∫

Ω

∇
(

f
ρ̄

2

)

(ρ/ρ̄)2.

By inequality (6.13), the left hand side of the equation may be bounded above by,

sup
k

‖f‖∞
∥
∥
∥
ρ̄

2
∇(ρk/ρ̄)

2 +∇Vkρk

∥
∥
∥
L1(Rd)

≤ ‖f‖∞(sup
k

‖ηk‖L2(ρk) + ‖∇V ‖∞),

which is finite by (6.11). Thus, we conclude (ρ/ρ̄)2 ∈ BV (Ω). Thus, for all f ∈
C∞

c (Rd),

−
∫

Ω

∇
(

f
ρ̄

2

)

(ρ/ρ̄)2 =

∫

Ω

f
ρ̄

2
∇(ρ/ρ̄)2.(6.18)

Next, we seek to apply the Riesz Representation Theorem to the operator,

L(f) =

∫

Ω

f
ρ̄

2
∇(ρ/ρ̄)2.

We first verify the boundedness of this operator on L2(ρ; Ω). To this end, we use
the definition of L and the equalities (6.17) and (6.18) to find,

L(f) = lim inf
k→+∞

∫

Ω

f
( ρ̄

2
∇(ρk/ρ̄)

2 +∇Vkρk

)

.

Recalling the definition of ηk, then using Hölder’s inequality, and using the bound-
edness of ∇V , we obtain,

∫

Ω

∣
∣
∣f

( ρ̄

2
∇(ρk/ρ̄)

2 +∇Vkρk

)∣
∣
∣ =

∫

Ω

|f(ηkρk −∇V ρk)|

≤ ‖f‖L2(ρk;Ω)(sup
k

‖ηk‖L2(ρk) + ‖∇V ‖L∞(Rd)).
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Finally, taking the limit in k, and using the narrow convergence of ρk to ρ, we find
that the desired bound on L holds:

|L(f)| ≤ ‖f‖L2(ρ;Ω)

(

sup
k

‖ηk‖L2(ρk) + ‖∇V ‖L∞(Rd)

)

,

where we use the estimate (6.11) to see that the first term in the parentheses is
finite.

Thus, by the Riesz Representation theorem, there exists w ∈ L2(ρ; Ω) so that,
∫

fwρ =

∫

f
ρ̄

2
∇(ρ/ρ̄)2, for all f ∈ C∞

c (Ω).

Since ‖wρ‖L1(Ld;Ω) = ‖w‖L1(ρ;Ω) ≤ ‖w‖L2(ρ;Ω), this shows that (ρ/ρ̄)
2 ∈ W 1,1(Ω),

so (6.9) holds. Likewise, η := w + ∇V ∈ L2(ρ) satisfies the conditions of (6.10).
Finally, integrating by parts on the right hand side of (6.17) gives (6.15) for all
f ∈ C∞

c (Ω).
It remains to show that (6.15) holds for all f ∈ C∞

c (Rd). By the fact that we
just showed it holds for test functions in C∞

c (Ω), for any smooth cutoff function
0 ≤ φ ≤ 1 that is compactly supported in Ω, we have,

lim inf
k→+∞

∫

Rd

f
( ρ̄

2
∇(ρk/ρ̄)

2 +∇Vkρk

)

= lim inf
k→+∞

∫

Rd

(fφ+ f(1− φ))
( ρ̄

2
∇(ρk/ρ̄)

2 +∇Vkρk

)

=

∫

Ω

fφ
ρ̄

2
∇(ρ/ρ̄)2

︸ ︷︷ ︸

I1

+ lim inf
k→+∞

∫

Rd

f(1− φ)
( ρ̄

2
∇(ρk/ρ̄)

2 +∇Vkρk

)

︸ ︷︷ ︸

I2

.

To estimate I1, note that,
∣
∣
∣fφ

ρ̄

2
∇(ρ/ρ̄)2

∣
∣
∣ ≤ ‖f‖∞‖ρ̄‖∞

2
|wρ| ∈ L1(Ld; Ω).

To estimate I2, note that,

I2 ≤ lim inf
k→+∞

‖f(1− φ)‖L2(ρk)

(
‖ηk‖L2(ρk) + ‖∇V ‖∞

)

≤ ‖f(1− φ)‖L2(ρ)

(

sup
k

‖ηk‖L2(ρk) + ‖∇V ‖∞
)

,

where,

|f(1− φ)|2ρ ≤ |f |2ρ ∈ L1(Ld; Ω).

Thus, by the dominated convergence theorem, for all δ > 0, choosing φ sufficiently
close to 1 pointwise on Ω, we obtain,

∣
∣
∣
∣
lim inf
k→+∞

∫

Rd

f
( ρ̄

2
∇(ρk/ρ̄)

2 +∇Vkρk

)

−
∫

Ω

f
ρ̄

2
∇(ρ/ρ̄)2

∣
∣
∣
∣

≤
∣
∣
∣
∣
I1 −

∫

Ω

f
ρ̄

2
∇(ρ/ρ̄)2

∣
∣
∣
∣
+ I2

≤ δ.

Since δ > 0 was arbitrary, this completes the proof of (6.15). �

We conclude with the proof of Theorem 1.1.
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Proof of Theorem 1.1. As in the statement of the theorem, let

ρ ∈ AC2([0, T ];P2(R
d))

be the unique gradient flow of F with initial condition ρ(0), the existence of which
is guaranteed by Proposition 3.10. By Theorem 5.1, for all k ∈ N,

lim
ε→0

Fε,k(ρ(0)) = Fk(ρ(0)),

so by Proposition 5.6, there exists an “almost” curve of maximal slope ρk ∈
AC2([0, T ];P2(R

d)) and a subsequence {ε(k)j }∞j=1, depending on k, so that

lim
j→+∞

W1(ρε(k)
j ,k

(t), ρk(t)) = 0 uniformly for t ∈ [0, T ].(6.19)

In particular, for each k ∈ N, there exists εk > 0 so that limk→+∞ εk = 0 and

W1(ρεk,k(t), ρk(t)) <
1

k
for all t ∈ [0, T ].(6.20)

Furthermore, since Theorem 5.1 ensures

lim
k→+∞

Fk(ρ(0)) = F(ρ(0)),

Proposition 6.2 implies

lim
k→+∞

W1(ρk(t), ρ(t)) = 0, uniformly for t ∈ [0, T ].(6.21)

Fix δ > 0. Choose Kδ > 0 so that, for all k ≥ Kδ, W1(ρk(t), ρ(t)) < δ/2 for all
t ∈ [0, T ]. Then, for all k ≥ max{2/δ,Kδ},

W1(ρεk,k(t), ρ(t)) ≤ W1(ρk(t), ρ(t)) +W1(ρεk,k(t), ρk(t)) ≤
δ

2
+

1

k
≤ δ,

for all t ∈ [0, T ]. This gives the result. �

6.1. Extension to particle initial data and application to two-layer neural

networks. In the previous sections, we have shown that gradient flows of Fε,k

with “well-prepared” initial data converge to a gradient flow of F , as k → +∞,
ε = ε(k) → 0. Unfortunately, our assumption of “well-preparedness” requires that
the initial data of Fε,k have bounded entropy (5.28), which is a crucial assumption
for obtaining the H1-type bound on the mollified gradient flow (Theorem 4.1) and
the lower semicontinuity of the metric slopes (Proposition 5.3). This assumption
explicitly excludes initial data given by an empirical measure.

We now use stability of the gradient flows of Fε,k to extend the convergence
result to initial data given by an empirical measure, obtaining the proof of our
third major theorem, Theorem 1.2. This is based on the elementary fact that any
measure μ ∈ P2(R

d) can be approximated to arbitrary accuracy by an empirical
measure. For lack of a reference, we recall this in Lemma A.5. (In fact, our
construction of the empirical measure in the proof of Lemma A.5 closely parallels
what we employ in our numerical method.) It can be seen from the proof of Lemma
A.5 that if suppμ ⊆ [−R,R)d, then to approximate μ by an empirical measure

μN =
∑N

i=1 δXimi to accuracy δ > 0 in the 2-Wasserstein metric, N can be taken

to be the smallest integer larger than (2
√
dR/δ)d. More generally, in order for

an empirical measure constructed from N i.i.d. samples of a measure μ 
 Ld

to converge to μ in the Wasserstein metric, N must scale like O(1/δd) [32, 34].
Our requirement that the initial conditions of Fε,k have bounded entropy implies
μ 
 Ld, so this scaling requirement is sharp in our case. However, if μ were
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permitted to concentrate on lower dimensional sets, recent work by Weed and Bach
has shown these requirements can be weakened [76].

Once we have extended our result to particle initial data, in Theorem 1.2, we
are then able to quickly obtain our two main corollaries. Corollary 1.3 shows that,
on bounded domains Ω and in the absence of an external potential V , the particle
solution indeed approximates the target ρ̄ in the long time limit. Next, Corollary
1.4 shows that the overparametrized limit of two-layer neural networks converges,
as the variance of the radial basis function goes to zero, to a solution of (WPME),
which is the gradient flow of a convex energy.

We begin with the proof of Theorem 1.2.

Proof of Theorem 1.2. First, let ρε,k(t) be the gradient flow of Fε,k with initial data
ρ(0). By Theorem 1.1, as k → +∞, ε = ε(k) → 0,

(6.22) lim
k→+∞

W1(ρε,k(t), ρ(t)) = 0, uniformly for t ∈ [0, T ],

where ρ(t) is the gradient flow of F with initial data ρ(0). By Proposition 3.10, ρ
is the unique weak solution of (WPME). Recall from Lemmas 3.1-3.2 and Proposi-
tions 3.3 and 3.6 that Fε,k is lower semicontinuous and λε-convex along generalized
geodesics with,

(6.23) λε = −ε−d−2‖1/ρ̄‖L∞(Rd)‖D2ζ‖L∞(Rd) + inf
{x,ξ∈Rd}

ξtD2V (x)ξ,

and note that −∞ < λε ≤ 0.
By Proposition 3.13, the evolving empirical measure ρNε,k(t), as defined in the

statement of Theorem 1.2, is the unique gradient flow of Fε,k with initial data
ρNε,k(0). By (6.22), it suffices to show that, as k → +∞, ε = ε(k) → 0, , N =

N(ε) → +∞,

(6.24) W1(ρ
N
ε,k(t), ρε,k(t)) → 0, uniformly for t ∈ [0, T ].

Since ρNε,k(t) and ρε,k(t) are both gradient flows of the λε-convex energy Fε,k,

classical stability estimates for gradient flows [3, Theorem 11.2.1] ensure that, for
all t ∈ [0, T ],

W1(ρ
N
ε,k(t), ρε,k(t)) ≤ W2(ρ

N
ε,k(t), ρε,k(t)) ≤ e−λεtW2(ρ

N
ε,k(0), ρ(0)).

By hypothesis (1.21), the right hand side goes to zero uniformly in t ∈ [0, T ], which
completes the proof. �

We now apply this to obtain the proof of Corollary 1.3.

Proof of Corollary 1.3. Let ρ(t) be the solution of (WPME) with initial data ρ(0),
as in Theorem 1.2. By Proposition 3.10, ρ is the unique gradient flow of F with
initial data ρ(0), so by Proposition 3.14,

lim
t→+∞

W1 (ρ(t),�Ωρ̄) ≤ lim
t→+∞

W2 (ρ(t),�Ωρ̄) = 0.

Combining this with Theorem 1.2 gives the result. �

We conclude with the proof of Corollary 1.4.

Proof of Corollary 1.4. The evolving empirical measure ρNε (t), as defined in the
statement of Corollary 1.4, coincides with the evolving empirical measure in The-
orem 1.2. Thus, the convergence of ρNε,k(t) to ρ(t) is an immediate consequence of
this theorem.
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A BLOB METHOD FOR INHOMOGENEOUS DIFFUSION 2629

Furthermore, by Proposition 3.10, ρ(t) is the unique gradient flow of F . Expand-
ing the square in the definition of R and applying Tonelli’s theorem, as in equation
(1.14), we see that F coincides with R, up to a constant. By Definitions 2.9 and
2.12, the gradient flows of two energies coincide. Thus, ρ(t) is the gradient flow of
R. Similarly, from Definition 2.6, we see that adding or subtracting a constant from
an energy does not affect its convexity properties. Thus, Proposition 3.3 ensures
that R is convex. �

7. Numerical simulation

We now implement the particle method described in Theorem 1.2, demonstrating
how the system of deterministic ordinary differential equations (1.11)-1.12 can be
used to numerically approximate solutions of the diffusive partial differential equa-
tion (WPME). Our numerical examples explore long time behavior of solutions,
the effect of the confining potential Vk on the dynamics, the decay of the KL diver-
gence along particle method solutions, and the rate of convergence as N → +∞,
ε → 0, for fixed k�1, both to solutions of (WPME) at intermediate times and to
the target ρ̄ on Ω in the long time limit. Our simulations are conducted in Python
using the NumPy, SciPy, CuPy, and Matplotlib libraries [43, 61, 71, 74].

7.1. Details of numerical approach. We now describe the details of our numer-
ical approach. Since the main goal of our study is to illustrate how nonlocal particle
dynamics can approximate local diffusion equations, we consider the external po-
tential V = 0. We take the dimension d = 1, a Gaussian mollifier,

(7.1) ζε(x) = e−x2/2ε2/(
√
2πε2),

and choose the underlying domain as Ω = (−1, 1). We approximate no-flux bound-
ary conditions on Ω via the confining potential,

(7.2) Vk(x) =

⎧

⎪⎨

⎪⎩

k
2 (x+ 1)2 if x < −1,
k
2 (x− 1)2 if x > 1,

0 otherwise,

where k ∈ N controls the strength of the confinement.
Unless otherwise specified, we choose,

ε = 4/N0.99.(7.3)

Note that this relationship between ε and N is better than expected from our
rigorous results; see the discussion after Corollary 1.3. As will be seen from our
choice of initial conditions {Xi

0}Ni=1 below, the choice of ε in (7.3) ensures that the
mollifiers have sufficient overlap and that different particles can “sense” each other
through the function f(Xi, Xj).

Similarly, unless otherwise specified, we choose

k = 109.(7.4)

Our choice of k, corresponding to strong confinement, is motivated by the desire
to more closely approximate the dynamics of (WPME) on the bounded domain Ω
with no-flux boundary conditions. We anticipate that different choices of dimen-
sion, mollifier, underlying domain, and confining potential may affect the rate of
convergence of our method, but, as our main convergence theorems are not quan-
titative, we leave a detailed numerical analysis of these effects to future work.
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The first step in our method is to approximate the initial condition ρ0 in (WPME)

by an empirical measure
∑N

i=1 δXi
0
mi with locations {Xi

0}Ni=1 ⊆ R
d and weights

{mi}Ni=1 ⊆ [0,+∞) satisfying
∑N

i=1 m
i = 1. In practice, we do this by dividing the

domain Ω = (−1, 1) into N intervals of equal measure. The location Xi
0 is chosen

to be the center of the ith interval, and the weight mi is chosen to approximate the
integral of ρ0 over the interval:

mi = hρ0(X
i
0) ≈

∫ Xi
0+h/2

Xi
0−h/2

ρ0(x)dx, for h = |Ω|/N.

See Lemma A.5.
With the initial conditions in hand, the next step is to solve the system of ODEs

(1.11)-1.12. For general ρ̄, this is an integral equation, which would be expensive
to compute. In the present work, we consider ρ̄ for which the integral in equation
(1.12) can be pre-computed exactly, yielding to a closed form, analytic expression
for f(Xi, Xj) and reducing (1.11) to a standard system of ODEs. In Appendix C,
we provide explicit formulas for f(Xi, Xj) in the case ρ̄ is piecewise constant or
ρ̄ = C/(1 + |x|2), the latter being a prototypical example of a log-concave target.
While it will not be possible to obtain a closed form expression for f(Xi, Xj)
for all choices of ρ̄, we are optimistic that taking sufficiently accurate piecewise
constant approximations would yield good results. We leave a detailed analysis of
the convergence of our method under various approximations of the target ρ̄ to
future work. Once a closed form expression for f(Xi, Xj) is obtained, the system
of ODEs (1.11) may then be solved using a standard numerical integrator. In the
present work, we use the SciPy implementation of the backward differentiation
formula (BDF) with a maximum time step of 10−5.

Finally, we seek to understand qualitative properties of the particle solution, that
is, the evolving empirical measure,

ρNε,k(t) =

N∑

i=1

δXi(t)m
i,(7.5)

as well as its relation to the solution ρ(t) of (WPME) and the target ρ̄. To visually
depict ρNε,k(t) and compute its difference from ρ(t) and ρ̄ with respect to classical
Lp norms and statistical divergences, we will often consider the following kernel
density estimate, given by convolving ρNε,k(t) with the mollifier ζε:

ρ̃Nε,k(x, t) = (ρNε,k(t) ∗ ζε)(x) =
N∑

i=1

ζε(X
i(t)− x)mi.(7.6)

According to Lemma 2.3, if there exists μ ∈ P(Rd) so that ρNε,k narrowly converges

to μ as ε → 0, then the kernel density estimator ρ̃Nε,k also narrowly converges to

μ as ε → 0. Thus our main results that guarantee convergence of ρNε,k also ensure

convergence of ρ̃Nε,k.

Furthermore, when the target ρ̄ is normalized to satisfy
∫

Ω
ρ̄ = 1, solutions of

(WPME) dissipate the Kullback-Leibler (KL) divergence with respect to ρ̄ on Ω
exponentially quickly in time (see inequality (1.5)). We will numerically illustrate
that this key property is preserved by our approximate solutions ρ̃Nε,k. We compute
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the KL divergence on Ω̄ via,

(7.7) KL

(

ρ̃Nε,k(t)

Cε,k,N (t)
, ρ̄

)

=

∫

Ω

(

ρ̃Nε,k(x, t)

Cε,k,N (t)

)

log

(

ρ̃Nε,k(x, t)

Cε,k,N (t)ρ̄(x)

)

dx,

for Cε,k,N (t) =

∫

Ω

ρ̃Nε,k(x, t)dx,

where the constant Cε,k,N (t) allows us to compensate for the fact that, since ρ̃Nε,k
is not in general supported on Ω, the restriction of ρ̃Nε,k to Ω is not a probability

measure and KL(ρ̃Nε,k(t), ρ̄) can be negative. On the other hand, ρ̃Nε,k/Cε,k,N is

always a probability measure on Ω, so that equation (7.7) gives a well-defined,
nonnegative statistical divergence. We compute the integrals in (7.7) numerically,
using the SciPy library’s quad function.

A final key quantity of our numerical scheme is the value of the energy Fε,k along
the solution of the gradient flow ρNε,k. At the continuous time level, the gradient

flow structure ensures that Fε,k(ρ
N
ε,k(t)) is always decreasing in time; see Theorem

2.13 and Proposition 3.13. To investigate the rate of decrease numerically, we first
obtain the following expression for Fε in this setting:

Fε,k(ρ
N
ε,k(t)) = Eε(ρNε,k(t)) + Vk(ρ

N
ε,k(t))(7.8)

=
1

2

∫

Rd

|ζε ∗ ρNε,k(t)|2
ρ̄

dLd +

∫

Rd

Vk dρ
N
ε,k(t)

=
1

2

∫

Rd

ζε ∗
(

ζε ∗ ρNε,k
ρ̄

)

(t) dρNε,k(t) +

∫

Rd

Vk dρ
N
ε,k(t)

=
1

2

N∑

i=1

N∑

j=1

g(Xi(t), Xj(t))mimj +

N∑

i=1

miVk(X
i(t)), where

g(x, y) :=

∫

R

ζε(x− z)ζε(y − z)

ρ̄(z)
dz.(7.9)

We note that g(x, y) is related to the function f(x, y) defined in equation (1.12) by
f = ∇xg, and the integral in the definition of g may be likewise computed explicitly
for our choices of ρ̄, as we describe in Appendix C.

We close this discussion of the details of our numerical method with a few re-
marks on its efficient implementation in Python. As an interacting particle system,
computing the evolution of the particle trajectories (1.11)-1.12 is inherently an
O(N2) computation for a strictly positive mollifier ζε. The expectation is that the
computational effort would decrease for a compactly supported mollifier: indeed,
if supp ζε ⊂⊂ BRε(0), then f(Xi, Xj) would vanish for |Xi − Xj | > 2Rε. How-
ever, rigorously proving that the computational effort indeed decreases to O(mN),
where m represented the average number of particles lying within the radius of a
given mollifier, would require careful estimates on the repulsive forces between the
particles and is left for future work. A second issue one would have to contend
with in the case of compactly supported mollifiers is that, as described above, we
expect quantitative accuracy of our method to degrade if there is not sufficient
overlap between mollifiers. This degradation could be particularly sudden in the
case of compactly supported mollifiers, and we expect that some “remeshing” (that
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is, resampling the locations of the particles) might be needed when the particles
get too far apart, in order to maintain sufficient overlap in the long time limit.

In spite of the above-described potential benefits of a compactly supported molli-
fier, we are still able to achieve good computational speed in practice with a strictly
positive mollifier by using the following techniques. First, we provide an analytical
Jacobian to the ODE solver rather than relying on finite difference approximations.
Second, we leverage the structure of the integrand to compute these partial deriva-
tives efficiently. Finally, we parallelize these computations using the CuPy library
for GPU-accelerated computing [61]. These elements of our implementation allow
us to speed up our calculations by two orders of magnitude compared to previous
work by the first author [19]. Namely, we performed the same simulations as those
used to generate Figure 1 of [19] (the evolution of density over time, starting from
Barenblatt initial data), both using the code of [19], as well as with our implemen-
tation. In Figure 1, we record the resulting improvement in terms of computational
time.

Time Carrillo et al. [19] Present Work

N = 100 0.04s 0.05s
N = 200 0.41s 0.08s
N = 400 3.35s 0.14s
N = 800 38.96s 0.35s
N = 1600 461.96s 5.73s

Figure 1. Computational time for simulation of ρNε,k(t) using our

numerical method and implementation (right column) and that of
[19] (left column). Here the target is ρ̄uni, we take k = 0, t = 0.15,
and the initial condition is the Barenblatt profile; see equation
(7.13).

These simulations were performed on a standard desktop PC (Intel Core i7-10700
CPU @ 2.9 GHz, 16 GB RAM) with a consumer-level GPU (NVIDIA GeForce
RTX 2060 Super). This improvement demonstrates how recent advances in open
source scientific computing methods, even in high level languages like Python, are
making computing interacting particle systems tractable, even for large numbers of
particles.

7.2. Simulation results. We now turn to several numerical examples that illus-
trate key properties of our method. In the following simulations, we consider three
main choices of target: uniform, log-concave, and piecewise-constant, given by,

ρ̄uni(x) =
1

2
,(7.10)

ρ̄log−con(x) =
2

π(1 + |x|2) ,(7.11)

ρ̄pw−const(x) =

{

1/3 for x ∈ (−∞,−0.75) ∪ [−0.25, 0.25) ∪ [0.75,+∞),

2/3 for x ∈ [−0.75,−0.25) ∪ [0.25, 0.75).
(7.12)

7.2.1. Evolution of density and particle trajectories. In Figure 2, we illustrate qual-
itative properties of numerical solutions by plotting the kernel density estimate
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ρ̄uni

ρ̄log−con

ρ̄pw−const

Figure 2. Simulation of the evolution of the density ρ̃Nε,k(t) for the

three targets defined in (7.10)-(7.12), with N = 101, k = 109, and
initial data the Barenblatt profile (7.13). Left Column: Snapshots
of ρ̃Nε,k(t) for the indicated times t. Right Column: Evolution of

corresponding particle trajectories Xi(t).
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ρ̃Nε,k(x, t), defined in equation (7.6), in the top row and the trajectories of the parti-

cles Xi(t) in the bottom row. We conduct our simulation for N = 101 particles, of
which 20 are plotted in the bottom row. We consider three choices of target: ρ̄uni
(left), ρ̄log−con (middle), and ρ̄pw−const (right). In all cases, our initial condition is
given by a Barenblatt profile ψτ (x), with τ = 0.0625:

ψτ (x) =
τ−1/3

12

(

34/3 − |x|2
τ2/3

)

+

.(7.13)

In the top row of Figure 2, we observe that, for all choices of target ρ̄, the
kernel density estimate of the solution ρ̃Nε,k(x, t) flows toward ρ̄ on Ω. For ρ̄uni and
ρ̄log−con, this provides numerical verification of Corollary 1.3, since these targets ρ̄
are log-concave. On the other hand, while ρ̄pw−const is not log-concave, and thus
falls outside the scope of our theoretical results, it does satisfy a Poincaré inequality,
so previous work on asymptotic behavior on smooth [25] and weak [33,42] solutions
of (WPME) ensures that exact solutions of the continuum PDE converge to the
target ρ̄pw−const exponentially quickly in time; see, for example, inequality (1.5).
Consequently, although this case lies outside the realm of our rigorous results, it
is not surprising that we observe convergence of ρNε,k to ρ̄pw−const in the long-time
limit numerically.

In the bottom row of Figure 2, we observe that the particles evolve relatively
quickly to their steady state, with most stopping by time t = 0.3. This stands
in stark contrast to classical stochastic approaches for sampling, such as Langevin
dynamics [9], and stochastic methods in the control theory literature [35, 59], in
which particles remain in perpetual motion, complicating the choice of an appro-
priate stopping time, beyond which continued evolution doesn’t lead to improved
accuracy.

7.2.2. Effect of confining potential on evolution of density. In Figure 3, we consider
the effect of the confining potential on the dynamics. For a fixed number of particles
N = 200 and initial conditions given by ρ̄pw−const, we plot the evolution of the kernel
density estimate ρ̃Nε,k(x, t) as the strength of the confining potential Vk is increased,

from k = 0 (left, no confinement) to k = 100 (middle, moderate confinement) and
k = 109 (right, strong confinement). All simulations are conducted with Barenblatt
initial data, as in equation (7.13).

In the k = 0 plot in Figure 3, we observe that the support of ρ̃Nε,k(x, t) quickly

spreads outside the closure of the domain Ω = [−1, 1]. This is due to fact that
k = 0 implies V0 = 0, by equation (7.2), so there is no confining potential, which
is equivalent to taking Ω = R

d. In the k = 100 plot, we observe that even a weak
confining potential causes the support of the kernel density estimate to remain
mostly inside of Ω, with only a small amount of mass leaking out the sides of the
domain. And, in the k = 109 plot, when the confinement effect is very strong,
we observe that the support of the kernel density estimate is even closer to Ω. In
general, we expect the support of the kernel density estimate ρ̃Nε,k(t) to always be

slightly larger than the domain, since even when all particles are confined to Ω, the
kernel density estimate will satisfy,

supp ρ̃Nε,k(t) = {X1(t), . . . , Xn(t)}+ suppϕε.
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k = 0

k = 100

k = 109

Figure 3. Comparison of how the strength of the confining po-
tential affects the evolution of the density. Here, ρ̄ = ρ̄pw−const,
N = 200, and the initial data is the Barenblatt profile (7.13). Top:
No confinement (k = 0). Middle: Medium confinement (k = 100).
Bottom: Strong confinement (k = 109).

However, in the limit N → +∞, ε → 0, and k → +∞, the support of ρ̃Nε,k will

be contained in Ω. Finally, note that, by preventing mass from leaking out of
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the domain, strong confinement gives the best agreement between the long time
behavior (t = 1) of the kernel density estimate and the desired target ρ̄pw−const on
Ω, in agreement with Corollary 1.3.

ρ̄uni

ρ̄log−con

ρ̄pw−const

Figure 4. Evolution of KL divergence between ρ̃Nε,k(t) and ρ̄ for

three choices of target (7.10)-(7.12) and three choices of N (solid
lines). We plot the line of best fit for t ∈ [0, 0.25] (dashed line).
We take k = 109, t = 2, and initial data is the Barenblatt profile
(7.13).
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7.2.3. Decay of KL divergence. In Figure 4, we examine the decay of KL divergence
between the kernel density estimate ρ̃Nε,k(t) and the target ρ̄ on Ω, as computed via

equation (7.7). We consider three choices of target, ρ̄uni (left), ρ̄log−con (middle),
and ρ̄pw−const (right), and varying numbers of particles N . All simulations are
conducted with Barenblatt initial data. Since each of the three targets ρ̄ satisfies
a Poincaré inequality, the inequality (1.5) implies that the KL divergence between
ρ̄ and smooth solutions ρ(t) of the (WPME) equation decays exponentially quickly
in time. We seek to observe to what extent this property is preserved by the
numerical solution ρ̃Nε,k(t), which approximates ρ(t) in the limit N → +∞, ε → 0,
and k → +∞, as in Theorem 1.2.

For all three choices of target, we indeed observe an initial regime in which the
KL divergence decays exponentially, as indicated by linear decay on the semilog
plots in Figure 4. We estimate the rate of decay by plotting the line of best fit on
the time interval t ∈ [0, 0.25], as shown by the dashed line. After the initial period
of exponential decay, the KL divergence often appears to level off, particularly
for smaller numbers of particles. For larger numbers of particles, the period of
exponential decay lasts longer. This indicates that, for smaller numbers of particles,
the discretization error in the approximation of (WPME) becomes dominant sooner,
slowing the decay of the KL divergence.

The fact that our numerical approximation ρ̃Nε,k(t) preserves, up to discretiza-
tion error, the key property of exponential decay of the KL divergence testifies
to the benefit of structure-preserving numerical schemes—in our case, designing a
numerical scheme that preserves the continuum PDE’s gradient flow structure also
succeeds in capturing asymptotic behavior at the level of the particle method.

7.2.4. Decay of energy. In Figure 5, we examine the decay of the energy Fε,k along
the particle method solution ρNε,k(t), as computed via equations (7.8)-7.9. We con-

sider three choices of target, ρ̄uni (left), ρ̄log−con (middle), and ρ̄pw−const (right),
and varying numbers of particles N . All simulations are conducted with Barenblatt
initial data.

In all three cases, we observe that the energy decreases along the flow. This is
expected since (up to the time discretization error of the ODE solver) our particle
method solution ρNε,k(t) is exactly a gradient flow of the energy Fε,k. For both of the
log-concave energies, ρ̄uni and ρ̄log−con, we observe an initial period of exponential
decay, for t ∈ [0, 0.5], which we approximate by a line of best fit, shown by the
dashed line. We do not observe a corresponding period of exponential decay for the
non-log-concave energy ρ̄pw−const.

7.2.5. Convergence to weighted porous medium equation. In Figures 6 and 7, we
examine the rate of convergence of the kernel density estimate ρ̃Nε,k(t) as k → +∞,
ε → 0, and N → +∞. Given that, for general ρ̄, we lack an analytic expression
for the solution ρ(t) of (WPME) to which we expect the solutions to converge, we
instead compare our numerical solution with N particles at time t = 0.1 to the
numerical solution with Nmax = 1, 280 particles at time t = 0.1 via,

L1 error =

∫

Ω

∣
∣
∣ρ̃Nε(N),k(x, t)− ρ̃Nmax

ε(Nmax),k
(x, t)

∣
∣
∣dx, t = 0.1,(7.14)

where ε(N) is as in equation (7.3) and the integral is evaluated using the SciPy
library’s quad function. Furthermore, since we only expect good convergence rates
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ρ̄uni

ρ̄log−con

ρ̄pw−const

Figure 5. Evolution of Fε,k(ρ
N
ε,k) for three choices of target

(7.10)-(7.12) and three choices of N (solid lines). We include the
line of best fit for t ∈ [0, 0.5] (dashed line) on the top and middle
plots. We take k = 109, and the initial data is the Barenblatt
profile (7.13).

when the solution of the underlying weighted porous medium equation is sufficiently
regular, we restrict our attention to the smooth targets ρ̄uni and ρ̄log−con.

In Figure 6, we consider how the presence of a confining potential affects the
rate of convergence, for both ρ̄uni and ρ̄log−con. All simulations are conducted with
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ρ̄uni

k = 0

ρ̄log−con

k = 0

k = 100 k = 100

k = 109 k = 109

Figure 6. The effect of k on the rate of convergence in N of the
L1 error (7.14) between ρ̃Nε,k and the numerical solution. In the
left-hand column the target is ρ̄uni and in the right-hand column
the target is ρ̄log−con. Here t = 0.1, and the initial condition is the
Barenblatt profile (7.13).

Barenblatt initial data. We choose values of N from N = 20 to N = 640, with
logarithmic spacing. In the top row, for no confinement (k = 0), we observe second
order convergence. In the middle row, for moderate confinement (k = 100), we
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observe slightly less than second order convergence. Finally, in the bottom row, for
strong confinement (k = 109), we observe less than first order convergence.

This example illustrates that there is a delicate balance underlying the choice
of the strength of the confining potential. On one hand, the confinement must be
selected to be sufficiently strong to prevent mass from leaking out of the domain and
to ensure that the long time limit agrees well with the desired target; see Figure
3. On the other hand, selecting the confinement to be too strong can lead in a
degradation of the rate of convergence as ε → 0, N → +∞, as more particles would
be required for a given degree of accuracy.

ρ̄uni ρ̄log−con

Figure 7. The effect of the initial condition on the rate of conver-
gence in N of the L1 error (7.14) between ρ̃Nε,k and the numerical

solution for two choices of target ρ̄. Here k = 109, t = 0.1, and we
take the uniform initial condition (7.15).

In Figure 7, we consider the role the initial conditions play in determining the
rate of convergence of the method. In particular, unlike the previous simulation,
which was conducted with Barenblatt initial conditions, we now consider uniform
initial conditions,

(7.15) μ0(x) =

{
1
2 if x ∈ [−1, 1],

0 otherwise.

We consider the case of no confinement, k = 0, since the previous figure showed the
fastest rate of convergence, of approximately second order, in this case; see Figure
6, top row. We compute the L1 error as in equation (7.14) with Nmax = 1, 280 and
N from N = 20 to N = 640 logarithmically spaced.

Unlike in the previous case, in which we observed near second order convergence
in the absence of confinement, in this case we observe closer to first order conver-
gence for both ρ̄uni (left) and ρ̄log−con (right). We believe this is due to the fact that
the continuum solution ρ(t) of (WPME) with uniform initial conditions, as above,
has worse regularity than the solution for Barenblatt initial conditions. In previ-
ous work by the first author and Bertozzi [29] on a regularized particle method
for the related aggregation equation, which also has a gradient flow structure in
the Wasserstein metric, it was shown that the rate of convergence of the particle
method depended strongly on the regularity of the solution of the underlying PDE,
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in the sense that lower regularity of the continuum solution led to a slower rate of
convergence of the numerical solution. While the convergence results in the present
paper are purely qualitative, it appears that there may a similar dependence on
regularity for the rate of convergence of our particle method to (WPME).

ρ̄uni ρ̄log−con

Figure 8. The rate of convergence in N of the L1 error (7.16)
between ρ̃Nε,k and the target ρ̄ for two choices of target. Here t = 2,

k = 109, and we take the uniform initial condition (7.15).

7.2.6. Convergence to steady state. In Figure 8, we conclude our study of properties
of the numerical method by examining the rate of convergence of the kernel density
estimate ρ̃Nε,k(t) to the target ρ̄ in the long time limit, as the number of particles N
increases. As we only expect good convergence rates when the target is sufficiently
regular, we restrict our attention to the smooth targets ρ̄uni and ρ̄log−con. Further-
more, as illustrated in Figure 3, since strong confinement is necessary to obtain
convergence to the target as t → +∞, we choose k = 109. We consider Barenblatt
initial conditions and values of N from N = 20 to N = 720, logarithmically spaced.
We compute the L1 error via,

L1 error =

∫

Ω

∣
∣ρ̃Nε,k(x, T )− ρ̄(x)

∣
∣ dx, T = 2.0,(7.16)

where the integral is evaluated using the SciPy library’s quad function.
For both ρ̄uni and ρ̄log−con we observe nearly first order convergence of our par-

ticle approximation to the target ρ̄. This provides a quantitative numerical result
to complement our qualitative result from Corollary 1.3, in which we show that
there exist parameters T → +∞, k → +∞, ε → 0, N → +∞ for which our particle
method indeed provides a way to approximate ρ̄ on Ω, as relevant for applications
in quantization.

Appendix A. Wasserstein gradient flows

We begin with a proof of Proposition 2.11, relating the metric slope and subdif-
ferential.
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Proof of Proposition 2.11. By definition of the subdifferential and local slope, for
all γ ∈ Γ0(μ, ν),

|∂G|(μ) = lim sup
ν→μ

(G(μ)− G(ν))+
W2(μ, ν)

≤ lim sup
ν→μ

1

W2(μ, ν)

(∫

Rd×Rd

〈ξ(x), x− y〉 dγ(x, y)− λ

2
W 2

2 (μ, ν)

)

+

≤ lim sup
ν→μ

(‖ξ‖L2(μ)W2(μ, ν)

W2(μ, ν)
+

λ−
2

W2(μ, ν)

)

= ‖ξ‖L2(μ),

where λ− = max{−λ, 0}. This shows inequality (2.12). Uniqueness of the minimal
subdifferential follows from the strict convexity of ‖ · ‖L2(μ). �

We now describe the proof of Theorem 2.13, which is a collection of results due
to Ambrosio, Gigli, and Savaré that ensure well-posedness of Wasserstein gradient
flows, as well as their characterization via curves of maximal slope.

Proof of Theorem 2.13. Existence and uniqueness of the gradient flow, as well as
the fact that the gradient flow is a curve of maximal slope, follows from [3, Theorem
11.2.1].

Conversely, suppose μ(t) ∈ AC2([0, T ];P2(R
d)) is a curve of maximal slope in the

sense of inequality (2.14). By the definition of strong upper gradient [3, Definition
1.2.1], Young’s inequality, and the fact that, under the assumptions of the theorem,
the local slope |∂G| is a strong upper gradient [3, Corollary 2.4.19], t �→ G(μ(t)) is
absolutely continuous, and

− d

dt
G(μ(t)) ≤ 1

2
|∂G|2(μ(t)) + 1

2
|μ′|2(t), for almost every t ≥ 0.

Define f(t) = d
dtG(μ(t))+ 1

2 |∂G|2(μ(t))+ 1
2 |μ′|2(t). Then we must have f(t) ≥ 0 for

a.e. t ≥ 0 and inequality (2.14) ensures

∫ t

0

f(r)dr ≤ 0 for all t ≥ 0.

Therefore, we must have f(t) = 0 for a.e. t ≥ 0 and, integrating f from (a, b) ⊆
[0,+∞), we see G(μ(t)) must be decreasing. This shows μ(t) is a curve of maximal
slope in the pointwise sense of Ambrosio, Gigli, and Savaré [3, Definition 1.3.2].
Finally, [3, Theorem 11.1.3] ensures it is a gradient flow of G. (This theorem applies
since functionals that are λ-convex are regular, in the sense required by the theorem,
and functionals that are λ-convex along generalized geodesics satisfy the required
coercivity assumption in [3, equation 11.1.13b]: see [3, Lemma 10.3.8, Definition
10.3.9] for regularity and [3, Assumption 4.0.1, Lemma 4.1.1] for coercivity.)

Finally, the fact that μ(t) is a gradient flow of G if and only if it satisfies the
Evolution Variational Inequality follows from [3, Theorem 11.1.4]. �

Next, we define a discrete time approximation of a Wasserstein gradient flow,
known as a minimizing movement scheme, which was famously introduced in the
Wasserstein context by Jordan, Kinderlehrer, and Otto [47].
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Definition A.1 (Minimizing movement scheme). Suppose G is proper, lower semi-
continuous, and λ-convex along generalized geodesics. Define the proximal operator
Jτ by,

Jτ μ = argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (μ, ν) + G(ν)
}

,

and define the minimizing movement scheme Jnτ μ by,

Jnτ (μ) = Jτ ◦ Jτ ◦ · · · ◦ Jτ
︸ ︷︷ ︸

n times

(μ).

Note that, by definition, the energy decreases along the minimizing movement
scheme:

G(Jnτ μ) ≤ G(Jn−1
τ μ).(A.1)

We recall Theorem A.2 on the convergence, due to Ambrosio, Gigli, and Savaré.

Theorem A.2 (Convergence of minimizing movement scheme, [3, Theorem 4.0.9]).
Suppose G is proper, lower semicontinuous, and λ-convex along generalized geodesics
and μ ∈ D(G). Fix T > 0, and take a piecewise constant interpolation of the mini-
mizing movement scheme,

μτ (s) = Jnτ μ for s ∈ ((n− 1)τ, nτ ].(A.2)

Then for all t ∈ [0, T ], we have limn→+∞ μτ (t) = μ(t) narrowly, where μ(t) is the
gradient flow of G with initial data μ.

Proof. This theorem is an immediate consequence of [3, Theorem 4.0.9]. �

We continue with an elementary result bounding the Wasserstein distance be-
tween a curve of maximal slope and a fixed reference measure.

Proposition A.3 (M2 bound for 2-absolutely continuous curves). Suppose ρ(t) ∈
AC2([0, T ];P2(R

d)). Then we have

M2(ρ(t)) ≤
(
1 + tet

)

(

M2(ρ(0)) +

∫ T

0

|ρ′|2(r)dr
)

for all t ∈ [0, T ].(A.3)

Proof. We shall show that, for any μ ∈ P2(R
d),

W 2
2 (ρ(t), μ) ≤

(
1 + tet

)

[

W 2
2 (ρ(0), μ) +

∫ T

0

|ρ′|2(r)dr
]

for all t ∈ [0, T ].(A.4)

The desired estimate then follows from taking μ = δ0, as in (2.4).
Define W(ρ) = − 1

2W
2
2 (ρ, μ). Since W is (-1)-convex and lower semicontinuous

[3, Proposition 9.3.12], the local slope |∂W|(ρ) is a strong upper gradient for W
(see [3, Definition 1.2.1, Corollary 2.4.10]), which implies,

|W(ρ(t))−W(ρ(0))| ≤
∫ t

0

|∂W|(ρ(s))|ρ′|(s)ds.(A.5)
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Furthermore, using the definition of local slope, rearranging, and applying the
triangle inequality yields,

|∂W|(ρ) = lim sup
ν→ρ

W 2
2 (ν, μ)−W 2

2 (ρ, μ)

2W2(ρ, ν)

= lim sup
ν→ρ

(W2(ν, μ)−W2(ρ, μ))(W2(ν, μ) +W2(ρ, μ))

2W2(ρ, ν)

≤ lim sup
ν→ρ

W2(ρ, ν)(W2(ν, μ) +W2(ρ, μ))

2W2(ρ, ν)
= W2(ρ, μ).(A.6)

Thus, combining (A.5) and (A.6), we obtain,

1

2

[
W 2

2 (ρ(t), μ)−W 2
2 (ρ(0), μ)

]
≤ |W(ρ(t))−W(ρ(0))|

≤
∫ t

0

W2(ρ(s), μ)|ρ′|(s)ds

≤ ‖W2(ρ(s), μ)‖L2([0,t])‖|ρ′|(s)‖L2([0,t])

≤ 1

2

∫ t

0

W 2
2 (ρ(s), μ)ds+

1

2

∫ T

0

|ρ′|2(s)ds.

By Gronwall’s inequality, this implies inequality (A.4). �

As a corollary of Proposition A.3, we obtain a bound on the second moment for
gradient flows in terms of the energy driving the gradient flow.

Corollary A.4 (M2 bound for curves of maximal slope). Suppose

ρ(t) ∈ AC2([0, T ];P2(R
d))

is a curve of maximal slope of a nonnegative functional G : P2(R
d) → [0,+∞], that

is, ρ(t) satisfies Theorem 2.13(i). Suppose further that ρ0 ∈ D(G). Then we have,

M2(ρ(t)) ≤
(
1 + tet

)
(M2(ρ(0)) + 2G(ρ(0))) .(A.7)

Proof. This is an immediate consequence of Proposition A.3, using the definition
of a curve of maximal slope, Theorem 2.13(i), and the fact that G is assumed to be
nonnegative. �

We close this section by providing the construction of an empirical measure
approximating any measure μ ∈ P2(R

d).

Lemma A.5 (Approximation via empirical measures). For all μ ∈ P2(R
d) and

δ > 0, there exists N ∈ N, {Xi}i=1,...,N ⊆ R
d, and {mi}i=1,...,N ⊆ R

+ with
∑N

i=1 m
i = 1, such that μN =

∑N
i=i δXimi satisfies W2(μ, μ

N ) ≤ δ.

Proof of Lemma A.5. Throughout this proof, we shall use Qr(0) to denote a cube

in R
d centered at 0 and with side length r > 0; namely, Qr(0) =

[
− r

2 ,
r
2

)d
. For

x ∈ R
d, let Qr(x) = Qr(0) + x.

Fix μ ∈ P2(R
d) and δ > 0. First, we approximate μ by a compactly supported

measure μR. To this end, note that since μ ∈ P2(R
d), there exists R > 0 so that

∫

QR(0)c
|x|2 dμ ≤

(
δ
2

)2
. Consider the transport map,

tR(x) =

{

x if x ∈ QR(0),

0 otherwise,
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and define μR via μR = (tR)#μ. Then we find,

W2(μ, μR) ≤
(∫

|tR(x)− x|2 dμ
)1/2

≤
(
∫

QR(0)c
|x|2 dμ

)1/2

≤ δ

2
.(A.8)

We are now ready to define the approximating measure μN . Choose K ∈ N large
enough so that,

(A.9) K ≥ 2
√
dR

δ
,

and consider a grid on QR(0) where each cell has side length R/K, so that we

have QR(0) =
⋃Kd

i=1 QR/K(Xi), where the centers {Xi}Kd

i=1 are chosen such that the

above union is disjoint. Let N = Kd, and define μN to be the sum of Dirac masses
at the centers of the cells, with weights given by the mass of μR in each cell:

μN =
N∑

i=1

δXimi, with mi = μR

(
QR/K(Xi)

)
.

To estimate W2(μR, μ
N ), we consider the transport map t : Rd → R

d which, for
i = 1, . . . , N , moves all the mass in cell QR/K(Xi) to Xi. Then μN = t#μR and,

W 2
2 (μR, μ

N ) ≤
∫

|t(x)− x|2 dμR

=

N∑

i=1

∫

QR/K(Xi)

|t(x)− x|2 dμR

≤
N∑

i=1

∫

QR/K(Xi)

(√
dR

K

)2

dμR

=

(√
dR

K

)2

,

where the second inequality follows from the fact that mass in the ith cell stays in
the ith cell, so the largest distance mass could be moved is the diagonal length of

the cell,
√
dR
K . Finally, we conclude by using the definition of K in (A.9), together

with the estimate (A.8), and the triangle inequality:

W2(μ, μ
N ) ≤ W2(μ, μR) +W2(μR, μ

N ) ≤ δ

2
+

δ

2
.

�

Appendix B. Further properties of energies and gradient flows with
regularization and confinement

We provide the proof of Lemma 3.1, which ensures that the energies E and Eε
are lower semicontinuous with respect to narrow convergence.

Proof of Lemma 3.1. First we consider E . For this energy, lower semicontinuity
follows from the following result of Buttazo [15, Corollary 3.4.2]: given g : Rd×R →
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[0,+∞], consider the functional G : P(Rd) → [0,+∞] defined by,

(B.1) G(μ) =
{∫

Rd g(x, μ(x))dx if μ 
 Ld,

+∞ otherwise.

Then if (i) g is lower semicontinuous, (ii) for every x ∈ R
d, the function g(x, ·) is

convex on R, and (iii) there exists θ : R → R with limt→∞
θ(t)
t = ∞ and g(x, y) ≥

θ(|y|) for every x ∈ R
d, y ∈ R, then the functional G is lower semicontinuous with

respect to narrow convergence.
We now verify these hypotheses: our energy E is of the form (B.1), for g(x, y) =

y2

2ρ̄(x) , which satisfies (i) and (ii). Furthermore, by setting θ(t) = Ct2, where C =

(maxx∈Rd 2ρ̄(x))−1, we see that g satisfies (iii). Thus, E is lower semicontinuous
with respect to narrow convergence.

The lower semicontinuity of Eε follows directly from the definition of Eε(μ) =
E(ζε ∗ μ), Lemma 2.3, and the lower semicontinuity of E . �

We now prove Proposition 3.3 by applying the general results of Ambrosio, Gigli,
and Savaré [3] to immediately characterize the convexity of E , V , Vk, and Vε.

Proof of Proposition 3.3. First we show item (i). Define the log-concave extension
of ρ̄ by

ρ̃ = e−W , W (x) =

{

− log ρ̄(x) if x ∈ Ω,

+∞ otherwise.

In this way, ρ̃ = ρ̄ on Ω, but ρ̃ is log-concave on all of Rd. Furthermore, for all
ρ ∈ P2(R

d),

E(ρ) + VΩ(ρ) =

{
1
2

∫

Rd

|ρ(x)|2
ρ̃(x) dLd(x) if ρ 
 ρ̃,

+∞ otherwise.

Finally, [3, Theorem 9.4.12] ensures the energy on the right hand side is convex
along generalized geodesics.

Item (ii) is a consequence of the fact that, for any potential W : Rd → R∪{+∞}
that is proper, lower semicontinuous, bounded below, and λ-convex, the correspond-
ing energy ρ �→

∫
Wρ is λ-convex along generalized geodesics [3, Proposition 9.3.2].

Next, recall that V ∈ C2(Rd) with Hessian bounded below implies D2V ≥ λId×d for
λ = inf{x,ξ∈Rd} ξ

tD2V (x)ξ, hence we also have D2(ζε ∗V ) ≥ λId×d for all ε > 0. In
particular, both V and (ζε ∗ V ) are λ-convex, which implies V and Vε are λ-convex
along generalized geodesics. Likewise, since Vk is continuous, bounded below, and
convex, Vk is convex along generalized geodesics. �

Next we prove Proposition 3.8, characterizing the minimal element of the subd-
ifferential of Fε,k.

Proof of Proposition 3.8. For simplicity of notation, denote,

ξ = ∇δEε
δμ

+∇(ζε ∗ V ) +∇Vk.(B.2)

Note that Proposition 3.7 and Remark 2.10 on the additivity of the subdifferential
ensure that ξ ∈ ∂Fε,k(μ). In order to conclude ξ ∈ ∂◦Fε,k, it remains to show that
‖ξ‖L2(μ) ≤ |∂Fε,k|(μ). Proposition 2.11 will then give the result.
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Fix ψ ∈ C1(Rd) satisfying ∇ψ ∈ L2(μ), and define μα = (id+α∇ψ)#μ. By
definition of the Wasserstein distance from μ to μα in terms of minimizing over all
transport plans from μ to μα, equation (2.3), and the fact that (id×(id+α∇ψ))# μ
is such a plan,

W2(μα, μ) ≤ ‖(id+α∇ψ)− id ‖L2(μ) = α‖∇ψ‖L2(μ).

By definition of the metric slope,

|∂Fε,k|(μ) = lim sup
ν→μ

(Fε,k(μ)−Fε,k(ν))+
W2(μ, ν)

≥ lim sup
α→0

(Fε,k(μ)−Fε,k(μα))+
W2(μ, μα)

(B.3)

≥ 1

‖∇ψ‖L2(μ)
lim sup
α→0

(Fε,k(μ)−Fε,k(μα))+
α

.

We now apply inequality (B.3) to complete the proof. Recall from the sentence
following assumption (C) that Vk ∈ L1(ν) and ∇Vk ∈ L2(ν) for all ν ∈ P2(R

d).
Hence, μα ∈ D(Fε,k) for all α ≥ 0. Thus, combining inequality (B.3) with Propo-
sition 3.4, which characterizes the directional derivatives of Eε, Vε, and Vk, applied
with,

γ = (id, id, id+∇ψ)#μ,

we obtain,

|∂Fε,k|(μ)‖∇ψ‖L2(μ) ≥ lim
α→0

Eε(μ)− Eε(μα)

α
+

Vε(μ)− Vε(μα)

α
+

Vk(μ)− Vk(μα)

α

= −
∫

ζε ∗ μ(x)
ρ̄(x)

∫
〈
∇ζε

(
x− y2

)
, y3 − y2

〉
dγ(y1, y2, y3)

+

∫

〈∇(ζε ∗ V )(y2) +∇Vk(y2), y3 − y2〉 dx

= −
∫ 〈(

∇ζε ∗
(
ζε ∗ μ
ρ̄

))

+∇(ζε ∗ V ) +∇Vk,∇ψ

〉

dμ.

Since the above inequality holds for any ψ ∈ C1 with ∇ψ ∈ L2(μ), taking,

ψ = −
(

ζε ∗
(
ζε ∗ μ
ρ̄

))

− (ζε ∗ V )− Vk, so that ∇ψ = −ξ,

we obtain |∂Fε,k|(μ)‖∇ψ‖L2(μ) ≥ ‖∇ψ‖2L2(μ). Dividing through by ‖∇ψ‖L2(μ) =

‖ξ‖L2(μ) gives the result. �

We now turn to a proof of Proposition 3.10, which characterizes the gradient
flow of F in terms of a partial differential equation.

Proof of Proposition 3.10. Note that μ is a gradient flow of F , with initial data
μ0 ∈ D(F), then, according to Theorem 2.13, μ is unique and is a curve of maximal
slope for F . Since F ≥ −‖V ‖∞, this implies that for any t > 0,

∫ t

0

|∂F|2(μ(r)) dr ≤ F(μ0) + ‖V ‖∞ < +∞.(B.4)

This ensures that |∂F|(μ(t)) < +∞ for L1 almost every t > 0, and since D(|∂F|) ⊆
D(F), we also have,

F(μ(t)) < +∞ for a.e. t > 0.(B.5)
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By inequality (B.5), μ(t) 
 Ld and μ = 0 a.e. on R
d \Ω for almost every t ≥ 0.

Furthermore, Proposition 3.9 implies that, for almost every t ≥ 0, (μ(t)/ρ̄)2 ∈
W 1,1

loc (Ω) and that there exists ξ(t) ∈ ∂◦F(μ) with,
(B.6)

ξ(t)μ(t) =
ρ̄

2
∇(μ(t)2/ρ̄2) +∇V μ(t) on Ω and |∂F|(μ) = ‖ξ(t)‖L2(μ(t)).

By Definition 2.12 of gradient flow, we obtain that μ satisfies the continuity equation
(2.13) with v(t) = −ξ(t). Using the expression (B.6) for ξ therefore yields (3.7).
Finally, the containment (3.9) follows from inequality (B.4) and equation (B.6).

On the other hand, suppose μ solves (3.7) and satisfies (3.8)-3.9. Then, defin-
ing ξ on the support of μ via (B.6) implies that the hypotheses of Proposition
3.9 are satisfied, so ξ ∈ ∂◦F(μ). From this we find that (3.7) is exactly the con-
tinuity equation in Definition 2.12 of the gradient flow, with v(t) = −ξ(t) satis-
fying ‖v(t)‖L2(μ(t)) ∈ L1

loc(0,+∞). Thus, we have that μ ∈ AC2([0, T ];P2(R
d))

[3, Theorem 8.3.1], hence μ(t) is the unique gradient flow of F with initial data μ0,
completing the proof of the proposition. �

The next result is a proof of Proposition 3.12, which characterizes the gradient
flow of Fε,k in terms of a partial differential equation.

Proof of Proposition 3.12. Suppose that μ(t) is the gradient flow of Fε,k. Then the
fact that μ(t) satisfies (3.11) follows directly from Definition 2.12, Proposition 3.8,
and Theorem 2.13.

Now suppose that μ(t) satisfies (3.11). Then, the fact that the velocity field in
the continuity equations is uniformly bounded ensures, by [3, Theorem 8.3.1], that
μ ∈ AC2([0, T ];P2(R

d)). Thus, the fact that μ is the gradient flow of Fε,k is again
a consequence of Definition 2.12, Proposition 3.8, and Theorem 2.13. �

We now consider the proof of Proposition 3.13, which shows that the gradient
flow of Fε,k beginning at an empirical measure remains an empirical measure for
all time and characterizes the ODE governing the evolution of the locations of the
Dirac masses.

Proof of Proposition 3.13. First note that, for all ε > 0 fixed, the function of
(X1, . . . , XN ) that appears on the right-hand side of (3.12) is Lipschitz contin-
uous, and therefore the ODE system (3.12) is well-posed. Suppose Xi(t) solves

(3.12). We claim that it suffices to show that μ(t) =
∑N

i=1 δXi(t)m
i solves (3.11).

Proposition 3.12 then ensures that μ(t) is the unique solution of the gradient flow.
The fact that limt→0+ μ(t) = μ(0) in W2 follows immediately from the definition

of μ(t) and μ(0). Next, note that,

−
∫

Rd

∇ζε(X
i(t)− z)

1

ρ̄(z)

N∑

j=1

mjζ(z −Xj(t)) dz

= −
∫

Rd

∇ζε(X
i(t)− z)

1

ρ̄(z)
ζ(z − y) dμ(y)dz

= −
(

∇ζε ∗
(
ζε ∗ μ
ρ̄

))

(Xi(t)).(B.7)
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Now, fix a test function f ∈ C∞
c (Rd × (0,+∞)). By the Fundamental Theorem of

Calculus and equation (B.7), for each 1 ≤ i ≤ N ,

0 =

∫ ∞

0

d

dt
f(Xi(t), t) dt

=

∫ ∞

0

〈

∇f(Xi(t), t), Ẋi(t)
〉

+ ∂tf(X
i(t), t) dt

=

∫ ∞

0

〈

∇f(Xi(t), t),

(

−
(

∇ζε ∗
(
ζε ∗ μ
ρ̄

))

(Xi(t))−∇(ζε ∗ V )(Xi(t))

−∇Vk(X
i(t))

)〉

+ ∂tf(X
i(t), t) dt.

Multiplying by mi, summing over i, and recalling the definition of μ yields,

0 =

∫ ∞

0

∫

Rd

〈

∇f(x, t),

(

−
(

∇ζε ∗
(
ζε ∗ μ
ρ̄

))

(x)−∇(ζε ∗ V )(x)

−∇Vk(x)

)〉

+ ∂tf(x, t) dμ(x, t) dt.

Thus, μ is a distributional solution of the continuity equation (3.11). �

Appendix C. Explicit formulas for numerical method

In this section, we collect a few explicit formulas that we use in the implemen-
tation of our numerical method. For our choices of uniform (7.10), log-concave
(7.11), and piecewise constant (7.12) target, we have explicit formulas for the func-
tions f(x, y) and g(x, y) defined in Section 7.1: see equations (1.12) and (7.9). For
the log-concave target measure, we obtain,

f(xi, xj) =
−2ε2xi − 6ε2xj+x3

i +x2
ixj − xix

2
j+4xi − x3

J − 4xj

16
√
πε3

Cρ̄e
−(xi−xj)

2/(4ε2),

g(xi, xj) = [ψij(+∞)− ψij(−∞)],

ψij(z) =
Cρ̄

8
εe

−(x2
i+x2

j+2z2)

2ε2

(

−√
π(2ε2 + x2

i + 2xixj + z2 + 4)

e
(x2

i+x2
j+2xixj)

4ε2 erf
(xi + xj − 2z

2

)
− 2ε(xi + xj + 2z)ε

z(xi+xj)

ε2

)

.

For the uniform and piecewise constant targets, note that both may be expressed
as,

ρ̄(x) =

N∑

k=1

ck�[bk,bk+1](x),
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where {ck}Nk=1 are positive constants chosen so that
∫

Ω
ρ̄ = 1, {bk}N+1

k=1 ⊆ R. For
any target of this form, we obtain

f(xi, xj) =

N∑

k=1

c−1
k [ϕij(bk+1)− ϕij(bk)] ,

ϕij(z) = −e−(x2
i+2z2+x2

j )/(2ε
2)

8πε3

(

2εez(xi+xj)/ε
2)

−√
π(xi − xj)e

((xi+xj)
2+4z2)/(4ε2)erf

(
xi − 2z + xj

2ε

))

+
e−(x2

i+x2
J)/(2ε

2)

8πε3

(

2ε−√
π(xi − xj)e

(xi+xj)
2/(4ε2)erf

(
xi+xj

2ε

))

,

g(xi, xj) =

N∑

k=1

[ψij(bk+1)− ψij(bk)],

ψij =
−1

4
√
π
e

−(xi−xj)
2

4ε2 erf
(xi + xj − 2z

2ε

)
.
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[2] L. Ambrosio, E. Brué, and D. Semola, Lectures on Optimal Transport, Unitext, vol. 130,
Springer, Cham, [2021] c©2021. La Matematica per il 3+2, DOI 10.1007/978-3-030-72162-6.
MR4294651
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diffusives non linéaires (French, with English and French summaries), C. R. Acad. Sci. Paris
Sér. I Math. 332 (2001), no. 4, 369–376, DOI 10.1016/S0764-4442(00)01795-X. MR1821479

[51] Q. Liu, Stein variational gradient descent as gradient flow, Adv. Neural Inf. Process. Syst.
30 (2017).

[52] Q. Liu and D. Wang, Stein variational gradient descent: a general purpose Bayesian inference

algorithm, Adv. Neural Inf. Process. Syst. 29 (2016).

[53] J. Lu, Y. Lu, and J. Nolen, Scaling limit of the Stein variational gradient descent: the mean

field regime, SIAM J. Math. Anal. 51 (2019), no. 2, 648–671, DOI 10.1137/18M1187611.
MR3919409

[54] D. Matthes, R. J. McCann, and G. Savaré, A family of nonlinear fourth order equations of

gradient flow type, Comm. Partial Differential Equations 34 (2009), no. 10-12, 1352–1397,
DOI 10.1080/03605300903296256. MR2581977

Licensed to Michigan St Univ. Prepared on Fri May  3 10:50:09 EDT 2024 for download from IP 35.8.11.3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A BLOB METHOD FOR INHOMOGENEOUS DIFFUSION 2653

[55] D. Matthes and H. Osberger, Convergence of a variational Lagrangian scheme for a nonlinear

drift diffusion equation, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 3, 697–726, DOI
10.1051/m2an/2013126. MR3177862
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