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Abstract

The element abundance pattern found in Milky Way disk stars is close to two-dimensional, dominated by
production from one prompt process and one delayed process. This simplicity is remarkable, since the elements are
produced by a multitude of nucleosynthesis mechanisms operating in stars with a wide range of progenitor masses.
We fit the abundances of 14 elements for 48,659 red-giant stars from APOGEE Data Release 17 using a flexible,
data-driven K-process model—dubbed KPM. In our fiducial model, with K= 2, each abundance in each star is
described as the sum of a prompt and a delayed process contribution. We find that KPM with K= 2 is able to
explain the abundances well, recover the observed abundance bimodality, and detect the bimodality over a greater
range in metallicity than has previously been possible. We compare to prior work by Weinberg et al., finding that
KPM produces similar results, but that KPM better predicts stellar abundances, especially for the elements C+N
and Mn and for stars at supersolar metallicities. The model fixes the relative contribution of the prompt and delayed
processes to two elements to break degeneracies and improve interpretability; we find that some of the
nucleosynthetic implications are dependent upon these detailed choices. We find that moving to four processes
adds flexibility and improves the model’s ability to predict the stellar abundances, but does not qualitatively change
the story. The results of KPM will help us to interpret and constrain the formation of the Galaxy disk, the
relationship between abundances and ages, and the physics of nucleosynthesis.

Unified Astronomy Thesaurus concepts: Stellar abundances (1577); Nucleosynthesis (1131); Galaxy chemical
evolution (580); Core-collapse supernovae (304); Type Ia supernovae (1728)
Supporting material: machine-readable tables

1. Introduction

After hydrogen, helium, lithium, and beryllium, all other
naturally occurring elements are made in stars, supernovae
(SNe), and the collisions of stars. Stellar surface abundances—
the abundances measured by taking a spectrum of a stellar
photosphere—are thought to deliver a relatively unprocessed
record of the element abundances in the gas from which the star
formed (though see, e.g., Pinsonneault et al. 2001; Oh et al.
2018; Souto et al. 2019; Vincenzo et al. 2021b). These birth
abundances were set by a combination of nucleosynthetic
processes involved in making heavy atomic nuclei, and
astrophysical processes involved in delivering atoms from
stellar interiors to star formation sites (e.g., Johnson et al.
2020). Thus, nuclear physics and a wide swath of astrophysics
are critically intertwined in our understanding of stellar surface
abundances, motivating theoretical, experimental, and observa-
tional work.

At the present day, stellar surface abundances are not very
well explained by purely ab initio, physics-driven models.
Theoretical yields vary from data set to data set, as they are
dependent on progenitor properties and explosion assumptions
(e.g., Rybizki et al. 2017; Blancato et al. 2019; Buck et al.
2021; Griffith et al. 2021b). The wide parameter space of
progenitor and SN models, coupled with uncertainties in
reaction rates and explosion physics, hinder the creation of an
accurate nucleosynthetic model from theory alone. In the long
run, it is incumbent upon us to understand these issues and
correct the assumptions or calculations underlying our
nucleosynthetic and astrophysical models. In the short run,
however, we gather data—tens of millions of abundance
measurements on millions of stars in different astronomical
surveys, such as RAVE (Steinmetz et al. 2006), SEGUE
(Yanny et al. 2009), LAMOST (Luo et al. 2015), Gaia-ESO
(Gilmore et al. 2012, 2022), APOGEE/MWM (Majewski et al.
2017), GALAH (De Silva et al. 2015), and H3 (Conroy et al.
2019). This raises the question: can we take a data-driven
approach to nucleosynthesis?
In this article, we build a purely data-driven model for the

surface element abundances observed in stars. We treat each
star as being a linear combination of nucleosynthetic processes,
beginning with one that is primarily responsible for the
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α-element Mg (prompt enrichment, such as core-collapse SNe,
or CCSNe; e.g., Andrews et al. 2017) and one that is primarily
not responsible for Mg (delayed enrichment, such as Type Ia
SNe, or SNe Ia). Beyond these up-front assumptions, we try to
be agnostic about how the elements are produced.

We build upon the work of Griffith et al. (2019, 2022;
hereafter, G22) and Weinberg et al. (2019, 2022; hereafter, W19
and W22), who used the bimodality in [Mg/Fe] versus
[Fe/H]11 (e.g., Fuhrmann 1998; Bensby et al. 2003; Adibekyan
et al. 2012) to separate stars into populations with high- and
low-SN-Ia enrichment. As established in Griffith et al. (2019),
these populations are referred to as high-Ia and low-Ia, to
reflect their enrichment origins, instead of the traditional low-α
and high-α nomenclature. We adopt this updated naming
convention in this article. Using the median [X/Mg] versus
[Mg/H] abundance trends, these prior works explain data from
the GALactic Archaeology with HERMES (GALAH) and the
Sloan Digital Sky Survey (SDSS)-IV Apache Point Observa-
tory Galactic Evolution Experiment (APOGEE) surveys,
respectively, with a two-process model. Because the median
abundance trends in [X/Mg] versus [Mg/H] space are largely
insensitive to aspects of chemical evolution, such as outflows
and variations in star formation history (W19), the population
abundance trends are set by the nucleosynthetic processes and
can be used to empirically constrain Galactic enrichment.

These works, as well as Ting & Weinberg (2022) and
Ratcliffe & Ness (2023), find that the Milky Way stellar
abundances are well fit by two components, grounded in
[Fe/H] and [Mg/Fe], down to residuals of 0.01–0.03 dex for
the most precisely measured elements and 0.05–0.1 dex for
elements (such as Na, C, and Ce) with large measurement
errors. Simultaneously, Frankel et al. (2018) and Ness et al.
(2022) have found that disk abundances are also well described
by a two-component model of birth radius and age. Correla-
tions between two-process model parameters and stellar ages
and kinematics (W22), as well as the success of a two-
component model of [Fe/H] and age in predicting APOGEE
abundances (Ness et al. 2019), suggest that these two two-
dimensional (2D) models are somehow interconnected.

Beyond standard CCSN and SN Ia enrichment, many
elements have contributions from additional nucleosynthetic
processes, such as the rapid (r) and slow (s) neutron capture
processes (e.g., Arlandini et al. 1999; Bisterzo et al. 2014) in
asymptotic giant branch (AGB) stars (e.g., Simmerer et al.
2004; Karakas & Lugaro 2016), merging neutron stars (e.g.,
Kilpatrick et al. 2017), or atypical SN explosions (e.g., Nomoto
et al. 2013). After predicting stellar abundances from [Fe/H]
and [Mg/Fe], Ting & Weinberg (2022) identify correlated
abundance residuals that are unexplained by observational
uncertainties, indicative of additional nucleosynthetic processes
that standard disk CCSN and SN Ia enrichment cannot explain.
The results from G22 and W22 support this conclusion, and
both works attempt to add additional processes to their models
to account for non-CCSN and non-SN Ia enrichment, though in
a restrictive manner. Other sources of abundance scatter, such
as stochastic sampling of the initial mass function (IMF), IMF
variations, and bursty star formation history, could also cause
deviations away from a two-process model (Belokurov et al.
2018; Griffith et al. 2023).

To date, survey abundances have not been fully exploited to
create a data-driven model of nucleosynthesis. While works
such as Ting et al. (2012), Casey et al. (2019), and Ratcliffe
et al. (2020) effectively use clustering algorithms to identify
elements with like sources and reduce abundance dimension-
ality, the results are difficult to translate into a model of
nucleosynthesis. Clustering components can be linked to
nucleosynthesis sources and enrichment history, but have not
yet been used to describe the enrichment of a single star.
In this work, our main innovations are to relax the

assumptions made in G22 and W22, to be more agnostic
about the nucleosynthetic processes, and to be more principled
with the measurements or inferences from data. In the K-
process Model (KPM), we find the intersection between reliable
facts about nucleosynthesis and good abundance measurements
to build an edifice of Galactic enrichment. The model is
hierarchical, in that it learns some parameters (process vectors)
that are shared across all stars, but are different for each
element, and some parameters (process amplitudes) that are
shared across all elements, but are different for each star. The
parameters output by our model can thus be used as denoised
abundance labels; these will sharpen relationships between
abundances and stellar parameters (including birth location and
time). Our main contribution is to construct a data-driven
model for nucleosynthesis that has good statistical properties,
only enforcing a small number of constraints to break the
degeneracies that arise in models of this form. All other KPM
parameters are set by the data with no fixed normalization.
This paper is organized as follows. In Section 2, we present the

assumptions and the implementation of KPM. In Section 3, we
describe the APOGEE data sample employed in this paper. We
apply KPM to the APOGEE data in Section 4 and compare our
results to those of W22 in Section 4.2. In Section 5, we explore
variations from the fiducial model, changing our assumptions
about Fe production as well as the number of model components.
Finally, we discuss and summarize our results in Section 6.

2. The K-Process Model

As in W22 and G22, we propose that all stellar abundances can
be generated by a combination of K nucleosynthetic processes. In
this picture, each element has K metallicity-dependent process
vector components that are shared across the full stellar sample,
while each star individually has K-process amplitudes, which
apply across all elements, such that the expected logarithmic
abundance of element j relative to H in star i (mij) is defined as:

��
�

m A qlog . 1ij
k

K

i
k

k j
Z

10
1

, ( )

Each star i has K-process amplitudes (Ak
i ) and each element j

has K metallicity-dependent process vector components (qk j
Z
, ).

The Z superscript denotes the dependence of the process
vectors on metallicity, Z, taken to be [Mg/H]. The observed
abundance can be expressed as

� �mX H noise, 2j i ij[ ] ( )
where “noise” represents observational noise and/or other
sources of intrinsic abundance scatter that are not included in
this model. For detailed examples of a similar model with
K= 2, see Section 2 and Figures 2 and 3 of W22, where they
demonstrate the vector addition and describe the process
parameters for a few example stars.

11 Where � � :X Y log X Y log X Y[ ] ( ) ( ) and (X/Y)e is the solar
abundance ratio.

2

The Astronomical Journal, 167:98 (19pp), 2024 March Griffith et al.



In KPM, we adopt the following set of assumptions:
1. K processes: All elements on the periodic table are

produced by a combination of nucleosynthetic processes, such
as CCSNe, SNe Ia, AGB stars, and merging neutron stars
(Johnson et al. 2020). The majority of α, light odd-Z, and Fe-
peak elements (the elements observed by APOGEE) are
dominantly produced by K= 2 sources, with one being a
prompt process or mix of prompt processes and one being a
delayed process or mix of delayed processes. This is
substantiated by theoretical yields (e.g., Rybizki et al. 2017;
Anderson 2019) and past successful data-driven models (e.g.,
Ness et al. 2019; G22; Ting & Weinberg 2022; W22; Ratcliffe
& Ness 2023). In this paper, we therefore assume that K� 2,
though KPM could in principle be implemented with K= 1.

2. Linearity: At every metallicity, the (linear) (X/H)
abundances of a star can be expressed as a linear combination
of K processes. These processes themselves will depend on
metallicity, but a linear sum is sufficient to explain all element
abundances at any overall metallicity. Because different stars
can get to their metallicities by different histories, and because
detailed abundances beyond metallicity must matter at some
level, the true enrichment mechanism is at least slightly
nonlinear; thus, this assumption must be at least slightly wrong
in detail.

3. Non-negativity: All process vector components for all
elements are non-negative and all process amplitudes are non-
negative. This assumption implies that the elements considered
here are only produced, and not ever destroyed, by the K
processes (relative to hydrogen). This makes the model similar
to a non-negative matrix factorization (Blanton & Roweis 2007;
Tsalmantza & Hogg 2012). In KPM, this assumption is
enforced by requiring that the process vector components and
amplitudes are always greater than or equal to zero, such that

� �. .q Z k j A k i0 , , and 0 , . 3k j
Z

i
k

, ( )
4. Mg production: All Mg is produced in a prompt process

and no other processes contribute to its production. This is
substantiated by theoretical yields, where Mg is purely
produced by prompt CCSNe (e.g., Woosley & Weaver 1995;
Arnett 1996; Rybizki et al. 2017; Anderson 2019). This
assumption (along with non-negativity) breaks a set of
symmetries in the process space and makes the processes
quasi-interpretable in terms of nucleosynthesis sources.
Because such a prompt process is likely dominated by CCSNe
(e.g., Andrews et al. 2017), we label the first process
with “CC.”

In KPM, this assumption is enforced by fixing the Mg
process vector components, such that

� ��q q1, 0 4Z
k
Z

CC,Mg 1,Mg ( )

at all metallicities. Equation (4) also imposes that the Mg
process is metallicity independent.

5. Fe production: Fe is produced through a combination of a
prompt and a delayed process. Because the delayed process is
likely dominated by SNe Ia (e.g., Thielemann et al. 2002;
Andrews et al. 2017), we label the delayed process with “Ia.”12

While the prompt process constraint (Mg) is grounded in

nucleosynthesis theory, there is no equivalent nucleosynthesis
fact to constrain the delayed process. To break model
degeneracies, we also fix the Fe process vector components,
such that

� � � ��q q q q0.4, 1 0 5Z Z Z
k
Z

CC,Fe Ia,Fe CC,Fe 2,Fe ( )

at all metallicities. This assumption places a star with purely
prompt enrichment on the low-metallicity [Mg/Fe] plateau
near 0.4 dex, in agreement with APOGEE observations, but in
contention with recent results from Conroy et al. (2022), which
place the [Mg/Fe] plateau near 0.6 dex. We explore the impact
of different q Z

CC,Fe assumptions in Section 5.1.
6. Metallicity dependence: We permit the process vector

components for all elements other than Mg and Fe to float as a
function of metallicity. The variation is parameterized by a
linear spline in log-process space and attached to a set of
variable control points, knots, where the piecewise functions
are joined. We assume that a particular set of 11 hard-coded
knots between [Mg/H] of −0.8 and 0.6 are sufficient to capture
the metallicity dependence. We choose knot number and
location such that we capture the complex metallicity
dependence of the abundance trends, while maintaining a
sufficient number of stars to fit with each linear component.
7. APOGEE abundances and uncertainties: We assume that

the APOGEE abundances and uncertainties can be used for this
project. This is not the same as assuming that they are correct,
but rather that it is possible and useful to build an interpretable
model to explain them. We describe the potential data
systematics in Section 3. For our purposes, we care mainly
about the statistical observational errors rather than systematics
that arise from imperfect modeling of the spectra, such as non-
LTE (NLTE) effects, though differential systematics across the
sample can artificially add abundance scatter. The actual
derived values of qk j

Z
, will be affected by systematic offsets in

the abundances. We add a softening parameter Q (Equation (7))
to allow for the possibility that APOGEE observational errors
are underestimated or that there is intrinsic scatter around the
KPM predictions.
8. Robust likelihood function: The observed value of [X/H]

can be described as the K-process expected value plus
observational noise and/or other sources of intrinsic abundance
scatter, as described by Equation (2). The expression in this
equation can be thought of as the key assumption underlying
our likelihood function. In detail, the (negative two times the)
log likelihood function is given by a chi-squared (χ2) objective,

�D
T

� � m
1

X H , 6
ij ij

ij ij
2

2
2([ ] ) ( )

where T1 ij
2 is the (robust; see below) inverse variance on

measurement ij.
Because we do not want to be too drawn or influenced by

outlier points, we do not use the observed errors σobs,ij in the
likelihood, but instead we soften them in the spirit of iteratively
reweighted least-squares (Holland & Welsch 1977):

T

T

T
�

� �

Q

Q m

1
X H

, 7
ij

ij

ij ij ij
2

2
obs,
2

2 2
obs,
2([ ] )

( )

where Q is a softening parameter. Our results are largely
insensitive to the choice of Q. We find that the predicted
abundances of all elements change by less than 0.01 dex for Q

12 While other enrichment channels with similar timescales may be included in
the respective processes, the “CC” and “Ia” naming convention conforms to the
choices in W22 and G22 and avoids the possible confusion of process numbers
(1 and 2) with SN type (II and Ia).
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between 1 and 10, so we choose to set Q= 5. Very small Q
values (e.g., Q = 0.1) will erase some of the abundance
structure and produce poorer fits.

9. Implementation and optimization: With the above
assumptions in place, the likelihood function can be optimized
to a set of stellar abundances. The model is initialized at the Mg
and Fe process vector components from Equations (4) and (5).
It subsequently optimizes the process amplitudes (dubbed the
A-step) using only Mg and Fe at fixed process vector
components, and then optimizes the process vector components
(dubbed the q-step) for all elements at fixed process
amplitudes. The A-step and q-step are alternated, repeating 48
rounds of optimization, in the K= 2 case, and updating the
best-fit parameters when the objective function improves. We
find few differences in the best-fit parameters when we
decrease the number of iterations to 32, indicating that the
model quickly finds a good solution. In detail, the optimiza-
tions are performed with a nonlinear χ2 minimization algorithm
(Gauss–Newton nonlinear least-squares) from jaxopt.13

KPM mirrors the two-proccess model from prior work
(G22; W22) but, unless otherwise noted, the assumptions are
weaker, there is a likelihood function in play, and the
implementation is more general. In particular, we do not
assume anything about the relationships between the process
vector components and the morphologies of observed element
abundance ratio diagrams.

3. Data

In this paper, we employ stellar abundances from APOGEE
Data Release (DR) 17 (Abdurro’uf et al. 2022), part of the
SDSS-IV (Majewski et al. 2017). The APOGEE survey obtains
high-resolution (R∼ 22,500) near-IR observations (Wilson
et al. 2019) for stars in the Galactic disk, halo, bulge, and
nearby satellites/streams. Observations are taken with two
nearly identical spectrographs on the 2.5 m Sloan Foundation
telescope (Wilson et al. 2019) at Apache Point Observatory in
New Mexico and the 2.5 m du Pont Telescope (Bowen &
Vaughan 1973) at the Las Campanas Observatory in Chile.
Spectral data are reduced and calibrated with the APOGEE data
processing pipeline (Nidever et al. 2015), after which stellar
parameters and abundances are calculated with the APOGEE
Stellar Parameter and Chemical Abundance Pipeline (ASP-
CAP; Holtzman et al. 2015; García Pérez et al. 2016). See
Jönsson et al. (2020; DR16) and J. Holtzman et al. (2024, in
preparation; DR17) for more detailed descriptions of the
APOGEE data reduction and analysis, and Zasowski et al.
(2013, 2017), Beaton et al. (2021), and Santana et al. (2021) for
a discussion of survey targeting.

APOGEE DR17 reports stellar parameters, including Teff and
glog( ), as well as 20 elemental abundances: C, C I, N, O, Na,

Mg, Al, Si, S, K, Ca, Ti I, Ti II, V, Cr, Mn, Fe, Co, Ni, and Ce
for 657,135 stars. In DR17, new spectral libraries (Hubeny
et al. 2021) are generated using the Synspec code and
incorporate NLTE corrections for Na, Mg, K, and Ca (Osorio
et al. 2020). Among the reported elements and ions, some are
measured more precisely than others. We exclude Ti from our
analysis, as there are large differences between the abundances
derived from the Ti I and Ti II lines (Jönsson et al. 2020). We
also exclude P and V, as the P abundances are measured from a
few very weak spectral features and V abundances are one of

the least precise and least accurate labels (Jönsson et al. 2020).
Both P and V display strong abundance artifacts and large
scatter. Among the remaining elements, we note the following
concerns: weak Na spectral features, large abundance scatter in
S, significant systematic artifacts in Cr abundances at super-
solar metallicities, potentially strong unaccounted-for NLTE
effects on Mn abundances (Bergemann et al. 2019), and large
abundance scatter in Co and Ce. For more detailed discussions
of abundance systematics and their effects on population
trends, see Jönsson et al. (2020) and Griffith et al. (2021a).
For our stellar sample, we select a subset of APOGEE DR17

stars with the goal of minimizing statistical errors from poor
observations and systematic errors from abundance trends with
Teff and/or glog( ), while preserving a sufficient number of stars
to conduct a meaningful statistical analysis across the Galactic
disk. To remove poor-quality data points, we require the
ASPCAP flags STAR_BAD and NO_ASPCAP_RESULT to
equal zero. We only include stars from the main survey sample
(EXTRATARG= 0), and use named abundances (X_FE), as
recommended by Jönsson et al. (2020). In addition to these
quality cuts, we apply the following sample selection:

1. [Mg/H]>− 0.75;
2. signal-to-noise ratio (S/N)� 200;
3. �glog 1 3( ) – dex; and
4. Teff= 4000–5200 K.

To eliminate red-clump (RC) stars, which show abundance
variations from the RGB sample (Vincenzo et al. 2021a), we
crossmatch with and remove stars that appear in the APOGEE
DR17 RC VAC14 (Bovy et al. 2014).
These cuts result in a sample of 48,659 stars that span the

Galactic disk. We plot their Z versus R location, as well as the
distributions of distances and eccentricities, in Figure 1, taking
distances and kinematics from Queiroz et al. (2023). While our
stellar sample extends from the Galactic center to the outer disk
to the halo, the majority of our stars (75%) are within 3.5 kpc of
the Sun. Further, 94% of our stellar sample have an eccentricity
less than 0.4, indicative of in situ origin (e.g., Sales et al. 2009).
In this paper, we assume that the KPM fits will be consistent
across the Galactic disk, as the median high-Ia and low-Ia
[X/Mg] versus [Mg/H] abundance trends are insensitive to
Galactic location (W19; Griffith et al. 2021a). While we fit a
large sample of stars in this work, KPM performs similarly
when fitting smaller populations, down to 500 stars.
We present abundances for Mg, O, Si, S, Ca, C+N, Na, Al,

K, Cr, Fe, Ni, Mn, Co, and Ce. In the analysis of each element,
X, we drop stars with X_FE_FLAG. Ce abundances are flagged
in the most stars, resulting in ∼700 Ce labels being excluded.
While the surface abundances of C and N differ from the stellar
birth abundances for RGB stars, due to the CNO processes and
dredge-up events (Iben 1965; Shetrone et al. 2019), the total C
+N abundance remains constant. As in W22, we consider C
+N as an element, taking [(C+N)/H] to be

� � �

� �

� �C N H log 10 10

log 10 10 , 8
10

C H 8.39 N H 7.78

10
8.39 7.78

[ ] ( )
( ) ( )
[ ] [ ]

using logarithmic solar abundances for C (8.39) and N (7.78)
from Grevesse et al. (2007). We further adopt the error on the

13 https://jaxopt.github.io/

14 https://www.sdss4.org/dr17/data_access/value-added-catalogs/?vac_
id=apogee-red-clump-(rc)-catalog
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[C/Fe] abundance as the error on [C+N/Fe], since C typically
dominates in the abundance ratio.

We plot the distributions of all abundances in [X/Mg] versus
[Mg/H] for our sample in the first column of Figures 2 and 3.

4. The Fiducial Model

We fit the APOGEE sample with our fiducial model of
K= 2, such that

� �m A q A qlog , 9ij i j
Z

i j
Z

10
CC

CC,
Ia

Ia,( ) ( )

with the assumptions from Section 2. This fit produces the
process vector components q j

Z
CC, and q j

Z
Ia, as a function of

[Mg/H] for each element and the process amplitudes Ai
CC and

Ai
Ia for each star. From the model parameters, we can calculate

fractional contributions from each process, as well as a full
suite of predicted K= 2 process abundances, shown in the
second columns of Figures 2 and 3.

4.1. Process Parameters and Fractional Contributions

We plot the process vector components as a function of
[Mg/H] in the third columns of Figures 2 and 3 and provide the
values at the [Mg/H] knots in Tables 1 and 2. The process
vector components inform us about the relative contributions of
prompt and delayed processes to the formation of the elements,
as well as the metallicity dependence of the enrichment. By
definition, �q 0.4Z

CC,Fe at all metallicities. For Mg and Fe, we
also require � �q q 1j

Z
j

Z
CC, Ia, , implying �q 0.6Z

Ia,Fe . No such
constraints are placed on other elements. We note that KPM
differs from the previous two-process models in this regard,
as G22 and W22 require that the process vector components for
all elements sum to 1 at solar metallicity.

In the fourth columns of Figures 2 and 3, we plot the
distribution of fractional contributions from the prompt process
( fij

CC) to each element, where

�
�

f
A q

A q A q
. 10ij

i j
Z

i j
Z

i j
Z

CC
CC

CC,
CC

CC,
Ia

Ia,

( )

We generally find that the distributions are bimodal, like the
observed abundance patterns, as the high-Ia and low-Ia
populations have differing fractional contributions from prompt
and delayed sources.

We find that the α-elements (O, Si, S, and Ca) are best fit
with q j

Z
CC, and �f 0.5ij

CC at all metallicities. This is in
agreement with the theoretical prediction that α-elements are
dominated by prompt CCSN production (e.g., Andrews et al.
2017). O, an Mg-like element theoretically purely produced in
prompt CCSNe, shows fi,O

CC near 1 from [Mg/H]=− 0.75 to
solar. At supersolar metallicity, the delayed process contributes
to O production, driving the fi,O

CC value down to ∼0.8 at
[Mg/H]= 0.4. S behaves like O, with almost entirely prompt
production up to solar metallicity, after which delayed
enrichment contributes more significantly. Conversely, we find
that Si and Ca are best fit with prompt and delayed enrichment
at all metallicities, though the prompt process always
dominates. For Si, the delayed process appears to increase
linearly with [Mg/H], while the Ca delayed enrichment
increases from [Mg/H] of −0.75 to −0.1 and then decreases
from [Mg/H] of −0.1 to 0.5.
The process vector components of the light odd-Z elements

Al and K resemble those of the α-elements, such as S. Both
exhibit q j

Z
CC, and fij

CC near 1 through solar metallicity, with an

increase in q j
Z

Ia, and downturn in fij
CC at supersolar metallicities

(especially for K). The behavior of the Na process vector
components is more complex, with peaks and troughs in q Z

Ia,Na.
We find that Na has the strongest contributions from the
delayed process of all α and light odd-Z elements, with

2q 0.5Z
Ia,Na at almost all values of [Mg/H] and �f 0.3i,Na

CC at
[Mg/H]> 0. The strong delayed contribution to Na is in
agreement with the findings of W22 and G22, and in tension
with theoretical yields (e.g., Andrews et al. 2017; Rybizki et al.
2017).
Unlike α and light odd-Z elements whose delayed produc-

tion is dominated by SNe Ia, C and N are thought to be
promptly produced in CCSNe, with additional delayed
enrichment from AGB stars (e.g., Andrews et al. 2017). We
find that the prompt and delayed processes both contribute
significantly, and nearly equally, across our stellar sample.
Though theoretical N yields from AGB stars have a strong
metallicity dependence (Karakas 2010; Ventura et al. 2013;
Cristallo et al. 2015; Johnson et al. 2022), we observe only a
slight positive metallicity dependence in �q Z

CC,C N and a shallow

dip in �q Z
Ia,C N. We find a population of stars with �fi,C N

CC near
0.9 and a population near 0.4.
The Fe-peak elements (Cr, Mn, Fe, Co, and Ni) are thought

to be produced through prompt CCSN production and delayed

Figure 1. Left: distribution of our stellar sample in Z (kpc) vs. R (kpc), where (0, 0) is the Galactic center. Center: distribution of stellar distances (kpc). Right:
distribution of stellar eccentricity. Our stellar sample spans the Galactic disk, but the majority of our stars are within 3.5 kpc of the Sun and have kinematics consistent
with in situ origin.
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Figure 2. Abundance distributions and KPM parameters for C+N, α, and light odd-Z elements. First column: observed abundance distributions in [X/Mg] vs.
[Mg/H]. Second column: the predicted [X/Mg] vs. [Mg/H] abundance distribution of the fiducial model plus estimated noise. By comparing the first two columns,
we can evaluate the success of KPM in reproducing the observed abundance distributions. Third column: process vector components q j

Z
CC, (thin, purple) and q j

Z
Ia,

(thick, orange) from this work (G24; solid, dark lines) and W22 (light, dashed lines). Overall offsets between the solid and dashed lines are driven largely by our
normalization, which places the [Mg/Fe] plateau at +0.4, rather than +0.3 in W22. Fourth column: distribution of fractional contribution from the prompt process
( fij

CC) predicted by the fiducial model. We plot the median fij
CC values of the low-Ia (orange square) and high-Ia (purple circle) populations in the solar metallicity bin

from W22 for comparison. All density plots are logarithmically scaled.
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SN Ia production (e.g., Andrews et al. 2017). By construction,
�q 0.4Z

CC,Fe and �q 0.6Z
Ia,Fe at all metallicities. This produces

a bimodal distribution in fi,Fe
CC similar to that observed in

abundance space. Because of our choice of q Z
CC,Fe, only a few

stars have �f 1i,Fe
CC (see Section 5.1). We instead observe a

population with fi,Fe
CC near 0.8 and a population near 0.4. The

Figure 3. The same as Figure 2, but for Fe-peak elements and Ce.

Table 1
Fiducial Model q j

Z
CC, Values at [Mg/H] Knot Values for Each Element

[Mg/H] C+N O Na Mg Al Si S K Ca Cr Mn Fe Co Ni Ce

−0.8 0.34 1.06 0.26 1.0 0.62 0.90 0.98 0.78 0.77 0.33 0.19 0.4 0.37 0.44 0.40
−0.5 0.44 1.04 0.36 1.0 0.77 0.82 1.02 0.88 0.70 0.34 0.22 0.4 0.48 0.48 0.27
−0.4 0.48 1.03 0.33 1.0 0.80 0.79 0.98 0.88 0.67 0.35 0.24 0.4 0.52 0.50 0.21
−0.3 0.52 1.01 0.37 1.0 0.84 0.77 0.96 0.92 0.65 0.35 0.25 0.4 0.58 0.51 0.18
−0.2 0.55 0.98 0.42 1.0 0.86 0.75 0.93 0.93 0.64 0.38 0.27 0.4 0.62 0.53 0.17
−0.1 0.58 0.97 0.45 1.0 0.85 0.74 0.90 0.96 0.61 0.39 0.29 0.4 0.66 0.53 0.18
0.0 0.62 0.95 0.46 1.0 0.84 0.72 0.87 0.99 0.60 0.39 0.29 0.4 0.67 0.52 0.22
0.1 0.64 0.93 0.43 1.0 0.85 0.71 0.80 0.98 0.60 0.40 0.24 0.4 0.62 0.49 0.26
0.2 0.57 0.85 0.26 1.0 0.85 0.66 0.68 0.92 0.63 0.49 0.09 0.4 0.49 0.45 0.37
0.3 0.61 0.78 0.18 1.0 0.78 0.63 0.62 0.76 0.66 0.64 0.01 0.4 0.48 0.44 0.47
0.6 0.66 0.65 0.61 1.0 0.66 0.58 0.49 0.64 0.70 0.64 0.28 0.4 0.70 0.50 0.36

(This table is available in its entirety in machine-readable form.)
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process vector components and fi,Fe
CC distribution for Cr and Ni

strongly resemble those of Fe. All three elements have even
atomic numbers. At supersolar metallicity, we find that the
prompt process dominates Cr production, resulting in an upturn
in fij

CC. Conversely, Ni displays a dominant, and increasing,
delayed process vector component at supersolar metallicities.
The process vector components for Mn and Co (odd atomic
numbers) show a complex metallicity dependence, more
resembling that of Na. Both elements display a strong delayed
process, with �q 0.5Z

Ia,Mn at all metallicities and >1 for

[Mg/H]> 0.1. Mn is the only element for which fi,Mn
CC

decreases to 0 for [Mg/H] 0.2.
Finally, we find that the delayed process dominates Ce

production at intermediate metallicity, with q Z
Ia,Ce increasing up

to [Mg/H]≈− 0.2 and then decreasing to nearly 0 at
[Mg/H]≈ 0.3. The fi,Ce

CC values are clustered near 0.25 around
[Mg/H] of 0.2, then increase such that the abundances are
almost entirely dominated by prompt enrichment at high
metallicity.

In addition to process vector components, each star is fit with
a prompt and delayed process amplitude, Ai

CC and Ai
Ia,

respectively (Table 3). All elemental abundances are used in
the calculation of these amplitudes, so they can be interpreted
as “denoised” abundance labels that suppress observational
scatter by averaging over elements via the data-driven model.
The value of Ai

CC traces the metallicity (specifically [Mg/H]),
while the ratio of Ai

Ia/Ai
CC traces the [Fe/Mg] abundance. In

the left panel of Figure 4, we plot the distribution of Ai
Ia/Ai

CC

versus Ai
CC. We find a bimodal distribution, similar to

the Tinsley–Wallerstein diagram ([Mg/Fe] versus [Fe/H];
Wallerstein 1962; Tinsley 1979, 1980), as was found in W22
and G22. We stress that the presence of the abundance
bimodality was not fed into our model, and yet it is recovered
in the best-fit process amplitudes. The stars with larger
Ai

Ia/Ai
CC values correspond to the high-Ia population, and

those with low Ai
Ia/Ai

CC correspond to the low-Ia population.
While in the Tinsley–Wallerstein diagram the two populations
blend together at high metallicity, they are more distinguishable
in our amplitude space. We plot Ai

Ia/Ai
CC versus [Mg/H] in

the center panel of Figure 4. The high-Ia and low-Ia
populations are clearly separable through [Mg/H] of 0.4. This
is further shown through the Ai

Ia/Ai
CC distributions in the right

panel of Figure 4 for [Mg/H] bins of −0.75 to −0.425, −0.425
to −0.1, −0.1 to 0.225, and 0.225 to 0.55. The three lowest-
metallicity bins display a bimodal distribution and the highest-
metallicity bin is dominated by high-Ia stars.
With the optimized process parameters in hand, we can use

Equation (2) to calculate predicted abundances for the fiducial
model—the abundances our stellar population would have if
the model assumptions are correct and only one prompt and
one delayed process contribute. To simulate observational
noise, we add an error drawn from a Gaussian distribution, with
σ equal to the reported error on each abundance for each star. In
Figures 2 and 3, we plot the predicted abundances plus
estimated noise in the second columns. These distributions can
be compared to the observed abundance distribution in the first
columns.
Overall, the fiducial model successfully reproduces the

observed abundance distributions. It is capable of capturing
metallicity dependences and bimodality. The predicted abun-
dances plus estimated noise are not, however, able to reproduce
the observed abundance scatter. This is especially noticeable
for O, C+N, Na, Al, K, Co, and Ce. For these elements, the
scatter in the observed abundance distribution is larger than in
the predicted distribution, suggesting that the APOGEE
observational scatter is underestimated, that there are Teff- or

glog( )-dependent abundance trends (e.g., Griffith et al.
2021a; W22), or that the K= 2 model is insufficient—a likely
case for elements produced by AGB stars, such as C+N and
Ce. The model performs similarly well when the population is
downsampled to 5000, 1000, and 500 stars, though the number
of nodes has to be decreased from 11 to 7.

Table 2
Fiducial Model q j

Z
Ia, Values at [Mg/H] Knot Values for Each Element

[Mg/H] C+N O Na Mg Al Si S K Ca Cr Mn Fe Co Ni Ce

−0.8 0.54 0.15 0.28 0.0 0.02 0.08 0.37 0.17 0.21 0.38 0.55 0.6 0.47 0.49 0.28
−0.5 0.62 0.01 0.67 0.0 0.16 0.13 0.27 0.11 0.18 0.61 0.83 0.6 0.74 0.63 0.60
−0.4 0.54 0.01 0.70 0.0 0.11 0.15 0.18 0.10 0.24 0.63 0.81 0.6 0.67 0.56 0.78
−0.3 0.46 0.04 0.66 0.0 0.11 0.19 0.15 0.09 0.29 0.64 0.79 0.6 0.58 0.51 0.93
−0.2 0.42 0.08 0.54 0.0 0.10 0.23 0.15 0.07 0.33 0.60 0.75 0.6 0.48 0.46 0.98
−0.1 0.39 0.09 0.50 0.0 0.13 0.25 0.15 0.04 0.36 0.58 0.74 0.6 0.43 0.45 0.88
0.0 0.40 0.10 0.51 0.0 0.12 0.26 0.14 0.00 0.35 0.60 0.79 0.6 0.45 0.49 0.67
0.1 0.45 0.12 0.68 0.0 0.08 0.27 0.19 0.03 0.32 0.63 0.95 0.6 0.59 0.57 0.49
0.2 0.61 0.21 1.05 0.0 0.06 0.31 0.31 0.15 0.25 0.53 1.26 0.6 0.83 0.65 0.28
0.3 0.63 0.29 1.32 0.0 0.15 0.35 0.35 0.40 0.19 0.42 1.46 0.6 0.96 0.70 0.09
0.6 0.62 0.37 1.13 0.0 0.30 0.34 0.36 0.48 0.13 0.43 1.40 0.6 0.83 0.64 0.16

(This table is available in its entirety in machine-readable form.)

Table 3
Fiducial Model Ai

CC and Ai
Ia Values for our Stellar Sample

APOGEE ID [Mg/H] Ai
CC Ai

Ia

2M00000546+6152107 −0.20 0.61 0.48
2M00000866+7122144 −0.10 0.82 0.69
2M00001328+5725563 0.04 1.09 1.02
2M00001653+5540107 0.06 1.13 0.36
2M00001717+6147500 −0.23 0.60 0.39
... ... ... ...

(This table is available in its entirety in machine-readable form.)
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4.2. Comparing to W22

As discussed in Sections 1 and 2, KPM is based upon the
two-process model developed in W19 and W22, but with
increased flexibility, minimal normalization, and no forced
dependence upon the [Fe/Mg] versus [Fe/H] bimodality or
population abundance trends. Further, KPM utilizes all stellar
abundances in the optimization of Ai

CC and Ai
Ia, whereas only

Mg and Fe are used in W19 and only Mg, O, Si, Ca, Fe, and Ni
in W22.

In the fiducial model, we adopt K= 2, as in W22, but assume
�q 0.4Z

CC,Fe , 0.1 dex lower than the q Z
CC,Fe value assumed

in W22. In practice, this moves the implied “pure” CCSN
enrichment plateau from [Fe/Mg]=− 0.3 to [Fe/Mg]=− 0.4
(though the W22 plateau value is determined after they apply a
global offset of +0.05 to all [Fe/Mg] abundances). Because our
model is non-negative, it requires a lower q Z

CC,Fe to correctly
model the stars on the [Fe/Mg] plateau, whereas W22 assigns
stars with [Fe/Mg]<− 0.3 negative Ai

Ia values.
While our stellar samples and model assumptions differ, we

plot the W22 q j
Z

CC, and q j
Z

Ia, vector components as well as

the W22 solar metallicity fij
CC values of Figures 2 and 3 for

comparison with our fiducial model. We generally observe
similar behavior between KPM and W22. Our q j

Z
Ia, vector

components tend to be ∼0.1 greater than those of W22 for
elements with significant delayed contributions, because of our
differing q Z

CC,Fe assumptions. The metallicity dependencies

agree for most elements, with small variations at the
high-[Mg/H] end for O, Al, K, and Ce. We also see good
agreement between the KPM and W22 solar metallicity fij

CC

values, with the W22 points slightly offset to larger values for
elements with significant delayed contributions.
To compare the accuracy of the models’ abilities to

reproduce the observed abundances, we identify a subset of
∼23,000 stars in both our sample and the W22 sample. We
calculate the predicted abundances for each star under KPM
and the two-process model, then determine the χ2 value of the
fits for each star (summing over the elements) and for each
element (summing over the stars). We plot the cumulative
stellar Dlog 2( ) distribution and the total χ2 for each element in
the right and left panels, respectively, of Figure 5. It is
important to note that in the calculation of the W22 model
residuals, we do not apply the temperature corrections
discussed in Section 5.1 of W22.
We find that, overall, the χ2 decreases between the W22

two-process model and our KPM, an indication that we better
predict all of a star’s abundances. When looking at each
element individually, we find that we better predict C+N, Na,
K, Ni, Mn, Co, and Ce, with major improvements to C+N and
Mn. Our fiducial model is significantly worse at predicting Mg,
Ca, and Fe than the W22 model, three of the six elements
that W22 employ to fit the process amplitudes. Because KPM
uses all elements in its optimization, Mg, Ca, and Fe are
effectively deweighted relative to the W22 model, while C+N

Figure 4. Left: distribution of Ai
Ia/Ai

CC vs. Ai
CC for the fiducial model. This plot is similar to an [Fe/Mg] vs. [Mg/H] distribution, where Ai

Ia/Ai
CC is a proxy for

[Fe/Mg] and Ai
CC is a proxy for [Mg/H]. Note that �A 1i

CC corresponds to [Mg/H] = 0. Center: distribution of Ai
Ia/Ai

CC vs. [Mg/H]. In the left and center panels,
we can clearly see the bimodality to high values of Ai

CC and [Mg/H]. Both density plots are logarithmically scaled. Right: distribution of Ai
Ia/Ai

CC for ranges of [Mg/
H], with metallicity bins increasing from top to bottom. [Mg/H] bins are of width 0.325 dex and span −0.75 to 0.55.

Figure 5. Left: cumulative distribution of Dlog10
2( ) for W22 (dashed orange line) and our fiducial model (G24; solid purple line). Right: χ2 per element for the same

model fits, with elements ordered by atomic number. Overall, our model has a smaller cumulative χ2 than the previous two-process model and better predicts the
abundances of C+N, Na, K, Mn, Co, Ni, and Ce.
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and Mn influence the model parameters. If we refit KPM using
only the Mg, O, Si, Ca, Fe, and Ni abundances in the A-step (as
in W22), we find that KPM and the two-process model predict
the abundances of all elements but Mn with similar accuracy,
and that the two-process model better predicts Mn. Our fiducial
model’s success in predicting C+N and Mn is likely
attributable to the inclusion of the elements in the A-step.
The choice to include all elements or a subset of elements in the
fits should be considered when implementing KPM. If
searching for stars with anomalous abundances of element X
relative to the expected abundances of others, one may want to
exclude X from the A-step.

We note that our fiducial model is fit to a stellar sample that
spans a wider range of Teff and glog( ) than the W22 sample. If
we repeat our analysis on the W22 stellar sample with

�q 0.5Z
CC,Fe , we almost perfectly recover the W22 process
vector components, with small deviations at [Mg/H]> 0.1, and
more substantially improve upon the stellar and elemental χ2

values. Most notably, KPM is better able to predict the
abundances of stars with [Mg/H]> 0, where the high-Ia and
low-Ia sequences blend together and the W22 categorization of
high-Ia and low-Ia stars may be incorrect.

5. Variations Away from the Fiducial Model

5.1. Impact of Fe Process Assumptions

While KPM is flexible, we still include some quantitative
assumptions, which we make to break exact model degen-
eracies (see Section 2). Specifically, for each process, we
choose one element to assign a “known” process vector
component at all metallicities. These are Mg and Fe in the
K= 2 case. Specifically, for the prompt process, we ground our
assumption in the nucleosynthetic theory that Mg is a pure
CCSN element (e.g., Andrews et al. 2017). Unfortunately, there
is no comparable pure SN Ia element, nor is there an element
for which we know the relative CCSN/SN Ia ratio. In order to
break an exact degeneracy between the prompt and delayed
processes, we choose to fix the Fe process vector components,
which effectively makes assumptions about the exact fractional

contributions of CCSNe and SNe Ia (or prompt and delayed
processes) to Fe enrichment.
In the fiducial model, we choose �q 0.4Z

CC,Fe , as this
parameter choice is able to reproduce the observed [Fe/Mg]
versus [Mg/H] abundance distribution, as discussed in
Section 4.1. This choice impacts the predicted abundances as
well as the implied fij

CC values of each star. Because our model

is non-negative, the choice of q Z
CC,Fe sets the minimum [Fe/Mg]

value attainable by our model ( qlog Z
10 CC,Fe( )). In this section, we

explore the implications of different q Z
CC,Fe assumptions,

varying the zero-point and metallicity dependence
(dq dZZ

CC,Fe ). In Figure 6, we plot the minimum [Fe/Mg] as
a function of [Mg/H] for the q Z

CC,Fe and dq dZZ
CC,Fe parameters

we explore. With a �dq dZ 0.0Z
CC, Fe we choose �q 0.5Z

CC, Fe
(the W22 value), 0.45 (the approximate plateau value at [Mg/
H]=− 0.75), 0.4 (the fiducial value that skirts the edge of the
distribution), and 0.35 (that captures almost all stars). With

�dq dZ 0.15Z
CC, Fe , which roughly matches the slope of the

low-Ia sequence at intermediate metallicity, we choose
�q 0.5Z

CC,Fe (that passes through the center of the low-Ia
density), 0.4 (that skirts the edge of the distribution), and 0.35
(that captures almost all stars).
We repeat the optimization of KPM with K= 2 and these

q Z
CC,Fe assumptions. In Figure 7, we plot the resulting predicted
abundance distributions plus estimated noise alongside the
observed distribution. We do not plot the prediction for the
fiducial model ( �q 0.4Z

CC,Fe , �dq dZ 0.0Z
CC,Fe ), as this is

shown in Figure 3. Both models with �q 0.5Z
CC,Fe fail to

reproduce the shape and width of the low-Ia abundance
distribution. They instead predict a much thinner sequence that
is flat for �dq dZ 0.0Z

CC,Fe or slightly inclined for
�dq dZ 0.15Z

CC,Fe . The model with �q 0.45Z
CC,Fe and

�dq dZ 0.0Z
CC,Fe is better, but still predicts a low-Ia

abundance distribution that is too thin, flat, and dense. The
other four models ( �q 0.35Z

CC,Fe and �q 0.4Z
CC,Fe with

�dq dZ 0.0Z
CC,Fe and �dq dZ 0.15Z

CC,Fe ) predict an abun-
dance distribution that strongly resembles the observed

Figure 6. Minimum [Fe/Mg] value attainable for q Z
CC,Fe and dq dZZ

CC,Fe assumptions. Left: for �dq dZ 0Z
CC,Fe with �q 0.5Z

CC,Fe , 0.45, 0.4, and 0.35 (light to dark
purple). Right: for �dq dZ 0.15Z

CC,Fe with �q 0.5Z
CC,Fe , 0.4, and 0.35 (light to dark orange).
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distribution. There are minor differences in the low-[Fe/Mg]
and low-[Mg/H] region, but it is difficult to tell by eye which
model is best.

To better assess the goodness of fit of each model, we
calculate the average χ2 value per star. The models with q Z

CC,Fe

of 0.5 and 0.45, regardless of dq dZZ
CC,Fe , have an average χ2

per star >90, while the models with q Z
CC,Fe of 0.4 and 0.35 have

an average χ2 per star <55. In both the metallicity-independent
and metallicity-dependent cases, the models with �q 0.4Z

CC,Fe
have the lowest average χ2 per star, at 54.54 and 54.47,
respectively, though the models with �q 0.35Z

CC,Fe have a χ2

that is only greater by ∼0.1. Of the seven models explored
here, the case with �q 0.4Z

CC,Fe and �dq dZ 0.15Z
CC,Fe has the

lowest average χ2 per star, indicating that the Fe abundances
are best fit by a metallicity-dependent prompt process.
Introducing this metallicity dependence subtly changes the
shape of the predicted low-Ia distribution in a way that achieves
better agreement with APOGEE observations.

Though the �q 0.4Z
CC,Fe and 0.35 models are similar in

terms of their goodness of fit, their nucleosynthesis implica-
tions are different. In Figure 8, we plot the median value of fij

CC

(Equation (10)) for the low-Ia population at solar metallicity
(−0.05< [Mg/H]< 0.05), where low-Ia stars are defined by

⎧⎨⎩ � � �
� �

Mg Fe 0.12 0.13 Fe H , Fe H 0
Mg Fe 0.12, Fe H 0,

11
[ ] [ ] [ ]
[ ] [ ] ( )

as in W19, W22, and G22. We only show the median fij
CC

values for the models with �dq dZ 0.0Z
CC,Fe , as the solar

metallicity median fij
CC values for the metallicity-dependent

models are almost identical for matching values of q Z
CC,Fe. We

find that the choice of q Z
CC,Fe has little impact on the median

fij
CC values of elements dominated by CCSN enrichment (e.g.,

O, Al, S, and K). As the delayed contribution increases, the
median elemental fij

CC values decrease more significantly with

decreasing q Z
CC,Fe. The choice of q Z

CC,Fe most impacts the

median fij
CC values for Na, Cr, Fe, Mn, and Ce, with the median

fij
CC for Mn decreasing from 0.42 for �q 0.5Z

CC,Fe to 0.22 for

�q 0.35Z
CC,Fe . Because the q Z

CC,Fe value sets the prompt

enrichment plateau, a lower q Z
CC,Fe model implies a lower

fij
CC value.
While the high q Z

CC,Fe model can likely be ruled out, due to
poorness of fit, the true q Z

CC,Fe value and its metallicity
dependence are unknown. It is therefore important not to
overinterpret the specific fij

CC values of a given model. The fij
CC

parameter can provide qualitative descriptions of which
elements have more or less prompt/delayed enrichment, but
the exact values are uncertain.

5.2. Increasing the Number of Processes

In our fiducial model, we adopt K= 2 with the two processes
representing prompt, CCSN-like enrichment and delayed, SN-
Ia-like enrichment. While a K= 2 model can well describe the
stellar abundances (e.g., Figures 2 and 3), the abundance
residuals cannot be explained by observational noise alone and
hold information about the intrinsic variations from a K= 2

model (Ness et al. 2019; G22; Ting & Weinberg 2022; W22;
Ratcliffe & Ness 2023). Potential sources of such scatter
include metallicity-dependent SN yields with a bursty star
formation history, environmental variations in the IMF,
stochastic sampling of the IMF, and more than two distinct
processes (e.g., AGB stars, merging neutron stars, and unique
classes of SNe Ia) with different time delays for enrichment
(e.g., Belokurov & Kravtsov 2022; Griffith et al. 2023). Note
that the existence of many enrichment channels is not in itself
sufficient for producing scatter around a K= 2 model (or even
a K= 1 model); one needs star-to-star variation in the relative
amplitude of these channels. For example, in a fully mixed one-
zone model, all abundances depend only on time, even if many
enrichment channels contribute.
In this section, we will explore the impact of adding

additional processes to our model, increasing from K= 2 to
K= 4. Because KPM is sensitive to enrichment with different
time delays, adding components could be interpreted as adding
sources with distinct enrichment timescales. For example, if
AGB stars and SNe Ia enrich with the same time delay, the
model would fit both sources in one delayed component. If
AGB and SNe Ia enrich with different delay times, a third
component could pick up delayed AGB enrichment not
captured by the original delayed process. Indeed, evidence of
a distinct AGB-like process is identified in G22 and W22,
where correlated residuals are used to expand the two-process
model. However, both works add components in a restrictive
manner that requires choosing which elements to assign to third
and/or fourth processes and that does not allow for the original
two processes to vary.
Our goal is to demonstrate the potential for using KPM to

flexibly model more than two enrichment channels and
improve the accuracy of the abundance predictions. We allow
the model to identify the elements best fit with additional
components and modify the K= 2 process parameters.
Ultimately, such a method could be used to identify elements
with more than two enrichment channels, but our data set may
not be capable of doing so robustly. In the K= 4 case, our
model becomes

� � � �m A q A q A q A qlog , 12ij i j
Z

i j
Z

i j
Z

i j
Z

10
CC

CC,
Ia

Ia,
3

3,
4

4,( ) ( )

where q j
Z

3, and q j
Z

4, are the third and fourth process vector

components and Ai
3 and Ai

4 are the third and fourth process
amplitudes. The model, however, does require some regular-
ization to converge. As in the K= 2 case, where we assume
that Mg is a pure CCSN element and fix the q Z

CC,Fe and q Z
Ia,Fe

values, we need elements to regulate our third and fourth
processes. We choose Ce and Mn, two elements with larger
residuals that likely have additional nucleosynthetic sources—
Ce from AGB stars and Mn from distinct classes of SNe Ia
(e.g., Gallino et al. 1998; de los Reyes et al. 2020; Gronow
et al. 2021). To test the impact of our choice of representative
elements, we also fit the K= 4 model with the third and fourth
processes fixed to C+N and Cr. We find that similar groups of
elements are better fit with additional components. We
initialize the K= 4 model at the K= 2 model values of q j

Z
CC, ,

q j
Z

Ia, , Ai
CC, and Ai

Ia, with the added constraints that

� � � �q q q q0, 0, 0, 1 13Z Z Z Z
3,Mg 3,Fe 3,Mn 3,Ce ( )
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and

� � � �q q q q0, 0, 1, 0 14Z Z Z Z
4,Mg 4,Fe 4,Mn 4,Ce ( )

at all metallicities. We first fit the A-step to only Mg, Fe, Mn,
and Ce, and then conduct 32 iterations of the q-step and A-step,
as described in Section 2. We again inflate the scatter according
to Equation (7) with Q= 5.

The model converges upon a set of process vector
components and amplitudes that can be combined with
Equation (12) to predict the stellar abundances and calculate
the fractional contribution from each process. In Figure 9, we
plot A Ai

k
i
CC versus Ai

CC for the SN Ia, third, and fourth
processes. We find that processes three and four are most
prominent in stars at low metallicity and that there is a large
population of stars with Ai

3 and/or xA 0i
4 . In Figure 10, we

plot the observed and predicted abundance distributions as well
as the process vector components and fractional contributions

from each component for a subset of elements. We note that the
model parameters q j

Z
3, and q j

Z
4, should be interpreted in

conjunction with the amplitudes, as we set the third and fourth
process vector components for Ce and Mn to an arbitrary value
with no metallicity dependence.
We find that the third process, regularized to Ce, contributes

at a low level to O, Si, S, Al, and K and more significantly to
Ca, Na, Cr, and Ce. The fourth process, regularized to Mn,
contributes at a low level to K and more significantly to S, C
+N, Na, Cr, Ni, Mn, and Co. These best-fit element groupings
resemble, but are not identical to, the elements selected for
additional components in W22, where the third process
included Ca, Na, Al, K, Cr, and Ce and the fourth process
included Ni, V, Mn, and Co.
In the leftmost columns of Figure 10, we plot the [X/Mg]

v.s. [Mg/H] distributions for the observed stellar sample, the
K= 2 model predictions, and the K= 4 model predictions for
Ca, C+N, Na, Cr, Ni, Mn, Co, and Ce. We note that the

Figure 7. Top: observed [Fe/Mg] vs. [Mg/H] abundance distribution. Bottom: predicted [Fe/Mg] vs. [Mg/H] abundance distributions plus estimated noise for
models with �dq dZ 0.0Z

CC,Fe (middle row) and �dq dZ 0.15Z
CC,Fe (bottom row). The q Z

CC,Fe value increases from left to right, from 0.35 to 0.5. All density plots are
logarithmically scaled. Note that the center panels have different q Z

CC,Fe values (middle: 0.45; bottom: 0.4) and that the predicted abundance distributions for
�q 0.4Z

CC,Fe and �dq dZ 0.0Z
CC,Fe can be found in Figure 3. The q Z

CC,Fe and dq dZZ
CC,Fe parameters are listed in each panel. By comparing the lower panels to the

observed distribution (top), we can evaluate the success or failure of each model; the low-Ia population is most sensitive to the Fe assumptions.
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predicted abundances do not have noise added (unlike
Figures 2 and 3) to highlight the differences between the
K= 2 and K= 4 predictions. Comparing the predicted
abundances from the K= 2 and K= 4 process models, we
see that the K= 4 process model is better able to capture the
abundance scatter than the K= 2 model, especially at the low-
metallicity end of the low-Ia population. This result is
expected, as adding more model components will increase
the abundance space that KPM is able to reproduce.

In the fourth and fifth columns of Figure 10, we plot the
process vector components and median fij

k as a function of
[Mg/H] of the low-Ia population (Equation (11)), respectively,
where

�
� � �

f
A q

A q A q A q A q
. 15ij

k i
k

k j
Z

i j
Z

i j
Z

i j
Z

i j
Z

,
CC

CC,
Ia

Ia,
3

3,
4

4,

( )

We include q j
Z

CC, and q j
Z

Ia, as well as the median fij
CC and fij

Ia

from the K= 2 model in respective columns for comparison.
We see that the third process contributes significantly to Ca,
Na, Cr, and Ce at low metallicity, with a decreasing
contribution up to [Mg/H]≈ 0.1. The fractional contribution
from the K= 2 prompt and delayed processes to these elements
decreases under the K= 4 model. The fourth process behaves
in a similar manner, but with the elements C+N, Na, Cr, Ni,

Mn, and Co. The fractional contribution from the third and
fourth processes is nearly identical in the high-Ia population.
The statistical improvement in KPM between the K= 2 and

K= 4 models is evident in the χ2 values. In Figure 11, we plot
cumulative Dlog10

2( ) distributions for the fits to each star and
the total χ2 for each element for the fiducial K= 2 model and
the K= 4 model. We find that the cumulative Dlog10

2( )
distribution decreases with the increase in model components
by greater than two for most stars, expected for the addition of
2 degrees of freedom. We also find that the χ2 per element is
lower for all elements in the K= 4 model. Significant
improvements to Ca, C+N, Mn, and Ce are likely due to the
additional third and fourth components capturing abundance
scatter that the original two processes could not. Notably, we
also see a significant improvement in the Fe fit, even though we
require � �q q 0Z Z

3,Fe 4,Fe . Because all elements influence the
K= 2 model fit, the fiducial model was likely pulled away from
the best solution for Fe to accommodate another element, like
Mn. With the additional components able to account for the
non-Fe-like enrichment, the original two processes are better
able to capture the Fe enrichment.
Through this investigation, we find that KPM is extendable

to K> 2 processes. The additional processes improve the
model quantitatively, but additional work is needed to improve
the nucleosynthetic interpretability. We provide a discussion of
the future science that KPM and the K= 4 model enable below.

Figure 8. Elemental median values of fij
CC at solar metallicity for the low-Ia population for KPM with �q 0.35Z

CC,Fe (darkest purple) to 0.5 (lightest purple) and
�dq dZ 0.0Z

CC,Fe . Elements are ordered by atomic number. The median fij
CC changes most dramatically for elements with strong delayed contributions.

Figure 9. A Ai
k

i
CC vs. Ai

CC distribution for Ai
Ia (left), Ai

3 (center), and Ai
4 (right). All density plots are logarithmically scaled. The third and fourth processes

contribute most to low-metallicity stars.
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Figure 10. Left: [X/Mg] vs. [Mg/H] abundance distributions for the observed sample (first column), K = 2 model (second column), and K = 4 model (third column)
for Ca, C+N, Na, Cr, Ni, Mn, Co, and Ce. Observational errors are not added to the model predictions. All density plots are logarithmically scaled. Right: process
vector components (fourth column) and median low-Ia fractional contributions from each process (fifth column) for the K = 4 (solid lines) and K = 2 (dashed lines)
models to the low-Ia population as a function of [Mg/H]. We plot the median q j

Z
CC, and fij

CC in light purple, q j
Z

Ia, and fij
Ia in dark purple, q i

Z
3, and fij

3 in light orange, and
q i

Z
4, and fij

4 in dark orange. In the final column, we plot a dotted gray line at 0 for reference.
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6. Discussion

In this paper, we present KPM, a flexible and data-driven
model for inferring nucleosynthesis yields. KPM describes
stellar abundances as the sum of K components, where each
component is the product of a metallicity-dependent process
vector component (fit to each element) and a process amplitude
(fit to each star). Combined with a likelihood function and a set
of assumptions (Section 2) that make the processes inter-
pretable in terms of nucleosynthetic sources, the best-fit KPM
parameters can be used to calculate the fractional contributions
from each process as well as a full suite of predicted K-process
abundances.

We fit KPM with K= 2 to abundance labels for 15 elements
and 48,659 RGB stars in APOGEE DR17, selecting a
population that minimizes statistical and systematic errors,
while spanning an [Mg/H] of −0.8 to 0.5. In the K= 2 model,
the first process, fixed to Mg, represents prompt CCSN-like
enrichment, and the second process, fixed to Fe, represents
delayed SN-Ia-like enrichment—but other nucleosynthetic
sources with similar time delays may be mixed into each.
Under our adopted assumptions, the prompt process also
contributes to Fe, but the delayed process does not contribute to
Mg, in accordance with theoretical expectations for CCSNe
and SNe Ia. Overall, we find that K= 2 is a good fit to the data
and that the model successfully recovers the global abundance
patterns in the Milky Way. While KPM does not rely on
[Fe/Mg] versus [Mg/H] bimodality or median abundance
trends, it is able to recover the observed bimodal abundance
distribution. Further, the fit parameters Ai

CC and Ai
Ia act as

combined individual-process abundance labels, revealing a
clearer signature of bimodality at high metallicity in Ai

Ia/Ai
CC

versus [Mg/H] space than in [Fe/Mg] versus [Mg/H]. This
suggests that the KPM fit parameters and predicted abundances
could be used as a higher-S/N tracer of nucleosynthesis, as
they are using a justified likelihood to condense information
from 15 elements into two variables.

To test the assumptions of the fiducial model, we explore the
impact of varying the fixed value of q Z

CC,Fe. We find that high
values of q Z

CC,Fe (0.5 and 0.45) are not able to reproduce the
observed [Fe/Mg] versus [Mg/H] abundance distribution,
regardless of the process vector component’s metallicity
dependence. Our requirement that Ai

CC and Ai
Ia are non-

negative makes it impossible for the model to reproduce the
lowest [Fe/Mg] values in the APOGEE data. Values

�q 0.4Z
CC,Fe and 0.35 with �dq dZ 0Z

CC,Fe or 0.15 produce
similarly successful fits. While predicted abundance distribu-
tions appear similar for these models, the implied fractional

contribution from the prompt process is dependent upon the Fe
assumption for elements with substantial delayed enrichment.
Through this exploration, we conclude that the quantitative
nucleosynthetic interpretation of KPM is dependent upon the
input assumptions, and that there is inherent uncertainty in the
fij

CC values.
Finally, we expand KPM from K= 2 to K= 4, regularizing

the third and fourth processes to Ce and Mn. KPM builds on the
original model, such that the K= 4 model starts at the K= 2
solution and then finds the best-fit parameters for K= 4,
altering the original solution and allowing all elements (except
Mg and Fe) to have contributions from additional processes.
We find that S, Ca, C+N, Na, Cr, Mn, Co, Ni, and Ce are best
fit with a third and/or fourth component, with such processes
contributing most significantly at low metallicity. The informa-
tion for constraining the qk j

Z
, values for the third (fourth) process

comes from the star-by-star deviations of Ce (Mn) from the
K= 2 model predictions and their correlation with deviations
for other elements Xi. Relative to the approach taken in W22
(Section 8), our K= 4 model requires non-negative qk j

Z
, and Ai

k

for all elements and stars, and it starts by tying the third and
fourth processes to individual elements, rather than groups of
elements. The K= 4 model improves the ability of KPM to fit
the abundances of all elements, but especially improves
predictions of Ca, C+N, Fe, Mn, and Ce. This successful
implementation of a K= 4 model shows that KPM can be
extended to K> 2, and it has potential future use in
constraining enrichment beyond a single prompt and delayed
process—critical to understanding enrichment from AGB stars,
merging neutron stars, and rarer novae.
KPM is based upon the two-process model developed

in W19 and W22. While the two models are identical in format
for the K= 2 case, the model assumptions, parameter
derivations, and implementations differ. The W22 two-process
model derives process vector components from median
abundance trends, reliant upon [Mg/Fe] versus [Mg/H]
bimodality, and fits process amplitudes to a subset of 2− 6 α
and Fe-peak elements. KPM, on the other hand, employs a
likelihood function fit to all stars and all elements to derive
both process amplitudes and vector components. Our more
data-driven implementation results in the improved ability of
the K= 2 model fit to predict all of a star’s abundances.
Notably, KPM can better predict C+N and Mn abundances
than the W22 two-process model, since all elements are used to
constrain the fits. The most significant improvement to the
original two-process model, though, is in KPMʼs flexibility.
The flexible implementation of the model allows us to easily

Figure 11. Left: cumulative distribution of Dlog10
2( ) for the K = 2 model (dotted light purple line) and the K = 4 model (solid dark purple line). Right: χ2 per element

for the same model fits. Elements are ordered by atomic number.
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vary the assumptions, such as q Z
CC,Fe, and increase the number

of model components to study the impact of our assumptions
on the results and push the interpretation of KPM beyond
standard CCSN and SN Ia nucleosynthesis in a less restrictive
manner than W22 and G22.

However, KPM is not without its own faults. The
assumptions listed in Section 2 may incorrectly skew our
results, and the model could benefit from improvements in
implementation. While assumptions (4) and (5) on Mg and Fe
production are flexible, KPM requires that both elements have
fixed process vector components. If our assumptions are
incorrect and, for instance, Mg is not a pure prompt element or
(in the K= 4 case) Fe has contributions from multiple delayed
sources, our nucleosynthetic interpretation of KPM may be
wrong. This becomes more challenging as K increases and we
have to make more assumptions to break rotational symmetries
(the symmetries in which the process amplitudes and the
process vectors are transformed in corresponding ways to leave
the predictions unchanged). Additionally, assumption (7) states
that the APOGEE data products can be used for this project,
but we inflate outlying-star abundance errors with a softening
parameter, Q, to account for their likely underestimation. It is
also possible that Q is accounting for some of the real intrinsic
scatter in the data and inflating the observational error on true
outlier stars. In a future KPM implementation, the development
of a more robust method to justifiably downweight outlier stars
from the global fits would be beneficial. This method should
account for both non-Gaussian observational errors (e.g., from
bad telluric subtraction or unlucky line blends) and physically
interesting outliers (e.g., from binary mass transfer). Finally,
KPM fits process vector components along a spline with 11
knots (assumption (6)), and those knots have fixed locations in
metallicity. As this method fits a polynomial between each
knot, it can result in sharp features at the knot locations in
metallicity regions with few points or large scatter. Fitting
process vector components with a differentiable function might
be more reasonable, though the results shown in Appendix C.1
in G22 suggest that this change might have minimal impact on
the results. In general, this model for the metallicity
dependence of the yields is very rigid; a better model could
both have more flexibility and be smoother.

Beyond improvements to the underlying model assumptions
and implementation, KPM needs to include parameter
uncertainty. While the model delivers process vector compo-
nents and amplitudes, which can be used to calculate fij

k and K-
process predicted abundances, the current implementation does
not return errors on any variable. The best method to derive
such errors has not been explored, but one could use the
likelihood function or bootstrapping. These methods will
encapsulate the uncertainty on process parameters from the
APOGEE abundance errors, but will not capture the uncer-
tainty due to model assumptions, such as q Z

CC,Fe (Section 5.1).
While such future changes will improve the model, the

current form of KPM and its data products can support ongoing
research and will enable new science. Most immediately, KPM
provides high-S/N abundance labels, Ai

CC and Ai
Ia, as well as

denoised stellar abundances (mij). The best-fit values of Ai
CC

and Ai
Ia, in particular, are powerful tracers of nucleosynthesis.

They show a bimodality at all metallicities, as do some of the
denoised abundances. And—because the model is a maximum-
likelihood model—they represent information-theory optimal
combined measures of α and Fe-peak abundances. That is,
these data-driven amplitudes could replace more theory-driven
measures of the relative contributions of CCSN and SN Ia
enrichment channels.
In Section 4.1, we showed that the high-Ia and low-Ia

populations are more clearly defined in Ai
Ia/Ai

CC versus
[Mg/H] than in [Fe/Mg] versus [Mg/H]. In amplitude space,
the low-Ia population can be redefined as

⎧⎨⎪⎩⎪
� � �

� � � �

�

.
.

A A

A A

A A

0.35, Mg H 0.2

0.5 0.7 Mg H , 0.2 Mg H 0.1,

0.57, Mg H 0.1.
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i i

i i

i i

Ia CC

Ia CC

Ia CC

[ ]
[ ] [ ]

[ ]
( )

Compared to Equation (11) (W19; W22), this new definition
reclassifies 647 stars as high-Ia and 224 stars as low-Ia. We
show the locations of these stars in Ai

Ia/Ai
CC versus [Mg/H]

and [Mg/Fe] versus [Fe/H] in Figure 12. Many of the
reclassified stars are at [Fe/H]>− 0.1. When dividing in
[Mg/Fe], it is difficult to correctly separate the populations at

Figure 12. Left: distribution of stars in Ai
Ia/Ai

CC vs. [Mg/H], where the black dashed line is the dividing line between the high-Ia and low-Ia populations
(Equation (16)). Stars that are reclassified as high-Ia are shown in purple (647 stars) and stars that are reclassified as low-Ia are shown in orange (224 stars). Right: the
same as the left, but in [Mg/Fe] vs. [Fe/H] space. The high-Ia and low-Ia populations have been labeled in both panels for clarity. The symbols emphasize the stars at
the edges of the populations, but the reclassified stars make up only ∼2% of the total population.
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high metallicity, as they are blended together. Our new
definition also reclassifies many stars near [Fe/H] of −0.3 as
high-Ia, suggesting that the W19 and W22 high-Ia definition
has too shallow a slope. While only ∼2% of stars are
reclassified under the new definition, we suggest that
Equation (16) be used to chemically define the low-Ia and
high-Ia populations if KPM fits are available, especially if
studying stars with [Fe/H]>− 0.1. Beyond improving the
definition of high-Ia and low-Ia populations, the KPM
parameters and predicted abundances could be used in any
current analysis that strives to show trends with abundance
labels. We predict that trends of stellar parameters with [X/H]
will be clearer when comparing to mij, Ai

CC, or Ai
Ia.

Such analysis with KPM parameters will be useful in
studying nucleosynthesis, dynamics, disk formation, stellar
ages, and much more. However, in this paper, we only present
fits for a small population with restricted stellar parameters,
relative to the full APOGEE sample. While KPM could be fit to
the full APOGEE sample, systematic abundance effects with
Teff and glog( ), as well as other abundance artifacts (e.g.,
Jönsson et al. 2020; Griffith et al. 2021a), cause the abundance
trends to differ across the Hertzsprung–Russell diagram. The
best-fit KPM parameters for the giants would differ from those
for the dwarfs. If such systematics could be accounted for (see
T. Sit et al. 2024, in preparation), we could fit the full APOGEE
stellar sample with KPM or train KPM on a subset of high-S/N
stars and apply the fits to the full sample. This potential future
analysis could reveal additional information about the nucleo-
synthetic history of our Galaxy and would provide higher-S/N
abundance labels for the full sample.

The success of the two-process model (W19; W22) and
KPM with K= 2 suggests that the distribution of disk stars in
APGOEE abundance space is largely 2D, though more
dimensions are required to fully explain the data (Ting &
Weinberg 2022; W22). In this paper, we have focused on a 2D
nucleosynthetic model, with the two dimensions representing
prompt CCSN-like enrichment and delayed SN-Ia-like enrich-
ment. However, another 2D class of theoretical models for the
Milky Way exists, describing stars in terms of birth radius and

birth date (e.g., Frankel et al. 2018; Ness et al. 2022). Are these
two 2D models related? If they are, then the nucleosynthetic
parameters from KPM (Ai

Ia and Ai
CC) should predict aster-

oseismic ages (or masses), up to unpredictable aspects of mass
transfer, as well as the guiding center radius, up to
unpredictable aspects of radial migration. While a deeper study
of the implications of the disk’s two-dimensionality is outside
the scope of this work, we show the relationship between
asteroseismic age from the APOKASC sample (Pinsonneault
et al. 2018) and process amplitudes in Figure 13. Here we see a
clear gradient in age with Ai

CC and Ai
Ia/Ai

CC (as in G22
and W22), though outlier stars are scattered throughout. We
predict that the KPM parameters will be better age diagnostics
than the APOGEE abundances, and that age outliers may be
mass transfer objects.
Finally, because of the flexibility of KPM, new scientific

applications are enabled that were not feasible before. Because
KPM performs well with a low number of stars and does not
rely on [Mg/Fe] versus [Fe/H] bimodality, nonbimodal
populations can now be fit with a multicomponent nucleosyn-
thetic model. KPM could be applied to the low-metallicity disk,
halo, Gaia Enceladus Sausage, Nubecula Major, Nubecula
Minor,15 other Milky Way satellites, and more. KPM can also
be easily extended to K> 2 in a much less restricted way than
the two-process model. While a K= 2 model well describes the
global abundance patterns, intrinsic residual scatter on the scale
of 0.01–0.02 dex remains (G22; Ting & Weinberg 2022; W22).
This scatter could be signatures of enrichment from non-
CCSN/SN Ia sources, stochastic sampling of the IMF,
environmental IMF variations, or metallicity-dependent SN
yields with a bursty star formation history (e.g., Belokurov &
Kravtsov 2022; Griffith et al. 2023). While it is difficult to
identify non-CCSN/SN Ia enrichment in the APOGEE data
alone, where only C+N and Ce are expected to have significant
contributions from other sources, there may be signatures in
other surveys with better coverage of heavier elements.
Applying a K> 2 model to GALAH (Buder et al. 2021), or
an overlapping sample of APOGEE and GALAH stars
(Nandakumar et al. 2022), could prove more successful.
In the K= 2 and K> 2 cases, results from KPM will help us

disentangle our Galactic formation and enrichment history.
This data-driven model opens doors to many new research
projects and exciting future scientific results. To use KPM
yourself, please reference the KPM GitHub repository,16 access
the Zenodo repository via doi:10.5281/zenodo.10411910
(Griffith & Hogg 2023), or contact the corresponding author.
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